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Quantized conductance in atom-sized wires between two metals
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We present experimental and theoretical results for the conductance and mechanical properties
of atom-sized wires between two metals. The experimental part is based on measurements with a
scanning tunneling microscope (STM) where a point contact is created by indenting the tip into a
gold surface. When the tip is retracted, a 10-20 A long nanowire is formed. Our measurements
of the conductance of nanowires show clear signs of a quantization in units of 2¢?/h. The scatter
around the integer values increases considerably with the number of quanta, and typically it is not
possible to observe more than up to four quanta in these experiments. A detailed discussion is given
of the statistical methods used in the analysis of the experimental data. The theoretical part of
the paper addresses some questions posed by the experiment: Why can conductance quantization
be observed, what is the origin of the scatter in the experimental data, and what is the origin of
the scaling of the scattering with the number of conductance quanta? The theoretical discussion is
based on a free-electron-like model where scattering from the boundary of the nanowire is included.
The configurations of the nanowires are deduced from molecular dynamics simulations, which also
give information about the mechanical properties of the system. We show that such a model can
account semiquantitatively for several of the observed effects. One of the main conclusions of the
theoretical analysis is that, due to the plastic deformation of the nanowires formed by the STM, the
typical length scale of the variations in the shape of the boundary is not an atomic radius but rather
five times that value. This is the reason why scattering is sufficiently small to make conductance
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quantization observable by STM.

I. INTRODUCTION

When the length scale of an electrical conductor is re-
duced to less than the electron mean free path, the scat-
tering of electrons will predominantly take place at the
boundaries of the conductor. This characterizes the bal-
listic transport regime in which the conductance is inde-
pendent of material properties and determined only by
the geometry of the sample and the electron density.l'2
In recent years, there has been an increasing interest in
the fundamental properties of conduction in the ballis-
tic regime, and extensive experimental and theoretical
studies have been carried out. The progress in the field
has mainly been due to the development of small semi-
conductor devices in which a two-dimensional electron
gas (2DEG) can be confined by applying a voltage to a
split gate. In this way, it has been possible not only to
observe ballistic transport, but also to go even a step fur-
ther and explore the regime of quantized conductance.3™®
Quantization is possible if the electrons are confined by
the sample boundaries or applied fields in the directions
transverse to the current on a length scale of the order
of the Fermi wavelength of the conducting electrons.

When semiconductors are used in ballistic transport
experiments, one profits from a mean free path that can
be as long as several micrometers. In the quantized
regime, semiconductors have the additional advantage
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that the electron density is very low, implying a Fermi
wavelength, which typically is two orders of magnitude
larger than for metals.’ This immediately indicates that
the criteria to be satisfied in order to observe conduc-
tance quantization in a metal are much more severe. It
demands a constriction that can be controlled not on
the submicrometer scale, as in the case of semiconduc-
tors, but rather on the subnanometer scale. However,
the scanning tunneling microscope® (STM) has already
been proven to be an extremely important tool in pro-
ducing and modifying structures on the subnanometer
scale,” and the possibility of using the STM in an ex-
periment on quantized metallic conduction is, therefore,
obvious.

As the tip in a STM is moved towards the surface,
the attractive force between tip and sample increases
rapidly,® all the way up to the point where the at-
tractive force gradient surpasses the spring constant of
the combined system of tip, sample, and interconnect-
ing systems.? Then a sudden jump to contact takes
place,'%!! and this will, for sufficiently clean electrodes,
immediately lead to a metallic contact, which can be
stretched to a connective neck by a subsequent retrac-
tion of the tip.!2 A connective neck can also be produced
by voltage pulses.**

The behavior of the conductance in such an atomic-
sized metal constriction has recently been investigated
with STM in many different environments and tempera-
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ture regimes, such as at 4.2 K,'3'% at room temperature
in ambient air,’® 17 at room temperature under ultra-
high vacuum (UHV) conditions,'® and at room temper-
ature in high vacuum with an STM complemented by a
force sensor.!® In the latter study, the relation between
the adhesive tip-sample force and the conductance was
investigated. Another technique for creating nanocon-
strictions is the mechanical break junction technique,
where a metal filament is broken at low temperatures,
resulting in two freshly prepared electrodes that can be
brought back into contact.?2%?! The very small size of
the constriction in these experiments should facilitate the
possibility of observing the quantization of conductance,
despite the short metallic Fermi wavelength, which is
comparable to atomic dimensions. Some authors have
reported that when the nanoconstriction is stretched
and thinned, the measured conductance is quantized in
units of 2e%/h, although with some scatter around this
value,'571° whereas in other studies, such a distribution
of the conductance values is less evident, and noninte-
ger steps have been observed.?%:2! Also from a theoretical
point of view, there is still no consensus. It has been sug-
gested that the steps in the conductance are associated
with mechanical instabilities in the nanoconstrictions,??
and that they are due to a quantization of the trans-
verse electron motion in a contact containing only a few
atoms.15:18,23

In the present paper, we provide new experimental ev-
idence for real quantized conductance at room tempera-
ture in a metal constriction drawn between an STM tip
and a metal surface. Extreme care has been taken in
order to make the experimental conditions as well char-
acterized as possible. To diminish the complications with
impurities, water films, etc., the experiments have been
performed in UHV on well defined, clean Au single crys-
talline metal surfaces. Furthermore, to preserve the in-
tegrity of the surface, the constrictions have been pro-
duced by tip indentations performed as gently as possi-
ble, with a depth of 3-5 A. Since the measurements de-
pend crucially on the detailed geometry of the individual
constrictions, we do not try to make a general statement
on the basis of a few measurements only, but instead we
apply a statistical treatment involving a large number of
measurements. This analysis demonstrates that for the
present results on Au(110), the distribution of conduc-
tances shows clear peaks at n2eZ/h, where n is an integer.
Furthermore, the area and width of the peaks are found
to decrease and increase, respectively, with increasing n.

The details concerning the experiment and the results
are presented in the first part of the paper. The sec-
ond part consists of a detailed discussion of the theory of
conductance in a one-dimensional conductor. We start
by giving an introduction to the simplest adiabatic the-
ory of electron transport in a one-dimensional conductor.
This treatment shows the origin of the conductance quan-
tization. The adiabatic theory assumes that the varia-
tion of the one-electron potential is slow on the scale of
the Fermi wavelength Ap. Since Ap is of the order an
atomic diameter, one might think that scattering from
atom-sized irregularities in the point contact would de-
stroy the conductance quantization completely. We have
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developed a theory, including scattering from the bound-
ary of the conductor, and used atomistic simulations of
thin metallic wires to give realistic atomic configurations,
from which we have derived the scattering potential. Just
like in the statistical analysis of the experimental results,
we consider many different nanowires of different geome-
tries and perform a similar analysis of the simulation re-
sults. For the present results for Au wires, we find that
we can reproduce not only the conductance quantization
of the experiment, but also the widths of the peaks and
their weights. Our analysis suggests that the main rea-
son why the quantization is not destroyed by scattering is
that the plastic deformation of the metallic contact works
to make the typical wavelength of the scattering potential
larger than an atomic diameter and Ap. However, impu-
rities or other sources of short wavelength scattering may
easily destroy the conductance quantization.

In the following, we start in Sec. II by presenting the
experimental results and discuss the experimental pro-
cedures and the data analysis. In Sec. III, we then de-
scribe our molecular dynamics simulations of the atomic
structure and the dynamics of nanowires. On that basis,
we can discuss the electron transport in the nanowires.
We first give the simplest adiabatic theory in Sec. IV,
and then go on to discuss the role of scattering from the
boundary of the conductor in Sec. V. We conclude in Sec.
VI with a summary and discussion of the most important
results.

II. EXPERIMENTAL INVESTIGATIONS
OF STM NANOWIRES

A. Experimental conditions

All experiments are carried out at room temperature
with a compact, fully automated, high stability UHV
STM, which offers atomic-resolution images of metal sur-
faces on a routine basis in the normal constant-current
mode.?*726 The STM tip is made of a [100]-oriented sin-
gle crystal W wire, which is electrochemically etched un-
til nice, sharp crystal facets appear. A possible in situ
tip cleaning can be performed by ramping the bias volt-
age (Vi) to 5 V in 100 ms or by drawing a high tunnel
current (~ 10 nA) with V; ~ 1 V. Moreover, the tip can
also be reshaped in situ by indenting it into the surface
if, for instance, an undesired double tip is present. Apart
from the STM, the UHV chamber is equipped with stan-
dard facilities for surface cleaning and characterization.
The Au(110) surface used in this study was cleaned by
repeated Ne sputtering until perfect, impurity-free sur-
faces were obtained, as observed by LEED, AES, and
STM.

Prior to an experiment, the clean Au surface is scanned
in a constant-current mode, and atomic resolution is ob-
tained with typical tunneling parameters I; =~ 5 nA and
Vi =& 5 mV (see Fig. 1), which correspond to a tunnel
resistance of the order of 1 M, or equivalently, a con-
ductance of the order of 1 pS. The motion of the tip dur-
ing an indentation process is depicted in Fig. 2, where
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FIG. 1. A 325 x 335 A2 constant-current image of the
clean, (1 x 2) reconstructed Au(110) surface recorded prior
to an indentation with tunneling parameters I; ~ 4 nA and

V;: ~ 3 mV. The inset shows a 40 x 40 A? closeup of the rows
running along the [110] direction.

the origin of the displacement scale corresponds to the
initial tunneling position. When the tip passes a pre-
selected point in the normal z-y scan, the feedback loop
is opened, and the indentation is performed: The tip is
retracted ~ 15 A to a position where it is allowed to relax
for ~ 1000 us before it is driven towards the surface at
a rate of ~ 500 A/s. The tip advances beyond the ini-
tial tunneling position to an indentation depth of =~ 3 A,
where it is forced to stay for another relaxation time of
= 1000 us. Subsequently, the tip is withdrawn from the
surface, again at a rate of ~ 500 A/s, back to the start-
ing point of the indentation and, finally, the tunneling
condition is reestablished by a gentle tip approach.
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FIG. 2. Depth-time sequence in an indentation. The origin
of the displacement scale is given by the tunneling position be-
fore the feed back loop is opened, and, therefore, it depends on
the tunneling parameters. In the final tip approach, the cur-
rent is continuously monitored, and the motion is terminated
as soon as the previous tunneling conditions are satisfied.
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B. Measuring the conductance

In order to measure the conductance G; (or equiva-
lently the resistance R;) in the tunnel junction during
the indentation process, it is necessary to know both I,
and V;. From an experimental point of view, an easy way
to accomplish this is to keep the bias voltage constant and
then measure I;. However, one has to worry whether the
experimental setup is capable of keeping the real tun-
nel voltage V; = I;R; equal to the bias voltage Vipjas
during the indentation. The assertion that V; = Vpias
is only true when the effective input impedance of the
preamplifier, R;, (in our case 11 k?), is orders of magni-
tude smaller than R;. But this is not the case in an in-
dentation experiment, since we often reach conductances
above 1000 uS (R; < 1 k). We circumvent this problem
by adding on a low noise (~ 3 pVrums) high impedance
(> 1 TQ) voltage preamplifier which measures V; directly
across the STM junction. This setup allows a determi-
nation of G; over six orders of magnitude, since G; is
determined by the variation of I; in the low conductance
regime, whereas it is the variation in the measured V;
that determines G; in the high conductance regime.

Even though the conductance measurement has been
calibrated against known resistances, there are two fur-
ther complications in the experiments. Due to small tem-
perature gradients in the UHV chamber the voltage is
slightly offset by thermovoltages. By indenting the tip
200 A into the surface, these thermovoltages have been
measured to 11.5 + 1.0 4V, and the conductance mea-
surements have thus been correspondingly corrected. An-
other problem, which has not been discussed in previous
studies of quantized conductance in metals, is the inter-
nal resistance in the electrodes, connecting the ballistic
system to the macroscopic world. In the macroscopic
part of the electrodes, the resistance is negligible, how-
ever, because of the small dimensions close to the ballistic
system under investigation, the total resistance can be of
importance. This serial resistance depends strongly on
the actual geometry, and in STM experiments, it can
therefore attain any value from less than one ohm to sev-
eral hundreds of ohms depending on the specific shape of
the tip apex. Based on indirect measurements and evalu-
ations, we have estimated this tip resistance to lie in the
range 100 — 200 Q. In the derivation of the conductance

_we have, thus, taken into account a serial tip resistance

of 150 & 50 Q. The awareness of such complications is
important, although they only introduce a correction of
a few percent of a quantum unit in the absolute numbers.

C. Data analysis
1. Current, voltage and conductance

Figure 3 shows a set of I, V4, and deduced G data
from an indentation measurement on the Au(110) sur-
face. In the beginning of the indentation sequence, when
the tip is very far from the surface, I; =~ 0 and V; = Vpias
(the finite value of G; is due to an offset of a few pA in
1), but as the tunneling regime is approached, a rapidly
increasing I, is detected [Fig. 3(a)]. Simultaneously V;
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FIG. 3. Simultaneously measured current I (a) and volt-
age V; (b) during an indentation. The deduced conductance
G¢ = I./V; is shown below on a logarithmic scale (c) and on
a linear scale (d). The direction of tip motion is given by
the arrows, i.e., a left-pointing arrow indicates an approach-
ing tip, while a retracting tip is indicated by a right-pointing
arrow.
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drops to very low values [Fig. 3(b)], showing that V; is in-
deed not constant even though Vy;,s is. From Fig. 3(c) it
is seen that G; increases exponentially in this region, in-
dicating a constant value of the so-called “apparent bar-
rier height.”27:28 This continues all the way up to a point
where a sudden increase in G, over several orders of mag-
nitude sets in. During the subsequent retraction of the
tip, G; does not follow the characteristic exponential be-
havior of tunneling, rather it stays at very high values
until it suddenly drops back to the level of the in-going
curve after a total tip retraction of 10-20 A.

The jump in G; away from the tunneling regime in
the in-going curve is correlated with the remarkable hys-
teresis seen in Fig. 3, that is, the hysteresis is observed
if and only if a jump occurs; otherwise G; is reversible.
Thus, we attribute the jump in G; to the formation of a
point contact between tip, and sample.'%'2 Furthermore,
since the conductance does not fall off exponentially dur-
ing the following retreat of the tip, we conclude that the
metallic contact remains until the dramatic drop in G,
sets in at the end of the outgoing curve. In other words,
a connective neck between the tip and the sample is cre-
ated, stretched 10 — 20 A, and finally disrupted during
the retraction of the tip.

Here, it is very important to note that the tunnel cur-
rent preamplifier is far from saturation at all times. The
almost constant value of I; during elongation of the neck
is solely determined by Vhias/Rin, since in this region R,
is vanishing compared to Rj,.

2. Wetting of the tip

When an experiment is started, the reproducibility of
the indentation measurements is fairly low. One inden-
tation to a depth of 10 A may not lead to the formation
of a neck at all, while another indentation to a depth of
2 A produces a neck with a stretching length of more
than 20 A. These long stretching necks are often con-
nected with a considerable tip change and a deposition
of material on the crystal over an area of 10¢ A2.

After a sequence of ~ 30—100 initial indentations, each
done at a new clean spot of the crystal, the situation has
changed markedly. Now a single indentation will result in
a very small modification of the tip, i.e., the change in tip
length (measured as the change in substrate height in the
corresponding topographic image) is less than 0.5 &, and
resolution of the [110] rows is maintained. Furthermore,
at a fixed depth of indentation, the stretching length of
the neck is constant to within +4 A. We suggest that such
a stable tip configuration is a result of natural selection
and the fact that our tip is made from a single crystalline
wire with a fixed orientation, that is, if an indentation by
chance produces an especially stable configuration of the
tip, it is much less probable that the tip will undergo a
change in the following indentations.

Another likely effect of this initial “cleaning” proce-
dure is a wetting of the tip with substrate atoms, due
to the lower surface energy and the higher self-diffusion
coefficient for Au compared to W, a picture that is sup-
ported by simulations by Landman et al. in the case of
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a Ni tip on a Au substrate.!? Because of the wetting, the
connective neck will mainly consist of substrate material,
and thus we will, in the following, interpret the observed
behavior of the conductance as characteristic for a con-
striction made of Au atoms.

3. Quantized conductance

When the conductance is plotted on a linear scale
[Fig. 3(d)], it is seen that during the stretching of the
neck, G is quantized in units of 2e2/h, but exactly which
quanta are observed differs from one indentation to an-
other. However, it is also obvious from Fig. 3(d) that not
all the plateaus are lying exactly on an integer multiplum
of 2e2/h, but instead there is a tendency for spreading
around those values. Moreover, Fig. 3 is not represen-
tative for a typical indentation, since, in general, only
two or three conductance plateaus are revealed. So in
order to investigate to which extent the conductance is
indeed quantized in units of 2e?/h, we have carried out
a detailed statistical analysis, including data points from
many indentations.

In such an analysis, it is clearly not desirable to include
measurements of G¢, which do not reflect the nature of
the conductance in the neck, but rather show features due
to an unstable tip or impurities in the neck. Furthermore,
in order to reduce possible complications due to the large
opening angles in a point contact?® and make the exper-
iment as specific as possible, we want to concentrate on
the conductance in an atomic-sized wire. These consid-
erations give rise to the following three criteria which the
individual measurements of G; have to fulfill in order to
be included in the statistics.

(1) The in-going part of the conductance curve should
display an exponential rise in the tunneling regime in cor-
respondence with normal tunneling characteristics [see
Fig. 3(c)]. Occasionally, a G; is recorded which exhibits
several jumps in this region [see Fig. 4(a)]. This may be
associated with a rearrangement of the structure of the
tip. If, on the other hand, a pure exponential behav-
ior is detected, the resulting “apparent barrier height” is
always fairly high (=~ 5 eV), indicating a clean tip.1°

(2) When the neck breaks, G; should drop from a level
of the order of one quantum unit all the way down to the
noise level. If, instead intermediate plateaus are detected
[see Fig. 4(b)], then a mechanical contact (a neck) re-
mains to exist despite the very small conductance, which
is not in correspondence with a metallic contact. There-
fore these plateaus are interpreted as the result of tunnel-
ing through an impurity in the neck, in good agreement
with the exponential decrease often seen in such plateaus.

(3) During the retraction of the tip, a nanowire with
a length of at least 8 A should form between tip and
surface.

Data points from the outgoing part of those G; that
satisfy these three criteria are the basis for a continu-
ous histogram, which then will reveal the distribution of
data points. The histogram is made in the following way:
First, all the measured values of G are sorted in increas-
ing order (see Fig. 5). Second, the histogram value at a
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attributed to tunneling through an impurity in the neck.

certain measured G4, is calculated as

i 2w

H(Gi+w) = p‘]’:}w N Where Pi+w = m (1)
is the density in a window of 2w data points, and N is
the total number of data points in the histogram. The
normalization factor of 1/N ensures that the integrated
histogram is = 1.

In Fig. 6(a), we show such a histogram for Au(110)
based on 6562 data points from 227 indentations ful-
filling the criteria above out of a total of 429 differ-
ent indentations. By fitting the individual peaks to a
Lorentz distribution with a linear background, we have
found the peak positions to be 1.000+ 0.004, 2.03 +0.03,
and 2.99 £+ 0.05, with the corresponding areas and widths
shown in Figs. 6(b) and (c). The origin of the stated
uncertainties is mainly the uncertainty of the tip resis-
tance described in Sec. IIB. From Fig. 6, it is seen that

‘Window of 2w datapoints
R

r ~

>

G;‘+2w G

61’ di+w

FIG. 5. The histogram value at a conductance of G;t. is
calculated from the density of data points in a window of 2w
data points. See text for further details.
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the peak at one conductance unit is very sharp and con-
tains nearly a third of all data points in the histogram.
Moreover, the peaks at two and three units are easily
distinguished from the background level, and the peaks
are lying on an integer number, n, of quantum units.

We thus conclude that under clean, well controlled con-
ditions, the conductance in a constriction drawn between
an STM tip and a metal surface is indeed quantized in
units of 2e2/h. However, it is seen that the data points
are distributed around the integer values, and from a
thorough analysis of the histogram, it is revealed that
the areas/widths of the peaks decrease/increase with in-
creasing n.

The remainder of the paper is devoted to our theoreti-
cal modeling of the indentation experiments and a discus-
sion of the experimental findings based on the modeling.
In particular, we shall focus on the scaling of the areas
and widths of the peaks with n.

4
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FIG. 6. Continuous conductance histogram based on 6562
data points from 227 indentations on Au(110) (a). The corre-
sponding areas and widths of the peaks are shown in (b) and
(c), respectively.
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III. MOLECULAR DYNAMICS SIMULATIONS
OF NANOWIRES

As a starting point for a theoretical description of the
electron transport through point contacts between two
metals, we have performed a series of molecular dynam-
ics simulations of the formation of the contact and the
elongation process. The molecular dynamics simulations
have been performed using an interaction potential de-
rived from the effective-medium theory.?°® While approxi-
mate, this method is known to give a reasonable descrip-
tion of the interatomic interactions in fcc metals.3°

First, we have studied the formation of the contact.
As discussed in the previous section, we assume that the
surface metal wets the tip so that the contact is con-
sisting of the surface metal only. In the simulations, a
sharp pyramid-shaped tip is brought into contact with a
surface, see Fig. 7. At room temperature, diffusion pro-
cesses will take place on the time scale of the experiment
(ms), and this will influence the shape of the contact.
However, the time scale of the simulation (ns) is much
too short to allow for diffusion to occur. In order to com-
pensate for this, we have enhanced the atomic mobility
by annealing the tip to 1050 K for 270 ps. During the an-
nealing, atoms migrate towards the lower substrate, and
this leads to the formation of a neck with a structure that
is significantly different from the original one.

After the annealing process, the tip is retracted. The
temperature of the system is kept at 300 K, by impos-
ing corresponding fluctuating and frictional forces on the
atoms in one layer in the bottom of the lower substrate.
Figure 7 shows the evolution of the neck during the
stretch until it finally breaks. After the tip has broken,
an island of material is observed on the surface just like
in the experiment, and we note that this “tip-indentation
procedure” also gives a fine, sharp tip which will be per-
fectly suited for atomic-resolution STM.

In Fig. 8, we show how the force on the tip and the
cross-sectional area (to be defined in Sec. V) of the neck
at the thinnest point evolves during the stretch along
with the conductance calculated, using the procedure we
discuss in the following sections. It can be seen that the
cross-sectional area decreases slowly, while the adhesive
force is built up by elastic deformation. This goes on un-

FIG. 7. (a) In this simulation, we see how diffusion pro-
cesses makes the tip join smoothly to the surface, creating a
neck. Subsequent retraction of the tip makes the evolution of
the neck closely resemble the stretch of a thin metallic wire.
(b) Snapshots from a simulation of the stretch of a nanowire
with 5 x 5 x 16 structure along the [100] direction.
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FIG. 8. Typical evolutions of the area with stretch (a). It
is seen that the area decreases rather linearly disrupted by
sudden jumps corresponding to major atomic rearrangements
in the neck. This is reflected in the correlation with jumps in
the force on the tip showing buildup and subsequent release
(b). In (c) the corresponding conductance curve is shown.

til a sudden restructuring of the neck occurs. During the
restructuring, the cross-sectional area and conductance
change along with a drop in the adhesive force. This is
in agreement with the molecular dynamics simulations by
Landman et al.!? Furthermore, we note that the jumps
in force are around 5 nN, except for the thinnest necks,
which is in agreement with the magnitude of the force
jumps measured experimentally by Stalder and Diirig.1®
On the other hand, their experiment indicates that a con-
ductance plateau corresponds to a slow decrease in the
adhesive force, and the change in conductance is corre-
lated to a steep increase in the adhesive force. The ex-
perimental regime for force measurements by Diirig and
Stalder stops at about six conductance quanta, so a di-
rect comparison between theory and experiment is not
possible.

It can be seen from Fig. 7 that the central part of the
neck can be viewed as a thin metallic wire with a con-
striction. We can utilize this by replacing the “real” neck
in Fig. 7(a) by the nanowire shown in Fig. 7(b). Dur-
ing stretch, the wire develops a constriction just like the
neck, and we find that the area versus stretch functions
for the nanowires are very similar to those for the “real”
neck for constrictions smaller than about five atoms. For
simplicity, we have thus used nanowires in the following.

In order to make a statistical analysis of the “com-
puter experiments” in analogy with the treatment of
the experimental results given above, we have performed
room-temperature Langevin dynamics simulations of the

8505

stretch of 12 different Au wires. Starting configurations
with 8-25 atoms in cross section and a length of 16 atomic
layers arranged in one of three different structures ([100],
[110], or [111] along the direction of the wire) with vary-
ing ratio of side lengths have been chosen. These simula-
tions are used as input into the calculation of the electron
transport, i.e., the conductivity, which we shall discuss in
the following.

IV. QUANTIZED CONDUCTANCE
IN ONE-DIMENSIONAL NANOWIRES

We assume that transport through the neck structure
can be described by a coherent propagation of the elec-
trons. This means that all length scales characterizing
destruction of this coherence,231:40 e.g., the mean free
path of the electron (I), are assumed to be larger than
the dimensions of the neck structure.

Let us first consider a one-dimensional conductor con-
necting two-electron reservoirs. In both reservoirs, the
electrons are in thermodynamical equilibrium, and chem-
ical potentials (11 and u2) can be assigned to each reser-
voir. We assume that the reservoirs completely random-
ize the phase of an electron entering from the conduc-
tor, so there will be no interference effects between the
part of the electronic wave function traveling from the
conductor to the reservoir and the part entering the con-
ductor from the reservoir. We, furthermore, assume that
there is a perfect matching between the conductor and
the reservoirs: No electrons coming from the conductor
are reflected at the point where the conductor joins the
reservoir. The conductor is perfect, except for a single
barrier with transmission coefficient 7'.

Under these assumptions, the conductance is given by
the Landauer-Biittiker formalism.32:33 The current from
reservoir 1 to reservoir 2 is carried by electrons with ener-
gies between their respective chemical potentials p; and
p2 and a wave vector in the direction opposite to the
current:

9(E

) (s — ), )

I =evp

where e is the electron charge, vg is the electron veloc-
ity (at the Fermi energy), and g(EF) is the density of
states at the Fermi level for the one-dimensional conduc-
tor. The number of electrons contributing to the current
is thus given by ﬂ%‘"—z(ul — p2). Since the voltage be-
tween the reservoirs is given by the difference in chemical
potential, eV = pu; — uo, the conductance G is

2e2?

h
where it has been used that the density of states at
the Fermi energy for a one-dimensional electron gas is
9(Er) = 2/(whvr), including the spin degeneracy.

It is seen that if the transmission is perfect, the conduc-
tance is 2e2/h, the size of the quantum observed in the
experiments. If many independent conduction channels
are present, the total conductance becomes3?

G = e*vpg(Ep)T = —/T, (3)
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2e?
G="- ET (4)

where T; is the probability that an electron entering chan-
nel ¢ is transmitted in any channel. Different conductance
channels could be present if the electrons can be labeled
with quantum numbers not directly related to the mo-
tion along the wire, and if the electrons with different
quantum numbers can be treated independently. In such
a case, the current in Eq. (2) will flow in each channel.
These equations are strictly speaking only valid at zero
temperature; at finite temperatures, Eq. (4) becomes

e2 [ n
a=2" [ Ynm (-GEw®) e, ©

where nyp is the Fermi function. However, the smearing
of ), T;(E) by the last factor is only important if the
transmissions vary with F on a scale of the order of kT'.
This effect is not important in this context, as will be
shown later.

To show how this one-dimensional analysis is relevant
for a real three-dimensional nanowire, it is necessary to
take a closer look at the wave functions of the conduct-
ing electrons: We assume that the electron motion is
free-electron like and use a coordinate system with the
z axis in the direction of the wire. If the z,y behav-
ior of the wave function varies sufficiently slowly with
z, we can separate the problem into a series of iso-
lated one-dimensional propagations in z, defining the
conductance channels. To be more precise, we can for
each value of the z coordinate formally solve the two-
dimensional Schrédinger equation in  and y and expand
the three-dimensional wave function %, using these two-
dimensional wave functions x as a basis:

Y(z,y,2) = ZXZ,n(w’y)¢n(z)a (6)

where X , are the solutions to

hz 82 32
[—— (%5 + 5&7) + V(w,y,zo)] Xzo,n(Z,Y)

2m

= Ei(ZO)Xzo,n(-'L'v y) s (7)

and ¢,, are the z dependent expansion coefficients.
When this expansion is inserted in the three-
dimensional Schréodinger equation, we get

h2 02 N .
(—— 9, Ei(z)) ba(z) + 3 Bouwlingg ()

2m 822

= EFd)n(z)’ (8)

where the electron energy is set to EFr, since only elec-
trons in a narrow region around that energy contribute to
the current. The operators FSuPling couple the different
z solutions ¢,,. They have the form
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freoupling _ _% (<Xn(z)|§—:2xm(z)>

+2<Xn(z)|ba—ZX7n(z)>%> . (9)

This gives the motivation for the particular choice of ex-
pansion: If the variation of x, with z in Eq. (6) is suf-
ficiently slow—the adiabatic case—the coupling between
equations with different n by FS°UPling can be neglected,
and we are left with an isolated equation for each n, which
has the form of a one-dimensional Schrédinger equation
in z with an effective potential barrier E;-(z). Equation
(7) defines X, uniquely apart from a phase factor that
should be chosen such that |'8%X2,"l is minimized and

the effect of ﬁ',ﬁf,;“’ling is reduced in that basis. The quan-
tum numbers n, which describe the motion perpendicular
to the wire, therefore define the individual conductance
channels in the Landauer-Biittiker formalism of Eq. (4).

Let us now be more specific and discuss the potential
in which the independent electrons move. First of all,
we note that, although bulk-Au has d bands, the trans-
port properties are dominated by freelike carriers. This
is reflected in the shape of the Fermi surface, which can
be described well by the free-electron sphere with some
minor bulge outs in the (111) directions. The band mass
determined from the density of states at Er is close to
one (Mpand/m = 1.09 from Ref. 34). This shows that
the ion potential for Au does not scatter the electrons at
the Fermi surface considerably. It is thus reasonable for
a semiquantitative discussion of the possibilities of con-
ductance quantization to neglect the scattering inside the
nanowire due to the single ions and employ a free-electron
picture.

We, therefore, assume that the electrons move in a flat
potential confined by a hard wall, and we furthermore
assume that the cross section of the conductor for each
z is a rectangle with side lengths L,(z) and L,(z). Then
we can calculate E;-(z) and X, (z,y) analytically:

B, (z) = ﬂzri (L:E::)Z.+ L;ZZ:)Z) ’ (10)
(,y) = 2 . NgT N
Xz,n Y) = LZ(Z)Ly(Z) s L;D(Z)w - —2_
x sin ( Ty g) . (1)

A similar behavior will be seen with other shapes of
the confining potential, i.e., E;- increases with increas-
ing quantum numbers and with decreasing width of the
conductor in a way very similar to Eq. (10). The condi-
tions for adiabaticity now amounts to L, 4 changing suffi-
ciently slowly with z. If we neglect the coupling between
channels (we discuss the coupling in the next section),
each channel is described by an ordinary Schrodinger
equation with E;- as a barrier [Eq. (8)]. It is clear that
in the simplest case, when the z variation is so slow that
there is no tunneling through the barrier and no reflec-
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FIG. 9. The quantization of conductance can be explained
by the quantization in the transverse direction of a smooth
constriction. To each transverse mode corresponds a potential
barrier in the longitudinal direction, due to the energy taken
up by the transverse motion. The finite number of modes with
a barrier less than Er contributes each with the conductance
quantum 2€?/h.

tion above it, we can assume that a channel n is open
(i-e., T, = 1) if the top of the barrier E;-(z) is below Ep
and closed (T, = 0) otherwise. This gives the first crude
approximation to the experiment: As the wire is pulled,
it becomes more and more narrow, the barriers are in-
creasing, and one by one they pass through the Fermi
level and close the corresponding channel. Each time a
channel is closed, the conductance drops by 2e2/h. This
is illustrated in Fig. 9. It should be noted that these
steps are only seen if the energy difference between the
potential curves in Fig. 9 is large compared to kT, i.e.,
if Eq. (4) is a good approximation to Eq. (5). For an
atomic-sized constriction, this difference is of the order
of 1 eV and thus far larger than k7.

V. ELECTRON TRANSPORT THEORY
INCLUDING SCATTERING FROM THE
BOUNDARY

In this section, we elaborate on the adiabatic, free-
electron model described above in two respects: We in-
clude the scattering due to the boundary and we give
a better description of the electron potential along the
wire. In our description of the electron potential, we
maintain the “box-model” description of the electron mo-
tion in the z-y plane perpendicular to the wire and take
the cross section everywhere to be rectangular with side
lengths L,(z) and L,(z). But we include a realistic de-
scription of the shape of the hard-wall boundary of the
wire and include the variation of the average potential
along the wire. This is done in the following way: For
a given configuration of the wire, we construct the one-
electron potential by overlapping atomic electron den-
sities and calculate the effective one-electron potential
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in the local density approximation (LDA). The electron
densities are taken from self-consistent LDA calculations
for the atoms, and we have checked that this procedure
gives an adequate description of the absolute values of
the potential, as well as the corrugation at the surface by
comparing to self-consistent calculations for a Cu(111)
surface.3® We have taken the atomic electrostatic poten-
tials and densities to be constant inside a given radius
in the core region, corresponding to the core region in
a pseudopotential. A cutoff radius for Au, based on a
pseudopotential of the Heine-Abarenkov type, of 1.4 A is
used.3® Given the potential, we define the “hard walls” to
be located at the classical turning points, that is, where
the one-electron potential is equal to the Fermi energy of
Au (= 5.5 V).

When the hard-wall boundary is defined, we can de-
termine the area of the free-electron cross section along
the wire. We point out that the cross-sectional area ob-
tained in this way does not essentially change the results
from the more simple approach used in Ref. 18, where the
area is determined by cutting through the Wigner-Seitz
spheres placed at the atomic positions, but we obtain
a somewhat smoother area function A(z). Figure 10 il-
lustrates how this procedure works. It shows both the
atomic configuration, the one-electron potential, and the
cross-sectional area along the wire. In this way, we define
the effective potential due to the constriction along the
wire,

2,2
Rém?

E;t“(z)zm—(—z—)-n 5

(12)

where A(z) is the cross-sectional area of the wire, and we

have defined
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FIG. 10. A cut through a wire and the corresponding po-
tential contour. The last contour is the classical turning point.
The derived area and potential [(ne,ny) = (1,1)] are shown.
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72 = a(z)n? + a(z)_lnz, (13)

where « is reflecting the eccentricity and defined as

— Ly(2)
a(z) = I.s)

A(z), as well as a(z), are extracted from the simu-
lation. Of course, enforcing a box geometry is a crude
approximation to the real cross section of the wire. Since
a is not very well defined, each simulation is followed by
conductance calculations with a, a £+ 0.05, and o £ 0.1,
which we include in our final statistics. In this way, we
weaken the dependence on the details of the definition of
a. In a “soft-wall” model, we would obtain an equivalent
model, with L, and L, then being the effective widths
of the wave function, including penetration beyond the
classical turning points.

As discussed in the preceding section, it is easy in this
picture to understand the conductance curve obtained
during the stretch of the neck. As the neck is being
stretched, the smallest cross-sectional area decreases, and
the maxima of the potentials for the channels (n,,n,) in-
crease, and thus “close” the channels successively, yield-
ing the corresponding jumps in the conductance curve.
This is illustrated in Fig. 11, using constriction geome-
tries from one of the simulations. We have shown the
effective potentials for the different modes at a certain
point in time during the stretching [Fig. 11(a)]. It is seen
that these are not just the lowest effective potential mul-
tiplied by a constant, because o depends on the position
along the wire. We have also shown how the effective
potential corresponding to the lowest transverse mode
grows during the stretching [Fig. 11(b)].

In the semiclassical limit of large area, Ak%Z >> 1, we
can approximate the number of open channels, N,

(14)

s
~2
N =~ anax’

(15)

where 7iga.. is the maximum value for which E,J; () <

EF and we obtain the semiclassical Sharvin! conductance
expression using (12),
2e? 2e? k2
G in = — == ZF 16
sharvin = 2= N = 22 F (16)

When the dimensions are of the order Ar, the number of
open channels is better described by including a perime-
ter correction,

k% kr

N~-—-“*-A-—P

2 17
4w 4 ( )

where P is the perimeter of the neck as discussed by
Torres et al.?3

It is the eccentricity that determines which steps we are
able to observe because of degeneracy or near degener-
acy of the potentials for different (n,,n,). For instance,
if @ = 1, only conductance steps at 1,3,4,6... are possi-
ble, and for « = 0.6, steps at 1,2,4,5. .. are possible. This
degeneracy is illustrated in Fig. 12, where we have plot-
ted 7, the factor determining the degeneracy, versus a,
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FIG. 11. An example of potentials for different n. and
n, along the wire (z direction) is shown at a particular
time during the stretch (a). Tunneling and reflectance
above the barrier is present for (n.,ny,) = (3,2),(1,4) and
(ne=,ny) = (3,1),(2,3), respectively, whereas the transmis-
sion is either very close to 1 or 0 for the rest. Successive
ne = ny = 1 potential curves during stretch are shown in (b).
The potential includes both the effect of change in shape and
mean cross-sectional potential.

describing the eccentricity. For those values of o, where
two values of 7 are close, the barriers of the correspond-
ing modes are almost equal. This in turn means that the
conductance channels for these modes will close at the
same time giving rise to a jump in the conductance of
two units.

Torres et al.?3 have in their free-electron model as-
sumed the constriction to have a circular transverse cross
section and a parabolic-shaped longitudinal cross section
with a hard-wall potential. Because of this geometry,
the transmission probabilities can be solved exactly, in-
cluding the infinite free-electron reservoirs. But on the
other hand, the axial symmetry imposes a degeneracy so
that, e.g., steps at G = 2 cannot be observed. In our ap-
proach, we have access to realistic atomic configurations
and, therefore, it is natural to choose a model where the
eccentricity easily can be included. Within our model,
we can get a rough idea about the shape of the constric-
tion from the observed steps and Fig. 12. For instance, if
we see a well-resolved step at G = 2, the constriction is
bound to be eccentric to a certain extent. However, we



52 QUANTIZED CONDUCTANCE IN ATOM-SIZED WIRES . ..

FIG. 12. Plot of @ for ny, = {1,2,3} and n. = {1,2, 3,4} as
a function of a. For a given «, the distance between neighbor-
ing curves determines how well the corresponding steps can
be resolved.

do not include a description of the coupling to the infi-
nite reservoirs, which is a complicated matter to describe
realistically.

Up until now, we have neglected the effect of a noncon-
stant potential inside the wire. During the stretching of
the wire, the mean potential in a cross section of the wire
grows, because there are fewer atoms present in the cross
section, and thus there is a relatively larger surface part
of the potential. We have included this effect by adding
to E:(z) the change in cross-sectional mean of the po-
tential along the wire (zero chosen at the entrance/exit
of the wire). The corrugation of this potential due to
the single Au ion is averaged out by taking a mean over
several interatomic distances. The reason for this is that
the scattering due to the single Au ion can be neglected,
as argued previously. The net effect of the extra contri-
bution to the potential is to close the last channel in the
last part of the stretching process somewhat earlier than
would be the case using only E;-(z). The evolution of the
full (1,1) potential with stretch in one of the simulations
is shown in Fig. 11(b).

The relevance of the adiabatic approach is not at all
obvious in this case where the potential is corrugated on
the scale of Ap. In the following section, we will elaborate
further on this point to substantiate that the adiabatic
approach can, in fact, be used.

A. Scattering

Within the free-electron model of our system, we now
consider the scattering from the effective potential bar-
rier due to the constriction. As can be seen from Fig. 11,
the topmost part of the barrier is nearly a parabola in
the last part of the stretching process, with correspond-
ing conduction quanta less than about five. As a first
estimate of the transmission, we thus consider the scat-
tering from a single parabola-shaped potential along the
direction of the neck (z),
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V(2) = Viax — %K 2. (18)

For a parabola barrier, an ezact expression for the trans-
mission and reflectance above and within the barrier can
be found,3”

1 vVm Ep — Viyax
= —, €= —/ .
14 e2me h VK
In the tunneling regime, this can be rewritten using

the corresponding WKB expression for the transmission
Twks as

(19)

1
1+ Twks
where
2m
Twks = exp (—2 / \/};2— [V(z) — EF] dz)
V(z)>EFr
(21)

This holds for all V(z) with Vipax > Ep in the parabola
case. For the real potential, Eq. (21) provides a smooth
interpolation for T between the regime, where WKB is
applicable, Viax > EF so Twks < 1, and the regime
where a parabola fit to the topmost part of the potential
is a good estimate, Vipax = Ef (Vmax > Erp). With
this approach, we will overestimate the tunneling slightly
when the potential cuts Ep around “shoulders,” where
we underestimate the increased reflection, because of the
widening of the barrier.

For V (2) with Vj,ax < EF, we cannot directly calculate
the transmission for the general effective potential. Here,
we use the fact that for the parabola-shaped potential T’
can be written as T = 1 — T, where T is given by
Eq. (19) with Er exchanged by Viax — (EF — Vinax)-
Therefore, we estimate the transmission T for Viga.x <
EF for the effective potentials by 1 — T, where T\, is
the tunneling amplitude corresponding to Viyax > EF
estimated by Eqgs. (20) and (21), with Er exchanged by
Er = 2Viyax — EF.

The same type of formula as Eq. (20) was used in
the two-dimensional case by Glazman et al.3® to express
the shape of a step. In the 3DEG case with a rectangular
cross section and a parabolic-shaped potential, we obtain
correspondingly the “smearing” §G of the conductance

quantum step N,
-1
2R
A k2, ’

(22)

2e? 2
0G(y) = W 1+ exp|—v2nm

47

Here, R is the radius of curvature of the constriction.
In the general case, Eq. (20) leads to the same shape
with an effective radius of curvature, R.g. This radius of
curvature will depend on where the Fermi level crosses
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the potential, and, therefore, it depends on the trans-
verse mode we consider. The corresponding width of the
transition region between two steps is thus given by

1 A0.75 kF
2772 V2Reﬁ' '

So, like Glazman et al.,® we have found that the lead-
ing correction to the reflections within each channel
is exponentially small in the “smoothness parameter”
272 /2R /(A% kr). We could have included perime-
ter corrections to IV in the above formulas, but that does
not change the expression for the width. In the 2D case,
it has been shown34° that the leading corrections to the
interchannel reflections are exponentially small in, basi-
cally, the same “smoothness parameter” as the within-
channel reflections. This is seen intuitively, since the in-
trachannel scattering is determined by the curvature of
the top of the potential, which depends on how rapidly
L., changes with z, which again is the same factor deter-
mining the mixing of channels. Thus, it is (self-) consis-
tent to neglect the effect of interchannel scattering once
we have observed that the intrachannel scattering does
not ruin the quantum steps, and, therefore, it is rea-
sonable to estimate the total effect of scattering by the
within-channel part as done above. Another point con-
cerning the neglect of interchannel mixing is that only
mixing that causes reflections back through the constric-
tion will harm the quantization. This is because mixing
of the forward moving channels will not change the total
transmission and thus the conductance.® In a recent pa-
per, Maag et al.*! show that the neglect of Feourlirg jp
the two-dimensional case, in fact, approximates the ex-
act numerically calculated conductance remarkably well,
in spite of strong mode mixing. They find, furthermore,
that neglecting F'<°"Pling Jeads to an underestimate of the
degree of conductance quantization.

An upper limit of the scattering can be estimated
by taking Reg to be the Wigner-Seitz radius of Au,
r, ~ 1.6 A. Inserting this and using Er ~ 5.5 eV, we
get the width A ~ 0.16A4%"%, with A in units of TR%;.
Taking the first step to appear at A = 3, we get A = 0.37,
so we have that all the steps are just being washed out.
However, except right where a potential barrier crosses
the Fermi energy, the effective radius of curvature is sev-
eral times larger than r, (see Fig. 11), and the steps
appear.

Inelastic scattering is neglected in the above approach.
In the experiments, which are done at room tempera-
ture, we expect the phonons to be the dominant source
of inelastic scattering. Maxwell*? calculated the classi-
cal conductance through a circular hole with radius a
connecting two metals in the limit, where Ohms law is
applicable,

A (23)

GMaxwen = 200, (24)
where o is the conductivity. This is a diffusive limit where
the corresponding ballistic limit is given by the Sharvin
result (16). A simple interpolation formula between these
limits has been found*? using the Boltzmann equation,
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3 A
G=G ; —TI(-) -
[ ()]

where I is a slowly varying function with I'(0) = 1 and
I'(c0) = 0.694. Thus, the simplest estimate on the effect
of inelastic scattering in the quantum limit would be to
multiply the conductance by a factor

l
l+vA’

which in turn moves the quantum steps towards lower
values. A similar interpolation formula has been used by
Stalder and Diirig.'® This indicates that scattering be-
comes of increasing importance as the size of the neck
structure increases and thus tends to destroy the higher
quantum steps. Since the scattering is proportional to
the number of states into which an electron can be scat-
tered, i.e., to the density of states, we expect in general
! to increase with decreasing neck size, decreasing the
inelastic scattering further at small neck sizes.

(25)

(26)

B. Results of simulation

Before turning to the results of our simulation, let us
just summarize our procedure for calculating the con-
ductance. First, we add approximate electron densities
and electrostatic potentials to obtain the total potential
for the whole wire. Using this, we calculate the classical
turning points for electrons at the Fermi energy. From
the turning points, we obtain the area and shape (eccen-
tricity) of the cross sections along the wire, which directly
leads us to the effective one-dimensional barrier E;- seen
by the electrons carrying the current. We add to this
the mean potential shift inside the wire. The conduc-
tance is now obtained from the transmission of electrons
through the effective barrier E;-, using the Landauer for-
mula. This is done in each time step of the molecular dy-
namics simulation of the stretching process of the wires,
and we obtain the conductance curves with conductance
vs stretch for different initial wire structures.

The conductance curves in Fig. 8 and in Figs. 13 (a),
(b) are produced using this approach. The curves show
features quite similar to the experiment. We see that
the curves “slip through” the higher conductances, until
they develop plateaus during the last part of the stretch.
These are seen mainly at G = 1, 2, and 3. Often jumps
from 3 directly to 1, or only plateaus at 1 or 1 and 2 are
seen, like in the experiment. This is in our simulation
controlled by the evolution of the eccentricity along with
the area. We have observed a simulation [Fig. 13(b)],
where the scattering to a very high extent smeared out
the transition between the G = 1 and G = 2 step and
resulted in a step at a noninteger value between G = 3
and 4. This structure appears because of a stable neck
configuration for a considerable time during the stretch
where the barrier results in high scattering. Such features
are also seen in the experiment. In general, we see in both
experiment and simulation that the higher quantum steps
are “washed out.” In fact, in our simulation, we have not
been able to resolve steps at conductances larger than
G =3.
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FIG. 13. (a) Two “indentation curves” from the simulation series. The evolution of shape, change in mean potential (due
to the increasing surface part of the potential with stretch) and the minimum area at the constriction are shown along with
the conductivity. It is seen how changes in these quantities influence the conductivity. (b) An indentation curve obtained in
a simulation where scattering dominates the picture (A). The transition from G = 1 to G = 2 is almost washed out and a
noninteger step appears. We have shown the same simulation scaling Reg by 5 ((O) and by 1/5 (). These curves have for

clarity been moved up G + 1 and G + 2, respectively.

Part of the reason for the “washing out” of steps can be
understood from the scaling due to scattering described
in Eq. (23), where we see that for a constant radius of
curvature of the neck, the widths of the steps increase
with the minimum cross-sectional area of the neck as
A%75 This scaling is illustrated in the lower histogram
in Fig. 14(b), obtained from the expression in Eq. (21),
where we have taken a simple model with a linear depen-
dence of minimum cross-sectional area with stretch and
an effective curvature of the constriction Reg = 8 A. We
see that we can “fit” the G =1, G = 2, and G = 3 peaks
in the experimental histogram quite well to the simple
model by using a constant mean eccentricity, (o) = 0.75
(also including & +0.05, a £+ 0.1 in the statistics as in the
simulation). The “fit” is very sensitive to the choice of «,
as can be seen from the dashed histogram in Fig. 14(b),
where we have used (o) = 0.8.

In Fig. 15, we show the area below each of the peaks
G =1, 2, and 3 (scaled to equal the experimental one
at G = 1) and the scaling of the widths for the simple
model with (a) = 0.75 compared to experiment. We note
that for the simple model, we cannot resolve the G = 4
peak due to the chosen eccentricity, but G = 5 and even
higher can be resolved. This is in contrast to the experi-
mental findings. In the simple model, we have neglected
all sorts of mechanical details influencing the evolution of
the structure of the neck and resulting, in our simple pic-
ture, in a changing R.g and o during the stretch. We can
then conclude that in order to understand the “washing
out,” these features must be included, as we have done
in the simulation.

The histogram corresponding to the simulations is
shown in Fig. 14(a). The conductance has been sampled
at equidistant times along the stretching process, and we
use the same bin width to number of counts ratio as in

the experimental histogram, so comparison is possible.
We have compared the area and the width of the peaks
with the experimental results in Fig. 15. We see that the
scaling in the area is in reasonable agreement with the
experiment. The number of data points in the peaks in
the simulation is less than seen in the experiment. The
widths of the two first peaks found in the simulation are a
little less compared to the ones found in the experiment,
whereas the width of the last G = 3 is somewhat larger,
but still of the right order of magnitude. The difference
in width for the first two peaks could be explained by the
other scattering sources present in the experiment such
as interchannel scattering, scattering at the entrance and
exit of the structure and inelastic scattering, which are
not included in our model. The reason for larger abso-
lute difference in width for the last G = 3 peak could be
of statistical nature in the sense that we sample the be-
havior of the constriction by the relatively small number
of wires used in the simulation compared to the number
of indentations performed in the experiment. This could
also be the reason for the smaller number of counts in
the peaks found in the simulation compared to the ex-
periment.

VI. CONCLUSION

We have presented new experimental results with a
detailed statistical analysis, which clearly show that for
Au nanowires, the conductance is quantized in quanta of
2e2/h. The statistical analysis shows that there is some
scatter around the integer values, and this scatter in-
creases with the quantum number, so that only quanta
up to three can be clearly identified. The main questions
for the subsequent theoretical discussion have, therefore,
been why the conductance is quantized, why the quanti-
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FIG. 14. Histogram from the simulations is shown in (a).
For each simulation, the conductance curves with o, a£0.05,
and a *+ 0.1 are included in the statistics. The bin width
to number of points sampled is chosen to be the same as
in the experimental histogram. In (b) are histograms from
a simple model shown. They are obtained from expression
(21) assuming equidistant sampling with area, i.e., an area
linearly decreasing with the stretch. We have used a constant
effective curvature of the constriction of Reg = 8 A. The
full curve is a histogram where we have taken o = 0.75 and
included « £ 0.05 and o« % 0.1 in the statistics ((a) = 0.75).
In the dashed histogram, we have used a = 0.8. Thus, all
mechanical features are neglected in the simple model.

zation is not destroyed by scattering from the boundary
of the constriction, and why scattering increases with the
number of quanta.

In an adiabatic model, where the cross section of the
nanowire varies slowly along the wire, the quantization
of the electron motion perpendicular to the wire natu-
rally leads to a quantization of the conductance in units
of 2e?/h. We have extended this picture by including the
elastic scattering from the boundary of the constriction
in a free-electron model. In this way, we can account for
the experimentally observed conductance histogram both
with respect to the relative intensities of the observed
peaks and to the increase of the widths for higher num-
bers of conductance quanta. We argue that the increase
of the widths is determined by two factors: The cross-
sectional area and the effective radius of curvature at the
constriction. It has been shown that a simple model,
where the effective radius of curvature is kept constant,
can be “fitted” to the experiment by choosing a mean
eccentricity ({a) = 0.75) close to the typical value seen
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FIG. 15. The area (a) and full width at half maximum (b)
in each of the peaks in the histograms of the experiment, sim-
ulation, and the simple model with (a) = 0.75. (The theoret-
ical histograms have been scaled so that the area of the peak
at one conductance unit is the same as in the experimental
histogram.)

in the simulation. However, the simple model fails in
two respects: The smearing of the quantum steps bigger
than 4 is not described (steps at G = 5 and higher can
be observed in the simple model). It is very sensitive to
changes in the choice of mean eccentricity, as we have
seen in Fig. 14(b).

This shows that the evolution of the structure close to
the constriction during stretch is important and hence
that the interplay between modeling of the electron-
scattering process and atomistic simulations is crucial.
Including the evolution of the detailed atomic structures
in the conductance model leads to a much improved com-
parison to the experiments.

We have seen that the reason that scattering from the
boundary is not strong enough to completely destroy the
quantization of the conductance is that the boundary is
quite smooth; the typical effective radius of curvature is
about five times the atomic radius. However, it is also
clear from the modeling that only a small increase in
the scattering will cause the integer steps in the con-
ductance curves to disappear. If, for instance, the sys-
tem has scattering centers around the constriction with a
typical length scale, which is more like an atomic radius,
then tunneling and reflection will be so dominating that
the quantized conductance will disappear [cf. Fig. 13(b)].
In that case, the conductance is found always to reflect
the variations in the cross-sectional area of the constric-
tion, and the jumps in conductance are closely related to
the mechanical instabilities that we observe in our sim-
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ulations [cf. Fig. 13(b)]. This may still lead to conduc-
tance plateaus, but now there is no reason why they are
at integer values of 2e2/h. This is the behavior that
we expect for large conductances, where the scattering
becomes large even with the effective radii of curvature
found for the Au constrictions.

The close relation between conductance jumps and me-
chanical instabilities exists to a certain extent also in
the quantized regime. Here, the conductance is still re-
lated to the cross-sectional area even though not in a
smooth monotonic way. Large changes in the area are
bound to give changes in the conductance as observed in
Figs. 8, 13(a), and (b). The main difference between the
scattering-dominated and the quantized regimes is that
in the latter case, the quanta are fixed at integer values
of the quantum conductance unit, whereas there is no
reason why that should be the case in the other regime.
It is, therefore, not surprising that both calculations and
experiments show a correlation between mechanical in-
stabilities and the conductance.

There are still many questions to be answered before
we have a complete understanding of the electrical and
mechanical properties of point contacts between two met-
als. Let us mention just a few. It is not exactly clear
how impurities present in the nanowire and phonons af-
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fect the conductance quantization. Experiments where
controlled amounts of adsorbates are added to the sys-
tem may be important here. Along these lines, it is also
of importance to examine the differences in the conduc-
tion quantization between different metals. Regarding
the theoretical modeling, we need to improve the theo-
retical description of the conductance. Hereto only quite
approximate methods based on the free-electron model
or tight binding model have been used. Among the me-
chanical properties, we still do not have a complete un-
derstanding of the atomic relaxations involved when the
contact is formed, i.e., the “jump to contact,” and dur-
ing the stretch. In the latter case, there are currently
contradictions between the experiment by Stalder and
Diirig!® and the molecular dynamics simulations in this
paper and in Ref. 12, as mentioned in Sec. III. Finally,
in the experiments by Krans et al.,?! there are signs of
hysteresis that also need further understanding.
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FIG. 1. A 325 x 335 A? constant-current image of the
clean, (1 x 2) reconstructed Au(110) surface recorded prior
to an indentation with tunneling parameters I; ~ 4 nA and
Vi =~ 3 mV. The inset shows a 40 x 40 A? closeup of the rows
running along the [110] direction.



