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A two-dimensional triangular spring network model is used to investigate the time-dependent damage
evolution and failure of model materials in which the damage formation is a nucleated event. The probability
of damage formatiom;(t) at sitei at timet is taken to be proportional to the local stress at sitaised to a
power:r;(t)=Ao;(t)7. As damage evolves in the material, the stress state becomes heterogeneous and drives
preferential damage evolution in regions of high stress. As predicted by an analytical model and observed in
previous electrical fuse network simulations, there is a transition in the failure behawjer2atfor »<2, the
failure time and damage density are independent of the system sizg>f@r the failure time and damage
decrease with increasing time and failure occurs by the formation of a finite critical damage region which
rapidly propagates across the remainder of the material. The stress distribution prior to failure exhibits no
abrupt changes or scalings that indicate imminent failure. The scalings of the failure time and the failure time
distribution are investigated, and compared with analytic predictions. The failure time scales as a power law in
In Ny, whereN7 is the system size, but the exponent is not the predicted value- gf2t this is attributed to
a difference in the stress concentration factst$) between the discrete lattice and a continuum model. Using
the scf values for the lattice lead to predicted scalings consistent with the simulations. Predicted absolute
failure times versus size are generally in good agreement with simulation results at favgdues. The
coefficient of variation of the failure time distribution is observed to be nearly constant, in slight contrast to the
predicted scaling of (INy) % Overall, the simulation results quantitatively and qualitatively validate many of
the critical predictions of the analytic modg60163-182@07)04017-4

I. INTRODUCTION whereo(t) is the local stress on siteat timet and damage

The evolution of damage in a material, culminating in'S presumed tp occur only under tensng stress. Hers,g
failure of the material after some time at load, is of greatparameter which accounts for the nonlinear relationship be-

importance in the design of structural systems. Structuraléen damage rate and stress, and a power-law dependence

components are constructed to operate at stresses well beldjych0sen to obtain often-observed power-law creep rates in
the fast-fracture strength of the component, and hence failurff'® Material at short times. In a companion publication, we
usually occurs in time due to cyclic or static fatigue mecha12ve described the behavior of a Si/SiC composite which
nisms. The mechanisms of damage formation, accumulatior;U99€sts the basic underlying damage rate law studied here.
and ultimate failure can vary widely among different mate-|N addition, the present nucleated damage law is the simplest

rials, but generally the damage formation rate is a nonlineafo™™ Possible, with no dependence on the prior stress his-

function of the applied stress, and the time to failure is aloTY- However, even in the absence of memory effects, the

highly stochastic variable. It is therefore of considerable in-filure of the material is complex and sensitive to the precise

terest and practical use to develop a general understanding %#/U€ Of 7. Analytic predictions of damage evolution, strain

the coupling of microscopic damage to macroscopic failureVersus time, and the failure time distributions for this nucle-

and in particular, of the specific time scales for failure and2!€d damage rate law exhibit some very subtle scalings of the

their detailed statistical distributions. The latter is necessaryMe-dependent behavior for larger values of the nonlinearity

to establish reliability of the material, and hence ultimatelyParameteny. ,
sets the limits on design stresses in an engineering applica- In th]s paper, we present resultg obtained from pompgter
tion. simulations on the damage evolution and failure in spring

We have discussed previously the problem of failure unN€twork models which obey the damage rate law of E&g.

der constant applied stress in a material for which the dam@d compare the simulation results to the analytic

age is a nucleated phenomenon with a damage rate that pgediction% in considerable detail. The numerical study con-
dependent on the local stress at any tii&pecifically, the firms the overall predictions of the analytic model: a transi-

relative probability of failurer,(t) at a damage siteat time 10N I failure behavior around;=2; more abrupt and less
t is assumed to be predictable failure as increases; failure time decreasing as

a power law of the logarithm of the system size; a width of

r(H)=Aa;(1)” o(t)>0 the fa_ilure _time distribytion decreasing very slowly with in-
creasing size. In detail, the exponents of the power-law de-
=0 oy(1)<0, (1) pendence on lisize are not quite as predicted in the analytic
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model, but this is largely attributable to the slightly complex crack. In discrete models, the continuum crack tip is missing
stress-concentration factors around small cracks in the disand, at best, the stress in an element ahead of a crack repre-
crete spring network. Also ay=4 (a low value but above sents an average of the continuum stress field. The onset of
the transition value the importance of damage one next unstable fracture can thus be misrepresented unless there are
neighbor away from preexisting damage, followed by linkingphysical mechanisms to blunt the crack, or small cracks
of the damage to form larger clusters, appears to drive failahead of the crack which link up to the crack. These issues
ure. The analytic predictions do agree well with the simula-gre discussed more fully by Curtin and Schathe use of a
tions at highery if stress concentration factors appropriate t0jyiscrete disordered structure as compared to a continuum

the lattice mpdel are u;ed. ) ) finite-element model can lead to additional artifacts, as dis-
The remainder of this paper is organized as follows. In thecussed by Jagota and Bennidon

next section, we describe the simulation model and the algo- |, o present problem, and the corresponding physical

rithm used to introduce damage according to the power—lav%xample of SI/SIC, the use of a spring network model can be
rate of Eq.(1). In Sec. lll, we present results for the general .

evolution of damage and failure as a function of system sizéUStified' Th? damage that fF””.‘S Is not a strict slit crack, but
and . In Sec. IV, we compare in detail the scaling behaViorrather a cavity, and the cavity is blunted at the ends by duc-

found here and predicted analytically. Section V containdi€ silicon. The stress transfer around the damage is thus not
further discussion and a summary of our results. highly concentrated around the tip of the damage and can
reasonably be represented by the average stress across the

surrounding sites. As damage clusters develop, the clusters
Il. THE SIMULATION MODEL will become more cracklikghigher aspect ratjobut still

Th £ di i . work lectrical f tblunted; the network model can represent the enhanced stress
€ USe Ol dISCrete spring Networks or electrical TUSe Nety o, 4 of 5ych defects and can thus be used reliably with each
works to study failure has been quite popular over the Iasi

ten years, and is well described in many publicatioifs. pring representing a single possible damage site in the ma-

Most of the studies concentrate on time-independent “fast:[e”al' In application to SI/SIC, each spring would then rep-

fracture” phenomena with a heterogeneous distribution Olrgser;t a SIC/SIC gfraif‘/ bpundary. :ere(,ng neglhe.cthtklje add-
spring propertied* Only a few studies, to our knowledge, tional presence of SISIC grain boundaries which do not

have considered time-dependent damage evolution. NotabffMmage as readily, and study an essentially homogeneous
among these are the early work of Termonia and co-worker@_ate”al composeq of equivalent damage sites gnlformly dis-
on rupture models for oriented polymer systetrend the tributed on the lattice. We also use a regular lattice and there-
work by Hansen, ROUX, and Hinrichsen on time_dependeniore avoid the artifacts h|ghl|ghted in Ref. 8. There are a few
damage in fuse networﬁsThese works are essentia"y iden- remaining artifacts of the discrete regular Iattice, discussed
tical in spirit and detail to the present simulations, but did noy Curtin and Scher, which we will note as they influence
investigate the time-dependent strain evolution, the failuréhe results of the simulations vis a vis the analytical
time, its distribution, or its size scaling in any way. Thesepredictions’
topics are the main focus of the present effort. Before describing the specific algorithm employed in the
Here, we employ a triangular network of central force simulations, we first note that the problem of interest here is
springs, each spring spanning two nodes in the trianguladamage evolution under a fixed applied stress. However, for
network! The network is subject to a fixed applied displace-any configuration of damage the system is still linearly elas-
ment by uniformly displacing the top boundary and holdingtic so the relationship between stress and strain is through a
the bottom boundary straight. The applied displacements atgme-dependent elastic modul&t); a problem studied at
small, typically corresponding to a strain of 0.001 so that theconstant strain can thus be easily converted to one of con-
network is always in the linear elastic range. The network isstant stress. As time progresses and springs are broken
also periodic in the transverse direction. Damage in the nefplaced by zero modulus springthe stress at fixed strain
work is represented by broken springs, or equivalentlydecreases, and the modulké) decreases concomitantly so
springs of zero stiffness/modulus. For any configuration ofthat, at constant strainr(t) =E(t) e, All of the internal
damage, mechanical equilibrium is obtained by moving all ofstresses in the network are proportional to the macroscopic
the nodes in the networkexcept those on the boundaries, applied stress, however, because the network is linear. The
whose vertical coordinates are fixed by the applied displacesituation at fixed applied stress can thus be obtained from the
men) to positions of zero force. This is accomplished nu-constant strain test by scaling all stressesry/o(t). Then,
merically by a successive over-relaxation technique. Aftethe strain versus time i(t)/e,p=0apdo(t). Thus, although
the equilibrium nodal positions are found, the forcethe numerical simulation is carried out at a fixed strain, the
(“stress”) in each spring is simply the spring modulus mul- desired result of a fixed applied stress and increasing strain
tiplied by the net displacement difference of the nodes tawith time is easily obtained.
which it is attached. In the present problem, the spring Now consider the damaged network at some timehere
moduli are either a single value, which is taken as the unit othe local stresses in the remaining undamaged springs in the
stiffness in this problem, or zero. network have the values;(t). Where does the next dam-
The applicability of discrete element models to real con-aged site appear, and how long does it take for this event to
tinuum materials requires some careful thought. For fasteccur? The rate of damage at any one site is as given in Eq.
fracture problems, fracture is controlled by the stress inten¢l). The probability of failurep;(t) occurring at site is thus
sity factor at the microscopic tip of the crack, or equivalentlythe rate at sité relative to the total rate of damage occurring
the strain-energy release rate for infinitesimal advance of theomewhere in the material,
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ri(t) taken as the number of springs in the nonhorizontal orienta-
pi(t)= ——, 2 tion, since the horizontal springs rarely fail, and the range of
E ri(t) Nt studied is 264N;=<28560 for values 0%=2,4,8,12. In

J all cases, the time scale is normalized by the reference time

where the sum runs over all sites<]<N+. The algorithm  1/(Ac ) so that the results only depend on network $ize
to pick a particular sité to fail given the probabilitiegp;} is ~ and ». The initial strain is 0.001 but all results are simply
standard. The cumulative probability, given by proportional to the applied strain.
Figures 1a)-1(d) show the evolution of the macroscopic
C:E 0i(1) 3) elastic “creep” strain versus scaled time for one particular
et statistical realization at each of the valugs-2,4,8,12 for
) various system sizes. Faj=2, the damage evolution and
is formed, and the cumulant spans the range,1]. A ran-  gccumulated creep strain exhibited in Figa)lare rather
dom numbeRR in the interval[0,1] is then selected. The site graqual and there is no noticeable dependence on system size
i chosen to fail in the next interval is then the Sifler which  except at the smallest sizes considered. Multiple realizations
(not shown indicate that the sample-to-sample fluctuations
at any one fixed size are larger than the difference found for
This procedure guarantees the selection of a site at randothe different sizes shown in Fig(d. Also, the simulations
but consistent with the relative probabilities of H8). The  are cut off after increases of about a factor of 5 in the strain
average time interval required for this event to occur is simand, although increasing rapidly, there is not a sharp diver-

Ci*1< R<C| . (4)

ply the inverse of the sum of the rates, gence that we will observe for higher values »fAs con-
cluded by Hansert al. in their study of the total accumu-
1 lated damage at failure, the behaviorg$2 is a percolation-
At=—. (5 type failure with no size dependence in any characteristics of
> i) the failure®

J For »>2, distinctly different behavior occurs. Figures

After a site is chosen to fail, the modulus of that spring is sefl(b)—1(d) show the accumulated elastic creep strain versus
to zero(the spring is “broken’), the time is updated by the System size for one statistical realization at each size for
incrementAt,” and a new state of mechanical equilibrium is 7=4.8,12, respectively. The data shown have failure times
determined numerically by finding the new zero-force posi-close to the mean failure time at each size. In all cases, the
tions for each node. The new macroscopic stress on the nefgilure time definitely decreases with increasing system size,
work, as measured by the vertical forces on the nodes at tH&ith a faster rate of decrease for larger In addition, the
upper boundary, is then converted to an effective macrofailure becomes more abrupt with increasing For »=4,
scopic strain for the entire sample at this new time. A newthere is some nonlinearity in the creep strain versus time at
damage site is then selected as described by the above algines as low as 50-75 % of the failure time, whereas for
rithm. n=12 the deviation from linearity occurs noticeably only
The above algorithm of establishing the local stressedust before failure, at about 95% of the failure time. The
choosing a site to fail, incrementing the time, reestablishind@ilure is also increasingly abrupt with increasing size at any
new local stresses, and calculating the macroscopic strain, f&ed » value. Thus, the ability to anticipate failure by moni-
repeated over and over starting from the initial state of ndoring damage or strain decreases both with increagiagd
damage, for which all nonhorizontal springs have the sam#Creasing system size.
tensile stress. The horizontal springs are in slight compres- Figures 2a)—2(e) show the evolution of the damage for
sion initially, and generally do not fail except in rare in- 7=4 in the form of “snapshots™ of the damage configura-
stances near the end of the test. Failure is formally defined dns at specific times prior to failure. In each figure, the
the point at which the strain diverges, or equivalently whensmall hash marks indicate the midpoints of springs in the
the elastic modulus goes to zero. Some features of the centrilangular lattice, and so show the possible damage site loca-
force network, such as free rotation of the springs around th#ons, while the actual damaged sites are indicated by larger
nodes, can lead to a diverging strain even though not all ofquares. At early timeg{-0.3t¢), the damage is limited and
the springs in any one cross section are broken. This operadely distributed with some evidence of clustering. At
tionally has no effect on our simulations because we aré~0.64;, more damage and small clusters have formed but
interested in the failure time, and the diverging strain can béhere has been no substantial growth in any individual clus-
observed well before the network reaches complete failurder. At t=~0.8%¢, one cluster has clearly begun to grow
and before there are any freely rotating springs in the failurdarger, and another set of damage sites is forming an incipi-
plane. Below, we will generally cease the simulations wherfnt connected cluster. At=0.99; the two clusters have be-

the strain is evidently diverging, and has increased to severgome dominant, and in the last 1% of life further growth
times its initial value. occurs to form a connected cluster spanning the width of the

material to cause failure. The failure gt=4 is thus con-
trolled by the gradual development of a dominant cluster
which clearly controls the failure process late in life.

We have investigated the evolution of strain and damage Figures 3a)—3(e) show a similar damage evolution pro-
versus time in spring networks of various sizes and for acess forp=8. Here, att~0.53; there is very little damage
range of values ofy. The sizeN; of each network will be with a few “dimers.” At t~=0.83;, there is not significantly

lll. RESULTS
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FIG. 1. Creep strain versus dimensionless time for various system si@sy=2; (b) »=4; (c) »=8; (d) »=12.

more damage but a very local region of material has prefersprings fail the fastest and generate larger clusters with
ential damage. At~0.94;, the localized damage has defi- higher stress concentrations and are the basis for the accel-
nitely coalesced into an extended cluster, and a few smallegrating failure, as evident from the rapid growth in the high-
clusters are formed elsewhere. &+0.98; the dominant stress tail as the failure time is approached. However, there
damage cluster is extending rapidly and now completelyare no distinct or characteristic features in these curves
controls the failure, along with a secondary growing clusterwhich suggest an onset of failure at any particular time, and
A short time later, the system is nearly spanned by a largéhe overall distributions exhibit no characteristic form espe-
connected cluster and the simulation was stopped. In congially in the critical tail region. Hansen, Hinrichsen, and
parison to the case fop=4, the damage for=8 is much  Roux have examined the distributions of stresses just prior to
less in extent, and the localization occurs much more rapidlgomplete failure(one bond left holding the entire system
as a fraction of the total damage. This occurs, however, lateiogethej and have shown that the distribution is multifractal,
in the life of the material and with less overall creep defor-but only at that one penultimate point of the evolutidn.
mation, and the ultimate rapid growth to failure occurs veryBecause of our interest here in detecting precursors to fail-
abruptly near the end of the life. The highgrsystems are ure, and understanding the failure time, we have not ana-
thus characterized by less damage, smaller “critical” clus-lyzed the stress distribution just at failure. It will clearly be a
ters which precipitate the “avalanche” growth to failure, and very broad function because all of the stress is funneled
consequently much more abrupt and dangerous failure.  through the one remaining bond, but this is not relevant to
Figures 4a)—4(c) show the overall stress distributions in the important controlling dynamics prevailing earlier in the
the spring networks at various times, in the form of a cumu-ailure process.
lative number of springs versus spring stress, for a size of
3680 springs a§7=4,8,12. At early times, the 'dlstrlbutlon is IV. COMPARISON OF SIMULATIONS
nearly aé function, and hence the cumula_nt is nearl_y a step AND ANALYTIC PREDICTIONS
function, because most of the sites experience the initial ap-
plied stress and no stress enhancement. As time and damageThe qualitative features of the simulations found here are
progress, the distribution broadens and the average increas@sgeneral agreement with the analytic model predictions de-
indicating the average rise in stresses on the unbrokescribed in our previous papeté.In particular, the failure
springs due to the damage. Also, a pronounced tail at highdimes decrease with increasing system sizezfo2, and the
stresses develops, indicative of the few important spring$ailure becomes more abrupt with increasing Here, we
which are under stresses much larger than the average. Thesesh to consider the detailed predictions of the theory re-
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FIG. 2. Damage evolution for one particular realizatiomat4, system size 1984. Small dashed lines are potential damage sites; solid
squares indicate damage location. The dimensionless failure titpe ®0452. (a) t=0.3Q;; (b) t=0.64¢; (c) t=0.8%;; (d) t=0.99;;
(e) t:tf .

garding the actual scaling of the failure time and its distribu-for systems with stress concentration factors that scales with
tion with both system size angl The theory predicts a scal- cluster sizec asc? The failure probability distribution is
ing of failure time of predicted to be(approximately Weibull with a “Weibull
modulus” corresponding to the critical crack size For a
Weibull distribution, the coefficient of variatio¢t.0.v=the
tyoe(InNg) =72 (6)  standard deviation divided by the m@as reasonably repre-
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FIG. 3. Damage evolution for one particular realizatiomat8, system size 1984. Small dashed lines are potential damage sites; solid
squares indicate damage location. The dimensionless failure tipre@00141. (a) t=0.5%;; (b) t=0.83;; (c) t=0.94;; (d) t=0.98;.

sented by c.0.v=1.2€. The scaling of and hence the c.0.v. simulations at each size and at each valuey b assess the
is predicted to be mean failure time and standard deviation of the failure time
distribution. While 15 simulations is not a large number,
. In(Ny) nl2—1 particularly for estimating the standard deviation, the simu-
=1 “%VT Ny () lations are very computer intensive for larger sizes and mod-
eraten values, and so limit our ability to collect data in the
with the size scaling being independent of the value;of large-size regime where the dominant scalings are expected
To test these specific predictions, we have performed 1%o clearly emerge.
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Figure 5 shows the failure time versus system size for th@ower of In(Nt) with exponents—0.70, —1.72, and—2.54,
three values o0fy=4,8,12. The analytic model predicts a lin- respectively, forp=4,8,12. The corresponding predicted ex-
ear relationship in the tpa—In(In(N;)) plot, with slope ponents are-1, —3, and—5, respectively, and are not close
1— /2 based orc? stress concentration factors. Figure 5to the measured exponents.
shows that over the entire range of sizes, spanning two de- The main reason that the predicted exponents do not agree
cades in size scale, the mean failure time does scale aswath the simulations lies in the assumption that the stress
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TABLE II. Probability of failure f at next-near-neighbor sites

o168 17 18 19 20 21 22 23 24 25

normalized by probability to fail at either near-neighbor or next-
5 251 n=4 near-neighbor sites, for clusters of various lengths and various val-
E _3_M ues of . Probability is calculated following Ed8) of the text.
g 35478 ———
§ AT T Lengthc n=2 n=4 7=8 n=12
§ -4.54 1 0.57 0.55 0.49 0.44
= 57 2 0.56 0.46 0.26 0.13
£ -55; 4 0.54 0.42 0.21 0.08
61 6 0.54 0.41 0.20 0.08
-6.5 8 0.54 0.41 0.20 0.08

In{In(N,)

FIG. 5. Mean failure time versus system size for variops cracks of various sizes, and then computed the relative prob-
(symbolg. Solid lines are the linear fit to simulation data; dashedabilities of failure at the near-neighbor tip sites and the next-

lines are predicted from the analytic model fg#8, 7=12. neighbor sites as a function ef We denote the stress con-
centration factor for the near neighbors E§y(c), with
concentrations are proportional tduster sizg". In the dis-  i=1-4 for the four neighbors at the crack tip, and for the

crete lattice simulation, a square-root dependence does obext-near neighbors @€\ (c), with i=1-8, for the(typi-
tain for sufficiently large cracks but at smaller crack sizes thecally) eight next neighbors in the triangular lattice. We then
dependence is somewhat different. Since, from the theorygalculate the fraction

the onset of failure is controlled by the initial formation of a

sizec critical cluster, which then grows to failure, and since

c is fairly small for the system sizes studied here, it is con- Z [Knn(€)]1”
ceivable that the simulations correspond to a different stress f= , (8
concentration factor scaling over the cluster sizes of impor- Z [K'NNN(C)]”Z [Kin(C)]”

tance. To investigate this possibility, we have introduced lin-
ear connected crackbroken springsof increasing size into o - ) )
an otherwise perfect triangular lattice and determined th&hich is the probability that a failure will occur at a next-
stress concentration factor at the crack tips. The stress coR€ar-neighbor site relative to the total probability of failure at
centration factors for clusters of sizes 1 toc=8 are shown  €ither near- or next-near-neighbor sites. This probability de-
in Table I; fits to a simple power-law dependence yield apends on both _the_ decay of the stress field away from th_e
form of 1.2@* with x=0.28-0.30. The stress concentration N€ar-neighbor tip sites and the enhancement of the probabil-
factor clearly increases less rapidly ther0.5. If one revis- Ity due to the exponeni;. The results forf are shown in
its the analytical model and replaces the exponent of 1/2 by able Il. For»=2, itis always more likely to fail away from
an exponent ok, then the scaling relationships are modified the tip sites which preventgenerally the development of
by a replacement of/2 by »x. For the value 0k=0.29, the dominant cracks in the ma;erlal_so that failure occurs more
predicted exponents for the time-to-failure scaling then beglobally. For»=4, the fractionf is generally only slightly
come—0.16,—1.32, and—2.48, for p=4,8,12, respectively. Smaller than 1/2 so that failure at the tips is slightly preferred
The values for the larger now agree reasonably with the but not dominant, and this feature persists out to fairly large
simulations, but the value foy=4 is much too small. Al the ~crack sizes. However, the probability of growing at even
simulation results cannot be made to agree with the predichore distant neighbors is rather smaller; hencerfe# one
tions for a single value of stress concentration factor expomMust conceptually view the damage growth as occurring in a
nentx. “process zone” out to next-near-neighbor distances. Al-
The deviation at the smaller value g4 arises because though the damage does form a critical cluster locally which
of correlated damage evolution beyond first-near neighboren grows to failure, as demonstrated explicitly in Figs.
in the triangular lattice. We have analyzed the stress concerd{@—2(€), the failure process is not confined solely to the
tration factors at the second-neighbor sites around lined#P$ Of the existing damage. The analytical model is thus not
quite applicable if limited to near-neighbor interactions. For
n=4, the occurrence of damage away from the crack/cluster
tip sites partially corrects for the decreased probability due to
weaker-thars*? stress concentration factor scaling to yield a
scaling of failure time versus size that has an exporeht

TABLE I. Stress concentration factors at the tips of linear dam-
age clusters versus cluster lengthin the triangular central-force
spring network. Also shown is a simple power-law fit.

Lengthc Stress concentration £9%=0.28-0.3 lying between the analytic values 6f1.0 for x=0.5 and
—0.16 forx=0.29.
1 1.24 1.20 For »=8, failure is preferred at the crack tip sites about
2 1.49 1.46-1.48 70—80 % of the time for clusters any larger thes1. The
4 1.79 1.77-1.82 damage evolution is thus dominated by growth of existing
6 2.01 1.98-2.05 clusters with little damage ahead of the tips of the growing
8 2.13 2.15-2.24 crack, and the analytic model with an appropriate exponent

x=0.29 can account for the general scaling behavior quite
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well. For the larger value of=12, tip growth is preferred N
more than 90% of the time and so growth is even more F ]
dominated by the crack tip behavior, as expected. In all cases  ¢30 h
for »>2, the damage further than second-near neighbors is g - n=12
negligible except in accounting for the overall probability of :g' 025 F .
damage at the many remote sites away from the cluster, 5 - ]
which is already considered in the analytic model. > 020 - =
Overall, we see that the deviations between the simulation S F 3
results and the analytic model are due to two factéjsa o5 n=8 7
difference in the stress concentration factor at the cluster tips, ﬁ : ]
which is easily accounted for in the analytic model dimga 8 0.10 3 \9\/\\ ]
longer-ranged stress-field around the clusters which can lead C n=4 .
to damage away from the crack tip for smaligrTo account 05 b E
for the latter factor in the analytic model is quite difficult 000t ]
because one must consider as “clusters” sites which are not s 6 7 8 9 10 11

adjacent, but are separated by an intervening undamaged site In(size)
for which the stress concentration factor is not well known.
Models in one and two dimensions have been developed FIG. 6. Coefficient of variation of failure time distribution ver-
which take into account such “tapered load sharing” for sus system size, for varioug
time-independent problems, but the models are essentially
statistical enumerations of all possible clusters and their asy. The theoretical model predicts that the c.o.v. should de-
sociated probabilities, and are difficult to perform on ever-crease as$inN;) ! and increase withy, as indicated in Eq.
increasing system sizéSThe analytic model described pre- (7). Since the size scaling is independent mfit is also
viously can be extended to include “linking” of clusters independent of the stress concentration factors and so a di-
separated by one adjacent site in the special case of a onect comparison can be made with the simulation results, as
dimensional lattice, where all clusters are linear and havehown in Fig. 6. The simulation results are widely scattered,
only z=2 tip sites(one at each engdbut this type of model with the largers values exhibiting a nearly constant c.o.v.
does not include the enhanced probability of failure due teover the entire size scale. The c.o.v. fge=4 decreases
longer-ranged stress fields. monotonically with increasing size, but the importance of
Neglecting the longer-range damage for the higher next-near-neighbor damage at thisinvalidates any strict
=8, 12, we can further test the applicability of the analyticcomparison with the analytic prediction. In general, the c.o.v.
model by direct calculation of the failure time distribution, is thus broader than predicted analytically, which implies
using the differential equations in our companion paper andhat the theory is not conservative. This may, however, be
the effective stress concentration factor of £2%. Using  due to the approximate analytic estimates, which were shown
the full analytic differential equation includes some of thein the previous work to be unconservative measures of the
additional nonscaling terms into the overall failure time de-failure distribution. The predicted trend toward larger c.o.v.
termination. The results for dimensionless failure time versugvith larger » is, however, exhibited in the simulation results.
system size are also shown in Fig. 5. The predicted failure If the c.o.v. values observed in the simulations ip+8
times are in good agreement with the actual simulation datand 12 are inverted to obtain the corresponding approximate
in both absolute magnitude and size scaling. The predicte#/eibull modulus of the failure distribution, one obtains es-
times are slightly longer than the simulated times, whichtimates of the critical crack size varying between 5 and 9
could arise for several reasons. First, the small overall streggnits. The small values for the critical sizemay also lead to
enhancements in the simulation accelerate the damage eviarger fluctuations in the simulation results than predicted
lution somewhat; this effect could possibly be taken intoanalytically. For the particular case af=8 shown in the
account in the analytic model using a mean-field adjustmergnapshots of Figs.(8-3(e), this critical crack size should
of the time scale but we have not found the appropriate fornset in at the onset time* =[1-1/(0.37)]7=0.58 7 using
for carrying out this procedure accurately in the triangularthe appropriate stress concentration factors. The snapshot of
lattice. In any case, as the system size increases and the tofaQ). 3a (0.5%;) does not show a “cluster” of size ap-
damage fraction prior to failure decreases, the average oveproaching the average of seven units. However, at the next
all stress enhancements decrease concomitantly, and so theapshot (0.7%3) there is a “generalized” cluster of 4—6
analytic results should become increasingly accurate with inunits, although it is not fully connected, and it is this cluster
creasing size. This is consistent with the trends in Fig. 5Sthat propagates to failure. There is not quantitative agree-
Second, the stress enhancements that do occur at the nertent between the predicted “onset” time and the critical
near-neighbor sites also accelerate the damage evolution eduster derived from the probability distribution width but,
some extent for all system sizes, although the effect deconsidering the subtleties and detail involved in such a com-
creases with increasing. These two considerations in tan- parison, the agreement is fair.
dem may explain why the agreement between theory and
simulation is quantitatively the best at the largest size and V. DISCUSSION
largest# value tested.
Lastly, we study the failure time distribution, which con-  Failure processes that are triggered by a local instability
trols the reliability of the material at any fixed size and fixedare by nature very difficult to describe analytically. A com-
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plete analytic prediction requires an accurate determinationomparison with simulation results. In particular, the transi-

of the full, evolving distribution of damage and an assesstion between percolationlike and avalanche failure, and the
ment of the local stresses driving localized failure. Mean-predicted scalings and absolute values of the failure time, are
field and averaged approaches are inappropriate, and mdstgood agreement.

theoretical efforts have thus focused on idealized low- The generally good agreement between theory and nu-
dimensional problems where the damage evolution can b&erical “experiment” encourages several further studies

exactly enumerated. Such approaches demonstrate the ex@med toward making direct connections with experiments
tence of volume-dependent failure and sensitivity to initialOn éal materials such as Si/SiC composites. The first chal-

distributions, but are inherently precluded from extension td€nN9€ is to move to three-dimension@D) problems, where

higher dimensions and more complex damage evolutioé‘he clusters have a two-dimensional planar character. We

Hence, our present quantitative understanding of failure i ave recently developed numerical techniques based on lat-

heterogeneous systems that adequately represent real mat&fi€ Green functions to efficienty simulate planar damage

als is not good. Even the direct connections between analyti%vog’i'on It?] three d|me|r13|otns, at?]d tshésf tﬁﬁ,{g'?ue .W'" be
models and numerical simulations have not been well estad!>€¢ 10 gather numerical aata on the a xtensions

lished. Perhaps the state of the art is represented by the r8f— the analytic mod:al to 3D”rquire additional approxima-
cent work of Duxbury and Leathand the earlier work of tions because_ the CIUSterS which could develop have a
Harlow and PhoeniX on systems with distributed breaking range of possible geometries and growth paths. Direct enu-

strengths. They have developed recursion methods to predi[ﬂerati(_)n. is possible for small clusters but becomes increas-
failure in one-dimensional models with load transfer fromIngly difficult as the size increaseSHence, new insight into

breaks to near neighbors. They have demonstrated the on QF controlling growth dynamics is needed. The second chal-

of weak-link scaling at sufficiently large sizes, and Leath an enge is to inglude explicit. 'ir?itial hgterogeneity into the “T“e'
Chen have shown the insidious influence of boundary Condigiependent failure probabilities. This can be done numerically

tions on the failuré® However, in comparison to numerical by introducing a site-dependent rate prefactprwhich ac-

simulations on square fuse lattices with the same initial het_celerates the damage at some sftaege A) and retards the

erogeneity, the theoretical results do not fare well quantitag"’“‘n"’Ige rate at other sitésmall A). This situation does

tively. The absolute magnitude and size scalings of the gjiPrevail in real materials, due to the effects of local micro-
ure strengths do not match up well with the simulationStructure and local chem|_stry on the damage_nucleatlo_n rate.
results, although the qualitative trends are captured. Thi he site-dependent rate is easily introduced into the simula-

comparison demonstrates the difficulty in developing theo'O" models described here, and we will pursue modifications
ries that can be solved and yet are applicable to numeric 0 the analytic model to understand the dynamics arising

and ultimately real, materials tom this additional source of heterogeneity.

The present w,ork has étudied the problem of time- It is clear that to address either of the abqusore real-
dependent damage evolution. This problem is more forgivin jstic) problems, or other issues relevant in real materials, will
than the static fracture problem, in that failure is caused byeqUIre that the underlying model_s become much more com-
the rapid but not instantaneous growth of a critical ﬂaWpIex. The development of approximate but accurate analytic

which develops somewhere in the material. In addition, thém’de.IS that capture .the proper sca}llngs, such as the model
: ; Hescrlbed here and in the companion paper, becomes even

more critical to understanding and interpretation of the range

added simplification not generally prevailing in time- fd i d luti d fail b qi I
dependent problems. For this particular problem, an approxf—) ynamic damage evolution and failure observed in rea

mate analytic model can accurately predict the dynamics anand model materials.
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