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The first part of this paper deals with the justification of Sassier s phenomenological random-walk

model for viscous liquids [Phys. Rev. Lett. 58, 767 (1987)],which considers the random walk of a "parti-
cle representing the liquid state on a d-dimensional infinite cubic lattice with site energies chosen ran-

domly according to a Gaussian. The random-walk model is here derived from Newton s laws by making
a number of simplifying assumptions. In the second part of the paper an approximate low-temperature
description of energy fluctuations in the random-walk model —the energy master equation (EME)—is ar-
rived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation
dominates the relaxational properties of the random-walk model at low temperatures. The approximate
EME description of the random-walk model is expected to be valid at low temperatures at long times in

high dimensions. However, computer simulations show that the EME works well already in two dimen-

sions and at only moderately low temperatures. The EME has no randomness and no fitting parameters.
The EME is completely specified from the density of states and the attempt frequency of the random-
walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory
time scales for an arbitrarily varying temperature as function of time. The EME is probably the only
realistic equation available today with this property that is also explicitly consistent with statistical
mechanics. The final part of the paper gives a comprehensive discussion, comparing the EME to related
work and listing the EME's qualitatively correct predictions, its new predictions, and some "wrong" pre-
dictions, most of which go against the common picture of viscous liquids and the glass transition without
violating experiments.

I. INTRQDUCTIQN

The glass transition takes place when a liquid upon
cooling becomes more and more viscous and finally
solidifies to form a glassy solid. ' ' Most, or perhaps all,
liquids are able to form glasses when cooled suKciently
fast to avoid crystallization. Examples of glasses include
the classical oxide glasses, ' ionic glasses, ' poly-
mers, ' ' metallic glasses, ' and glasses made by cool-
ing organic liquids to low temperatures. ' ' Even simple
liquids form glasses in computer experiments, where ex-
tremely high cooling rates are possible. ' ' ' Spin glasses
are examples of nonliquid systems that exhibit glassy
features.

The glass transition is still far from well understood,
but the kinetic nature of the transition is not in doubt.
The glass transition is not a phase transition, though it is
thermodynamically similar to a second-order phase tran-
sition. This is evidenced by several facts universally ob-
served: The transition is not sharp, the transition tem-
perature depends on the cooling rate, and the transition is
irreversible and exhibits various hysteresis phenomena.

Bespite large chemical diff'erences, viscous liquids close
to the glass transition have common features, notably a
broad distribution of relaxation times and a stronger than
Arrhenius temperature dependence of the viscosity.
Around the glass transition there are further common
characteristics like the overshoot of the specific heat
upon reheating, ' the crossover e6'ect, or the prepeak
upon the melting of a well-annealed glass. " The univer-
sal properties of viscous liquids and the glass transition

motivates a search for a phenomenological model valid
for any viscous liquid.

While phenomenological models of viscous liquids and
the glass transition have been studied for many years, the
1980's brought an interesting first-principles theory, the
mode-coupling theory. ' Extensive work has gone into
studying the mode-coupling theory and comparing it to
experiment. At present there seems to be a growing con-
sensus that mode-coupling theory gives an accurate
description of the onset of viscous behavior, the tempera-
ture region where the relaxation times are shorter than
about 1 ns. However, the theory does not seem to be able
to explain the highly viscous regime and the laboratory
glass transition. This is because the activated "hopping"
type processes that dominate this regime are not account-
ed for in the simplest version of mode-coupling
theory, but have to be postulated as an extra as-
sumption. Thus, the focus is now once again on attempts
to formulate a phenomenological model that captures the
essentials of viscous liquids and the glass transition. Nev-
ertheless, mode-coupling theory has served to emphasize
the difFerent physical bases of the low- and high-
temperature regimes.

Since the glass transition is a kinetic "freezing" of the
viscous liquid, a phenomenological model should first of
all incorporate the basic physics of viscous liquids in
thermal equilibrium. An important characteristic here is
the auerage relaxatlon time of the viscous liquid ~, which
is a direct measure of the time needed for molecular rear-
rangements. The average relaxation time may be deter-
mined, e.g. , as the inverse dielectric, mechanical or
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specific-heat loss-peak frequency. Alternatively, it may
be calculated from the viscosity g and the infinite fre-
quency shear modulus G by means of the expression

G

These definitions do not give exactly identical ~'s, ' but
the difference is insignificant for the present discussion.
Typical values of ~ for glass-forming liquids lie in the mil-
lisecond, second or even hour range. These times are to
be compared to a typical microscopic time, the average
vibration time, which is less than 1 psec.

The basic thing one would like to understand about the
average relaxation time is its non-Arrhenius temperature
dependence. For almost all viscous liquids ~ has an ap-
parent activation energy that increases as the tempera-
ture decreases. Naive models assuming some distribution
of energy barriers usually lead to the opposite behavior.
Therefore, explaining r(T) is a real challenge, but also a
likely key to understanding viscous liquids.

The phenomenological models may be classified into
two types (an alternative to the below classification has
been given by Scherer in an excellent review of relaxation
in viscous liquids ). One type of models, "type-I, " are
models that have a non-Arrhenius average relaxation
time, but otherwise do not attempt to mode1 the liquid.
These models are so simple that they can be analyzed in
detail. ' Examples of type-I models are Derrida's ran-
dom energy model, the kinetic Ising model, or the til-
ing model of Weber, Fredrickson, and Stillinger. The
other type of models, "type-II, " do attempt to realistical-
ly model the physics of real viscous liquids. In all type-II
models the elementary Aow process occurs within a
"cooperatively rearranging region. " The type-II models
can be further classified according to which therrno-
dynamical quantity controls w, entropy, volume, or energy.

A well-known entropy-controlled model is the theory
of Gibbs and co-workers. ' According to this model
the average relaxation time is expressed in terms of the
excess configurational entropy S, as ~re px[C/(TS, )].
The model correlates the non-Arrhenius behavior with
the Kauzmann paradox, '" the fact that the
configurational entropy extrapolates to zero at a finite
temperature, Tz. Expanding S, to first order close to
Tz, the average relaxation time follows the Vogel-
Fulcher-Tammann (VFT) law" (where A is a constant
and the characteristic temperature Tp is predicted to be
equal to Tz):

C~=~o exp T2
(3)

was shown to be incorrect. Also, the VFT law seldom
applies in the whole temperature range of interest; usual-
ly deviations occur close to the glass transition where the
average relaxation time is less temperature dependent
than predicted. ' ' [If the physics of the high and low
viscosity regimes are different, as predicted by mode-
coupling theory, there is no motivation to choose a phe-
nomenological representation of r( T) which can cross the
boundary between the two regimes. ] Finally, it should be
noted that the Kauzmann paradox does not have to be a
paradox. As shown by Angell and Rao in 1972, even a
system with only two energy levels has an entropy which,
if only known at high temperatures, extrapolates to zero
at a positive temperature. Though this model does not fit
experiment, the excess entropy data may be fitted with a
model with only a finite number of energy levels and thus
a positive entropy at any positive temperature.

The standard example of a volume-controlled model is
the "free volume model. " In this model, the average re-
laxation time is determined by the volume freely available
for cooperative rearrangernents of the molecules, V&, ac-
cording to the expression r ~ exp(C/V&). In the simplest
version of the model the free volume decreases linearly
with decreasing temperature, leading if V&=O at T = Tp
to a non-Arrhenius r( T) of the VFT type [Eq. (2)].

In energy-controlled models one formulates a master
equation ' governing the dynamics of the cooperatively
rearranging regions. The relevance of potential energy
was previously emphasized in 1969 in a classic paper by
Goldstein. More recently, Brawer proposed a model
where transitions between different states occur via exci-
tations to a common high-lying energy level. ' This pic-
ture goes back to Goldstein. Brawer's model was later
simplified. ~

Bassler's random-walk model ' is an energy-
controlled model, which is similar to those used in the
description of ac conduction in disordered solids ' and
of energetic relaxation and diffusion of electronic excita-
tions in random organic solids. The model considers
the random walk of a "particle" on a cubic lattice in d di-
mensions, where each site has an energy chosen randomly
according to a Gaussian. The particle represents the
state of a cooperatively rearranging region. For the
random-walk model r( T) is predicted ' to follow

A/(T To)7=7 pe

The VFT law gives a good fit to r(T) for many viscous
liquids and in most experiments one also finds that Tp is
indeed close to Tz."

Gibbs' model predicts that underlying the laboratory
glass transition there is a genuine second-order phase
transition at T = Tz to a state of zero configurational en-
tropy. However, there are a number of problems with
this approach. The original Gibbs-DiMarzio model
was based on a mean-field theory for polymers that later

This simple expression fits experiments well. ' ' ' ' An
even better fit is obtained by using the following generali-
zation of Eq. (3): =reopx(C T/").

In a recent paper by Arkhipov and Bassler the
random-walk model was extended to a mode1 that
reduces to the original model at high temperatures —the
"real liquid" regime —while at low temperatures —the
"supercooled melt" regime —the system is described by a
simple master equation. The idea is that, at high tem-
peratures direct jumps between metastable states are pos-
sible because the energy landscape itself Auctuates; these
jumps correspond to an elementary step on the d-
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II. THK RANDOM-%'AI. K MODEI. AND ITS
"DERIVATION" FROM NK%'TON'S SECOND I.A%'

The purpose of this section is to "derive" the random-
walk model ' from the equations of motion for the rnol-

ecules of the viscous liquid. The "derivation, " which
proceeds in five steps, is not rigorous, but rather an at-
tempt to make explicit the assumptions that need to be
made in order to justify the model from basic principles.
The viewpoints presented below are similar to those of
Bassler, but there are also some differences as will be dis-
cussed at the end of this section.

Before presenting the "derivation" of the random-walk
model, we recall the exact definition of the model. The
model considers the random walk of a particle on an
infinite d-d. imensional cubic lattice. The particle
represents the state of the region, which is thus complete-
ly specified by d integer coordinates. Each state has an
energy E, which is chosen randomly according to a
Gaussian with variance o.:

1 E2
n (E)= exp2770'20

(4)

dimensional lattice of the original random-walk model.
At low temperatures, on the other hand, the landscape
fluctuations are frozen on the relevant time scale and
each jump leads to a totally new configuration, the dy-
narnics here being described by a simple master equa-
tion.

The purpose of the present paper is to show that the
master equation, assumed by Arkhipov and Bassler to de-
scribe the different physics going on at low temperatures,
in fact gives a good description of the low-temperature
behavior of the origina/ random-walk model. Thus, in a
sense the Arkhipov-8assler model is contained in
Ba,ss1er s original and simpler random-walk mode1. The
low-temperature approximate master equation, the "ener-
gy master equation" is arrived at by arguing that percola-
tion in the random-walk model becomes important at low
temperatures. The transition state energy of the energy
master equation is identified with the highest energy met
on a percolation path. In effect, one arrives at a picture
which is similar to that recently proposed by Hunt, ' '

according to which the low-temperature properties of
viscous liquids are dominated by percolation. However,
in his works effects of cooperativity are treated separately
in relaxation and in thermodynamics.

The paper has the following outline. In Sec. II a
justification of the random-walk model is given where the
model is traced back to Newton's laws for the molecules
of a cooperatively rearranging region. This section sup-
plements the original arguments for the model given by
Ba.ssler and co-workers. ' In Sec. III the approximate
energy master equation is derived. In Sec. IV computer
simulations are presented, comparing the random walk
model and the energy master equation. Section V
discusses what to expect at the glass transition according
to the energy master equation. Section VI gives a
comprehensive discussion which includes a qualitative

comparison to experiment. Finally, Sec. VII gives the
conclusions.

The energies of adjacent states are uncorrelated. The dy-
narnics of the system is described by a master equation, '

specifying the time development of the probability that
the particle is in state i, P;. If I (i~j) is the transition
rate for jumps from state i to state j, the general master
equation is

dI';

dt
= —Q I (i +j )P—; + g I (j ~i)P . .

J J

The first term describes particles jumping away from
state i and the second term describes particles jumping
into state i. The jump rates must satisfy the principle of
detailed balance, ' which ensures consistency with sta-
tistical mechanics [P= 1/( k~ T) ],

I (i~j)= .
Io, E;)E

—P(,E.—E,. )
E,. &E, .

(7)

It is realistic to take I o to be of order 10' Hz, corre-
sponding to a typical phonon frequency. Note that Eq.
(7) satisfies the principle of detailed balance Eq. (6).

What kind of predictions can be made from the
random-walk model? The model predicts how the aver-
age energy changes in time for any externally controlled
time-dependent temperature. This includes monitoring
how the energy relaxes to equilibrium from a nonequili-
brium state, or how the dynamic specific heat changes
through the glass transition. In particular, the average
relaxation time for energy relaxations close to equilibri-
urn can be calculated as a function of temperature, and
the equilibrium frequency-dependent specific heat may be
obtained.

We now proceed to justify the random-walk model
from basic principles in five steps, assuming that the mol-
ecules of the viscous liquid are described by classical
mechanics.

Step 1: The Region Assumption. All type-II models for
the dynamics of viscous liquids assume cooperative "Bow
events" that are localized to small "regions" of the
liquid. 6'8'36'39, 42 —44, 55 —6o These regions have been called
"cooperatively rearranging subsystems" or "coopera-
tively rearranging regions, " "quasi-independent
units, " "thermokinetic structures, " "molecular
domains, *' or "dynamically correlated domains. "
This picture of viscous Aow, proceeding via strongly
cooperative motion of particles confined to small regions
of the liquid, has been confirmed by computer sirnula-
tions. ' The "region assumption, " however, is not just
the quite reasonable idea that How events are localized.
The assumption is the much stronger one that the liquid

= exp[P(E; EJ)] —.
I J~i

In random-walk models the transition rates are usually
chosen to be zero except for nearest-neighbor jumps (i.e.,
where a single coordinate changes plus or minus one). If
I o is the "attempt frequency, " the transition rate for a
nearest-neighbor jump is in Bassler s random-walk model
given by Metropolis dynamics,

r
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may be regarded as an ensemble of noninteracting re-
gions. There are two potential problems with this as-
sumption. It ignores region-region interactions that may
be important because the regions are expected to be rela-
tively small [some 10—20 A (Ref. 58)]. Also, the picture
is static and not easy to relate to an actual flow that will
deform the regions. Nevertheless, the region assumption
seems to be necessary to arrive at a simple phenomeno-
logical model.

Step 2: Replacing newton's laws with Langeuin dynam-
ics. From now on the attention is confined to a single re-
gion, the rnolecules of which move according to
Newton's laws. The motion depends on the potential en-
ergy as function of the molecular coordinates,
U(Q„. . . , Qd ) (for simplicity only rectangular coordi-
nates are considered). The importance of the potential
energy "surface" for understanding viscous liquids and
the glass transition has been emphasized in a number of
papers. " ' ' ' ' Following the tradition in polymer
physics, we now replace Newton's deterministic equa-
tions of motion by stochastic Langevin equations (similar
nondeterrninistic equations are used for the description of
Brownian particles suspended in liquids ). The
Langevin equations of motion ' are

(8)

(g;(t)g, (t') ) =2@k~T5, ,5(t t') . — (9)

The crucial property of the Langevin equations of
motion ' is that each state is visited with the correct
canonical probability Po of statistical mechanics,

Po«i Qd )" (10)

Physically, the assumption of Lang evin dynamics is
reasonable for viscous liquids, because the molecules
collectively vibrate in potential energy minima for long
times before occasionally "jumping" to another potential
energy minirnurn. And the rate of jumps between two en-

ergy minima is, for both Newtonian and Langevin dy-
namics, dominated by a factor ~ exp( —Pb, U), where
6U is the energy barrier to be overcome.

Step 3: From Langeuin dynamics to a hopping model.
We now proceed to discretize the spatial variables of the
Langevin equations. The resulting state space is a d-
dimensional cubic lattice. It is reasonable to assume that,
since the underlying Langevin dynamics has a continuous
trajectory, only nearest-neighbor jumps are allowed on
the lattice. For the jump rates those given by Eq. (7) are
an obvious choice: Unless infinitely steep potentials are
allowed, the Langevin equation implies that it takes some
definite (but very small) time to travel the discretization
length downhill; in the discrete version this means there
should be a maximum jump rate. If the discretization is
to be self-consistent, the jump rates must be uniquely
determined from the state energies. The simplest jump
rates satisfying these conditions are the Metropolis rates
[Eq. (7)]. These jump rates ignore the possible existence

where p is the "mobility" [velocity/force] and g;(t) is a
Gaussian white-noise term obeying

1
Po(E) = exp&2~~'

(E E)'—
20

E= —o P . (12)

Clearly E is the average energy. Note that E is also the
most likely energy (in fact, for any system with many de-

of a barrier to be overcome between two nearest-neighbor
discrete states. The discretization does not allow con-
tinuous vibrational motion. The term "energy" E is
henceforth to be thought of as the potential energy U at a
minirnurn or a saddle point, the "configurational part" of
the potential energy. Similarly, the term "specific heat"
refers to the configurational part of the measured specific
heat, the so-called "excess specific heat" (in excess of the
phonon contribution to the specific heat).

Step 4: Replacing complexity with randomness. The po-
tential energy is a very complex function with numerous
minima. ' ' Therefore, it is reasonable to replace the
function E defined on the lattice with a function that is in
some sense random. The basic idea of replacing complex-
ity with randomness is that some phenomena occurring
in a specific complex system are typical of those that
occur in most systems chosen randomly out of an ensem-
ble of possible systems. If this is so, the study of random
systems tells us what to expect for particular complex
systems. Motion in random potentials has been studied
extensively in various contexts. ' ' ' ' In discretizing
such a model one often chooses a discretization length a
equal to the correlation length of the random function
and assumes that correlations beyond a may be ignored. '

When this is done for the hopping model arrived at
above, the values of the potential are assumed to be un-
correlated from point to point on the d-dimensional cubic
lattice. In this approximation the model is completely
specified by the energy probability distribution, the "den-
sity of states" n (E).

Step 5: The assumption of cooperatiuity. A region con-
tains many molecules and thus d »1. Any system with
many degrees of freedom has a density of states for which
the entropy as function of energy, S(E)= ln[n (E)], at
relevant energies obeys

as a's
&0; (0.

aE ' BE2

The Gaussian Eq. (4) obeys Eq. (11),but only for negative
energies. However, at any temperature negative energies
are most likely for the Gaussian, and therefore this densi-
ty of states is permissible as representing a system with
many degrees of freedom.

The assumption of a Gaussian density of states con-
cludes the "derivation" of Bassler's random-walk model.
The model is completely specified by the parameters I o,
a, and d. The first two are scaling parameters, so from a
qualitative point of view only the dimension d is of in-
terest.

In thermal equilibrium the probability of visiting any
given site is given by the Boltzmann factor exp( PE). —
Combining this with the Gaussian probability Eq. (4), one
finds for the equilibrium energy probability distribution
Po(E) ~ exp[ PE E /(2tr ) ] ——By "comp.leting the
square" and normalizing, one finds
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grees of freedom the average energy is close to the most
likely energy). The equilibrium specific heat co is given
by

dE 0.

dT

Equation (13) may be derived directly from Einstein's ex-
pression, co=((b,E) )/(kiiT ), since the Gaussian dis-

tribution Eq. (12) implies ((b,E) ) =cr . The equilibrium
specific heat increases towards infinity as the temperature
goes to zero. %'hile this cannot be the case down to zero
temperature in experiment, there is actually a tendency
for most supercooled liquids for the excess specific heat
to increase as the temperature decreases. '

The random-walk model was originally proposed by
analogy to transport and relaxation of charge excitations
in random organic solids, where the jump rates Eq. (7)
are the well-known Miller-Abrahams jump rates for elec-
tronic hopping. There are some differences between
the above "derivation" of the random-walk model and
Bassler's justification of the model. In Bassler's picture,
the experimental dependence of the glass transition tern-
perature on the sample history was understood as an
effect due to the density of states depending on the
preparation conditions. " In contrast, the above picture
is static; the density of states arises from the discretiza-
tion of the potential energy and does not depend on the
conditions of sample preparation. A further difference is
that here cooperativity is emphasized, implying d ))1,
while the original Bassler model considered elementary
jump processes on a "molecular or weakly cooperative
level, " implying that d is not much larger than one.

III. THE ENERGY MASTER KQUATIGN: AN
APPRQXIMATIGN TQ THE RANDQM-WAI, K MODEL

In order to monitor the average energy during a cool-
ing and subsequent glass transition in the random-walk
model, there is no other simple method than to solve the
master equation numerically by taking time steps of order
1/I o(1 ps. Clearly, this procedure cannot be used for
simulating realistic laboratory time scales of order
minutes or hours. In this section an approximation to
the random-walk model is derived, which makes it possi-
ble to investigate the model on realistic time scales. The
approximate equation, termed the "energy master equa-
tion, " is an equation for the time evolution of the energy
probability distribution P (E, t), which ignores the spatial
d-dimensional structure of the random-walk model.

Consider the random-walk model in many dimensions
(d ))1) at low temperatures (k&T (&cr) and long times
(t))ro). Whenever kiiT«o the most likely energies
are close to E= —o. P(& o[Eq. (12)], i.e. , deep —into
the negative tail of the G-aussian. States with these low
energies are very rare; nevertheless, at low temperatures
the relaxation properties of the random-walk model are
dominated by transitions between them. The distance be-
tween two low-energy states is large, and a transition be-
tween two such states consists of a long and complex
path joining neighboring states. It is very hard to calcu-
late the actual transition rate, but it is obvious that the

I (E)=I'*

To determine I o we evaluate I (E, ) by viewing the per-
colation cluster as a one-dimensional path, where each
site on the average has two neighbors belonging to the
cluster. This naive point of view ignores the complicated
fractal nature of the cluster, but it does become realistic
in high dimensions where it leads to the correct percola-
tion threshold. Since E, is the largest energy on the per-
colation cluster, sites with energy E, have on the average
two neighbors with lower energy. Thus, the total rate for
jumps away from such a site is on the average 2I o, plus
some terms for jumps to the higher-energy neighbors.
These terms are unimportant at low temperatures, and
thus the prefactor of Eq. (15) is given by

IO=2I O . (16)

To arrive at the simplest possible approximate descrip-
tion, the spatial structure of the lattice is now completely
ignored. Consequently, all final states are regarded as
equally likely, and one arrives at the picture of Fig. 1

which was proposed by Cxoldstein in a different context
and later discussed in more detail by Brawer. '

The approximate master equation considers only one
variable, the energy. Let P(E, t) denote the energy prob-
ability distribution as function of time. Since all final
states are regarded as equally likely, the probability of
jumping into an energy around E is proportional to the
density of states, n (E). The relaxation rate for jumps
from states with energy E is I (E), so the equation for
P(E, t) is for some constant K(t)

transition rate depends crucially on the maximum energy
encountered on the path. Thus, of all possible paths be-
tween two low-energy states, the most likely paths are
those that have the lowest maximum energy. The value
of this maximum energy is identified by percolation
theory: ' Imagine the sites of the lattice gradually
being filled in order of increasing energy. At a certain
filling rate, the site percolation threshold p„ the infinite
"percolation cluster" of marked sites appears. In two di-
mensions p, =0.593, while in three dimensions

p, =0.312. In high dimensions one finds

p, —= 1/(21 —1). The highest energy on the percolation
cluster, the "percolation energy" E„is given by

j n (E)dE =p, . (14)

The percolation energy E, gives a good estimate of the
largest energy met on an "optimal" path between two
low-energy sites. This is because just above p, a large
fraction of the marked sites belongs to the percolation
cluster. We thus surmise that the effective transition rate
from a low-energy site with energy E; to another low en-

ergy site with energy E is given by the barrier
bE =E, E;: I (i——+j) ~exp[ PhE]. —This expression
satisfies the principle of detailed balance Eq. (6). There
are many possible final states, but since each jump rate is
given by the above expression, the total rate for jumps
away from a site with energy E, I (E), is given by
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FIG. 1. The Goldstein-Brawer picture of a "flow event" in a
viscous liquid (Refs. 8, 39, and 43). The figure illustrates the ex-
citation from one "state, " i.e., a potential energy minimum for
the molecules in a region of the liquid, to another state —the
vertical axis being the energy axis. In Goldstein's model the
transition state (black) is identified with the high-temperature,
more-fluid, liquid (Ref. 39); Brawer identifies it with a low-
density state giving room for the molecules to rearrange (Refs. 8
and 43). In the approximate energy master equation (EME)
description of Bassler s random-walk model leading to the same
picture of a transition, the energy of the transition state is
identified with the energy at the perco1ation threshold [Eq. 114)].
Conversely„ the Goldstein-Brawer picture leads to the EME
[Eq. (20)] if it is assumed that, once excited into the transition
state, the region has forgotten which state it came from and
ends up in a randomly chosen state.

I (E)P (E,—t)+ K (t)n (E) . (17)

The constant is determined by requiring conservation of
probability:

implies, since n (E) is normalized, that

K(t)= J I (E')P(E', t)dE' . (19)

In this reasoning all energies were counted, despite the
fact that the picture breaks down for E )E, . However,
including the energies above E, gives the simplest
description and causes little change because high-energy
states are very unlikely, anyway. Using Eq. (19), Eq. (17)
becomes an integrodifferential equation, the "energy
master equation" (EME),

+n (E)f I (E')P(E', t)dE' .

We remind the reader that in this equation the jump rate
I (E) depends on the temperature, which may be an arbi-
trary function of time.

The EME was first discussed as a model for the
thermalization of photoexcited charge carriers in amor-
phous semiconductors. In this case n (E) is the den-
sity of trapping levels in the band gap and E, is the mo-
bility edge of the conduction band. For viscous liquids a
similar, but somewhat more complicated master equation

was proposed by Brawer in 1984. Brawer's equation
contains an extra entropy factor enumerating the
different paths from a particular state to the transition
state. A related approach towards relaxation in viscous
liquids was advocated by Robertson, Simha, and Curro.
Towards the end of the 1980's Eq. (20) was studied ' ' as
a model for the relaxation properties of Derrida's random
energy model, and Eq. (20) was proposed as a model for
the dynamics of viscous liquids and studied numerically
through the glass transition. Recently, Eq. (20) was
used by Arkhipov and Bassler to describe the low-
temperature regime of viscous liquids, assuming that the
high-temperature regime is described by the random-
walk model.

The static solution of the EME, Pc(E), is given by

Po(E) =const n(E)
I(E) (21)

This is the canonical probability distribution required by
statistical mechanics. In the course of time, the canoni-
cal ensemble is realized in a very simple way: All states
are visited equally often, but the average time spent in a
state with energy E, 1/I (E), is proportional to the
Boltzmann factor exp( /3E), th—us giving the canonical
probabilities.

At any fixed temperature an initial nonequilibrium en-
ergy probability distribution will approach the equilibri-
um distribution. This is also the case if the temperature
changes in time: At any given time the distribution ap-
proaches the equilibrium distribution corresponding to
the temperature at that time. Upon continued cooling
the system freezes at the temperature where the time it
takes to reach equilibrium becomes larger than the cool-
ing time.

The numerical solution of the EME (detailed in the
Appendix) is based on a calculation using the Laplace
transformation, ' resulting in an analytical expression
for the relaxation of P (E, t) towards the equilibrium solu-
tion Po(E) at a fixed temperature. An arbitrary thermal
history is solved by taking small time steps changing the
temperature at each step.

IV. COMPUTER SIMULATIONS

This section reports computer simulations of the
random-walk model and compares them to the EME pre-
dictions. Results for a continuous cooling and reheating
are given, as well as a study of the time evolution of the
energy probability distribution for relaxation towards
equilibrium at a fixed temperature. Unfortunately, it is
impossible to check the validity of the EME description
where it is expected to apply best: at low temperatures
and long times in many dimensions. This would require
enormous computer capacity. All simulations were per-
formed in two dimensions utilizing periodic boundary
conditions, and in experiments monitoring relaxation to-
wards equilibrium the lowest temperature studied was
0.25cr /k~.

A numerical solution of the random-walk model may
be obtained by following the motion of a single "particle"
in time, the analog of a Monte Carlo simulation. Howev-
er, this introduces considerable noise and it is much more
efficient to solve the master equation Eq. (5) directly. At
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tion reviews the findings of Ref. 44 to discuss what to ex-
pect at the glass transition in the random-walk model.

In the EME the system is completely characterized by
the energy probability distribution P(E, t). At the glass
transition temperature T, P(E, t) freezes and stops
changing upon further cooling. Only in some cases is the
frozen-in energy distribution equal to the equilibrium en-
ergy probability distribution at Tg. To understand this
phenomenon it is convenient again to refer to the demar-
cation energy Ed, which however now acquires a mean-
ing slightly di6'erent from that of Sec. IV: Suppose the
liquid is cooled at a constant rate to zero temperature in
a time t„starting at equilibrium at some high tempera-
ture where the average relaxation time is much smaller

than t, . At any time during the cooling, the demarcation
energy is defined as the energy separating nonfrozen
states from the states that are frozen from that time on. If
t~ is the time left before zero temperature is reached, Ed
is given by Ed(t) =E, kz—T(t) ln(I o tl ). In realistic
cases, the glass transition takes place at a tL which is of
the same order of magnitude as t, and much larger than
1/I o. Since I o tl in the expression for Ed(t) enters only
in a logarithm, tl may to a good approximation be re-
placed by the cooling time t, :

(25)

Note that Ed(t) increases with time during the cooling,

I—

CQ

CQ0
K
CL

~ ~
, ~ 4 e

ENERGY ENERGY

4

Kl0
EC
CL

ENERGY ENERGY

FIG. 5. Relaxation of the energy probability distribution in the random-walk model, P (E, t), towards thermal equilibrium upon a
sudden raising of the temperature starting at equilibrium. The figure shows four snapshots of P(E, t) (full curves) and the EME pre-
dictions (dashed curves) starting at T=0.25 [o/k&] at time t =0 and subsequently annealing at the temperature T=1.0. The
snapshots are taken at the following times [1/I 0]: (a) t =2, (b) t =8, (c) t =25, (d) t =126. The vertical lines mark the demarcation
energy Ed defined at time t by Eq. (24). In the approximate EME description most states with E &Ed have not jumped since t =0.
As t ~~, Ed ~—~ and thermal equilibrium is reached. The full curves give results for averages of 20 simulations of a 1000X 1000
lattice. (In both Figs. 4 and 5 very large lattices are needed to minimize the statistical fluctuations and to be able to move deep into
the Gaussian tail. ) The noise seen at low energies is statistical noise due to the fact that there are very few states in the deep Gaussian
tail. The two-bump distribution appearing at intermediate times during the annealing rejects that, once a populated state has
jumped away from its low energy, it almost immediately thermalizes. This is because there are many high-energy states which are
easy to find. Since the region energy must correlate with the volume (because the liquid has a thermal-expansion coef5cient which is
larger than that of the glass), the model predicts that there is an anomalously large x-ray scattering at intermediate times during the
annealing.
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equilibrium liquid at T = T . Certainly, the average
frozen-in energy is equal to the average energy of the
equilibrium liquid at T, but the distribution of frozen-in
energies in the glass may be different from that corre-
sponding to the equilibrium liquid. This has conse-
quences for the glass properties. In the glass, any physi-
cal property which is a function of the region energy (if it
depends linearly on E for the relevant energies) is, de-
pending on the cooling rate, distributed according to a
Gaussian or an exponential. Along these lines it has been
argued that amorphous semiconductors prepared by a
fast glass transition have exponential band tails.

It is convenient to define a number that distinguishes
between the two types of glass transitions. This number,
denoted by L, is the absolute value of the ratio between
the change in the average energy and the change in the
demarcation energy at the glass transition:

whereas in Sec. IV it decreased with time. In thermal
equilibrium the energy probability distribution is a
Gaussian centered around E(T) [Eq. (12)]. As the tem-
perature is lowered, the equilibrium Gaussian is displaced
towards lower energies while at the same time E&(t) in-
creases. When the Gaussian meets Ez(t), the glass transi-
tion takes place . This happens when E[T(t)]=E&(t).
For the system with constant specific heat ckz studied in
Ref. 44, corresponding to n (E) ~ E' ', 0 & E & E, (where
E, now plays the additional role of a cutoff), one has at
low temperatures E(T)=ck~T. From E=Ez one finds
that the glass transition temperature is given by

E,
k, T, = c+ ln(I ot, )

(26)

(29)

"Slow" glass transitions arise whenever L (& 1, while
"fast" glass transitions correspond to L » 1.

We now proceed to calculate the L parameter for the
random-walk model from the approximate EME descrip-
tion. The average energy is given by Eq. (12),E= o /(k—~T). Thus, the equation determining T,
E =Ed is

—o. /( k~ T ) =E, —k~ Tg ln( I o t, ),
or

(30)ln(l tO, )(k~T ) —E,(k~Ts) o—
The positive solution of this equation is

E, +QE, +4o ln(I ot, )
k~T =

21n(I Ot, )
(31)

Since dE/dT=o'/(k~T') and dE&/dT= —k&ln(l ot, )

the t parameter is via Eqs. (29) and (30) given by

02
L=

( k~ Ts ) ln( I o t, )
(32)

If the dimension d & 2, the percolation energy E, is nega-
tive and Eq. (31) implies

d &2.
k~T

21n(I Ot, )

+1+4(cr /E, ) ln(I ot, )
—1

(33)
(E —E )1

exp
P (E) k~Ts

0, E &Eg.
When Eq. (33) is substituted into Eq. (32) one gets

(28)
2

d &2: L=1+ +1+4(cr /E, ) ln(I Ot, ) —1

(34)
In Ref. 44 the predicted exponential increase of Pf(E)
below Eg was confirmed in the numerical solution of the
master equation; above Eg, however, Pf (E) did not drop
discontinuously to zero, but followed a Gaussian decay.

The conclusion from the above is that, in general, one
cannot expect a glass merely to have the structure of the

In the case d =2, E, is positive and, as is easy to show,
the L parameter is given by

20 —2: L —1
+1+4(cr /E, ) ln(I ot, )+1

(35)

A linear relationship between 1/T and the logarithm of
the cooling time is often observed in experiment.

For the freezing of the energy probability distribution
there are two different limiting scenarios, depending on
the rate of change with temperature of Ed and E, respec-
tively. In the model studied in Ref. 44, dE/dT=ckz and
dE~ /d T= —kz ln( I"o t, ). The case when E& changes
much faster with temperature than E was referred to as a
"slow" glass transition, since it requires long cooling
times: ln(I 0 t, ) »c. In this case the equilibrium G.auss-
ian almost does not move at all when the demarcation en-
ergy passes it and freezes in the energies. Thus, the
frozen-in energy distribution, Pf(E), is close to that cor-
responding to thermal equilibrium at T =T:

1 (E E)~—
Pf(E) = exp —,(27)

V 2n ((bE) ) 2((bE)2)
where E =ck~T and (, (bE) )=c(k~T ) . The other
limiting case is that of a "fast" glass transition:
ln(l ot, ) «c. Here, the demarcation energy moves very
slowly compared to the Gaussian and is almost constant
during the glass transition. To determine Pf(E) consider
the energy Auctuations of a single region. As long as its
energy is above the demarcation energy, the region
"jumps" many times between the high-energy common
states. Sooner or later, however, the region ends up in a
state below Ed, or just above Ed, being subsequently
frozen when Ed passes. As for all other jumps, this last
jump hits an energy with a probability proportional to
the density of states. Around E the density of states is
proportional to exp [E /( k~ Tg ) ], so the normalized
Pf (E) is roughly given by (where again E =ckz T )
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long times makes it possible to calculate this quantity.
However, it should be remembered that the EME only
deals with energy; there a number of interesting proper-
ties of the random-walk model that relate to the displace-
ment of the "particle, " which are not dealt with by the
EME.

The below discussion is sectioned into eight parts, the
first four (A) —(D) discuss the random-walk model and its
connection to the EME, while the last four (E)—(H) deal
with the EME itself as a model for viscous liquids and the
glass transition.

plG. 6. The parameter i, [Eqs. (29), (34), and (35)] character-
izing the glass transition in the random-walk model for di6'erent

dimensions (d =2, 10, 100, 1000) as function of cooling time

[1/I o ] according to the EME. The difFerence between d =2
and d )2 arises from the fact that only in two dimensions is the
percolation energy positive. If ~ ((1 the transition is a "simple
freezing" glass transition, where the energy probability distribu-

tion of the glass is the equilibrium distribution at Tg, frozen-in

almost unmodified. In the other limit, ~ &&1, the transition is a
"relaxational" glass transition, where relaxations at the glass
transition considerably deform the equilibrium energy probabil-

ity. As a result, the glass does not acquire a structure corre-
sponding to the equilibrium liquid at Tg. For very long cooling
times one ends up in the mixed case ~ = 1 where there is some re-

laxation at Tg.

Figure 6 gives the ~ parameter as function of the cooling
time for d =2, 10, 100, 1000.

The terminology of Ref. 44 referring to "slow" and
"fast" glass transitions is not appropriate for the
random-walk model. For this model, as the cooling time
goes to infinity, one finds t —+1 in all dimensions (Fig. 6);
thus there are no "slow" glass transitions for slow cooling
rates. On the other hand, whenever d & 2 the glass tran-
sition is "fast" for sufficiently small cooling times; the
case d =2 is peculiar in that the glass transition is "slow"
for fast coolings. In view of this it is better to refer to
glass transitions with i, )) 1 [previously: "fast"] as "relax-
ational" glass transitions: These are the interesting cases
where relaxation processes right at the glass transition re-
sult in a frozen-in energy distribution different from the
equilibrium distribution at T . The cases when ~((1
[previously: "slow" ] may be referred to as "simple freez-
ing" glass transitions; here the equilibrium energy distri-
bution is simply frozen-in at T .

VI. DISCUSSION

In this paper Bassler's random-walk model for viscous
liquids and the glass transition was "derived" in Sec. II.
In Secs. III and IV, it was argued physically and illustrat-
ed by computer simulations that the energy master equa-
tion (EME) gives a good fit to the random-walk model.
Thereby, two at first sight quite different approaches to
the glass transition problem ' are unified. The EME is
an equation for the energy probability distribution, which
even for an arbitrarily varying temperature and for very

A. The random-walk model in the present paper

The physical justification of the random energy model
was discussed in detail in Sec. II. The most drastic ap-
proximation is the partitioning of the liquid into nonin-
teracting regions, an approximation that must be made to
arrive at a tractable model. Replacing the deterministic
equations of classical physics with stochastic equations
seems more acceptable, though not without pitfalls.
A further approximation is the replacing of "complexity"
by "randomness. " This, in conjunction with the
discretization of state space lead to the model of a ran-
dom walk on a lattice with random energies. Models in-
volving random walks in random environments
("rugged" energy landscapes) have been used in many
contexts. ' ' ' ' In formulating a model of this type
one is led to ask whether the energy minima or the ener-

gy maxima should vary randomly, or both. The
random-walk model gives a simple and beautiful answer
to this question: No states are appointed "maxima" or
"minima. " All states are equal, but the higher-energy
states behaue as maxima, being part of the paths between
the populated, but rare, low-energy states. The assump-
tion of Gaussianly random energies is the simplest
choice. Fortunately, it leads to an equilibrium specific
heat which increases with decreasing temperature, as
seen in experiment.

Following the ideas of Derrida's "random energy mod-
el" it is possible to discuss the Kauzmann paradox
within the model: Since there is only a finite "excess" en-

tropy of the supercooled liquid, a truncation of the
Gaussian at some low energy is forced on the model to
avoid the Kauzmann paradox. ' This truncation im-
plies that the thermodynamics of the model becomes al-
most indistinguishable from that of Derrida's "random
energy model. " The truncation has not been discussed
here, because the truncated random-walk model does not
reproduce the experimental correlation between the
Kauzmann temperature and the To of the VFT law Eq.
(2).

The random-walk model contains three parameters.
There are two scaling parameters, the width of the
Gaussian o. and the attempt frequency I o, while the third
parameter is the dimensionless state space dimension d.
For a qualitative discussion of the model there is thus
only one relevant parameter d.
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B. A comparison to the original approach
of Sassier and co-workers

Bassler and co-workers ' justified the Gaussian den-
sity of states by reference to the central-limit theorem, as-
suming that the region energy is a sum of a large number
of independent contributions. However, one might simi-
larly argue that any macroscopic system has a Gaussian
density of states, implying that any such system has a
specific heat varying with temperature as T, which is
clearly incorrect. In the present paper the Gaussian is an
ad ho@ assumption, only justified from the fact that it
gives a "thermodynamic" density of states [Eq. (11)]. A
further difference is that Bassler and co-workers assumed
that the density of states fluctuates in time. This justified
their use of Metropolis dynamics, since the "particle"
awaits a favorable time for jumping where the barrier to
be overcome is negligible. Here, the density of states is
assumed constant and time independent. This difference
in the two approaches means that the present work can-
not maintain the original interpretation of the fact that
T~ depends on sample history. This was explained as a
logical consequence of the fact that the density of states
depends on preparation conditions. However, even for a
constant density of states does the glass transition tem-
perature depend on sample history.

The most elaborate version of the Ba.ssler model was
given in a recent paper by Arkhipov and Bassler. They
distinguish between a high-temperature regixne described
by the random-walk model and a low-temperature regime
described by the EME. The present work fully confirms
this picture. Here, however, the random-walk model is
assumed to be the underlying model at all temperatures,
and the parameters of the low-temperature approximate
EME are uniquely determined from the random-walk
model.

C. From the random-walk model to the KME

At low temperatures the populated states of the
random-walk model are rare low-energy states, and the
transitions between these far apart states follow the op-
timal paths, the ones that have the lowest maximum en-
ergy. The distance between two low-energy states is large
and the maximum energy of an optimal path is close to
the percolation energy defined from the site percolation
threshold by Eq. (14). A number of authors have previ-
ously emphasized the importance of percolation at the
glass transition, ' ' ' but in contexts different from
the present.

The importance of percolation at low temperatures
means that the random-walk model here is regarded as
consisting of states (=the deep minima) separated by bar-
riers of the same height. Effectively, the model reduces
to a model of the "trapping" type used, e.g., for describ-
ing trapping of electrons in amorphous semiconductors.
Interestingly, it has previously been noted that the pre-
dictions of trapping models are almost indistinguishable
from the predictions of the EME.

The existence of the percolation energy makes it possi-
ble to distinguish two temperature regimes for the
random-walk model, a high-temperature regime opposed

to the low-temperature regime where ~E(T) ))~E, ~. In
the high-temperature regime, the most likely states usual-
ly have one or more neighbors with a lower energy and
these states consequently have a very short "lifetime. " In
the low-temperature regime, typical populated states are
surrounded by states all of which have a higher energy.
Only well into the low-temperature regime does the ap-
proximate EME description apply. This picture, which is
valid whenever d )2 (for d =2 there is no high-
temperature regime), is close to that recently advocated
in general terms by Hunt. ' ' He predicts that viscous
liquids have a high-temperature regime described by
effective-medium type theories and a low-temperature re-
gime where percolation effects dominate. A two regime
picture also results from the mode-coupling theory, but
in a different context.

The low-energy states could be thought of as effectively
including a number of their relatively low-energy neigh-
boring states, thus forming rather complex low energy
"basins", in agreement with the ideas of Stillinger and
Weber ' and Angell. " The complexity of the basins
implies that considerable entropy resides inside each
basin. " Note that this picture of complex minima
derives from a model where neighboring energies are
completely uncorrelated.

A transition between two low-energy states is a com-
plex sequence of steps. Such a transition involves an ele-
ment of cooperativity ' in the sense that a long sequence
of jumps is undertaken in order to have a successful tran-
sition. Thus, at low temperatures the random-walk mod-
el contains both cooperativity and heterogeneity, the two
factors identified by Scherer as being important for any
realistic model of viscous liquids. The random-walk
model also conforms to the thoughts of Goldstein in
1969, expressing a firm belief that, "when all is said and
done, the existence of potential energy barriers large
compared to the thermal energy are intrinsic to the oc-
currence of the glassy state, and dominate fiow, at least at
low temperatures. "

The approximate EME description of the random-walk
model ignores the spatial structure of the state space (the
only trace left being the d dependence of the percolation
energy). In the limit of large d this is not unrealistic,
since there are many deep energy minima available not
too far from a given minimum. Consequently, transitions
to all states should be allowed with equal probability, as
in the EME.

D. Computer simulations: Comparing
the random-walk model to the EME predictions

The approximate EME description makes it possible to
study the random-walk model for realistic long times.
This involves a numerical implementation of the analytic
EME solution valid for the approach to thermal equilibri-
um at a fixed temperature (Appendix). In order to check
the validity of the EME approximation, computer simu-
lations were carried out (Sec. IV). The EME is expected
only to be valid in many dimensions at low temperatures
and long times, a regime that cannot be studied by even
the fastest computers available today because of two
problems: At low temperatures the most likely states are
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very rare so enormous lattices are needed; also, the relax-
ation times are extremely long. Instead, the simulations
were carried out in two dimensions and at moderate tem-
peratures. Despite this, the computer simulations re-
vealed a rather good agreement with the EME predic-
tions. A numerical study of therm alization in the
random-walk model was previously performed by Bassler
and co-workers, starting in equilibrium at infinite temper-
ature. ' In Figs. 4 and 5 of the present paper, the
thermalization was studied going from one finite to
another finite temperature. A surprising thing happens
in the more exotic case going from a low to a high tem-
perature (Fig. 5) where a two-bump structure appears at
intermediate times, a phenomenon that is reproduced by
the EME. Thus, if the random-walk model is realistic,
one may induce a "dynamically generated phase separa-
tion" in a glass by the following procedure: Anneal the
glass for a very long time at a relatively low temperature,
then increase the temperature and finally quench the
glass at the right time in order to catch it in a state corre-
sponding to Fig. 5(c). The dynamically generated phase
separation results in a glass consisting of low-energy re-
gions and high-energy regions, but only few of intermedi-
ate energy. Such a glass has a well-defined correlation
length, equal to the region size.

The rest of Sec. VI deals with the EME independently
of its connection to the random-walk model.

E. The KMK as the simplest possible
truly cooperative master equation, "derived"

from the non-Arrhenius temperature dependence
of the average relaxation time

Since most naive phenomenological models involving a
distribution of energy barriers give an average relaxation
time r(T) with an apparent activation energy that de-
creases with decreasing temperature, the observed non-
Arrhenius r(T) must contain an important clue to the
construction of a phenomenological model. Assuming
that the activation entropy plays little role we write

~E, (T)/(k~ Pr T =roe (36)

Experiments imply that b,E ( T) increases as the tempera-
ture decreases. The simplest way to explain this is as fol-
lows: b.E(T) is the difference between the barrier to be
overcome and the most likely region energy. If a region
contains many molecules ("cooperativity"), the most like-
ly energy is by general thermodynamic principles close to
the average energy E( T). If furthermore the maximum
to be overcome is assumed to be constant, =E„one has

bE(T)=E, —E(T) . (37)

Since E( T) decreases with decreasing temperature, the
barrier increases. This simple idea is the basis for the
EME as a model for viscous liquids (independent of the
random-walk model): Equation (37) motivates Eq. (15)
and to derive the EME one just needs the further
assumption —again the simplest possible —that, once ex-
cited into the transition state, a region ends up in a ran-
domly chosen other state. This assumption means that

an excitation must be a complete reordering of the region
rnolecules. Thus, the EME is truly cooperative.

F. The EME as the simplest master equation
conforming to:the Goldstein-Brawer picture (Fig. 1)

In an interesting paper from 1972, Goldstein pro-
posed a picture of viscous Bow where the transition state
is the "high-temperature, more-Quid, liquid usually stud-
ied by theorists. " Once excited into this common transi-
tion state —being totally different from the potential en-
ergy minimum which the region was excited from —the
only reasonable assumption is that any other (low energy)
state can be reached. In the EME these other states are
reached with equal probability. Thus, from Goldstein's
ideas ' one is led almost automatically to the EME.
However, Goldstein did not discuss any master equation;
a master equation in the spirit of his ideas was set up by
Brawer in 1984. ' Brawer's model is more detailed than
Goldstein's and his master equation is more complex
than the EME. In the 1985 version of Brawer's model a
region has K volume elements, each of which has two
states: a low-density (high-energy) state and a high-
density (low-energy) state. If a certain fraction of. the IC
volume elements are excited into the low-density state, a
transition is allowed. The jump thus involves a number
of the volume elements forming a complex sequence of
density changes, somewhat like a transition between two
low-energy states in the random-walk model.

G. The EMK interpretation versus the naive
interpretation of the activation energy

Figure 7 sketches typical experimental results for the
average relaxation time using an Arrhenius plot (full
curves): There is a non-Arrhenius high-temperature re-
gime for the equilibrium viscous liquid and an Arrhenius
low-temperature regime (the glass). The naive interpreta-
tion of this [Fig. 7(a)] is based on writing
r(T)=roexp[bF(T)l(k~T)] and using the standard ther-
modynamic relations b F =AE —TAS and d AI' /d T
= —AS; from this it is easy to show that the activation
energy b.E is the slope of the tangent (dashed line). This
slope changes abruptly at the glass transition, which is
sometimes explained as being due to the fact that below
T relaxation takes place in an essentially fixed structure,
while above T the activation energy has an additional
contribution from structural changes. Figure 7(b) gives
the EME interpretation of data which follows from Eq.
(15) [or Eqs. (36) and (37)]. Here, the activation energy
bE is the slope of the secant from r(T) to ro. Thus, at
T =T the activation energy simply stops changing, be-
cause glassy relaxation takes place in an essentially fixed
structure.

H. A qualitative comparison of the KME to experiments

The random-walk model has been quantitatively suc-
cessfully compared to experiments on a number of glass-
forming liquids. ' ' We here proceed to argue that the
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EME itself, despite being very simple, qualitatively repro-
duces a large number of experimental observations, yields
some new predictions, and also some "wrong" predic-
tions. Most of the properties of the EME listed below
will not be detailed here, but are straightforward to
derive.
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T T
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FIG. 7. Naive interpretation of the activation energy (a)
compared to the interpretation underlying the EME (b). Both
figures show an Arrhenius plot of the same typical average re-
laxation time data for the supercooled liquid (non-Arrhenius
part, T ) Tg) and for the glass (Arrhenius part, T (Tg). In (a)
the activation energy is interpreted as the slope of the tangent,
which changes discontinuously at Tg. In (b) the activation ener-

gy is interpreted as the slope of the secant drawn to the micro-
scopic time. In both cases one finds that the activation energy
increases as the temperature decreases. In (b), at the glass tran-
sition the activation energy stops increasing and becomes con-
stant. In the naive interpretation (a), the activation energy
changes discontinuously at the glass transition.

1. Quaiitatively correct predictions of the E~E

(a) The EME gives a qualitatively correct temperature
dependence of the average relaxation time above and
below T (Fig. 7);

(b) The preexponential of r(T) for glassy relaxation is
predicted to be close to ~0, i.e., a phonon time; '

(c) A true Arrhenius behavior of r( T) implies a zero re-
gion specific heat and thus no distribution of relaxation
times. ' " ' If the region size is universal, as conjec-
tured by Nemilov, ' ' there is a correlation between
the magnitude of the "excess" specific heat (the
configurational specific heat), the degree of non-
Arrhenius behavior of r( T), and the relaxation time dis-
tribution width;

(d) If the region specific heat is regarded as roughly
constant close to Tg, the EME predicts a proportionality
between I /Tg and the logarithm of the cooling time;

(e) In the glassy state, energy relaxation proceeds ac-
cording to the EME with a logarithmic time dependence
[compare Eq. (24)], "ln( t) kinetics, " " ' with a
slower than logarithmic time dependence at both the ini-
tial and final stages. The logarithmic relaxation law is
conventionaHy explained as being due to a "relaxation"
of the relaxation rate itself. ' ' ' '8 ' The EME con-
forms to this picture in a particularly simple way;

(fl For relaxation upon a sudden change in tempera-
ture an asymmetry is predicted between the two possible
cases, a well-known phenomenon referred to as "non-
linearity", '

(g) If one assumes a correlation between the region en-

ergy and its volume (which is necessary because the
viscous liquid has a larger thermal-expansion coeKcient
than the glass or crystal), the EME also gives predictions
regarding the pressure dependence of the average relaxa-
tion time. %'riting r(p) ~ exp[phV(p)], experiments im-

ply that the activation volume increases as the pressure
increases. " If b V(p)= V, —V(p) just as for the activa-
tion energy this observation is explained, since the region
average volume decreases with increasing pressure. A
further possibility is to assume a linear relation between
region volume and energy. In that case the normalized
frequency-dependent isothermal compressibility is equal
to the normalized frequency-dependent specific heat, as
proposed by Zwanzig; "' there are some indications that
this is the case in experiment. " Also, for quantities un-
correlated with the region energy, it can be shown that
the EME predicts a slight "decoupling" of their average
relaxation time from that of the frequency-dependent
specific heat, where the average relaxation time for the
latter becomes somewhat larger (Fig. 8). This is also the
case experimentally. "
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FIG. 8. Decoupling of thermal relaxation times from other
relaxation times according to the EME for a Gaussian density
of states with E, =O. The maximum relaxation frequency is

given in units of I o and the temperature in units of o. /k&. The
full curve gives the loss peak frequency for a quantity that is un-

correlated to the energy (calculated from its time autocorrela-
tion function). The dashed curve is the specific-heat loss peak
frequency (Ref. 117). The figure shows that there is a slight

slowing down of thermal relaxations compared to other relaxa-

tions, an e6'ect that has been seen in experiments (Ref. 112).

2. New predictions of the EME

(a) At low temperatures the average relaxation time of
the equilibrium viscous liquid is predicted to become Ar-
rhenius with a pre-exponential equal to 7 p. Thus a
change in sign of the curvature of the Arrhenius-plot,
d in[a(T)]Id (T '), is predicted. Similarly, a change in
sign of d In[r(p)]/dp at large pressure is predicted.
This follows from the fact that a region must have a
lowest energy state or a minimum volume;

(b) The EME gives detailed predictions regarding the
nature of the asymmetry of relaxation upon sudden
changes in temperature: For a sudden cooling from
thermal equilibrium relaxation is predicted to proceed
continuously (Fig. 4), while relaxation upon a sudden in-
crease in temperature is peculiar, resulting in a two-bump
energy probability distribution at intermediate times (Fig.
5). In the latter case, if the relaxation is interrupted by
quenching to low temperatures, one ends up with a
strange glass in which some regions have low energy and
some have high energy, a "dynamically generated phase
separation. " The energy correlates with the volume
[compare H 1 g]. Therefore, a dynamically generated
phase separated glass will give an anomalous x-ray
scattering signal. Nemilov has predicted a similar
phenomenon on purely thermodynamic grounds; "

(c) The EME predicts that there are two different lim-
iting cases of the glass transition (Sec. V), "relaxational"
(previously called "fast") glass transitions and "simple
freezing" (previously called "slow" ) glass transitions.
The latter type freezes-in the region energy probability
distribution at T~ and the glass simply inherits the struc-
ture of the equilibrium liquid at this temperature. At a
relaxational glass transition, relaxation processes right at
T result in a frozen-in region energy distribution
different from the equilibrium distribution. (Of course,

glasses may be produced by a third kind of process, a
quench to low temperatures in a time much shorter
than the average relaxation time at the starting
temperature —this process clearly results in a frozen-in
region energy distribution that is equal to the equilibrium
distribution at the starting temperature. )

3. "Wrong" predictions of the EME

(a) The VFT law Eq. (2) is inconsistent with the EME
which predicts a finite average relaxation time at all tem-
peratures. Experimentally, however, deviations from this
law seem to occur for large viscosities, where the data ex-
hibit a less dramatic temperature-dependence than pre-
dicted 2P, 29, si

(b) The Kauzmann paradox is also inconsistent with
the EME (without a low-energy cutoff in the density of
states), which at all temperatures predicts a positive
specific heat. However, a suitably chosen region density
of states (e.g., a truncated Gaussian ' ' ) easily repro-
duces the experimental configurational entropy;

(c) The Kohlrausch-Williams-Watts law (stretched ex-
ponentials) for the time dependence of the energy relaxa-
tion is not reproduced by the model. However, the EME
does predict broad distributions of relaxation times.

These three points are places where the EME on the
one hand does not reproduce the conventional picture of
viscous liquids and glassy relaxation, but on the other
hand is not inconsistent with experiment. The final point
to be mentioned here is a more serious objection to the
EME-

(d) If the correct non-Arrhenius behavior of r( T) is to
be reproduced by choosing a suitable n (E) (possibly a
non-Gaussian), the model predicts a peak of the imagi-
nary part of the frequency-dependent linear specific
heat" that is too broad. This conclusion seems to hold,
despite the fact that only few measurements of this quan-
tity have been published and that there is a considerable
discrepancy between the results of Christensen" and
those of Birge and Nagel. " This disagreement between
the EME and experiment means that the EME is too sim-
ple to be realistic. Preliminary work" indicates that it is
possible to solve this problem and still retain the region
assumption and the assumption that the only important
parameter is the region energy. This is done by the fol-
lowing extension of the EME. One introduces theo densi-
ties of states, one numbering the minima and another
essentially giving the entropy of each minimum. Thus,
each minimum is a cluster of states that may be reached
from each other by not exciting all the way to the energy
E, ." Besides giving greater Aexibility to the EME mod-
el, making it able to fit the frequency-dependent specific-
heat experiments, this approach also allows for the ex-
istence of P relaxation as the process associated with in-
traminima transitions. "

VII. CONCLUSIONS

A derivation of Bassler's random-walk model has been
sketched, which emphasizes the potential importance of
this model as a "canonical" or prototype phenomenologi-
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cal model for viscous liquids and the glass transition.
The random-walk model views relaxation as a conse-
quence of activated transport in a multidimensional
rugged energy landscape. It is probably the simplest
model of this type. The "derivation" of Sec. II traces the
random-walk model back to Newton's equations for the
rnolecules of one region. However, the derivation is in no
way exact, which is clear just from the fact that the crys-
talline state of much lower energy than the supercooled
liquid state is absent from the model.

It has been shown that the EME gives a good approxi-
mate description of the energy fluctuations of the
random-walk model. The EME is solvable by a combina-
tion of analytical and numerical techniques (Appendix).
This makes it possible to predict the behavior of the
random-walk model for an arbitrary temperature time
variation at very long times. Independently of its
justification from the random-walk model, the EME may
have a value of its own as a phenomenological model for
viscous liquids and the glass transition. It incorporates
true cooper ativity and is consistent with statistical
mechanics, while still being simple and solvable for realis-
tic laboratory time scales. It is noteworthy that such a
simple model leads to new predictions, like that there are
two different types of glass transitions and that a well-
annealed glass upon heating gives an anomalously large
x-ray scattering at intermediate times before equilibrium
is reached.

P;(s)= f P;(t)e "dt . (A3)

Since the Laplace transform of the time derivative of a
function f (t) is sf(s) —f (0), Eq. (A2) becomes upon La-
place transforming

sP;(s) —P;(0)= I;P—;(s)+n;X(s), (A4)

where X (s) =g~+ iI P.(s). This equation determines
P, (s) from a knowledge of the initial probabilities P;(0).
The probabilities P;(t) are calculated by the inverse La-
place transformation,

P;(t)= f P;(s)e"ds .
27Tl —i oo

(A5)

Isolating P; (s) from Eq. (A4) leads to

P(0) n,
P;(s)= + X(s) .s+I; s+I; (A6)

From this expression an equation for X(s) is found by
multiplying with I; on each side and summing:

I;P;(0) n,.I,.X(s)= g +X(s) g
i=1 i i=i i

(A7)

At any temperature this equation may be solved by La-
place transformation. ' The Laplace transform of
the function P;(t) in Eq. (A2), P, (s), is as usual defined
by
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y [r,P,.(0)/(s+r, )]
X(s)=

N
1 —g [n;I;/(s+I;)]

Using Eq. (Al) the denominator may be rewritten

(A8)

APPENDIX: SOLVING THE ENERGY
MASTER EQUATION

n;(I;+s —s)

s+r,
N n.

=',&, , +r, (A9)

P =1; g nz=l, (A 1)

the EME Eq. (20) becomes upon discretization

dp; N= —I,P, +n, g I JPJ (i=1, . . . , N) . (A2)

The normalization condition for the n 's [Eq. (Al)] en-
sures probability conservation at all times.

We first calculate how an initial nonequilibrium energy
probability distribution at a fixed temperature converges
to the canonical equilibrium distribution. ' To
solve the EME numerically, it must be discretized. The
energy axis is discretized into N evenly spaced energies,
F. l « E&. At low temperatures it is important to
include large negative energies into the set of discrete en-
ergies, despite these lying far into the Gaussian tail. If
one defines I, —= I (E,. ), P;:P(E;, t) /C—, and
n;

=—n (E; )/C„, where the normalization constants C~ and
C„are determined so that

When this is substituted into Eq. (A8), Eq. (A6) becomes
(changing the summation index from i to j)

P(0) n;

s+I; s(s+I, )

N

[I/P (0)/(s + I )]
j=l

1V

g [n /(s+I )]

(A10)

From Eq. (A10) P;(t) may be calculated via Eq. (A5),
where the integration contour in the complex plane lies
to the right of all poles of P;(s). The integral is evaluated
by including an infinitely large semicircle surrounding the
left half of the complex plane. This closes the integration
contour and the residue theorem may be applied. For
each i there are N poles which, due to the structure of the
energy master equation, are the same for all P; (s) There.
is one pole at s =0. The apparent singularities at
s = —I, are all "removable", i.e., not real singularities.
Ifj =i this follows from the fact that
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n; I,P;(0)
lim (s +I; )P;(s)=P,.(0)+ =0,

S~—I, ( —I;) n;

(A 1 1)

while forj Wi it follows from
g [ni/(I J

—cok) ]

(k =I, . . . , & —1) .

I P (0)
lim (s +1 )P;(s)=0+0

S —r.j n J

=0.

Besides the s =0 pole there are poles whenever s obeys

(A19)

Having determined the residues, the integral Eq. (A5) is
now easily calculated by the residue theorem:

n.

j=11
s+I (A13) N —1 n.

P, (t)=Po, + g Ake
k=i cok l cok

(A20)

This equation has X —1 solutions, each of which is a neg-
ative real number. The solutions are conveniently denot-
ed by s = —

&uk and numbered such that

I k (cok (I k+, (k = I, . . . , X —1) .

The co's are thus defined by

N n. =0 (k =1, . . . , X —1) .
I J cok

(A14)

(A15)

N

g P.(0)
n,.

limsP; (s ) =0+
g (ni/I, )
1=1

n;/1;
N

g (n, /1 )

(A16)

Since the quantity n, /1, ~ n;exp( PE;) is pro—portional
to the canonical equilibrium probability for the system
having energy E;, the residue at s =0 is simply the nor-
malized equilibrium probability Po,'

limsP, (s) =Po; .
S—+0

(A17)

Using the rule that the residue of a function of the form

f (z)/g (z) at a simple zero for g (z) at z =zo is equal to
f (zo )/g'(zo), one finds for the residues at s = —cok

lim (s+cok)P;(s)S~ Q) k

P;(0) n,=0 +I;—co„(—cok )(I;—cok )

[1 P (0)/(I —cok)]
j=l

X

g [( nj )/(I, ——cok)']

where

nI
Ak,

cok(1 —
cok)

(A18)

We next proceed to find the residues. At the pole s =0
the residue is given by

The equations (A15), (A19), and (A20) give the solution
of the energy master equation at a fixed temperature. As
expected, the solution converges to the equilibrium solu-
tion as t ~~. The coI, 's play the role of characteristic re-
laxation rates. Note that conservation of probability is
ensured by virtue of Eq. (A15).

In the numerical implementation, the coj, 's are deter-
mined from Eq. (A15) by the bisection method. Depend-
ing on the numerical precision large numerical errors
may arise from the term 1/(I k

—
cok) in Eqs. (A19) and

(A20) at low energies where cok is extremely close to I k,
in this case one may use Eq. (A15) to approximate as fol-
lows:

nk .
1

.~~ I —cok
(A21)

Another problem that may arise is overAow. In the
present work both these numerical problems were avoid-
ed by using the 80 bit Aoating point "extended" data type
of Turbo Pascal. Alternatively, overAow problems may
be avoided by the following procedure: The numbers
P PJ, (0),ni, I k, cok are each represented by their loga-
rithm. Each sum appearing in Eqs. (A15), (A19), and
(A20) is evaluated by first identifying the leading term
and then factorizing it. There remains a sum of terms
less than one, each term being a product which is evalu-
ated as, e.g., ab =exp[in(a)+ln(b)].

By means of Eq. (A20) the master equation may be
solved numerically at arbitrary long times at a fixed tem-
perature with great accuracy. If the temperature changes
in time, the above method is applied for time steps small
enough that the temperature may be regarded as con-
stant. In the solutions of the master equation plotted in
Figs. 2 —5 the energy axis was discretj. zed into energies
spaced 0. 1o. apart spanning an energy interval of 10 o.,
suitably placed on the energy axis depending on the prob-
lem. The solutions plotted in Fig. 2 were obtained from
2X100 time steps where the temperature is changed in
each step. In two dimensions the percolation energy [Eq.
(14)] is given by E, =0 235cr.
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