Theoretical study of the stabilization of cubic-phase ZrO2 by impurities

E. V. Stefanovich, A. L. Shluger, and C. R. A. Catlow
Phys. Rev. B 49, 11560 – Published 1 May 1994
PDFExport Citation

Abstract

We have performed a thermodynamical analysis of the phase diagrams for ZrO2-CaO and ZrO2-MgO solid solutions which has demonstrated that differential heats of mixing are important parameters determining the stabilization of the cubic phase of ZrO2 by impurities. It is shown that the differential heats of mixing in the cubic phase of these systems should be lower than in the tetragonal phase. To understand this effect we have studied the electronic and geometrical structures of the pure and doped ZrO2 crystals. Three computational techniques were employed: the ab initio Hartree-Fock pseudopotential method is used to study the atomic and electronic structures of the three phases of pure ZrO2 crystals; the defect energies and the differential heats of mixing values are calculated by means of the atomistic simulation technique using the shell model and the pair-potential approximation; the self-consistent semiempirical intermediate neglect of differential overlap method is used to study changes in the electronic structure imposed by the defects. From the results of various calculations, we are able to identify the key factors contributing to the mechanism of stabilization of cubic ZrO2 by impurities. These include the lattice distortion around vacancies, the lowering of the dielectric constant in the cubic phase, the impurity-stimulated increase of ionicity, and the removal of the Zr orbital degeneracy.

  • Received 13 December 1993

DOI:https://doi.org/10.1103/PhysRevB.49.11560

©1994 American Physical Society

Authors & Affiliations

E. V. Stefanovich and A. L. Shluger

  • The Royal Institution of Great Britain, 21 Albemarle Street, London W1X 4BS, United Kingdom an
  • Department of Chemical Physics of Condensed Matter, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586 Latvia

C. R. A. Catlow

  • The Royal Institution of Great Britain, 21 Albemarle Street, London W1X 4BS, United Kingdom

References (Subscription Required)

Click to Expand
Issue

Vol. 49, Iss. 17 — 1 May 1994

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×