PHYSICAL REVIEW B

VOLUME 51, NUMBER 23

15 JUNE 1995-1

Order-N spectral method for electromagnetic waves

C.T. Chan, Q.L. Yu, and K.M. Ho
Ames Laboratory-United States Department of Energy and Department of Physics and Astronomy,
Towa State University, Ames, Iowa 50011
(Received 12 December 1994)

We show that the eigenmodes for electromagnetic waves in an inhomogeneous dielectric medium
can be obtained with an algorithm that scales linearly with the size of the system. The method
employs discretization of the Maxwell equations in both the spatial and the time domain and the
integration of the Maxwell equations in the time domain. The spectral intensity can then be obtained
by a Fourier transform. We applied the method to a few problems of current interest, including
the photonic band structure of a periodic dielectric structure, the effective dielectric constants of
some three-dimensional and two-dimensional systems, and the defect states of a periodic dielectric

structure with structural defects.

L INTRODUCTION

In the past few years, there has been much interest in
the “photonic band gap” problem,! which is concerned
with the existence of a frequency gap in the electromag-
netic (EM) wave spectrum. It has been demonstrated
by both theory and experiments that such a spectral gap
can be realized? in a certain class of inhomogeneous pe-
riodic dielectric media, which are called “photonic crys-
tals.” Within a few years, we have witnessed rather rapid
progress in this field, and theory has played an impor-
tant role in providing accurate and timely solutions to
this class of problem. In theoretical terms, we are ba-
sically solving the Maxwell equations for an inhomoge-
neous and periodic medium. The close analogy between
the EM wave problem and the electronic structure prob-
lem has been noted and emphasized by many authors. In
some aspects, the EM wave problem is easier to handle,
mainly because we need to deal with a strongly inter-
acting many-body problem for the electronic structure
problem, whereas the EM wave problem (as described
by the Maxwell equations) can be solved to arbitrary ac-
curacy if a good numerical algorithm is available. Com-
parison with experimental results is also more direct for
the case of EM waves. On the other hand, there are
some complexities that are specific to the EM wave prob-
lem: the topology of the dielectric structure can be very
complicated, the dielectric constant can be complex and
frequency dependent, and EM waves must be treated as
vector waves. Nevertheless, it is fair to say that instead of
inventing new methods for the EM wave problem, what
we have been doing is to adapt well tested methods in
electronic structure calculations to the electromagnetic
wave problem. For example, the plane wave method® and
the Korringa-Kohn-Rostoker (KKR) method* are popu-
lar methods in electronic structure calculations. The for-
malism introduced by Pendry and MacKinnon® and Ste-
fanou et al.® bears some similarity to the theory of low-
energy electron diffraction. The “operator” algorithm
of Meade et al.” is also frequently used in modern large
scale electronic structure calculations that employ plane
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wave basis sets. For the electronic structure problem,
the complexity of the traditional schemes scales like N3,
where N is proportional to the size of the system. The
reason is that we usually employ a basis expansion and
transform the electronic structure problem into an eigen-
value problem of the form H1 = e, and diagonalizing a
Hermitian matrix H needs O(N3) operations. Such stan-
dard N3 methods have served us well for ideal systems
with small unit cells, but the prospect of handling com-
plex and big systems is dim even with supercomputers.
That is why there has recently been a flurry of activi-
ties to devise new methods that scales more favorably
with the system size, and it has now been demonstrated
that electronic structure calculations can, in principle,
be treated with a computation effort that scales linearly
with the size of the system.® These methods are called
order-NV methods. The main purpose of the present ar-
ticle is to demonstrate that the EM wave problem can
also be solved with an order-NV algorithm. The formula-
tion of order-N methods is important, not only because
they couple well with modern multiprocessor computers
(parallel machines), but also because for large enough
systems it is the “power law” that eventually dominates.
For the particular case of the photonic band gap prob-
lem, the photonic bands for a perfect photonic crystal can
be handled well by the plane wave method. However, in
many plausible applications of such material, structures
with controlled defects or structures with a certain de-
gree of disorder may perhaps be more important than
the ideal periodic structure. The defect structures can
still be modeled with giant supercells, but for those com-
plex systems the computational effort and the memory
requirement become excessive if we use traditional N3
methods. We are thus motivated to search for alternate
algorithms that scale better with the system size.

This paper will be organized as follows. In Sec. II,
we will outline the computation scheme. In Sec. II, the
photonic bands of a photonic crystal with the symmetry
of the diamond crystal structure is presented. In Sec.
III, we will show that the effective dielectric constants of
some complex three- and two-dimensional (3D and 2D)
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structures can be obtained with the present method. We
will obtain the defect states of a periodic dielectric struc-
ture with a structural defect in Sec. IV; and some re-
marks will be given in Sec. V.

II. METHOD OF CALCULATION

Let us consider the Maxwell equations

oH

VXEZ—W,

oE

V x H = ¢(r) 5 (1)
where ¢(r) is a position dependent dielectric constant.
Once the boundary conditions and the initial conditions
are specified, we can solve for the normal modes by dis-
cretizing both in space and time. When the fields are
specified at an instant t=0, the spatial derivatives and
hence the curls of the fields can be determined, most con-
veniently using finite differences. The Maxwell equations
[Eq. (1)] then give us the time derivative of the fields
which allow us to update the H(r,t) and E(r,t) fields in
the time domain. The fields H(r,t) and E(r,t) can then
be recorded as a time series for some sampling points in
the system,® and, for a sufficiently large number of time
steps (which governs the resolution in the frequency do-
main), the time series are Fourier (Laplace) transformed
to the frequency domain to obtain the spectral intensities
gja(@) = [ dt e (a(r;, 1)ga(r;,0) = [${1%, where
¢j o is the o component of the fields E(r;) or H(r;) at
point r;. This is equivalent to obtaining the spectral in-
tensity by getting the Fourier transform of the field-field
autocorrelation function, and is basically the same tech-
nique frequently used to obtain phonon frequencies by
velocity-velocity correlation functions in classical molec-
ular dynamics. The peaks in the spectra in the frequency
domain give us the frequencies of the normal modes. The
development of the present method is strongly motivated
by similar methods for electrons!® as well as the gener-
ation of phonon frequency using classical molecular dy-
namics techniques.!! This method also falls into the cate-
gory of algorithms called “finite-difference time-domain”
methods in the electrical engineering community.!2

A. The spatial derivatives

The E and the H fields are defined on a uniform grid
and the spatial derivatives are calculated using the sim-
ple finite difference formulas. For example, the curls
are determined by the spatial derivatives of the form
dE,/dB, where a and (3 are the z,y, 2z components, and
these derivatives are determined by formulas such as
dE.(i,5,k)/dy = [E.(:,5 + 1,k) — Ex(¢,5 — 1,k)]/2d,
where d is the distance between adjacent grid points. If
possible, the discretization in the numerical algorithm
should be chosen to satisfy the “conservation laws.” We
can define a total energy of the electromagnetic fields of
the form

Buot = (1/87r)/d3r(eE E*+H. H). 2)
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It is straightforward to show that dFE;./dt = 0, if the
spatial derivatives are computed exactly. It is interesting
to note that, even when the spatial derivatives are eval-
uated with the finite difference equations, energy conser-
vation still holds. In principle, the spatial derivatives can
be calculated to the full precision allowed by the grid us-
ing fast Fourier transforms, at the expense of using more
operations per time step.!?

B. Time integration

The numerical time integration is performed by
a fourth-order predictor-corrector approach (Adams-
Bashforth-Moulton).'* We are limited by two factors in
the numerical time integration, the total time and the
time interval of each time step. The total time (T') used
in the simulation limits the lowest frequency that can be
simulated to approximately wmin ~ 27/T, and also limits
the frequency resolution to the same order of magnitude.
The size of the time step (t) is directly related to the ac-
curacy of the numerical integration and it also limits the
highest frequency that can be simulated to approximately
Wmax ~ 2m/t. There is an unavoidable error due to the
time integration using a finite step size in the numerical
algorithms, so that Ey.(t + dt) is not equal to Eyo(t).
This error provides a good criterion for choosing the size
of the time step. The fourth-order predictor-corrector al-
gorithm performs well and we choose our time step such
that the total energy is conserved to about 1% for the
complete simulation.

C. Boundary conditions

The method basically solves coupled first-order differ-
ential equations in a finite spatial domain, so we must
specify the boundary conditions. In this paper, we will
be mainly concerned with periodic boundary conditions.
There are two ways in which we can impose periodic
boundary conditions in our simulation. For a periodic
system, the fields can be written in the Bloch form [i.e.,
H(r) = e*Th(r), E(r) = *7¢(r), and h(r) and &(r)
are periodic]. Then Eq. (1) can be rewritten as

il(><£+V><£=—£9—l—l

. o
ot zkxh—i—Vxh—e(r)—a—t,

3)

and the simulations can be performed on the reduced
fields £(r) and h(r) within the unit cell. Another way
is to impose the periodic boundary condition explicitly
on E(r) and H(r) across the unit cells. In this case, we
require that the fields in the adjacent unit cell satisfy
E(r +L) = e TE(r) where L is the lattice vector. With
the finite difference approach, it is more economical to
work with the explicit imposition since it involves fewer
mathematical operations.
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D. The initial condition

The initial condition depends on the particular prob-
lem we want to study, and it can be a plane wave if we
want a dispersion relation, or random fields if we want
the density of states. They will be discussed below. An
important requirement is that the initial field must have
nonzero projections on the normal modes we are inter-
ested in.

E. Scaling

The complexity of the present method scales like T' ~
N; X Ngiq, where T is the total time needed to perform
a calculation, V; is the total number of time steps, and
Ng:iq is the number of real space grid points used. The
total number of time steps used controls the frequency
resolution, and also the lowest frequency that can be sim-
ulated. We note that for most physical problems the up-
per and lower frequencies of interest and the frequency
resolution do not change with the size of the system un-
der consideration. For example, let us start with a per-
fect periodic system and suppose that it has a spectral
gap, and we introduce a defect, expecting to find defect
states in the gap. The existence of the defect certainly
mandates a much bigger cell to simulate. However, the
spectral width of interest remains the same so that N;
remains the same. We only need to increase the number
of grid points Ngiq, which is proportional to the size of
system under consideration, so that this method scales
like N!. The memory required also scales linearly with
the size of the systems. The algorithm is very suitable
for parallel machines, especially when finite differences
are used. Most of the numerical calculations presented
below are performed on parallel machines (N cube and
Paragon).

III. PHOTONIC BAND FOR A DIAMOND
STRUCTURE

We calculated the photonic band dispersion for a pho-
tonic crystal using the present method. The photonic
crystal has the symmetry of a diamond structure!® and
is constructed with dielectric cylinders (e = 12.96) con-
necting the nearest neighbor lattice points in a diamond
lattice. The dielectric cylinders have circular cross sec-
tions and they occupy 20% of the volume in the structure.
Such structures have been shown to possess full photonic
band gaps. The photonic bands of this structure are
found with the present method and plotted in Fig. 1, and
compared with the results generated from the plane wave
expansion method, which is the most popular method for
photonic band calculations.? The results for the plane
wave methods are obtained by expanding the wave func-
tions with about 1000 plane waves per k point (i.e., di-
agonalizing 2000x 2000 matrices due to the vector wave
nature of light). The agreement is very good. In this
simulation, we used the staggered grid,'® and the cubic
conventional cell is defined by a grid of 48 x48x 48 points.
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FIG. 1. The photonic bands of a diamond structure gen-
erated with the spectral method (dots) compared with the
plane wave method (lines). The frequencies are in units of
¢/a, where c is the speed of light and a is the lattice constant.

Each “grid point” is actually regarded as a cell contain-
ing 30x30x30 points, and the dielectric constant of the
grid point is taken to be the average dielectric constant of
the subcell, which means that for the points close to the
boundary of the cylinders its value is somewhere between
1 and 12.96. We used a total of 100 000 time steps in the
simulation, with each time step 0.003a/c, where a is the
lattice constant and c is the velocity of light. We will
use a/c as time units throughout the paper, and angular
frequencies (w) are measured in units of 2 £. The initial
condition (the fields at ¢ = 0) is chosen such that E(r)=0
and H(r) = 3¢ ho(k+G)ei*+G) T where k is the k vec-
tor under consideration and hy(k + G) = v x (k + G),7
with v chosen to be a vector such that its z,y, 2 compo-
nents are of roughly equal magnitude. Such a choice of
initial condition guarantees that H satisfies V - H = 0.
Note that if the initial H field is transverse it will remain
transverse in the course of the simulation. This proce-
dure filters out the longitudinal modes of the Maxwell
equations which have w = 0 and shows no dispersion.
H(r;,t) is recorded for 64 evenly (but randomly) chosen
points in the unit cell, and H, , .(r;,w) is obtained by
Fourier transform, and similarly for E., ,(r;,w). The
spectral intensities of all 64 points are then added up to-
gether to identify the eigenmodes.!® Figure 2 shows the
spectral intensities at the X point. We note that different
eigenmodes do not mix their energies during the simula-
tion, so that the magnitude of the peaks in the spectral
intensity depends on the initial field at ¢=0. Only the
positions of the peaks are meaningful.

IV. EFFECTIVE DIELECTRIC CONSTANTS

This method can be used to obtain the effective di-
electric constants of an inhomogeneous medium. The
effective dielectric properties of a multicomponent sys-
tem have been studied for nearly a century,!® and it is a
very difficult mathematical problem. Effective medium
approximations such as the Bruggeman?® and Maxwell-
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FIG. 2. Spectral intensity at the X point of the diamond
structure.

Garnett?! theories have been known for a long time and
they can give rather reasonable results if the underlying
assumption (spherical objects in an effective medium) is
good for the situation under study. For example, the
Maxwell-Garnett theory is good for isolated spherical ob-
jects in an otherwise uniform medium, while symmet-
ric Bruggeman theories work best for multicomponent
systems where different components are equal in impor-
tance. These effective medium theories in general ne-
glect the microstructure of inhomogeneous media and
the results are determined solely by the filling ratio or
the concentration of the individual components. There
are also analytical theories that give upper and lower
bounds of the effective €.22 Recently, numerical algo-
rithms have been formulated that can in principle cal-
culate the effective dielectric constants exactly for sys-
tems with arbitrary shape, and these methods are usu-
ally Fourier space methods, and are applicable to simple,
ordered, and periodic systems.?3 These methods typically
scale like N3, since they need to invert a matrix or solve
a system of equations. For structures with sharp bound-
aries, it is rather difficult to converge the results with
Fourier space (plane wave) methods, and extrapolation
is frequently required to obtain the correct result. These
numerical methods are useful for man-made simple com-
posites but are of limited use in treating composite mate-
rials that exist in nature, which usually have fairly disor-
dered microstructures. For inhomogeneous systems that
are not ordered, or are “complex” in microstructure, the
effective dielectric constants are very difficult to obtain,
and the present method may prove useful.

The effective dielectric constant can be obtained with
the present method in the following manner. In the wave-
length limit, the dispersion relation is linear, obeying the
relation nw = ck; and hence € = limg_ysman (%)2 The ef-
fective € in any direction for an arbitrary object can then
be found by setting an initial field to be a plane wave with
wave vector k with H(r) = ne’**, where ﬁ is small, and
m is just a constant vector normal to k. We can also use
random fields as long as we impose the periodic boundary
conditions explicitly according to the wave vector k we
have chosen. However, it is usually advantageous to use

C.T. CHAN, Q. L. YU, AND K. M. HO 31

a plane wave with constant coefficients since random ini-
tial fields have high-frequency components that require a
small time step to conserve the total energy of the sys-
tem. In principle, the smaller the magnitude of k the
better, but in practice too small a k will give numerical
problems. Typical values of | k | used vary from 0.052* to
0.127’r in the following calculations. The number of time
steps (IV;) used must be larger than N, = 27./€/(ckt),
where t is the size of the time step. [We of course do
not know ¢ before the calculation, but we do know that €
is always bounded above by the volume average of €(r).]
The number of time steps we used in the following ex-
amples is substantially larger than this estimate and will
be specified below. The calculations are more demand-
ing for systems with higher dielectric constants, and we
believe that this is inevitable with any numerical formu-
lation for the effective dielectric constant problem. In
the following, we will present some calculations for 3D
and 2D systems. We will consider both ordered and ran-
domly tiled systems. For randomly tiled systems, we will
use the term “normalized standard deviation” to refer to
the quantity [ dr[e(r) — (€)]?/(€)?, and the volume (or
area) averaged € will be denoted by (e).

A. Three dimension

1. Ordered structures

In the first test, we calculated the effective dielec-
tric constant.of a periodic system of dielectric spheres
(e = 3) arranged in a simple cubic lattice as a func-
tion of the filling ratio of the spheres. The spheres are
overlapping when the filling ratio exceeds 52%. In the
simulation, we used a 48x48x48 grid in the unit cell,
and a total of 60000 time steps, with each step being
0.004a/c units. The initial fields correspond to the k
vector (0.1,0,0)27/a. In Fig. 3, our results are compared
with those of Bergman and Dunn,?® and the agreement
is very good.
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FIG. 3. The effective dielectric constants of dielectric

spheres (e = 3) arranged in a cubic lattice as a function of fill-
ing ratio of the spheres, calculated with the spectral method
(dots), and compared with Bergman and Dunn’s results (solid
line). The dotted line is the Maxwell-Garnett result.
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2. Disordered structures

We randomly tiled a 3D 48 x48x48 grid such that each
point has an ¢(r) generated by a random-number gener-
ator with a volume average € ~ 25, and the normalized
standard deviation ~ 1/3. We made two runs. For the
first run, (€) =25.035 61 and the normalized standard
deviation = 0.326 23, and we ran 350 000 time steps with
each time step 0.002a/c units. The plane wave used has
k=(0.05,0.0,0.0)2%. The effective € is found to be 21.96.
For the second run, a different seed was used for the
random-number generator, and we used a plane wave
with k=(0.1,0.0,0.0)27", a time step of 0.0015a/c, and
a total of 1500000 time steps. In this run, (¢) = 24.9316
and the normalized standard deviation is 0.33073, and
the effective € is found to be 21.86.

For both runs, e.s/(€) = 0.877. According to the the-
ory of Herring,?* e.q/(e) = 1 — 1 [dr[e(r) — (€)]?/(€)?,
up to second order in the normalized standard deviation
for an isotropic system; which is 0.89 for both cases. Al-
though the Herring formula is a second-order expansion
and is not intended for small normalized standard devi-
ation, the current results show that it works reasonably
well even in this test case of moderately large standard
deviation.

We also studied a 3D random two-component “checker-
board” system, which has a 48x48x48 grid, with each
grid point having a dielectric constant of either 5 or 15
with equal probability (as decided by a random-number
generator). We make two simulations. In the first run,
the (e) is 9.9904 and the normalized standard deviation
is 0.25048. We used a plane wave with wave vector
(0.05,0.05,0.05)2* and a time step of 0.0015a/c units,
and a total of 600000 steps. The effective € is found to
be 9.10. The second run has ()= 10.011 with a normal-
ized standard deviation of 0.2495, and we run for 800 000
steps. €is found to be 9.124. The ratio eeq/(€) is 0.911 for
both cases. Herring’s formula gives (up to second order
in the normalized standard deviation) eeg/(e) = 0.917,
again in reasonable agreement with the numerical result.
For this particular case, the Hashin-Shtrikman theorem
bounds the effective € between the values 0.875 < e./(€)
< 0.9375, and Bruggeman theory gives eeq /() = 0.9114.

B. Two dimension

In two dimensions, the situation is somewhat simpler.
The Maxwell equations decouple into an FE,-polarized
(TM) mode and an H,-polarized (TE) mode. For the
E,-polarized mode, the E and the H fields are, respec-
tively, E(r) = (0,0, E) and H(r) = (H,, Hy,0) and the
Maxwell equations become

OE _ dH, OE _ dH, 0H, 0H, _ e@
8z ~ dt > 8y dt ° Oz oy ~  dt’

(4)

which is equivalent to

8°E 8’E _ d°F
amz + 3y2 =€ de? (5)
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The H,-polarized mode has H(r) = (0,0, H) and E(r) =
(Ez, Ey,0), and

oH _ _ 4B, OH _ 4B

oz “at’ 8y ~  dt’
%_816”:_1}{. (6)
oz dy dt

We note that the equation corresponding to the E,-
polarized mode [Eq. (5)] is the so-called “scalar wave
equation.” In the long wavelength limit, the wave veloc-
ity for the scalar wave is the same in all directions and
depends only on the average dielectric constant. There-
fore the effective € is trivial for the E,-polarized mode
and does not require an elaborate calculation. For the
H,-polarized mode [Eq. (6)], the situation is similar to
the 3D case where the effective € can only be obtained
via a numerical calculation. For the H,-polarized mode,
the wave velocity generally depends on the propagation
direction, unless we have an isotropic system (random
or cubic). The effective € will also be direction depen-
dent. The following results refer to the effective € of the
H ,-polarized mode, unless otherwise specified.

1. Ordered structures

As a test case, we considered a chessboard structure
which consists of alternating square patches of high and
low dielectrics of ¢ = 10 and 1, respectively. The unit
cell has 128x128 grid points and contains four squares,
two with € = 10 and two with € = 1. The initial field is
a plane wave of k = (0.1,0)2%, and the simulation was
run for 320 000 steps at 0.00la/c per time step. The
effective € is found to be 3.162. The effective € of this
case is known exactly; it is e.g = (/€162 = V10 = 3.1623,
and agrees with the numerical result.

2. Two-component disordered structures

We considered two cases in which the microstructure is
disordered and uncorrelated. In the first case, we consid-
ered a two-component system, with e = 5 and 15, respec-
tively. We tiled a 192x192 two-dimensional grid, such
that each grid point is generated randomly, with equal
probability of being either € = 5 or 15. The area aver-
aged € is found to be 10.043, and normalized standard
deviation 0.248. The initial field is chosen to be a plane
wave with k = (0.1,0)2% and the simulation was run for
a total of 1x10° steps at a time interval of 0.0015a/c.
The effective € is found to be 8.67. If the 2D system
is exactly invariant with respect to the interchange of
the two constituent components, the reciprocity theorem
gives €.g = (/€162 = 8.66, in good agreement with the
simulation.

In the second case, we tiled a 192x192 grid such that
each point is generated as a random number with av-
erage € ~ 10 and normalized standard deviation ~ 0.2.
The initial fields correspond to a plane wave with k =
(0.05,0)27/a. The time step was chosen to be 0.001a/c
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and a total of 500 000 steps was executed. We made two
runs; the (¢) and normalized standard deviation for the
first simulation are 9.9523 and 0.2023, respectively, and
for the second run they are 9.9575 and 0.2013. The effec-
tive dielectric constant was found to be 8.831 and 8.842
for the two simulation runs. The ratio €.s/(€) for the two
cases is 8.887 and 8.888, respectively. In two dimensions,
it can be shown that up to second order in the normalized
standard deviation e.g/{€) = 1— 3 [ drle(r) — (€))2/(e€)?,
which could be regarded as the Herring formula in two
dimension. This formula gives €.g/(€) values of 0.899 for
both cases, again in reasonable agreement with numerical
results.

3. Arbitrary structures

In order to show that the present method can handle
systems with arbitrary structures, we created one basi-
cally by freehand drawing. The structure is shown in
Fig. 4. The dielectric constants for the black and the
white domains are 13 and 1, respectively, with the black
domain occupying 54.63% of the total area. The area
averaged dielectric constant is 7.556. We used periodic
boundary conditions and a mesh of 128 x 128 points to
discretize the unit cell. This system does not have any
symmetry, and so it has different wave velocities in differ-
ent directions. To probe the effective € in the z and the y
directions, we used plane waves with k vectors (0.1, O)ZT’r
and (0,0.1)2%, respectively. We used a time step of
0.00la/c and a total of 2 x 108 steps. In this case, we
have no known results to compare with and so as a con-
trol calculation we calculated the effective dielectric con-
stant for the FE,-polarized wave, and we found the same
value of 7.56 for both directions, in good agreement with
the area averaged e. For the H,-polarized wave, the €,
and ¢, are different and they are found to be 3.78 and
4.27, respectively. We should remark that there is no
easy way to compute the effective dielectric constant of
such systems. We can get an estimate using the Brugge-
man theory, which is a reasonably good approximation
in situations where the different components are equal in
importance. In two dimensions and for a two-component
system, the Bruggeman equation can be written in the
form

€1 — €eff €2 — €eff
( f) €1 + Eeff f€z + €Eeff ’ ( )

— X

FIG. 4. The 2D motif of the arbitrary structure.
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where ¢ = 1 and e; = 13 and f = 0.5463 is the area
fraction for ;. Equation (7) gives €. = 4.2, in reasonable
agreement with the numerical results.

V. STRUCTURES WITH DEFECTS

Since the complexity of this method scales like N1, it is
applicable to systems that require large cells to simulate,
such as the defect states caused by structural defects in
photonic crystals. This method can also give the spectral
intensities at a particular point in real space. In fact, the
results we have shown so far come from summing up the
contributions from the individual sampling points in real
space. The counterpart in electronic structure calcula-
tions is called the local density of states. This informa-
tion can sometimes be very useful, as will be illustrated
below.

As an example, we considered a case in which we have
a photonic crystal in a stacked-bar structure with 256
(4x8x8) unit cells. The structure is composed of a stack
of crisscrossed rectangular rods?® such that the rods in
the second layer are rotated by 90° with respect to the
first layer and the third- and fourth-layer rods are dis-
placed half the repeat distance with respect to the first
and second layer, respectively. The system repeats itself
every four layers. Details of the structure can be found
elsewhere.?®> Such an arrangement of dielectric material
supports a full photonic gap. In our calculation, the rods
are of square cross sections (%a X %a, where a is the dis-
tance between the rods). The dimension of the supercell
used for the simulation is 4a x 8a x (16/3)a. We intro-
duced a structural defect by cutting away a section of
length 2a of one of the rods that is orientated along the
y direction. Each unit cell is divided into a 12x12x8
grid, and we run for a total of 80000 time steps, with
each time interval 0.003a/c. The initial H field is cho-
sen to be a random field. We impose periodic boundary
conditions (which is basically equivalent to repeating the
defect every 256 unit cells). We obtained the spectral
intensities for the system with the defect and also the
same system without defect with exactly the same initial
and boundary conditions, and by comparing the spectral
intensities we found that two peaks are introduced in the
spectral gap when the structural defect is introduced. In
Fig. 5, we plot the spectral intensity for one of the points
located inside the defect, which clearly shows two defect
states inside the photonic gap.

VI. REMARKS

Although we have used periodic boundary conditions
in this article, periodic boundary conditions are not man-
dated in this scheme. If we have a situation in which the
system is enclosed by metallic walls, we can simulate the
situation by enclosing the domain of interest by bound-
ary layers with negative €, so that the EM waves become
evanescent. The flexibility of imposing different bound-
ary conditions is the advantage of using a real space ap-
proach in general, and is not specific to our formulation.
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FIG. 5. The spectral intensity of one point located within
the defect.

In contrast, Fourier space methods mandate the use of
periodic boundary conditions and frequently large artifi-
cial periodic supercells are needed to emulate situations
when the system is not periodic.

The same formulation should also be applicable to elas-
tic waves in an inhomogeneous medium. With mod-
est modification, the same technique can be used to
study the propagation of EM waves in the presence of
a source.?®

This method can also give spectral intensities at a par-
ticular point in real space, as illustrated in the defect cal-
culation. It will be convenient for identifying surface or
interface modes. If we choose a Fourier space approach
(such as plane waves), we can of course use the same
technique of mapping out surface or interface states from
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standard electronic calculations (i.e., by solving for the
eigenvalue problem and looking for states with frequen-
cies in the gap of the bulk projected bands and which
have wave amplitudes localized on the surface or inter-
face layers). However, with the present approach, it is
possible to locate the existence of such modes by just
comparing the local densities of states for the points at
the boundary and the points that are deep inside the
bulk.

In the present work, we have considered the frequency
of the normal modes, but the method can also provide
information about the field distributions. Since we al-
ready have the time development of the field intensities
¢(r,t), the field distributions for the modes at a partic-
ular frequency ¢(r,w) can in principle be obtained by a
Fourier transform.
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