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Using a model structure for a two-dimensional~2D! biexciton confined in a quantum well, it is shown that
the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr
radii of a 2D biexciton in its various internal energy states are derived analytically using the fractional
dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be
0.228, which agrees very well with the recent experimental value. The results of our approach are compared
with those of earlier theories.@S0163-1829~96!02623-9#

I. INTRODUCTION

With the advancement of techniques such as four-wave
mixing ~FWM! spectroscopy to study the transient nonlinear
response of low-dimensional semiconductor structures
grown by molecular-beam epitaxy, it has become rather
common to observe the biexcitonic features1–16 in quantum
well structures. Only the heavy hole~HH! biexciton peaks
are observed in the photoluminescence spectra of GaAs
quantum wells,1,8,15,16but recently also the light hole~LH!
biexcitons have been observed by FWM.15,16 From these
observations15,16 the binding energies of HH and LH biexci-
tons have been estimated for different well widths, and the
ratio of the binding energy of HH biexcitons (Ebxx) to that
of HH excitons (Ebx) has been calculated. It is thus found
that Ebxx/Ebx'0.2 and it is independent of the quantum
well width. To our knowledge, no theoretical results on biex-
citons published so far have predicted such a high value of
Ebxx/Ebx for quasi-two-dimensional~2D! excitons and biex-
citons confined in GaAs quantum wells.

In order to bring the discrepancy between theory and ex-
periment into perspective, it may be desirable here to review
briefly some of the results that have been published so far on
the binding energy of biexcitons. It was first Wheeler17 who
in 1946 considered theoretically the possibility of the exist-
ence of complex particles consisting purely of electrons and
positrons and suggested that, although one electron bound to
one positron is stable, a complex such as two electrons
bound to two positrons should not be stable in three dimen-
sions ~3D!. On the contrary, then Hylleraas and Ore18

showed that a positronium molecule~two electrons bound to
two positrons! in 3D should also be stable, and using a varia-
tional calculation found thatEbxx/Ebx 5 0.017 for such a
complex in the positronium limit, where the masses of the
negative and positive particles are equal,me* 5 mh* .
Lampert19 has then pointed out that a biexciton, which he
called an excitonic molecule, should exist in 3D nonmetallic
solids, and using Hylleraas and Ore’s theory, he estimated its
binding energy to be in the same range. The first experimen-
tal evidence of the existence of a complex such as an exciton
bound to a neutral donor was reported by Haynes20 in 3D
silicon, who estimated the ratio of the binding energy of the
complex to that of an exciton to be 0.1, much higher than
predicted by Hyleraas and Ore’s18 theory. This value of the

ratio is usually referred to as Haynes rule for 3D biexcitons.
A few years later Haynes21 also observed the existence of
excitonic molecules~biexcitons! in 3D silicon. As the value
of Ebxx/Ebx predicted from the Hylleraas and Ore theory
was very small, Haynes assumed the same ratio of 0.1 for
biexcitons as he had found earlier20 for the neutral donor
complex, and taking the exciton binding energy in Si,Ebx 5
8 meV, he estimated the binding energy of biexcitons in 3D
silicon as,Ebxx 5 0.8 meV. As Hylleraas and Ore’s calcu-
lations were done for a positronium molecule (me* 5 mh* ),
some improvements in the theory were made by calculating
the 3D biexciton binding energy22–24 as a function ofs 5

me* /mh* . Akimoto and Hanamura23 have thus found that
Ebxx/Ebx decreases monotonically withs in 3D solids,
from 0.3l ats 5 0 ~ hydrogenic limit! to 0.027 ats 5 1
~positronium limit!, which was still significantly lower than
the experimental value.20 Further improvements in the theory
were made by Brinkman, Rice, and Bell,24 who used a six-
parameter variational function to calculate the binding en-
ergy of a 3D biexciton numerically as a function ofs, and
found thatEbxx/Ebx50.029 fors 5 1, in close agreement
with Akimoto and Hanamura’s result.

In 1982 Miller et al.1 observed the existence of 2D biex-
citons in GaAs quantum wells, and determinedEbxx 5 1
meV for a quantum well of width 81 Å. The value decreased
with increasing well width. They also calculated the binding
energy of 2D biexcitons using a method similar to that of
Brinkman, Rice, and Bell24 for 3D, which was later pub-
lished in detail by Kleinman.25 To our knowledge, this is the
only theoretical work that has dealt specifically with the 2D
biexcitons and calculatedEbxx/Ebx as a function of boths
and quantum well width. Kleinman’s theory yields
Ebxx/Ebx 5 0.564 fors 5 0 ~hydrogenic limit!, 0.15 for
s 5 0.68~GaAs!, and 0.14 fors 5 1 ~ positronium limit! at
zero quantum well width. As the value ofEbxx/Ebx de-
creases only slightly, although constantly from 0.15 to 0.11
when the well width increases from 0 to 170 Å, Kleinman
has identified this ratio with the Haynes factor of 0.1 in 3D.
This theoretical result produced as high a value of
Ebxx/Ebx as predicted by Haynes for 3D biexcitons, there-
fore Kleinman concluded correctly that the binding energy of
2D biexcitons has to be larger than that of 3D biexcitons.
Since then, several papers6,10–12 have reported even higher
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values of the binding energy of quasi-2D biexcitons. More
recently,16 we have reported the results of a systematic ex-
perimental determination of the binding energy of biexci-
tons, which gives a value ofEbxx/Ebx'0.2, nearly indepen-
dent of the quantum well width for HH biexcitons in GaAs
quantum wells. In Ref. 16 we have also reported the result of
the present theory, which givesEbxx/Ebx5 0.228, in good
agreement with our experimental result. However, our ex-
perimental results16 deviate from Kleinman’s results at least
in two aspects:~1! A value ofEbxx/Ebx'0.2 has been ob-
served and~2! Ebxx/Ebx is found to be independent of the
quantum well width. As Kleinman’s approach is based on an
extension of the 3D approach, we believe that the discrep-
ancy may be attributed to the dimensionality of the approach.

As in our earlier report16 only the main result could be
given; the aim of this paper is to present the details of the
theory of calculating the binding energy of a 2D biexciton
assuming a model structure and using the fractional dimen-
sion approach.26–28 To our understanding, the fractional di-
mension approach has not yet been applied for calculating
the binding energy of biexcitons in quantum wells. Our
model is particularly applicable to those cases where the ex-
citon and biexciton diameters are larger than the quantum
well width. The main advantage of our approach is that it is
extremely simple, and produces analytical results for the
binding energy and Bohr radius of biexcitons as functions of
s.

II. MODEL OF 2D BIEXCITONS

The general Hamiltonian for a biexciton,Ĥxx , consisting
of four charged particles, two electrons, and two holes, can
be written as

Ĥxx52
\2

2me*
~¹e1

2 1¹e2
2 !2

\2

2mh*
~¹1h

2 1¹2h
2 !1V, ~1!

whereme* andmh* are the effective masses of electrons and
holes, respectively, and

V5Ve1e22Ve1h12Ve1h22Ve2h12Ve2h21Vh1h2 , ~2!

where Vi j denotes the Coulomb interaction between the
charge particlesi and j @ i , j5e1, e2, h1, andh2 denote
the two electrons and two holes in the biexciton# given by

Vi j5
e2

eur i2r j u
, ~3!

wheree is the dielectric constant of the material.¹ i
2 is the

Laplacian with respect to the electron and hole coordinates,
r i ; i 5 e1, e2, h1, andh2.

For quantum well widths smaller than the biexcitonic di-
ameter, the biexciton is confined into a 2D space. For such a
situation we propose a geometrical model of a 2D biexciton
as shown in Fig. 1 , where the charge carriers instantaneously
form a square that can only move in its plane, which is the
same as the plane of the quantum well. As all four particle
charges are equal in magnitude such a symmetrical structure
can be considered to be quite justified and realistic. For such
a structure, the first four of the six relative coordinates, de-
noted byti , i51,..,6, can be represented by vectors parallel

to each of the sides and the last two parallel to the two
diagonals of the square. It is obvious from Fig. 1 that the
only way such a structure can be stable is when the repulsive
Coulomb forces act along the diagonals of the square. Here,
of course, we have assumed that the electron and hole lattice
interactions are so small that they cannot cause any pairing
of the like charges, which can take place in the case of strong
lattice interaction as is well known.29

For our model structure of a 2D biexciton~Fig. 1!, the
relative coordinates can be written as

t152ure12rh2u î, t25ure22rh2u ĵ, ~4a!

t35ure22rh1u î, t452ure12rh1u ĵ, ~4b!

t55ure12re2u~ î2 ĵ!/A2, t65urh12rh2u~ î1 ĵ!/A2,
~4c!

whereî and ĵ are two unit vectors parallel to the two adjacent
sides of the square, and without the loss of any generality
they can be considered parallel to thex andy directions in
the xy plane, which can also be assumed to be the plane of
the quantum well. It is obvious thatut1u 5 ut2u 5 ut3u 5 ut4u
and ut5u 5 ut6u . Now by transforming the electron and hole
coordinates into the relative coordinates and the center-of-
mass coordinate, which is defined by

R5
me* ~re11re2!1mh* ~rh11rh2!

M
, ~5!

whereM52(me*1mh* ) is the total effective mass of the
biexciton, the Hamiltonian~1! becomes30

Ĥxx52
\2

2M
¹R
22

\2

2 S 2

meh
¹eh
2 1

1

mee
¹ee
2 1

1

mhh
¹hh
2 D1V,

~6!

where 1/meh51/me*11/mh* , 1/mee52/me* , and 1/mhh

52/mh* . ¹eh
2 , ¹ee

2 , and¹hh
2 are the Laplacians with respect

to the relative coordinates between electron and hole

FIG. 1. A proposed model structure of a 2D biexciton confined
in a quantum well of width narrower than the biexciton diameter.
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(ti , i51,..,4), electron and electron (t5), and hole and hole
(t6), respectively, and¹R

2 is that with respect to the center-
of-mass coordinateR.

For calculating the internal energy eigenvalue of the biex-
citon, the first term of~6! can be ignored, being the kinetic
energy operator of the center-of-mass motion. The rest of the
Hamiltonian~6! can then be written in spherical coordinates
by choosing the origin at the center of a circle in which the
symmetric square of the biexciton structure can be inscribed
~Fig. 1!. This essentially means applying another coordinate
transformation that can transform the relative coordinates as

ut1u5ut2u5ut3u5ut4u5A2r , ~7a!

and

ut5u5ut6u52r , ~7b!

wherer is the radius of the circle.
For calculating the binding energy of excitons confined in

an a-dimensional space, 1<a<3, recently a fractional di-
mensional approach has been applied.26–28The advantage of
the approach is that it produces an analytical expression for
the exciton binding energy as a function of the dimensional
parameter and hence a quantum well width that agrees rea-
sonably well with the experimental result. We will follow
this approach for calculating the binding energy of 2D biex-
citons. Using Eq.~7! first we transform and then write the
Hamiltonian~6! in spherical coordinates as a function of the
fractional dimensional parameter26–28a as

Ĥxx52S \2

2mxx
D F 1

r a21

]

]r H r a21
]

]r J G1
L2

2mxxr
2 2

e2

exxr
,

~8!

where

mxx5
2

3
meh , exx5

A2
42A2

e. ~9!

It is to be noted that for the present casea52, to conform
with our proposed geometrical model of a 2D biexciton.L2

is the square of the angular momentum operator of a biexci-
ton, similar to that occurring in the 3D exciton or hydrogen
atom Hamiltonian written in spherical coordinates. Thus by
applying the above two transformations of coordinates and
using our model structure, we have been able to reduce the
Hamiltonian of a biexciton into that of a single exciton of a
modified reduced mass,mxx , and dielectric constant,exx , as
given in Eq.~9!.

III. BIEXCITON BINDING ENERGY

Here we will first outline very briefly the method of cal-
culating the binding energy of a single exciton confined in
low dimensions and then describe that for a biexciton. The
binding energy of a single exciton in ana-dimensional ma-
terial can be derived by solving the following Schro¨dinger
equation:26–28

Ĥxcx,n~r ,u!5~Ex,n2Eg!cx,n~r ,u!, ~10!

where

Ĥx52
\2

2meh

1

r a21

]

]r S r a21
]

]r D1
L2

2mehr
2 2

e2

er
, ~11!

andEg is the electronic energy gap of the material.Ex,n and
cx,n(r ,u) are the energy eigenvalue and eigenfunction, re-
spectively, of an exciton in its internal energy state of prin-
cipal quantum numbern. The solution of the Schro¨dinger
equation~10! is obtained as26–28

Ex,n5Eg2
EB

@n1~a23!/2#2
. ~12!

One also gets the corresponding excitonic Bohr radiusax,n
as

ax,n5Fn1
a23

2 G2aX , ~13!

where

EB5
meh

e2me
RH , ~14!

and

aX5
me

emeh
aH . ~15!

RH andaH are the Rydberg constant and Bohr radius, respec-
tively, andme is the free electron mass. From~11! we get the
binding energy of an exciton,Ebx(n), in its nth energy state
and confined ina-dimensional space as

Ebx~n!5
EB

@n1~a23!/2#2
. ~16!

According to ~14!, EB depends on s, because
meh5me* /(11s), and one can then write the binding energy
~16! as a function ofs as

Ebx~n!5
me*

mee
2~11s!

RH

@n1~a23!/2#2
. ~17!

It is to be noted that usuallya depends on the quantum well
width, but in order to be consistent with our 2D model of
biexcitons, we will stick toa52 for excitons as well. How-
ever, as the result~17! of the exciton binding energy is well
known,26–28we will not discuss it any further.

Now for calculating the binding energy of a 2D biexciton,
we use the biexciton Hamiltonian~8! and solve the following
Schrödinger equation:

Ĥxxcxx,n~r ,u!5~Exx,n22Eg!cxx,n~r ,u!, ~18!

whereExx,n andcxx,n are the energy eigenvalue and eigen-
function of a biexciton in its internal energy staten, respec-
tively. As the Schro¨dinger equation~18! is analogous to Eq.
~10!, it can be solved analogously, and we get the biexciton
energy eigenvalue as

Exx,n52Eg2
EB8

@n1~a23!/2#2
, ~19!

and the corresponding biexciton Bohr radiusaxx,n as
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axx,n5S n1
a23

2 D 2aX8 , ~20!

whereEB8 andaX8 are obtained from~14! and ~15! replacing
meh ande by mxx andexx , respectively. The biexciton bind-
ing energyEbxx(n), defined as

Ebxx~n!52Ex,n2Exx,n , ~21!

is then obtained using~12! and ~19! in ~21! as

Ebxx~n!5SEB8

EB
22DEbx~n!. ~22!

Using Eq.~9! and the definition ofEB8 in Eq. ~22! we get

Ebxx~n!5S ~42A2!2

3
22DEbx~n!, ~23!

which gives

Ebxx~n!

Ebx~n!
'0.228 ~24!

for a52 and it is independent ofs andn. For simplification,
denotingEbxx(n51)/Ebx(n51) byEbxx/Ebx, we find that
the value ofEbxx/Ebx thus obtained in 2D is the highest that
has so far been obtained theoretically, and it agrees very well
with the experimental value15,16 of about 0.2. The ratio~24!
is slightly less than the double of the value~0.12! calculated
by Kleinman25 for a GaAs (s 5 0.68! quantum well of
width 81 Å and more than double of the value known as
Haynes rule20 for 3D semiconductors. Although our theoreti-
cal result is valid strictly in two dimensions, the fact that it
agrees so well with the experimental value, which is nearly
independent of the well width, does indeed suggest that the
geometrical structure of a biexciton in quantum wells may
not be very different from the one used in this calculation.
This point will be addressed further in the next section.

Using ~15! and~20! we get the ratio of the Bohr radius of
biexcitons to that of excitons as

axx,n
ax,n

5
3~42A2!

2A2
52.74. ~25!

Like the ratio of the binding energies, the ratio of Bohr ra-
dius of 2D biexcitons to that of excitons also does not de-
pend ons.

IV. DISCUSSION

Using a simple but realistic model for the structural con-
figuration of a 2D biexciton and applying two coordinate
transfomations, it has been possible to transform the biexci-
ton Hamiltonian into the form of an exciton Hamiltonian.
The approach thus simplifies the biexciton problem ex-
tremely, and enables us to derive analytical expressions for
the binding energy and Bohr radius of 2D biexcitons as a
function ofs. The ratio of the binding energy of biexcitons
to that of excitons,Ebxx/Ebx, and that of their Bohr radii,
axx,n /ax,n , has also been calculated. While both the binding
energies and Bohr radii of 2D biexcitons and excitons de-
pend individually ons, their ratios~24! and ~25! do not.

This is in contradiction with the results obtained for both 2D
and 3D biexcitons, where the ratioEbxx/Ebx is
known23–25,31 to depend ons, particularly in the limit
s→0, though fors.0, the values ofEbxx/Ebx obtained for
2D biexcitons in Ref. 25 decrease only slightly withs→1.
As the earlier calculation of 2D biexciton25 is carried out by
extending the 3D theory, we believe that this slight differ-
ence may be attributed to the difference in the dimensionality
of the two approaches. Moreover, as the dependence of
Ebxx/Eb

x on s is not studied experimentally, it is difficult to
be any more conclusive about this point at present.

The binding energy of quasi-2D excitons in a GaAs quan-
tum well of width 80 Å is known16,26–28to be about 10 meV,
but it decreases with the quantum well width to its 3D value
at large well widths.32 Using this value in Eq.~24! we find
that the 2D biexciton binding energy can be about 2.3 meV,
which agrees very well with the observed value of more than
2 meV.15,16 No theoretical results, to our knowledge, have
reported as high a value of the 2D biexciton binding energy
as obtained here.

However, it may be argued that the present theoretical
result being valid only for the exact 2D case cannot be ap-
plied to quantum wells for which usuallya>2. This point
can be addressed as follows: Experimentally, we know that
the ratioEbxx/Ebx 5 0.1 from the Haynes rule for the 3D
case and about 0.2 for the quantum wells, which does not
depend on the well width16 as long as the wells are narrower
than the biexciton diameter. As one can see that our calcu-
lated result ofEbxx/Ebx is slightly higher than the experi-
mental value in quantum wells, we believe that the discrep-
ancy is due to the difference in the dimensionality of the
exact 2D situation and that of quantum wells. In this view
the result of our calculation can be regarded as the upper
limit for the ratio Ebxx/Ebx in quantum wells, as indeed is
the case, because the experimental value is only slightly
lower than the exact 2D value but it is twice the 3D value.
This also implies that our geometrical 2D biexciton model
~Fig. 1! may be applied for quantum wells as well, because
the 2D symmetrical structure may be possible not only at
zero well width, but also at narrow well widths. The crucial
point is the applicability of the two coordinate transforma-
tions @Eqs. ~4! and ~7!# used to reduce the 2D biexciton
Hamiltonian into the form of an exciton Hamiltonian. We
believe that these transformations will be applicable in quan-
tum wells provided the well width is smaller than the biex-
citonic diameter, which will not allow the biexciton to have
the three-dimensional degrees of freedom. As the biexciton
has a quantized energy state its configurational structure has
to be quantized, which is a well-known result of the quantum
mechanics. Using the same argument, it may be suggested
that our geometrical 2D model may be applied to the real
quantum wires as well for which usually 1,a,2. Thus
within the boundary condition that the well width is less than
the biexcitonic diameter, it may be implied that the theoreti-
cal value ofEbxx/Ebx 5 0.228 ~24! is independent of the
quantum well width, because it does not depend ona, which
is the only well-width-dependent parameter occurring in the
binding energy. This is supported by the experimental
result16 that the ratio is independent of the well width and its
value coincides remarkably well with the calculated 2D
value.
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It is well known that the effect of the confinement in-
creases the binding energy of an exciton. It is also known
that in finite quantum wells, when the well width becomes
quite narrow the exciton binding energy starts decreasing,
because the exciton wave functions spread to the barrier re-
gions and the 3D character27 is restored. As the problem of
biexcitons has been reduced into an exciton problem in our
approach and a constant value ofEbxx/Ebx has thus been
obtained, the bixciton binding energy can be expected to
behave in the same way as the exciton binding energy.

It may be recalled here that in the theory of excitons,
when developed from a 3D multiparticle system of a con-
densed matter, the electronic Hamiltonian reduces to a two-
particle Hamiltonian given in~11! only after several approxi-
mations, in particular after neglecting the exchange
interaction between the electron and hole.29 Likewise, for a
biexciton we have started with a four-particle system and
also neglected exchange interactions. Although other
theories23–25of biexcitons have also considered the same po-
tential as we have in~2!, the contribution of the exchange

interaction and other electronic correlations may be expected
to reduce the value ofEbxx/Ebx. On the other hand, one may
also expect some experimetal uncertainties to be involved.

The observed enhanced binding energy of biexcitons in
GaAs quantum wells has also recently33 been interpreted on
the basis of a polariton effect, which modifies the biexciton
dispersion relations at small momenta and increases the biex-
citon binding energy. It has therefore been argued that the
increased binding energy is due to the formation of bipolari-
tons instead of biexcitons in GaAs quantum wells. As the
polariton effects go beyond the scope of the model calcula-
tions presented here, more experiments are needed to resolve
this issue.

It is to be noted that the Bohr radius of biexcitons is more
than two times larger than that of excitons. The Bohr radius
of a biexciton may be regarded to be that of a circle around
which all four charges move such that their instantaneous
positions will be at the vertices of a square inscribed in the
circle, as shown in Fig. 1.
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