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Binding energy of two-dimensional biexcitons

Jai Singh* D. Birkedal, V. G. Lyssenkd,and J. M. Hvam
Mikroelektronik Centret, The Technical University of Denmark, DK2800 Lyngby, Denmark
(Received 16 October 1995; revised manuscript received 19 December 1995

Using a model structure for a two-dimensioiaD) biexciton confined in a quantum well, it is shown that
the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr
radii of a 2D biexciton in its various internal energy states are derived analytically using the fractional
dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be
0.228, which agrees very well with the recent experimental value. The results of our approach are compared
with those of earlier theorie§S0163-182606)02623-9

[. INTRODUCTION ratio is usually referred to as Haynes rule for 3D biexcitons.
A few years later Haynés also observed the existence of
With the advancement of techniques such as four-wavexcitonic moleculegbiexcitons in 3D silicon. As the value
mixing (FWM) spectroscopy to study the transient nonlinearof Eb*/Eb* predicted from the Hylleraas and Ore theory
response of low-dimensional semiconductor structuresvas very small, Haynes assumed the same ratio of 0.1 for
grown by molecular-beam epitaxy, it has become rathepiexcitons as he had found earfiéfor the neutral donor
common to observe the biexcitonic featdfé§in quantum complex, and taking the exciton binding energy inEi* =
well structures. Only the heavy holéiH) biexciton peaks g mev, he estimated the binding energy of biexcitons in 3D

are observed in the photoluminescence spectra of GaASjicon as.Eb™ = 0.8 meV. As Hylleraas and Ore’s calcu-
quantum wells;*>*but recently also the light holéLH) lations were done for a positronium molecul@’( = m¥),

biexcitons have been observed by FWM® From these , . .
observation®6 the binding energies of HH and LH biexci- o ¢ improvements in the theory were made by calculating
dhe 3D biexciton binding enerd$?*as a function ofs =

tons have been estimated for different well widths, and the’ = ~~ ;
ratio of the binding energy of HH biexciton€p®) to that  Me/Mh - Akimoto and Hanam_u?é have thus found that
of HH excitons Eb*) has been calculated. It is thus found EP*/Eb* decreases monotonically withr in 3D solids,
that ED*/Eb*~0.2 and it is independent of the quantum from 0.3l ate = 0 ( hydrogenic limi} to 0.027 ato = 1
well width. To our knowledge, no theoretical results on biex-(positronium limiy, which was still significantly lower than
citons published so far have predicted such a high value dhe experimental valu®. Further improvements in the theory
EBbYEb* for quasi-two-dimensiondRD) excitons and biex- were made by Brinkman, Rice, and B&lwho used a six-
citons confined in GaAs quantum wells. parameter variational function to calculate the binding en-
In order to bring the discrepancy between theory and exergy of a 3D biexciton numerically as a function @f and
periment into perspective, it may be desirable here to revieviound thatEb*/Eb*=0.029 foro = 1, in close agreement
briefly some of the results that have been published so far owith Akimoto and Hanamura’s result.
the binding energy of biexcitons. It was first Wheéfarho In 1982 Miller et al! observed the existence of 2D biex-
in 1946 considered theoretically the possibility of the exist-citons in GaAs quantum wells, and determined** = 1
ence of complex particles consisting purely of electrons ananeV for a quantum well of width 81 A. The value decreased
positrons and suggested that, although one electron bound tath increasing well width. They also calculated the binding
one positron is stable, a complex such as two electronsenergy of 2D biexcitons using a method similar to that of
bound to two positrons should not be stable in three dimenBrinkman, Rice, and Béf for 3D, which was later pub-
sions (3D). On the contrary, then Hylleraas and &re lished in detail by KleinmaR® To our knowledge, this is the
showed that a positronium moleculevo electrons bound to only theoretical work that has dealt specifically with the 2D
two positrongin 3D should also be stable, and using a varia-biexcitons and calculateBb**/Eb* as a function of bothr
tional calculation found thaEb**/Eb* = 0.017 for such a and quantum well width. Kleinman's theory vyields
complex in the positronium limit, where the masses of theEb*/Eb* = 0.564 foro = 0 (hydrogenic limi}, 0.15 for
negative and positive particles are equaly = my . o = 0.68(GaAs, and 0.14 forr = 1 ( positronium limi) at
Lampert® has then pointed out that a biexciton, which hezero quantum well width. As the value &b*/Eb* de-
called an excitonic molecule, should exist in 3D nonmetalliccreases only slightly, although constantly from 0.15 to 0.11
solids, and using Hylleraas and Ore’s theory, he estimated itwhen the well width increases from 0 to 170 A, Kleinman
binding energy to be in the same range. The first experimerhas identified this ratio with the Haynes factor of 0.1 in 3D.
tal evidence of the existence of a complex such as an excitonhis theoretical result produced as high a value of
bound to a neutral donor was reported by Hayhés 3D  Eb*/Eb* as predicted by Haynes for 3D biexcitons, there-
silicon, who estimated the ratio of the binding energy of thefore Kleinman concluded correctly that the binding energy of
complex to that of an exciton to be 0.1, much higher thar2D biexcitons has to be larger than that of 3D biexcitons.
predicted by Hyleraas and Or&sheory. This value of the Since then, several pap&t8='?have reported even higher
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values of the binding energy of quasi-2D biexcitons. More

recently’® we have reported the results of a systematic ex-

perimental determination of the binding energy of biexci- el It =V2r h2

tons, which gives a value &b**/Eb*~0.2, nearly indepen-

dent of the quantum well width for HH biexcitons in GaAs

guantum wells. In Ref. 16 we have also reported the result of

the present theory, which givesb*/Eb*= 0.228, in good

agreement with our experimental result. However, our ex-

perimental result§ deviate from Kleinman’s results at least t / t,

in two aspects(1) A value of ER*/Eb*~0.2 has been ob- * oN\’¢/

served and2) Eb®*/Eb* is found to be independent of the

guantum well width. As Kleinman’s approach is based on an

extension of the 3D approach, we believe that the discrep-

ancy may be attributed to the dimensionality of the approach.
As in our earlier repotf only the main result could be hl t e

given; the aim of this paper is to present the details of the :

theory of calculating the binding energy of a 2D biexciton

assuming a model structure and using the fractional dimen-

sion approacl®28 To our understanding, the fractional di- FIG. 1. A proposed model structure of a 2D biexciton confined

mension approach has not yet been applied for Calculatin@ a quantum well of width narrower than the biexciton diameter.

the binding energy of biexcitons in quantum wells. Our

model is particularly applicable to those cases where the ex0 each of the sides and the last two parallel to the two

citon and biexciton diameters are larger than the quanturfliagonals of the square. It is obvious from Fig. 1 that the

well width. The main advantage of our approach is that it isonly way such a structure can be stable is when the repulsive

extremely simple, and produces analytical results for thécoulomb forces act along the diagonals of the square. Here,

binding energy and Bohr radius of biexcitons as functions oPf course, we have assumed that the electron and hole lattice
. interactions are so small that they cannot cause any pairing

of the like charges, which can take place in the case of strong

lattice interaction as is well knowdt.

A For our model structure of a 2D biexcitdfig. 1), the
The general Hamiltonian for a biexcitoH,.,, consisting relative coordinates can be written as

of four charged patrticles, two electrons, and two holes, can

II. MODEL OF 2D BIEXCITONS

be written as t1=—|re1— rhzlf, ty=|rep— rh2|f, (4a)
“ %2 K2 _ 2 _ 2
— =|rgp— =—|re1— 4b)
H,=——(V%+V%)— (V2 +V2)+V, (1) t3=|rea=rmali, t4=—[res=rnali, (
XX Zmiec el e2 2m{§ 1h 2h o o
ts=|res—rea| (i=))/N2, te=|rni—rnol(i+))/\2,

wherem} andmj; are the effective masses of electrons and (40
holes, respectively, and
wherei andj are two unit vectors parallel to the two adjacent

V=Veier~Vein1 = Veinza = Vezh1 = Veznz+ Vhinz: (20 sides of the square, and without the loss of any generality
where V;; denotes the Coulomb interaction between thetEey car|1 be co?]§|(r:ilered plarallel to thandy dlrect;]onslm .
charge particles andj [i,j=el, €2, hl, andh2 denote N€XY plane, which can also be assumed to be the plane o

the two electrons and two holes in the biexcitgiven by~ the duantum well. Itis obvious thth| = to] = [ts] = |t
and|ts| = |ts| . Now by transforming the electron and hole

e2 coordinates into the relative coordinates and the center-of-

Vi :m (3 mass coordinate, which is defined by
i~
wheree is the dielectric constant of the materi&? is the R Mg (Yeg +re) + My (Tha + ) )
Laplacian with respect to the electron and hole coordinates, B M '
ri; i =el, e2, hl, andh2.

For quantum well widths smaller than the biexcitonic di- Where M=2(mg +my) is the total effective mass of the
ameter, the biexciton is confined into a 2D space. For such kiexciton, the Hamiltoniartl) become®
situation we propose a geometrical model of a 2D biexciton

as shown in Figl , where the charge carriers instantaneously - nr_, k2 _, 1 _, 1 _,

.. ol =—-—=Vg— 5| — Vit —Vect —Vin| tV
form a square that can only move in its plane, which is the ' 'xx 2M R 2 e O fee B8 mpp P '
same as the plane of the quantum well. As all four particle (6)

charges are equal in magnitude such a symmetrical structure
can be considered to be quite justified and realistic. For sucwWhere lhen=1/mg +1/my, 1luee=2/mg, and 1lfup,
a structure, the first four of the six relative coordinates, de=2/my . VZ,, V2., andVZ are the Laplacians with respect

noted byt;, i=1,..,6, can be represented by vectors paralleto the relative coordinates between electron and hole
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17 + L* ¢ 11
rel—l+ ————
o] 2uenr®  er’ (1)

(t, i=1,..,4), electron and electrom), and hole and hole - w21 9

(tg), respectively, an@ é is that with respect to the center- Hyx=— m re=T

of-mass coordinat®&. ) )
For calculating the internal energy eigenvalue of the biex2NdEg is the electronic energy gap of the materta},, and

citon, the first term of6) can be ignored, being the kinetic #xn(r,6) are the energy eigenvalue and eigenfunction, re-

energy operator of the center-of-mass motion. The rest of th&Pectively, of an exciton in its internal energy state of prin-

Hamiltonian(6) can then be written in spherical coordinates CiPal quantum numben. The solution of the Schrbnger

by choosing the origin at the center of a circle in which theeguation(10) is obtained &8

symmetric square of the biexciton structure can be inscribed

(Fig. 1). Thi_s essentially means applying a_nother co_ordinate E,n=Eq

transformation that can transform the relative coordinates as ’

It =[to] =to] =ts| = V2r,

Es
~ [n+(a—3)/2]%

(78 One also gets the corresponding excitonic Bohr radius

(12

as
and Y

ts| =t =2r, (7b) Bn=| M+ 5] A 13
wherer is the radius of the circle. where

For calculating the binding energy of excitons confined in
an a-dimensional space,<a<3, recently a fractional di- Meh
mensional approach has been appfitd® The advantage of Eg=—z, Ru (14)
the approach is that it produces an analytical expression for ¢
the exciton binding energy as a function of the dimensionafnd
parameter and hence a quantum well width that agrees rea-
sonably well with the experimental result. We will follow __Me
ay ay . (15

this approach for calculating the binding energy of 2D biex- €len
citons. Using Eq(7) first we transform and then write the
Hamiltonian(6) in spherical coordinates as a function of the
fractional dimensional parametér® o as

Ry anday are the Rydberg constant and Bohr radius, respec-
tively, andm, is the free electron mass. Fraitil) we get the
binding energy of an excitor b*(n), in its nth energy state

A 72 1 9 P L2 2 and confined ink-dimensional space as
= — )| —/—— —{ya1_ ————
P (zﬂxx) et or [r ar ] " 2 px Exxl Eg
X T e
(8) Eb (n) [n+(a_3)/2]2 (16)
where
According to (14), Ez depends on o, because
2 J2 ten=m3/(1+ o), and one can then write the binding energy
Mxx=73 Meh: Exx=m6- (9  (16) as a function ofr as
It is to be noted that for the present case 2, to conform EbX(n)= me Ry 17)
with our proposed geometrical model of a 2D biexcitbA. Mee’(1+ o) [N+ (a—3)/2]%"

is the square of the angular momentum operator of a biexc:il—t is 1o be noted that usualle depends on the quantum well
ton, similar to that occurring in the 3D exciton or hydrogen ¥ dep q

atom Hamiltonian written in spherical coordinates. Thus byW'dth’ but in order to be consistent with our 2D model of

applying the above two transformations of coordinates an(gileexrc'gosntsﬁg"fexl{h%'%‘; i%zicﬁ?gnegﬂggs 2?1 ;Nrell. i??/vv:n
using our model structure, we have been able to reduce tq? ' o628 . . : 9 9y
we will not discuss it any further.

Hamiltonian of a biexciton into that of a single exciton of a nown, . T L
o . . Now for calculating the binding energy of a 2D biexciton,

modified reduced masg,,,, and dielectric constang,,, as o I X

given in Eq.(9) we use the biexciton HamiltonigB) and solve the following

Schralinger equation:
IIl. BIEXCITON BINDING ENERGY Flhioen(T»0) = (Exxn— 2Eg) (T 0), (18)

Here we will first outline very briefly the method of cal- WhereéEy, and i, , are the energy eigenvalue and eigen-
culating the binding energy of a single exciton confined infunction of a biexciton in its internal energy state respec-
low dimensions and then describe that for a biexciton. Thdively. As the Schrdinger equatior{18) is analogous to Eq.
binding energy of a single exciton in andimensional ma- (10), it can be solved analogously, and we get the biexciton
terial can be derived by solving the following Sctiloger ~ €nergy eigenvalue as
equation?®~28 )
EB

Bon= 2B [ =32

Alhen(r.0)= (Exn—Eg) then(r . 0), (10 (19

where and the corresponding biexciton Bohr radag ,, as
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2 This is in contradiction with the results obtained for both 2D

ay, (200 and 3D biexcitons, where the raticED*/Eb* is
knowrf3-2531 to depend onc, particularly in the limit

whereEg anday are obtained fronf14) and(15) replacing 5.0, though foro>0, the values oEb*/Eb* obtained for

Menande by u. andey, respectively. The biexciton bind- 2p piexcitons in Ref. 25 decrease only slightly with-1.

ing energyEb™(n), defined as As the earlier calculation of 2D biexcit6his carried out by

extending the 3D theory, we believe that this slight differ-

a—3

Ayyn=|N+—F5—

XX _ _
ED™(n)=2En = Buxn. (21) ence may be attributed to the difference in the dimensionality
is then obtained usinfl2) and(19) in (21) as of the two approaches. Moreover, as the dependence of
Eb**/E} on o is not studied experimentally, it is difficult to
Eg be any more conclusive about this point at present
XX —_| == _ X :
Eb™(n)= ( Eg 2) Eb(n). (22 The binding energy of quasi-2D excitons in a GaAs quan-

tum well of width 80 A is known®2°~?80 be about 10 meV,
Using Eq.(9) and the definition oEg in Eq. (22) we get  but it decreases with the quantum well width to its 3D value
, at large well widths”? Using this value in Eq(24) we find
Eb%(n) = ( (4—\2) _2> Eb¥(n) 23 that the 2D biexciton binding energy can be about 2.3 meV,
3 ' which agrees very well with the observed value of more than
2 meV®!® No theoretical results, to our knowledge, have

which gives reported as high a value of the 2D biexciton binding energy
XX as obtained here.
Eb*(n) : .
m%o_zzs (24) However, it may be argued that the present theoretical

result being valid only for the exact 2D case cannot be ap-
for =2 and it is independent ef andn. For simplification, ~ Plied to quantum wells for which usuallg=2. This point
denotingEb*™(n=1)/Eb*(n=1) by Eb*/Eb*, we find that ~can be addressed as follows: Experimentally, we know that
the value ofEb*/Eb* thus obtained in 2D is the highest that the ratioEb®/Eb* = 0.1 from the Haynes rule for the 3D
has so far been obtained theoretically, and it agrees very weflase and about 0.2 for the quantum wells, which does not
with the experimental vald&!® of about 0.2. The ratig24) ~ depend on the well widtfi as long as the wells are narrower
is slightly less than the double of the val(@12) calculated than the biexciton diameter. As one can see that our calcu-
by K|einmar?5 for a GaAs b— = 068) quantum well of lated result ofEL*/Eb* is Sllghtly hlgher than the eXperi-
width 81 A and more than double of the value known asmental value in quantum wells, we believe that the discrep-
Haynes rulé® for 3D semiconductors. Although our theoreti- @ncy is due to the difference in the dimensionality of the
cal result is valid strictly in two dimensions, the fact that it €xact 2D situation and that of quantum wells. In this view
agrees so well with the experimental value, which is nearlythe result of our calculation can be regarded as the upper
independent of the well width, does indeed suggest that thémit for the ratio E*/Eb* in quantum wells, as indeed is
geometrical structure of a biexciton in quantum wells maythe case, because the experimental value is only slightly
not be very different from the one used in this calculation.lower than the exact 2D value but it is twice the 3D value.
This point will be addressed further in the next section. ~ This also implies that our geometrical 2D biexciton model
Using (15) and(20) we get the ratio of the Bohr radius of (Fig. 1) may be applied for quantum wells as well, because

biexcitons to that of excitons as the 2D symmetrical structure may be possible not only at
zero well width, but also at narrow well widths. The crucial

axn 3(4-— J2) point is the applicability of the two coordinate transfo_rma-
A 22 =2.74. (25  tions [Egs. (4) and (7)] used to reduce the 2D biexciton

Hamiltonian into the form of an exciton Hamiltonian. We
Like the ratio of the binding energies, the ratio of Bohr ra- believe that these transformations will be applicable in quan-
dius of 2D biexcitons to that of excitons also does not detum wells provided the well width is smaller than the biex-
pend ono. citonic diameter, which will not allow the biexciton to have
the three-dimensional degrees of freedom. As the biexciton
IV. DISCUSSION has a quan_tized energy state its configurational structure has
to be quantized, which is a well-known result of the quantum
Using a simple but realistic model for the structural con-mechanics. Using the same argument, it may be suggested
figuration of a 2D biexciton and applying two coordinate that our geometrical 2D model may be applied to the real
transfomations, it has been possible to transform the biexciguantum wires as well for which usually<lae<2. Thus
ton Hamiltonian into the form of an exciton Hamiltonian. within the boundary condition that the well width is less than
The approach thus simplifies the biexciton problem ex-the biexcitonic diameter, it may be implied that the theoreti-
tremely, and enables us to derive analytical expressions faral value of E**/Eb* = 0.228(24) is independent of the
the binding energy and Bohr radius of 2D biexcitons as aguantum well width, because it does not dependrpmhich
function of o. The ratio of the binding energy of biexcitons is the only well-width-dependent parameter occurring in the
to that of excitonsEb™/Eb*, and that of their Bohr radii, binding energy. This is supported by the experimental
ayn/ayn, has also been calculated. While both the bindingresult® that the ratio is independent of the well width and its
energies and Bohr radii of 2D biexcitons and excitons devalue coincides remarkably well with the calculated 2D
pend individually ong, their ratios(24) and (25) do not.  value.
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It is well known that the effect of the confinement in- interaction and other electronic correlations may be expected
creases the binding energy of an exciton. It is also knowno reduce the value d&b**/Eb*. On the other hand, one may
that in finite quantum wells, when the well width becomesalso expect some experimetal uncertainties to be involved.
quite narrow the exciton binding energy starts decreasing, The observed enhanced binding energy of biexcitons in
because the exciton wave functions Spread to the barrier I€GSaAs quantum wells has also receﬁﬂpeen interpreted on
gions and the 3D charactéris restored. As the problem of the hasis of a polariton effect, which modifies the biexciton
biexcitons has been reduced into an exciton problem in oUgispersion relations at small momenta and increases the biex-
approach and a constant value B6*/Eb* has thus been jion binding energy. It has therefore been argued that the
obtained, the bixciton binding energy can be expected {G,creased binding energy is due to the formation of bipolari-
behave in the same way as the exciton binding energy.  y5q instead of biexcitons in GaAs quantum wells. As the

It may be recalled here that In th_e theory of eXCItonS'polariton effects go beyond the scope of the model calcula-
when developed from a 3D. multlp_artlc.le system of a COMNions presented here, more experiments are needed to resolve
densed matter, the electronic Hamiltonian reduces to a two;

; o ) ; . this issue.
particle Hamiltonian given ii11) only after several approxi- . . S .
mations, in particular after neglecting the exchange It is to be noted that the Bohr radius of biexcitons is more

interaction between the electron and h&ld.ikewise. for a than two times larger than that of excitons. The Bohr radius
biexciton we have started with a four-particle system and?f @ biexciton may be regarded to be that of a circle around
also neglected exchange interactions. Although otheWhich all four charges move such that their instantaneous
theorie€3~2%of biexcitons have also considered the same poPositions will be at the vertices of a square inscribed in the
tential as we have irf2), the contribution of the exchange circle, as shown in Fig. 1.
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