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Time-dependent damage evolution and failure in materials. II. Simulations
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A two-dimensional triangular spring network model is used to investigate the time-dependent damage
evolution and failure of model materials in which the damage formation is a nucleated event. The probability
of damage formationr i(t) at sitei at time t is taken to be proportional to the local stress at sitei raised to a
power:r i(t)5As i(t)

h. As damage evolves in the material, the stress state becomes heterogeneous and drives
preferential damage evolution in regions of high stress. As predicted by an analytical model and observed in
previous electrical fuse network simulations, there is a transition in the failure behavior ath52: for h<2, the
failure time and damage density are independent of the system size; forh.2, the failure time and damage
decrease with increasing time and failure occurs by the formation of a finite critical damage region which
rapidly propagates across the remainder of the material. The stress distribution prior to failure exhibits no
abrupt changes or scalings that indicate imminent failure. The scalings of the failure time and the failure time
distribution are investigated, and compared with analytic predictions. The failure time scales as a power law in
ln NT , whereNT is the system size, but the exponent is not the predicted value of 12h/2; this is attributed to
a difference in the stress concentration factors~scf! between the discrete lattice and a continuum model. Using
the scf values for the lattice lead to predicted scalings consistent with the simulations. Predicted absolute
failure times versus size are generally in good agreement with simulation results at largerh values. The
coefficient of variation of the failure time distribution is observed to be nearly constant, in slight contrast to the
predicted scaling of (lnNT)

21. Overall, the simulation results quantitatively and qualitatively validate many of
the critical predictions of the analytic model.@S0163-1829~97!04017-4#
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I. INTRODUCTION

The evolution of damage in a material, culminating
failure of the material after some time at load, is of gre
importance in the design of structural systems. Structu
components are constructed to operate at stresses well b
the fast-fracture strength of the component, and hence fa
usually occurs in time due to cyclic or static fatigue mech
nisms. The mechanisms of damage formation, accumula
and ultimate failure can vary widely among different ma
rials, but generally the damage formation rate is a nonlin
function of the applied stress, and the time to failure is
highly stochastic variable. It is therefore of considerable
terest and practical use to develop a general understandin
the coupling of microscopic damage to macroscopic failu
and in particular, of the specific time scales for failure a
their detailed statistical distributions. The latter is necess
to establish reliability of the material, and hence ultimate
sets the limits on design stresses in an engineering app
tion.

We have discussed previously the problem of failure
der constant applied stress in a material for which the d
age is a nucleated phenomenon with a damage rate th
dependent on the local stress at any time.1,2 Specifically, the
relative probability of failurer i(t) at a damage sitei at time
t is assumed to be

r i~ t !5As i~ t !
h s i~ t !.0

50 s i~ t !,0, ~1!
550163-1829/97/55~18!/12051~11!/$10.00
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wheres i(t) is the local stress on sitei at timet and damage
is presumed to occur only under tensile stress. Here,h is a
parameter which accounts for the nonlinear relationship
tween damage rate and stress, and a power-law depend
is chosen to obtain often-observed power-law creep rate
the material at short times. In a companion publication,
have described the behavior of a Si/SiC composite wh
suggests the basic underlying damage rate law studied h
In addition, the present nucleated damage law is the simp
form possible, with no dependence on the prior stress
tory. However, even in the absence of memory effects,
failure of the material is complex and sensitive to the prec
value ofh. Analytic predictions of damage evolution, stra
versus time, and the failure time distributions for this nuc
ated damage rate law exhibit some very subtle scalings of
time-dependent behavior for larger values of the nonlinea
parameterh.

In this paper, we present results obtained from compu
simulations on the damage evolution and failure in spr
network models which obey the damage rate law of Eq.~1!,
and compare the simulation results to the analy
predictions2 in considerable detail. The numerical study co
firms the overall predictions of the analytic model: a tran
tion in failure behavior aroundh52; more abrupt and les
predictable failure ash increases; failure time decreasing
a power law of the logarithm of the system size; a width
the failure time distribution decreasing very slowly with in
creasing size. In detail, the exponents of the power-law
pendence on ln~size! are not quite as predicted in the analyt
12 051 © 1997 The American Physical Society
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model, but this is largely attributable to the slightly compl
stress-concentration factors around small cracks in the
crete spring network. Also ath54 ~a low value but above
the transition value! the importance of damage one ne
neighbor away from preexisting damage, followed by linki
of the damage to form larger clusters, appears to drive f
ure. The analytic predictions do agree well with the simu
tions at higherh if stress concentration factors appropriate
the lattice model are used.

The remainder of this paper is organized as follows. In
next section, we describe the simulation model and the a
rithm used to introduce damage according to the power-
rate of Eq.~1!. In Sec. III, we present results for the gene
evolution of damage and failure as a function of system s
andh. In Sec. IV, we compare in detail the scaling behav
found here and predicted analytically. Section V conta
further discussion and a summary of our results.

II. THE SIMULATION MODEL

The use of discrete spring networks or electrical fuse n
works to study failure has been quite popular over the
ten years, and is well described in many publications3–8

Most of the studies concentrate on time-independent ‘‘fa
fracture’’ phenomena with a heterogeneous distribution
spring properties.3,4 Only a few studies, to our knowledge
have considered time-dependent damage evolution. Not
among these are the early work of Termonia and co-work
on rupture models for oriented polymer systems,5 and the
work by Hansen, Roux, and Hinrichsen on time-depend
damage in fuse networks.6 These works are essentially ide
tical in spirit and detail to the present simulations, but did n
investigate the time-dependent strain evolution, the fail
time, its distribution, or its size scaling in any way. The
topics are the main focus of the present effort.

Here, we employ a triangular network of central for
springs, each spring spanning two nodes in the triang
network.7 The network is subject to a fixed applied displac
ment by uniformly displacing the top boundary and holdi
the bottom boundary straight. The applied displacements
small, typically corresponding to a strain of 0.001 so that
network is always in the linear elastic range. The network
also periodic in the transverse direction. Damage in the
work is represented by broken springs, or equivalen
springs of zero stiffness/modulus. For any configuration
damage, mechanical equilibrium is obtained by moving al
the nodes in the network~except those on the boundarie
whose vertical coordinates are fixed by the applied displa
ment! to positions of zero force. This is accomplished n
merically by a successive over-relaxation technique. A
the equilibrium nodal positions are found, the for
~‘‘stress’’! in each spring is simply the spring modulus mu
tiplied by the net displacement difference of the nodes
which it is attached. In the present problem, the spr
moduli are either a single value, which is taken as the uni
stiffness in this problem, or zero.

The applicability of discrete element models to real co
tinuum materials requires some careful thought. For fa
fracture problems, fracture is controlled by the stress int
sity factor at the microscopic tip of the crack, or equivalen
the strain-energy release rate for infinitesimal advance of
is-
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crack. In discrete models, the continuum crack tip is miss
and, at best, the stress in an element ahead of a crack r
sents an average of the continuum stress field. The ons
unstable fracture can thus be misrepresented unless ther
physical mechanisms to blunt the crack, or small cra
ahead of the crack which link up to the crack. These iss
are discussed more fully by Curtin and Scher.7 The use of a
discrete disordered structure as compared to a contin
finite-element model can lead to additional artifacts, as d
cussed by Jagota and Bennison.8

In the present problem, and the corresponding phys
example of Si/SiC, the use of a spring network model can
justified. The damage that forms is not a strict slit crack,
rather a cavity, and the cavity is blunted at the ends by d
tile silicon. The stress transfer around the damage is thus
highly concentrated around the tip of the damage and
reasonably be represented by the average stress acros
surrounding sites. As damage clusters develop, the clus
will become more cracklike~higher aspect ratio! but still
blunted; the network model can represent the enhanced s
ahead of such defects and can thus be used reliably with
spring representing a single possible damage site in the
terial. In application to Si/SiC, each spring would then re
resent a SiC/SiC grain boundary. Here, we neglect the a
tional presence of Si/SiC grain boundaries which do
damage as readily, and study an essentially homogen
material composed of equivalent damage sites uniformly
tributed on the lattice. We also use a regular lattice and th
fore avoid the artifacts highlighted in Ref. 8. There are a f
remaining artifacts of the discrete regular lattice, discus
by Curtin and Scher, which we will note as they influen
the results of the simulations vis a vis the analytic
predictions.7

Before describing the specific algorithm employed in t
simulations, we first note that the problem of interest here
damage evolution under a fixed applied stress. However,
any configuration of damage the system is still linearly el
tic so the relationship between stress and strain is throug
time-dependent elastic modulusE(t); a problem studied a
constant strain can thus be easily converted to one of c
stant stress. As time progresses and springs are broken~re-
placed by zero modulus springs! the stress at fixed strain
decreases, and the modulusE(t) decreases concomitantly s
that, at constant strain,s(t)5E(t)«app. All of the internal
stresses in the network are proportional to the macrosc
applied stress, however, because the network is linear.
situation at fixed applied stress can thus be obtained from
constant strain test by scaling all stresses bysapp/s(t). Then,
the strain versus time is«(t)/«app5sapp/s(t). Thus, although
the numerical simulation is carried out at a fixed strain,
desired result of a fixed applied stress and increasing st
with time is easily obtained.

Now consider the damaged network at some timet, where
the local stresses in the remaining undamaged springs in
network have the valuess i(t). Where does the next dam
aged site appear, and how long does it take for this even
occur? The rate of damage at any one site is as given in
~1!. The probability of failurepi(t) occurring at sitei is thus
the rate at sitei relative to the total rate of damage occurrin
somewhere in the material,
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pi~ t !5
r i~ t !

(
j
r j~ t !

, ~2!

where the sum runs over all sites 1, j,NT . The algorithm
to pick a particular sitei to fail given the probabilities$pi% is
standard. The cumulative probabilityci , given by

ci5(
j< i

pj~ t ! ~3!

is formed, and the cumulantc spans the range@0,1#. A ran-
dom numberR in the interval@0,1# is then selected. The sit
i chosen to fail in the next interval is then the sitei for which

ci21,R,ci . ~4!

This procedure guarantees the selection of a site at ran
but consistent with the relative probabilities of Eq.~2!. The
average time interval required for this event to occur is s
ply the inverse of the sum of the rates,

Dt5
1

(
j
r j~ t !

. ~5!

After a site is chosen to fail, the modulus of that spring is
to zero~the spring is ‘‘broken’’!, the time is updated by the
incrementDt,9 and a new state of mechanical equilibrium
determined numerically by finding the new zero-force po
tions for each node. The new macroscopic stress on the
work, as measured by the vertical forces on the nodes a
upper boundary, is then converted to an effective mac
scopic strain for the entire sample at this new time. A n
damage site is then selected as described by the above
rithm.

The above algorithm of establishing the local stress
choosing a site to fail, incrementing the time, reestablish
new local stresses, and calculating the macroscopic strai
repeated over and over starting from the initial state of
damage, for which all nonhorizontal springs have the sa
tensile stress. The horizontal springs are in slight comp
sion initially, and generally do not fail except in rare in
stances near the end of the test. Failure is formally define
the point at which the strain diverges, or equivalently wh
the elastic modulus goes to zero. Some features of the ce
force network, such as free rotation of the springs around
nodes, can lead to a diverging strain even though not a
the springs in any one cross section are broken. This op
tionally has no effect on our simulations because we
interested in the failure time, and the diverging strain can
observed well before the network reaches complete fail
and before there are any freely rotating springs in the fail
plane. Below, we will generally cease the simulations wh
the strain is evidently diverging, and has increased to sev
times its initial value.

III. RESULTS

We have investigated the evolution of strain and dam
versus time in spring networks of various sizes and fo
range of values ofh. The sizeNT of each network will be
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taken as the number of springs in the nonhorizontal orien
tion, since the horizontal springs rarely fail, and the range
NT studied is 264<NT<28560 for values ofh52,4,8,12. In
all cases, the time scale is normalized by the reference t
1/~As app

h ! so that the results only depend on network sizeNT

andh. The initial strain is 0.001 but all results are simp
proportional to the applied strain.

Figures 1~a!–1~d! show the evolution of the macroscop
elastic ‘‘creep’’ strain versus scaled time for one particu
statistical realization at each of the valuesh52,4,8,12 for
various system sizes. Forh52, the damage evolution an
accumulated creep strain exhibited in Fig. 1~a! are rather
gradual and there is no noticeable dependence on system
except at the smallest sizes considered. Multiple realizati
~not shown! indicate that the sample-to-sample fluctuatio
at any one fixed size are larger than the difference found
the different sizes shown in Fig. 1~a!. Also, the simulations
are cut off after increases of about a factor of 5 in the str
and, although increasing rapidly, there is not a sharp div
gence that we will observe for higher values ofh. As con-
cluded by Hansenet al. in their study of the total accumu
lated damage at failure, the behavior ofh>2 is a percolation-
type failure with no size dependence in any characteristic
the failure.6

For h.2, distinctly different behavior occurs. Figure
1~b!–1~d! show the accumulated elastic creep strain ver
system size for one statistical realization at each size
h54,8,12, respectively. The data shown have failure tim
close to the mean failure time at each size. In all cases,
failure time definitely decreases with increasing system s
with a faster rate of decrease for largerh. In addition, the
failure becomes more abrupt with increasingh. For h54,
there is some nonlinearity in the creep strain versus time
times as low as 50–75 % of the failure time, whereas
h512 the deviation from linearity occurs noticeably on
just before failure, at about 95% of the failure time. T
failure is also increasingly abrupt with increasing size at a
fixedh value. Thus, the ability to anticipate failure by mon
toring damage or strain decreases both with increasingh and
increasing system size.

Figures 2~a!–2~e! show the evolution of the damage fo
h54 in the form of ‘‘snapshots’’ of the damage configur
tions at specific times prior to failure. In each figure, t
small hash marks indicate the midpoints of springs in
triangular lattice, and so show the possible damage site lo
tions, while the actual damaged sites are indicated by la
squares. At early times (t'0.3t f), the damage is limited and
widely distributed with some evidence of clustering. A
t'0.64t f , more damage and small clusters have formed
there has been no substantial growth in any individual cl
ter. At t'0.87t f , one cluster has clearly begun to gro
larger, and another set of damage sites is forming an inc
ent connected cluster. Att'0.99t f the two clusters have be
come dominant, and in the last 1% of life further grow
occurs to form a connected cluster spanning the width of
material to cause failure. The failure ath54 is thus con-
trolled by the gradual development of a dominant clus
which clearly controls the failure process late in life.

Figures 3~a!–3~e! show a similar damage evolution pro
cess forh58. Here, att'0.55t f there is very little damage
with a few ‘‘dimers.’’ At t'0.83t f , there is not significantly
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FIG. 1. Creep strain versus dimensionless time for various system sizes:~a! h52; ~b! h54; ~c! h58; ~d! h512.
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more damage but a very local region of material has pre
ential damage. Att'0.94t f , the localized damage has de
nitely coalesced into an extended cluster, and a few sma
clusters are formed elsewhere. Att'0.98t f the dominant
damage cluster is extending rapidly and now complet
controls the failure, along with a secondary growing clus
A short time later, the system is nearly spanned by a la
connected cluster and the simulation was stopped. In c
parison to the case forh54, the damage forh58 is much
less in extent, and the localization occurs much more rap
as a fraction of the total damage. This occurs, however, l
in the life of the material and with less overall creep def
mation, and the ultimate rapid growth to failure occurs ve
abruptly near the end of the life. The higherh systems are
thus characterized by less damage, smaller ‘‘critical’’ clu
ters which precipitate the ‘‘avalanche’’ growth to failure, an
consequently much more abrupt and dangerous failure.

Figures 4~a!–4~c! show the overall stress distributions
the spring networks at various times, in the form of a cum
lative number of springs versus spring stress, for a size
3680 springs ath54,8,12. At early times, the distribution i
nearly ad function, and hence the cumulant is nearly a s
function, because most of the sites experience the initial
plied stress and no stress enhancement. As time and da
progress, the distribution broadens and the average incre
indicating the average rise in stresses on the unbro
springs due to the damage. Also, a pronounced tail at hig
stresses develops, indicative of the few important spri
which are under stresses much larger than the average. T
r-

er
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p
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springs fail the fastest and generate larger clusters w
higher stress concentrations and are the basis for the a
erating failure, as evident from the rapid growth in the hig
stress tail as the failure time is approached. However, th
are no distinct or characteristic features in these cur
which suggest an onset of failure at any particular time, a
the overall distributions exhibit no characteristic form esp
cially in the critical tail region. Hansen, Hinrichsen, an
Roux have examined the distributions of stresses just prio
complete failure~one bond left holding the entire syste
together! and have shown that the distribution is multifracta
but only at that one penultimate point of the evolution10

Because of our interest here in detecting precursors to
ure, and understanding the failure time, we have not a
lyzed the stress distribution just at failure. It will clearly be
very broad function because all of the stress is funne
through the one remaining bond, but this is not relevant
the important controlling dynamics prevailing earlier in th
failure process.

IV. COMPARISON OF SIMULATIONS
AND ANALYTIC PREDICTIONS

The qualitative features of the simulations found here
in general agreement with the analytic model predictions
scribed in our previous papers.1,2 In particular, the failure
times decrease with increasing system size forh.2, and the
failure becomes more abrupt with increasingh. Here, we
wish to consider the detailed predictions of the theory
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FIG. 2. Damage evolution for one particular realization ath54, system size51984. Small dashed lines are potential damage sites; s
squares indicate damage location. The dimensionless failure time ist f50.0452. ~a! t50.30t f ; ~b! t50.64t f ; ~c! t50.87t f ; ~d! t50.99t f ;
~e! t5t f .
u
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garding the actual scaling of the failure time and its distrib
tion with both system size andh. The theory predicts a sca
ing of failure time of

t f}~ lnNT!12h/2 ~6!
-for systems with stress concentration factors that scales
cluster sizec as c1/2. The failure probability distribution is
predicted to be~approximately! Weibull with a ‘‘Weibull
modulus’’ corresponding to the critical crack sizeĉ. For a
Weibull distribution, the coefficient of variation~c.o.v.5the
standard deviation divided by the mean! is reasonably repre
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FIG. 3. Damage evolution for one particular realization ath58, system size51984. Small dashed lines are potential damage sites; s
squares indicate damage location. The dimensionless failure time ist f50.00141. ~a! t50.55t f ; ~b! t50.83t f ; ~c! t50.94t f ; ~d! t50.98t f .
.

1

me
r,
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sented by c.o.v.51.2/ĉ. The scaling ofĉ and hence the c.o.v
is predicted to be

ĉ'
ln~NT!

h/221
; c.o.v.'

h/221

ln~NT!
~7!

with the size scaling being independent of the value ofh.
To test these specific predictions, we have performed
 5

simulations at each size and at each value ofh to assess the
mean failure time and standard deviation of the failure ti
distribution. While 15 simulations is not a large numbe
particularly for estimating the standard deviation, the sim
lations are very computer intensive for larger sizes and m
erateh values, and so limit our ability to collect data in th
large-size regime where the dominant scalings are expe
to clearly emerge.
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FIG. 4. Cumulative stress distribution in dam
aged network versus stress, for various times
to failure for size53620. The cumulant at stres
s is the number of springs with stress belows,
and is normalized by the total number of sprin
in the network, while stress is normalized by th
initial applied stress. ~a! h54; ~b! h58; ~c!
h512.
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Figure 5 shows the failure time versus system size for
three values ofh54,8,12. The analytic model predicts a lin
ear relationship in the lnt f2ln„ln(NT)… plot, with slope
12h/2 based onc1/2 stress concentration factors. Figure
shows that over the entire range of sizes, spanning two
cades in size scale, the mean failure time does scale
e

e-
a

power of ln(NT) with exponents20.70,21.72, and22.54,
respectively, forh54,8,12. The corresponding predicted e
ponents are21, 23, and25, respectively, and are not clos
to the measured exponents.

The main reason that the predicted exponents do not a
with the simulations lies in the assumption that the str
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concentrations are proportional to~cluster size!1/2. In the dis-
crete lattice simulation, a square-root dependence does
tain for sufficiently large cracks but at smaller crack sizes
dependence is somewhat different. Since, from the the
the onset of failure is controlled by the initial formation of
size ĉ critical cluster, which then grows to failure, and sin
ĉ is fairly small for the system sizes studied here, it is co
ceivable that the simulations correspond to a different st
concentration factor scaling over the cluster sizes of imp
tance. To investigate this possibility, we have introduced
ear connected cracks~broken springs! of increasing size into
an otherwise perfect triangular lattice and determined
stress concentration factor at the crack tips. The stress
centration factors for clusters of sizesc51 toc58 are shown
in Table I; fits to a simple power-law dependence yield
form of 1.20cx with x50.28–0.30. The stress concentrati
factor clearly increases less rapidly thanx50.5. If one revis-
its the analytical model and replaces the exponent of 1/2
an exponent ofx, then the scaling relationships are modifi
by a replacement ofh/2 byhx. For the value ofx50.29, the
predicted exponents for the time-to-failure scaling then
come20.16,21.32, and22.48, forh54,8,12, respectively
The values for the largerh now agree reasonably with th
simulations, but the value forh54 is much too small. All the
simulation results cannot be made to agree with the pre
tions for a single value of stress concentration factor ex
nentx.

The deviation at the smaller value ofh54 arises becaus
of correlated damage evolution beyond first-near neighb
in the triangular lattice. We have analyzed the stress con
tration factors at the second-neighbor sites around lin

FIG. 5. Mean failure time versus system size for varioush
~symbols!. Solid lines are the linear fit to simulation data; dash
lines are predicted from the analytic model forh58, h512.

TABLE I. Stress concentration factors at the tips of linear da
age clusters versus cluster lengthc, in the triangular central-force
spring network. Also shown is a simple power-law fit.

Lengthc Stress concentration 1.2cx x50.28–0.3

1 1.24 1.20
2 1.49 1.46–1.48
4 1.79 1.77–1.82
6 2.01 1.98–2.05
8 2.13 2.15–2.24
b-
e
y,

-
ss
r-
-

e
n-

y

-

c-
-

rs
n-
ar

cracks of various sizes, and then computed the relative p
abilities of failure at the near-neighbor tip sites and the ne
neighbor sites as a function ofh. We denote the stress con
centration factor for the near neighbors asKNN

i (c), with
i51–4 for the four neighbors at the crack tip, and for t
next-near neighbors asKNNN

i (c), with i51–8, for the~typi-
cally! eight next neighbors in the triangular lattice. We th
calculate the fraction

f5

(
i

@KNNN
i ~c!#h

(
i

@KNNN
i ~c!#h1(

i
@KNN

i ~c!#h

, ~8!

which is the probability that a failure will occur at a nex
near-neighbor site relative to the total probability of failure
either near- or next-near-neighbor sites. This probability
pends on both the decay of the stress field away from
near-neighbor tip sites and the enhancement of the prob
ity due to the exponenth. The results forf are shown in
Table II. Forh52, it is always more likely to fail away from
the tip sites which prevents~generally! the development of
dominant cracks in the material so that failure occurs m
globally. Forh54, the fractionf is generally only slightly
smaller than 1/2 so that failure at the tips is slightly preferr
but not dominant, and this feature persists out to fairly la
crack sizes. However, the probability of growing at ev
more distant neighbors is rather smaller; hence forh54 one
must conceptually view the damage growth as occurring
‘‘process zone’’ out to next-near-neighbor distances. A
though the damage does form a critical cluster locally wh
then grows to failure, as demonstrated explicitly in Fig
2~a!–2~e!, the failure process is not confined solely to t
tips of the existing damage. The analytical model is thus
quite applicable if limited to near-neighbor interactions. F
h54, the occurrence of damage away from the crack/clu
tip sites partially corrects for the decreased probability due
weaker-than-c1/2 stress concentration factor scaling to yield
scaling of failure time versus size that has an exponent20.7
lying between the analytic values of21.0 for x50.5 and
20.16 forx50.29.

For h58, failure is preferred at the crack tip sites abo
70–80 % of the time for clusters any larger thanc51. The
damage evolution is thus dominated by growth of exist
clusters with little damage ahead of the tips of the grow
crack, and the analytic model with an appropriate expon
x50.29 can account for the general scaling behavior qu

-

TABLE II. Probability of failure f at next-near-neighbor site
normalized by probability to fail at either near-neighbor or ne
near-neighbor sites, for clusters of various lengths and various
ues ofh. Probability is calculated following Eq.~8! of the text.

Lengthc h52 h54 h58 h512

1 0.57 0.55 0.49 0.44
2 0.56 0.46 0.26 0.13
4 0.54 0.42 0.21 0.08
6 0.54 0.41 0.20 0.08
8 0.54 0.41 0.20 0.08
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well. For the larger value ofh512, tip growth is preferred
more than 90% of the time and so growth is even m
dominated by the crack tip behavior, as expected. In all ca
for h.2, the damage further than second-near neighbor
negligible except in accounting for the overall probability
damage at the many remote sites away from the clus
which is already considered in the analytic model.

Overall, we see that the deviations between the simula
results and the analytic model are due to two factors:~i! a
difference in the stress concentration factor at the cluster
which is easily accounted for in the analytic model and~ii ! a
longer-ranged stress-field around the clusters which can
to damage away from the crack tip for smallerh. To account
for the latter factor in the analytic model is quite difficu
because one must consider as ‘‘clusters’’ sites which are
adjacent, but are separated by an intervening undamaged
for which the stress concentration factor is not well know
Models in one and two dimensions have been develo
which take into account such ‘‘tapered load sharing’’ f
time-independent problems, but the models are essent
statistical enumerations of all possible clusters and their
sociated probabilities, and are difficult to perform on ev
increasing system sizes.11 The analytic model described pre
viously can be extended to include ‘‘linking’’ of cluster
separated by one adjacent site in the special case of a
dimensional lattice, where all clusters are linear and h
only z52 tip sites~one at each end!, but this type of model
does not include the enhanced probability of failure due
longer-ranged stress fields.

Neglecting the longer-range damage for the higherh
58, 12, we can further test the applicability of the analy
model by direct calculation of the failure time distributio
using the differential equations in our companion paper
the effective stress concentration factor of 1.20c0.29. Using
the full analytic differential equation includes some of t
additional nonscaling terms into the overall failure time d
termination. The results for dimensionless failure time ver
system size are also shown in Fig. 5. The predicted fai
times are in good agreement with the actual simulation d
in both absolute magnitude and size scaling. The predic
times are slightly longer than the simulated times, wh
could arise for several reasons. First, the small overall st
enhancements in the simulation accelerate the damage
lution somewhat; this effect could possibly be taken in
account in the analytic model using a mean-field adjustm
of the time scale but we have not found the appropriate fo
for carrying out this procedure accurately in the triangu
lattice. In any case, as the system size increases and the
damage fraction prior to failure decreases, the average o
all stress enhancements decrease concomitantly, and s
analytic results should become increasingly accurate with
creasing size. This is consistent with the trends in Fig.
Second, the stress enhancements that do occur at the
near-neighbor sites also accelerate the damage evolutio
some extent for all system sizes, although the effect
creases with increasingh. These two considerations in tan
dem may explain why the agreement between theory
simulation is quantitatively the best at the largest size
largesth value tested.

Lastly, we study the failure time distribution, which co
trols the reliability of the material at any fixed size and fix
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h. The theoretical model predicts that the c.o.v. should
crease as~lnNT!

21 and increase withh, as indicated in Eq.
~7!. Since the size scaling is independent ofh, it is also
independent of the stress concentration factors and so a
rect comparison can be made with the simulation results
shown in Fig. 6. The simulation results are widely scatter
with the largerh values exhibiting a nearly constant c.o.
over the entire size scale. The c.o.v. forh54 decreases
monotonically with increasing size, but the importance
next-near-neighbor damage at thish invalidates any strict
comparison with the analytic prediction. In general, the c.o
is thus broader than predicted analytically, which impli
that the theory is not conservative. This may, however,
due to the approximate analytic estimates, which were sho
in the previous work to be unconservative measures of
failure distribution. The predicted trend toward larger c.o
with largerh is, however, exhibited in the simulation result

If the c.o.v. values observed in the simulations forh58
and 12 are inverted to obtain the corresponding approxim
Weibull modulus of the failure distribution, one obtains e
timates of the critical crack sizeĉ varying between 5 and 9
units. The small values for the critical sizeĉ may also lead to
larger fluctuations in the simulation results than predic
analytically. For the particular case ofh58 shown in the
snapshots of Figs. 3~a!–3~e!, this critical crack size should
set in at the onset timet*5@121/~0.3h!#tf50.58 tf using
the appropriate stress concentration factors. The snapsh
Fig. 3~a! (0.55t f) does not show a ‘‘cluster’’ of size ap
proaching the average of seven units. However, at the n
snapshot (0.73t f) there is a ‘‘generalized’’ cluster of 4–6
units, although it is not fully connected, and it is this clus
that propagates to failure. There is not quantitative agr
ment between the predicted ‘‘onset’’ time and the critic
cluster derived from the probability distribution width bu
considering the subtleties and detail involved in such a co
parison, the agreement is fair.

V. DISCUSSION

Failure processes that are triggered by a local instab
are by nature very difficult to describe analytically. A com

FIG. 6. Coefficient of variation of failure time distribution ver
sus system size, for varioush.
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plete analytic prediction requires an accurate determina
of the full, evolving distribution of damage and an asse
ment of the local stresses driving localized failure. Mea
field and averaged approaches are inappropriate, and
theoretical efforts have thus focused on idealized lo
dimensional problems where the damage evolution can
exactly enumerated. Such approaches demonstrate the
tence of volume-dependent failure and sensitivity to init
distributions, but are inherently precluded from extension
higher dimensions and more complex damage evolut
Hence, our present quantitative understanding of failure
heterogeneous systems that adequately represent real m
als is not good. Even the direct connections between ana
models and numerical simulations have not been well es
lished. Perhaps the state of the art is represented by th
cent work of Duxbury and Leath4 and the earlier work of
Harlow and Phoenix12 on systems with distributed breakin
strengths. They have developed recursion methods to pre
failure in one-dimensional models with load transfer fro
breaks to near neighbors. They have demonstrated the o
of weak-link scaling at sufficiently large sizes, and Leath a
Chen have shown the insidious influence of boundary co
tions on the failure.13 However, in comparison to numerica
simulations on square fuse lattices with the same initial h
erogeneity, the theoretical results do not fare well quant
tively. The absolute magnitude and size scalings of the f
ure strengths do not match up well with the simulati
results, although the qualitative trends are captured. T
comparison demonstrates the difficulty in developing th
ries that can be solved and yet are applicable to numer
and ultimately real, materials.

The present work has studied the problem of tim
dependent damage evolution. This problem is more forgiv
than the static fracture problem, in that failure is caused
the rapid but not instantaneous growth of a critical fla
which develops somewhere in the material. In addition,
damage mechanism has no memory effects which is
added simplification not generally prevailing in tim
dependent problems. For this particular problem, an appr
mate analytic model can accurately predict the dynamics
failure of the system in a one-dimensional problem. The a
lytic model retains the key feature of stress transfer, and
scaling, at the tips of existing damage and neglects lon
ranged interactions. This approximation is similar in spirit
those made in the static fracture problems, but fares part
larly well for the present problem under strong nonlinear
of the damage rate~high h!, as demonstrated here by dire
n
-
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comparison with simulation results. In particular, the tran
tion between percolationlike and avalanche failure, and
predicted scalings and absolute values of the failure time,
in good agreement.

The generally good agreement between theory and
merical ‘‘experiment’’ encourages several further stud
aimed toward making direct connections with experime
on real materials such as Si/SiC composites. The first c
lenge is to move to three-dimensional~3D! problems, where
the clusters have a two-dimensional planar character.
have recently developed numerical techniques based on
tice Green functions to efficiently simulate planar dama
evolution in three dimensions, and this technique will
used to gather numerical data on the 3D failure.14 Extensions
of the analytic model to 3D require additional approxim
tions because the ‘‘clusters’’ which could develop have
range of possible geometries and growth paths. Direct e
meration is possible for small clusters but becomes incre
ingly difficult as the size increases.15 Hence, new insight into
the controlling growth dynamics is needed. The second c
lenge is to include explicit initial heterogeneity into the tim
dependent failure probabilities. This can be done numeric
by introducing a site-dependent rate prefactorAi which ac-
celerates the damage at some sites~largeAi! and retards the
damage rate at other sites~small Ai!. This situation does
prevail in real materials, due to the effects of local micr
structure and local chemistry on the damage nucleation r
The site-dependent rate is easily introduced into the sim
tion models described here, and we will pursue modificatio
to the analytic model to understand the dynamics aris
from this additional source of heterogeneity.

It is clear that to address either of the above~more real-
istic! problems, or other issues relevant in real materials, w
require that the underlying models become much more c
plex. The development of approximate but accurate anal
models that capture the proper scalings, such as the m
described here and in the companion paper, becomes
more critical to understanding and interpretation of the ran
of dynamic damage evolution and failure observed in r
and model materials.
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