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It is known that electron interactions can cause a perfect spin polarization of the Fermi surface
of a metal. In such a situation only half of the non-interacting Fermi surface is available, and
thus this phase is commonly referred to as a ‘half-metal’. Here we argue that, in multi-band
electronic systems with nesting, further ‘fractionalization’ of the Fermi surface is possible. Taking
the AA bilayer graphene as a convenient test case, we demonstrate that, under suitable conditions
imposed on the electron interactions, doped AA bilayer graphene can host a ‘quarter-metal’ state.
In such a state, only one quarter of the non-interacting Fermi surface (Fermi contour) reaches the
Fermi energy. At higher doping level, other ‘fractional’ metals can emerge. We briefly analyze the
transport properties of these proposed phases.

PACS numbers: 73.22.Pr, 73.22.Gk

Introduction.— In usual metals, the total spin polar-
ization of the charge carriers at the Fermi surface is zero.
A strong electron-electron interaction can lift the spin
degeneracy, and induce spin polarization of the states at
the Fermi surface. In the extreme case of the so-called
half-metals [1–3], this polarization is perfect: all states at
the Fermi energy have identical spin projection. Indeed,
various rather different systems with transition-metal
atoms are found to be half-metals [4–7]. The existence of
spin-polarized currents in these half-metals makes them
promising materials for applications in spintronics [3, 8].
Several papers [9–13] predict half-metallicity in carbon-
based systems. The half-metals free of heavy atoms could
be of interest for bio-compatible applications and carbon-
based electronics [14–19].

In previous works [20, 21] we have proposed a mecha-
nism for half-metallicity in electronic systems with weak
interactions. This requires the existence of two Fermi
surface sheets with nesting between them. These sheets
are referred below as having ‘electron/hole charge fla-
vors’ [22]. When doped, the spin-density wave (SDW)
or charge-density wave (CDW) insulator state in such a
model is replaced by this type of half-metallic state.

In a multi-band system with nesting, besides spin, an
additional discrete quantum number ξ emerges, enumer-
ating pairs of nested Fermi surface sheets. In such a situ-
ation, one may wonder if a many-body state with an ad-
ditional polarization with respect to ξ could be realized.
The stability of this peculiar conducting state, which we
call below “fractional metal” (FraM), is the main topic
of this paper.

It follows from the FraM definition that only a mate-
rial with sufficiently complex multi-sheet Fermi surface
with nesting might host a FraM phase. This requirement
makes AA bilayer graphene (AA-BLG) a promising can-
didate to be a FraM. The AA-BLG is less studied than

the Bernal stacked (AB) bilayer. Yet, AA-BLG samples
have been manufactured [23–26]. Moreover, progress in
van der Waals heterostructures fabrication [27] allows one
to hope that more efforts will be undertaken in the di-
rection of producing high-quality AA-BLG samples. As
in other graphene structures, the low-energy states of
the AA-BLG can be classified by their proximity to ei-
ther the K1 or K2 Dirac point. A given Dirac point is
encircled by an electron Fermi surface sheet and a hole
sheet; altogether there are four Fermi surface sheets in
the whole Brillouin zone. We argue that, for such a de-
generate Fermi surface structure and under rather com-
mon assumptions about the electron-electron coupling,
doped AA-BLG could enter the FraM phase. We investi-
gate the stability of this phase and also briefly discuss its
most immediate properties, such as transport of spin and
valley quanta, and peculiar features of superconductivity.

Model.— The electronic properties of AA-BLG are de-
scribed by the Hamiltonian Ĥ = Ĥ0 + Ĥint, where Ĥ0

is the single-electron part and Ĥint corresponds to the
interaction between quasiparticles. For AA-BLG [19]:

Ĥ0 =−t
∑
〈mn〉lσ

d†ml0σdnl1σ−t0
∑
naσ

d†n0aσdn1aσ+H.c.−µn . (1)

Here d†mlaσ (dmlaσ) is the creation (annihilation) opera-
tor of an electron with spin projection σ in layer l [l = 0
(l = 1) corresponds to upper (lower) layer] on sublattice a
[a = 0 (a = 1) represents sublattice A (B)] at the position

m. Also, n =
∑

nlaσ d
†
mlaσdmlaσ is the total charge den-

sity, µ is the chemical potential, and 〈...〉 denotes nearest-
neighbor pairs. The amplitude t = 2.57 eV (t0 = 0.36 eV)
describes the in-plane (inter-plane) nearest-neighbor hop-

ping. Ĥ0 can be readily diagonalized in a new basis γk`σ
(` = 1, . . . , 4):

Ĥ0 =
∑
k`σ

(
ε

(`)
0k − µ

)
γ†k`σγk`σ, (2)
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where k is the momentum; the eigenenergies and eigen-
operators are

ε
(1)
0k = −t0 − tζk, ε

(2)
0k = −t0 + tζk,

ε
(3)
0k = +t0 − tζk, ε

(4)
0k = +t0 + tζk, (3)

dklaσ = exp (−aiϕk)[γk1σ+(−1)aγk2σ+

(−1)lγk3σ+(−1)a+lγk4σ

]
/2. (4)

In Eq. (4), ϕk = arg(fk), ζk = |fk|, where fk =
1 + 2 exp (3ikxa0/2) cos (

√
3kya0/2), and a0 = 1.42 Å is

the in-plane carbon-carbon distance. The band ` = 2
(band ` = 3) crosses the Fermi level and forms two elec-
tron (two hole) Fermi surface sheets, one centered at
the Dirac point K1 = 2π(

√
3, 1)/3

√
3a0, and another at

K2 = 2π(
√

3,−1)/3
√

3a0. To distinguish electron and
hole Fermi surface sheets, we introduce the charge flavor
index ν = (−1)`: it equals ν = 1 (ν = −1) for electrons
(holes). If we label [22] the graphene valley K1 (valley
K2) by ξ = +1 (by ξ = −1), any sheet can be uniquely
identified by values of ν and ξ. Since all sheets are circles
of identical radius kF0 = 2t0/3ta0, we have two nesting
vectors: 0 and Q0 = K1 −K2.

The Coulomb interaction between electrons is

Ĥint =
1

2Nc

∑
kk′qla
l′a′σσ′

V ll
′

aa′(q)d†klaσdk+qlaσd
†
k′l′a′σ′dk′−ql′a′σ′ ,(5)

where Nc is the number of elementary cells in the sample
and V ll

′

aa′(q) is the Fourier transform of

V ll
′

aa′(r) = VC

(√
[r + (a− a′)δ1]2 + (l − l′)2D2

)
. (6)

Here, VC(|r|) is the screened Coulomb potential, δ1 =
(a0, 0), and D = 3.3 Å is the inter-layer distance. The
dependence of the interaction on various indices accounts
for different distances between electrons at different sub-
lattices and/or layers.

Mean field approach.— Theory predicts [28–31] that
the electron repulsion converts the electronic “liquid” of
the AA-BLG into a SDW insulator. The SDW order
is characterized by non-zero values of 〈γ†k2σγk3σ̄〉 and

〈γ†k1σγk4σ̄〉, which describe excitonic pairs with vanish-
ing total momentum. It is possible to define a different
order parameter oscillating in space with the wave vector
Q0, e.g., 〈γ†k+Q02σγk3σ̄〉. However, the oscillating order
parameter has lower coupling constant, because it cannot
interact with another oscillating order parameter unless
they have opposite momenta. This condition strongly re-
duces the effective coupling constant. As a result, such a
phase has higher energy, and we will not consider it here.
Switching to band operators γ and neglecting the terms
irrelevant to the mean field approximation, we transform
Eq. (5) and write

Ĥint = Ĥ(1) + Ĥ(2) + Ĥ(3) + Ĥ(4), (7)

where

Ĥ(1) = − 1

Nc

∑
kpσ

V
(1)
kp

[
(γ†k1σγk4σ̄)(γ†p4σ̄γp1σ)

+(γ†k3σ̄γk2σ)(γ†p2σγp3σ̄)
]
, (8)

Ĥ(2) = − 1

2Nc

∑
kpσ

V
(2)
kp

[
(γ†k1σγk4σ̄)(γ†p1σ̄γp4σ)

+(γ†k2σγk3σ̄)(γ†p2σ̄γp3σ) + H.c.
]
, (9)

Ĥ(3) = − 1

Nc

∑
kpσ

V
(3)
kp

[
(γ†k1σγk4σ̄)(γ†p3σ̄γp2σ)

+(γ†k2σγk3σ̄)(γ†p4σ̄γp1σ)
]
, (10)

Ĥ(4) = − 1

2Nc

∑
kpσ

V
(4)
kp

[
(γ†k1σγk4σ̄)(γ†p2σ̄γp3σ)

+(γ†k2σγk3σ̄)(γ†p1σ̄γp4σ) + H.c.
]
, (11)

with the coupling constants V
(1,2,3,4)
kp defined by

V
(1,3)
kp =

1

8

[
V 00
AA+V 10

AA±
(
V 00
AB+V 10

AB

)
e−i∆ϕ+C.c.

]
, (12)

V
(2,4)
kp =

1

8

[
V 00
AA−V 10

AA∓
(
V 00
AB−V 10

AB

)
e−i∆ϕ+C.c.

]
. (13)

Here V ll
′

aa′ = V ll
′

aa′(k−p) = V ll
′

a′a(p−k), and ∆ϕ = ∆ϕkp =
ϕk − ϕp. One can assume [32, 33] that intra-layer and
inter-layer interactions in a graphene bilayer are approxi-
mately equal (at small momentum): V 00

aa′ ≈ V 10
aa′ . In such

a limit, we have in the first approximation

V
(1,3)
kp ≈ 1

2
VC(k− p) [1± cos(∆ϕkp)] , V

(2,4)
kp ≈ 0. (14)

Thus, the interaction can be approximated as Ĥint ≈
Ĥ(1) + Ĥ(3). We analyze this Hamiltonian using mean
field theory, and the terms Ĥ(2,4) will be taken into ac-
count perturbatively. The mean field version of Ĥint is

ĤMF
int =−

∑
pσ

∆̃pσγ
†
p4σ̄γp1σ+∆pσγ

†
p3σ̄γp2σ+H.c.+B, (15)

where

∆kσ =
1

Nc

∑
p

[
V

(1)∗
pk 〈γ

†
p2σγp3σ̄〉+V

(3)
pk 〈γ

†
p1σγp4σ̄〉

]
,

∆̃kσ =
1

Nc

∑
p

[
V

(1)
pk 〈γ

†
p1σγp4σ̄〉+V

(3)
pk 〈γ

†
p2σγp3σ̄〉

]
,

B =
∑
pσ

[
∆pσ〈γ†p3σ̄γp2σ〉+∆̃pσ〈γ†p4σ̄γp1σ〉

]
. (16)

The spectrum of the mean-field Hamiltonian can be
easily derived:

E
(2,3)
kσ = ∓Em

kσ, E
(1,4)
kσ = ∓Eh

kσ, (17)

Em
kσ=

√
|∆kσ|2+(t0−tζk)2, Eh

kσ=

√
|∆̃kσ|2+(t0+tζk)2.
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The grand potential of the system is equal to

Ω =

4∑
v=1

∑
kσ

(E
(v)
kσ − µ) Θ(µ− E(v)

kσ ) +B , (18)

where Θ(E) is the step-function. Minimization of Ω with

respect to 〈γ†p3σ̄γp2σ〉 and 〈γ†p4σ̄γp1σ〉 gives us the system

of equations for ∆̃kσ and ∆kσ:

∆kσ =
∑
p

{
V

(1)∗
pk ∆pσ

2NcEm
pσ

[
Θ(µ+ Em

pσ)−Θ(µ− Em
pσ)
]

+
V

(3)
pk ∆̃pσ

2NcEh
pσ

[
Θ(µ+ Eh

pσ)−Θ(µ− Eh
pσ)
]}
, (19)

∆̃kσ =
∑
p

{
V

(1)
pk ∆̃pσ

2NcEh
pσ

[
Θ(µ+ Eh

pσ)−Θ(µ− Eh
pσ)
]

+
V

(3)
pk ∆pσ

2NcEm
pσ

[
Θ(µ+ Em

pσ)−Θ(µ− Em
pσ)
]}
. (20)

The summation in Eqs. (19,20) covers the whole Brillouin

zone. However, the interaction V
(1,3)
pk is strongest when

p ≈ k, and decays for larger |p − k|. In the limit of
vanishing backscattering

V
(1,3)
bs ≡ V (1,3)

K1,K2
≈ 0, (21)

it is possible to define order parameters localized near the
specific Dirac point Kξ: ∆kσ = ∆kξσ, when k ≈ Kξ. We
see that, within our approximations, the electronic states
and the order parameters can be split into four indepen-
dent sectors, labeled by the multi-index s = (σ, ξ). A
sector with label s = (σ, ξ) contains electron states with
spin σ from valley ξ, and hole states with spin −σ from
the same valley. This definition implies that all states
within a sector have the same value of the product σξ.
The sectors are weakly coupled by neglected contribu-
tions proportional to Vbs and V (2,4). These corrections
will be studied perturbatively.

We add and subtract Eqs. (19) and (20), use Eqs. (14),
and change the summation by integration over the mo-
mentum near the Dirac point Kξ. We also assume that

both ∆ and ∆̃ depend on |k| only. Finally, using the
symmetry of our theory with respect to the sign of µ, we
derive for 0 < µ < t0

∆ks + ∆̃ks =

∫
p

V(k, p)

[
∆ps

2Em
ps

Θ(Em
ps − µ) +

∆̃ps

2Eh
ps

]
,

∆ks − ∆̃ks =

∫
p

U(k, p)

[
∆ps

2Em
ps

Θ(Em
ps − µ)− ∆̃ps

2Eh
ps

]
,(22)

where
∫
p
. . . = (2π/vBZ)

∫
pdp . . ., and the volume (area)

of the Brillouin zone is vBZ = 8π2/(3
√

3a2
0). In Eqs. (22),

the averaged coupling constants are

V (k, p) =

∫
dφ

2π
VC(

√
k2 + p2 − 2kp cosφ), (23)

U(k, p) =

∫
dφ

2π
VC(

√
k2 + p2 − 2kp cosφ) cosφ,

and the spectrum (17) in sector s = (σ, ξ) can be approx-
imated as

Em
ps
∼=
√
|∆s|2 + t20(1− p/kF0)2, (24)

Eh
ps
∼=
√
|∆̃s|2 + t20(1 + p/kF0)2 ∼= t0(1 + p/kF0),

where p = |p−Kξ|.
BCS-like approximation.— In general, we can choose

some model for VC(q) and solve Eqs. (22) numerically.
However, modeling the effective Coulomb interaction in
graphene bilayers is notoriously difficult, and no univer-
sal and compact answer is known [34]. In this situa-
tion, finding an accurate numerical solution to the inte-
gral equations (22) is impractical. Instead, we use the
simple BCS-like ansatz ∆s(q) = ∆sΘ(Λ− |q− kF0|) and
∆̃s(q) = ∆̃sΘ(Λ − |q − kF0|) for the order parameters
(the cutoff momentum Λ satisfies Λ < kF0), and assume
that V and U are constants independent of k and p. We
believe that this ansatz, despite its simplicity, captures
all the necessary physics. Now the integral equations be-
come non-linear algebraic equations

∆s + ∆̃s = g∆s ln

(
E∗

µ+
√
µ2 −∆2

s

)
+ g̃∆̃s,

∆s − ∆̃s =
g

α
∆s ln

(
E∗

µ+
√
µ2 −∆2

s

)
− g̃

α
∆̃s, (25)

where the energy scale is E∗ = 2t0Λ/kF0 and the cou-
pling constants are

g =
t0√
3πt2

V , g̃ =
Λ

2kF0
g, α = V /U > 1. (26)

It trivially follows from Eqs. (25) that ∆̃s = C∆s, where
C = (α − 1)/(α + 1 − 2g̃). At zero doping, which corre-
sponds to the case µ = ∆s, one finds

∆s = ∆0 = E∗ exp

[
−1

g

2α− g̃(1 + α)

1 + α− 2g̃

]
. (27)

This compact mean field solution is valid in the small
coupling limit; that is, when g (and g̃) is small, and,
consequently, ∆0 and ∆̃0 are much less than t0. The
doped state is characterized by µ > ∆s. To describe the
solution of Eq. (25) in such a regime, let us define the
partial doping xs: the concentration of electrons residing
in sector s, per single carbon atom. It is known [35–38]
that a finite xs acts to decrease the order parameter ∆s:

∆s(xs) = ∆0

√
1− 4xs

x0
, µ = ∆0

(
1− 2xs

x0

)
. (28)
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where x0 = ∆0t0/(π
√

3t2). It is easy to check that
Eqs. (28) indeed guarantee that µ exceeds ∆s, making
the doping of sector s possible. At T = 0 the partial free
energy (per unit cell) associated with doping is

∆Fs(xs) = 4

∫ xs

0

µ(x)dx = 4∆0

(
xs −

x2
s

x0

)
. (29)

Since a unit cell contains four carbon atoms, the factor
4 is required in this formula.

Fractional metal state.— The relations (28,29) describe
a single sector. To determine the state of the whole sys-
tem, we must understand how the total doping x is dis-
tributed between the sectors. One might expect that x
is spread evenly: xs = x/4. Yet such an assumption
might not be most advantageous thermodynamically: we
demonstrated [20, 21], for a two-sector system, that plac-
ing all the extra charge x into a single sector optimizes
the system free energy relative to the state with an even
distribution of x. To settle this issue for our four-sector
model, we must minimize the doping-related part of the
free energy for the whole system

∆F =
∑
s

∆Fs = 4∆0x−
4∆0

x0

∑
ξσ

x2
ξσ (30)

at fixed doping x =
∑
s xs. Simple calculations demon-

strate that, for x < x0, the term ∆F reaches its smallest
value, ∆Fqm = 4∆0(x− x2/x0), when all extra electrons
are placed into a specific sector s, while all other sectors
are kept doping-free

xs = x, xs′ = 0 for s′ 6= s. (31)

For example, ∆Fqm is smaller than ∆Fe = 4∆0x −
∆0x

2/x0, which is the free energy of the state with
xs = x/4 for all four s. For the distribution (31) the
Fermi surface lies entirely in sector s = (σ, ξ). There-
fore, only states with spin σ near the Dirac point Kξ

reach the Fermi level. In other words, the Fermi surface
is perfectly polarized in terms of both σ and ξ indices.
Since the insulating gap persists in three other sectors,
the state described by Eq. (31) may be called ‘a quarter-
metal’, a first example of a series of ‘fractional metals’.

As in the case of the half-metal in the system with
nesting [20, 21], the gap in the first sector closes when
increasing doping. The doped electrons begin to enter the
second sector, then to the third and fourth sectors. As a
result, the system passes respectively through the states
of a half-metal, 3/4-metal, and finally the gaps in all
sectors close and the system occurs in the usual metallic
phase. We can show that each transformation is a first-
order phase transition. The analysis of the electronic
states evolution with doping is quite similar to the half-
metal case [20, 21].

Stability of Fractional metal.— Above we neglected in-
teractions between electrons in different sectors. Then,

treating individual sectors independently, we derived
Eqs. (28,29). Now we want to assess the effects of the ne-
glected terms. There are two types of interaction terms:
(i) umklapp interaction Ĥ(2,4), Eqs. (9,11), which couples
sectors with the same ξ but different spins, and (ii) the

backscattering amplitude V
(1,3)
bs , which describes interac-

tions between sectors with the same σ but different valley
ξ, Eq. (21). In principle, Ĥ(2,4) also contain the backscat-

tering V
(2)
bs , which is even weaker, and will be neglected.

If the associated coupling constants are small, we can use
perturbation theory. The lowest-order perturbative cor-
rection Fum to the free energy due to the umklapp term
Ĥ(2) equals 〈Ĥ(2)〉. Thus, neglecting small contributions
due to ∆̃s, we determine the umklapp correction to the
free energy (per unit cell)

Fum = −F
2

∑
ξ

√(
1− 4x↑ξ

x0

)(
1− 4x↓ξ

x0

)
, (32)

where F = 8α2gum∆0x0/(1 + α)2g2, and the dimen-
sionless Fermi-surface-averaged umklapp coupling con-
stant is gum = t0V um/

√
3πt2. We also used the fact

that V (1), upon averaging over the Fermi surface, be-
comes equal to g(1 + α)/2α. When x is low, one has
Fum/F ≈ −1 + x/x0 +

∑
ξ (x↑ξ − x↓ξ)2/x2

0, which is
smallest at xs = x/4. A similar result can be derived for
the backscattering interaction. Thus, both the umklapp
and the backscattering favor an even distribution of dop-
ing over the sectors. However, in the limit gum � g2,
gbs � g2, their contributions are small, and cannot
destroy the fractional metal phase. The perturbative
derivation of the stability criterion is intuitively clear and
transparent. Its primary purpose is to demonstrate that
the fractional metal phase can survive weak deviations
from the highly idealized model neglecting any couplings
between the sectors. On the other hand, this criterion
is very stringent, and one may wonder if it can be sat-
isfied in a real material. Fortunately, a more complex
non-perturbative approach, which accounts for the inter-
sector couplings at the mean field level, allows to relax
it: we demonstrated [39] that it is sufficient to have

gbs < g, gum < g (33)

to maintain the stability of the FraM. More detailed sta-
bility analysis will be presented in future studies.

Discussion.— Using AA bilayer graphene as a test ex-
ample, we argue that in a system with a nested multi-
sheet Fermi surface, a peculiar state (which we call frac-
tional metal, or FraM) can be stabilized. In the FraM
phase, part of the Fermi surface is gapped and charge
carriers on the remaining gapless part of the Fermi sur-
face belong to a specific sector of the low-energy elec-
tronic states. Similar to a half-metal, the states at the
Fermi energy can be characterized in terms of polariza-
tion; but, unlike the usual half-metals, this is not spin
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polarization. Let us introduce the spin-flavor [40] opera-
tor Ŝf =

∑
σξν σνN̂σξν , where N̂σξν is the number oper-

ator for fermions with spin σ, charge ν, in valley ξ. Since
doping enters only in one sector, all states at the Fermi
surface have the same value of σν. Therefore, these states
are eigenstates of Ŝf with the same eigenvalue σν. The
same is true for the valley operator Ŝv =

∑
σξν ξN̂σξν ,

since a given sector is localized entirely in one valley.
Thus, the Fermi surface of the FraM is polarized in

terms of two spin-like operators Sf,v. This implies that
the electric current though the FraM carries, in addition
to the electric charge, spin-flavor and valley quanta. Fi-
nally, note that, if superconductivity arises in a FraM
phase, it should obey rather peculiar properties. The
superconducting order parameter might have a very un-
usual symmetry, classified according to a non-trivial spin
and valley structure, and superconducting currents would
be spin-flavor and valley polarized. However, the detailed
analysis of this superconductivity requires the specifica-

tion of the symmetric properties of the electron-phonon
coupling.
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APPENDIX: CAN BILAYER GRAPHENE BECOME A FRACTIONAL METAL?

Below we show the study of the stability of the quarter-metal against the umklapp interaction term.

BASIC EQUATIONS

For reader’s convenience, let us recall several basic equations and facts from the main text.

Definitions

The interaction Hamiltonian is

Ĥint = Ĥ(1) + Ĥ(2) + Ĥ(3) + Ĥ(4), where (34)

Ĥ(1) = − 1

Nc

∑
kpσ

V
(1)
k,p

[
(γ†k1σγk4σ̄)(γ†p4σ̄γp1σ) + (γ†k3σ̄γk2σ)(γ†p2σγp3σ̄)

]
, (35)

Ĥ(2) = − 1

2Nc

∑
kpσ

V
(2)
k,p

[
(γ†k1σγk4σ̄)(γ†p1σ̄γp4σ) + (γ†k2σγk3σ̄)(γ†p2σ̄γp3σ) + H.c.

]
, (36)

Ĥ(3) = − 1

Nc

∑
kpσ

V
(3)
k,p

[
(γ†k1σγk4σ̄)(γ†p3σ̄γp2σ) + (γ†k2σγk3σ̄)(γ†p4σ̄γp1σ)

]
, (37)

Ĥ(4) = − 1

2Nc

∑
kpσ

V
(4)
k,p

[
(γ†k1σγk4σ̄)(γ†p2σ̄γp3σ) + (γ†k2σγk3σ̄)(γ†p1σ̄γp4σ) + H.c.

]
, (38)

with the coupling constants V
(1,2,3,4)
k,p defined as

V
(1,3)
k,p =

1

8

[
V 00
AA+V 10

AA±
(
V 00
AB+V 10

AB

)
e−i∆ϕ+C.c.

]
, (39)

V
(2,4)
k,p =

1

8

[
V 00
AA−V 10

AA∓
(
V 00
AB−V 10

AB

)
e−i∆ϕ+C.c.

]
. (40)
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Our first-step approximation is

V
(1,3)
k,p ≈ 1

2
VC(k− p) [1± cos(∆ϕk,p)] , V

(2,4)
k,p ≈ 0. (41)

The interaction can be approximated as Ĥint ≈ Ĥ(1) + Ĥ(3).

Mean field approximation

The mean field version of Ĥint is

ĤMF
int =

1

Nc
(B↑+B↓)−

∑
pσ

(
∆̃pσγ

†
p4σ̄γp1σ+∆pσγ

†
p3σ̄γp2σ+H.c.

)
, (42)

where

∆kσ =
1

Nc

∑
p

[
V

(1)
p,k〈γ

†
p2σγp3σ̄〉+V (3)

p,k〈γ
†
p1σγp4σ̄〉

]
, (43)

∆̃kσ =
1

Nc

∑
p

[
V

(1)
p,k〈γ

†
p1σγp4σ̄〉+V (3)

p,k〈γ
†
p2σγp3σ̄〉

]
, (44)

Bσ =
1

Nc

∑
k

[
∆kσ〈γ†k3σ̄γk2σ〉+∆̃kσ〈γ†k4σ̄γk1σ〉

]
. (45)

The spectrum of the mean-field Hamiltonian can be easily derived

E
(2,3)
kσ = ∓Em

kσ, E
(1,4)
kσ = ∓Eh

kσ, (46)

where

Em
kσ=

√
|∆kσ|2+(t0−tζk)2, Eh

kσ=

√
|∆̃kσ|2+(t0+tζk)2.

The total energy of the system is

E =

4∑
ν=1

∑
kσ

(E
(ν)
kσ − µ) Θ(µ− E(ν)

kσ ), (47)

where Θ(E) is the step-function. Using the Hellmann-Feynman theorem, we obtain

〈γ†k3σ̄γk2σ〉 =
∆kσ

2Em
kσ

[Θ(µ+ Em
kσ)−Θ(µ− Em

kσ)] ,

〈γ†k4σ̄γk1σ〉 =
∆̃kσ

2Eh
kσ

[
Θ(µ+ Eh

kσ)−Θ(µ− Eh
kσ)
]
. (48)

Formally, the summation in Eq. (43) covers the whole Brillouin zone. However, the interaction V
(1,3)
p,k is the strongest

when p ≈ k, and decays for larger |p− k|. In the limit of vanishing backscattering

V
(1,3)
bs ≡ V (1,3)

K1,K2
≈ 0, (49)

it is possible to define order parameters localized near a specific Dirac point Kξ: ∆kσξ = ∆kσ, when k ≈ Kξ.
Combining Eqs. (43) and (48), we obtain the self-consistent equations in the form

∆kσξ =
1

Nc

∑
p∈Kξ

{
V

(1)
p,k∆pσξ

2Em
pσ

[
Θ(µ+ Em

pσ)−Θ(µ− Em
pσ)
]

+
V

(3)
p,k∆̃pσξ

2Eh
pσ

[
Θ(µ+ Eh

pσ)−Θ(µ− Eh
pσ)
]}

, (50)

∆̃kσξ =
1

Nc

∑
p∈Kξ

{
V (1)∆̃pσξ

2Eh
pσ

[
Θ(µ+ Eh

pσ)−Θ(µ− Eh
pσ)
]

+
V (3)∆pσξ

2Em
pσ

[
Θ(µ+ Em

pσ)−Θ(µ− Em
pσ)
]}

. (51)
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Simplifying the latter equations in the regime µ > 0, we derive

∆kσξ =
1

Nc

∑
p∈Kξ

{
V

(1)
p,k∆pσξ

2Em
pσ

Θ(Em
pσ − µ) +

V
(3)
p,k∆̃pσξ

2Eh
pσ

Θ(Eh
pσ − µ)

}
, (52)

∆̃kσξ =
1

Nc

∑
p∈Kξ

{
V (1)∆̃pσξ

2Eh
pσ

Θ(Eh
pσ − µ) +

V (3)∆pσξ

2Em
pσ

Θ(Em
pσ − µ)

}
. (53)

We see that, within our approximations, the electronic states and the order parameters can be split into four inde-
pendent sectors, which can be labeled by the multi-index s = (σ, ξ). Our derivation implies that the sectors are not
entirely independent: neglected contributions proportional to Vbs and V (2,4) couple them. Due to the smallness of
these couplings, they can be treated perturbatively.

We add and subtract Eqs. (52) and (53), use Eqs. (41), and change the summation over momentum by an integration.
We also assume that both ∆ and ∆̃ only depend on |k|. Finally, using the symmetry of our theory with respect to
the sign of µ, we derive for 0 < µ < t0

∆ks + ∆̃ks =

∫
p

V̄
(0)
Q

[
∆ps

2Em
ps

Θ(Em
ps − µ) +

∆̃ps

2Eh
ps

]
,

∆ks − ∆̃ks =

∫
p

V̄
(1)
Q

[
∆ps

2Em
ps

Θ(Em
ps − µ)− ∆̃ps

2Eh
ps

]
, (54)

where the integration symbol stands for
∫
p
. . . = (2πp/vBZ)

∫
dp . . ., and the volume (area) of the Brillouin zone is

vBZ = 8π2/(3
√

3a2). In Eqs. (54), the averaged coupling constants are

V̄
(0)
Q (k, p) =

∫
dφ

2π
VC(

√
k2 + p2 + 2kp cosφ), (55)

V̄
(1)
Q (k, p) =

∫
dφ

2π
VC(

√
k2 + p2 + 2kp cosφ) cosφ,

and the spectrum (46) in sector s = (σ, ξ) can be approximated as

Em
ps ≈

√
|∆s|2 + t20(1− p/kF0)2, (56)

Eh
ps ≈

√
|∆̃s|2 + t20(1 + p/kF0)2 ≈ t0(1 + p/kF0),

where p = |p−Kξ|.
To solve the integral equations (54) we use the simple BCS-like ansatz

∆a(q) = ∆sΘ(Λ− |q − kF0|) and ∆̃ξσ(q) = ∆̃sΘ(Λ− |q − kF0|) (57)

for the order parameters (the cutoff momentum Λ satisfies Λ� Q0), and assume that V̄
(0,1)
Q are constants independent

of k and p. This allows us to convert the integral equations into non-linear algebraic equations

∆s + ∆̃s = g∆s ln

(
E∗

µ+
√
µ2 −∆2

s

)
+ g̃∆̃s, (58)

∆s − ∆̃s =
g

α
∆s ln

(
E∗

µ+
√
µ2 −∆2

s

)
− g̃

α
∆̃s,

where the energy scale is E∗ = 2t0Λ/kF0, and the coupling constants are

g =
t0√
3πt2

V̄ (0), g̃ =
Λ

2kF0
g, α =

V̄ (0)

V̄ (1)
> 1. (59)
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Solutions of the mean field equations

At zero doping, which corresponds to the case µ = ∆s, the order parameters are

∆s = ∆0 = E∗ exp

[
−1

g

2α− g̃(1 + α)

1 + α− 2g̃

]
, ∆̃s =

α− 1

α+ 1− 2g̃
∆s. (60)

This mean-field solution is valid in the weak-coupling limit, that is, when g is small, and, consequently, ∆0 and ∆̃0

are much less than t0. The doped state is characterized by µ > ∆s. To describe the solution of Eq. (58) in such a
regime, let us define the partial doping xs for the concentration of electrons residing in sector s. It is known that a
finite xs decreases the order parameter ∆s:

∆s(xs) = ∆0

√
1− 4xs

x0
, µ = ∆0

(
1− 2xs

x0

)
, (61)

where x0 = ∆0t0/(π
√

3t2). It is easy to check that Eqs. (61) indeed guarantee that µ exceeds ∆s, making it possible
to dope sector s. At zero temperature, the partial free energy (per unit cell) associated with doping becomes

∆Fs(xs) = 4

∫ xs

0

µ(x) dx = 4∆0

(
xs −

x2
s

x0

)
. (62)

As in the main text, the factor 4 accounts for the four carbon atoms in a single unit cell.

STABILITY AGAINST THE UMKLAPP INTERACTION

Self-consistent equations

The next step is to add the inter-sector interaction. We will use H(2) as an example of the inter-sector interaction.

The other example is the backscattering V
(1,3)
bs . The term H(2) is a type of umklapp scattering: such term is non-zero

only when the nesting vector is either zero or half of the elementary reciprocal lattice vector. If we average H(2) we
obtain

〈Ĥ(2)〉 = − 1

2Nc

∑
kpσ

V
(2)
k,p

[
〈γ†k1σγk4σ̄〉〈γ†p1σ̄γp4σ〉+ 〈γ†k2σγk3σ̄〉〈γ†p2σ̄γp3σ〉+ C.c.

]
(63)

≈ − 1

2Nc

∑
kpσ

V
(2)
k,p

[
〈γ†k2σγk3σ̄〉〈γ†p2σ̄γp3σ〉+ C.c.

]
≈ − V̄um

2Nc

∑
kpσ

[
〈γ†k2σγk3σ̄〉〈γ†p2σ̄γp3σ〉+ C.c.

]
,

where V̄um is the averaged value of V
(2)
k,p. Using the definition of the order parameter in terms of the anomalous

operator averages, Eq. (43), we derive

〈Ĥ(2)〉 ≈ −Nc
V̄um

V̄ 2
1

∆↑ξ ∆↓ξ + C.c. (64)

This suggests that the self-consistent equations for s = (↑, ξ) and s′ = (↓, ξ) become coupled. To account for this, we

take the first of the two equations (43) and add a term V
(2)
p,k〈γ

†
σ̄γσ〉 to its right-hand side

∆kσ =
1

Nc

∑
p

[
V

(1)
p,k〈γ

†
p2σγp3σ̄〉+V (2)

p,k〈γ
†
p2σ̄γp3σ〉

]
, (65)

where we discarded the term with bands 1 and 4. Finally, using Eq. (48), we derive

∆↑ = g∆↑ ln

[
E∗

M(µ,∆↑)

]
+ gum∆↓ ln

[
E∗

M(µ,∆↓)

]
, (66)

∆↓ = g∆↓ ln

[
E∗

M(µ,∆↓)

]
+ gum∆↑ ln

[
E∗

M(µ,∆↑)

]
. (67)
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To describe two remaining sectors, (↑, ξ̄) and (↓, ξ̄), the identical set of equations should be used. In Eqs. (66)
and (67), the quantity M(µ,∆) effectively functions as the low-energy cutoff: if in a given sector ∆ > µ, this
sector remains undoped, and M(µ,∆) = ∆; when a sector accommodates finite doping µ > ∆, in such a situation

M(µ,∆) = µ+
√
µ2 −∆2. Formally, this can be expressed as

M(µ,∆) = (µ+
√
µ2 −∆2)Θ(µ−∆) + ∆Θ(∆− µ). (68)

Note also that in Eqs. (66) and (67) we used the simplified notation ∆↑ ≡ ∆↑ξ and ∆↓ ≡ ∆↓ξ. The coupling constant
is gum = βV̄umν(εF), where ν(εF) is the density of states, and β is a numerical coefficient of order unity.

When the system is undoped, we can introduce ∆0 as follows µ = ∆↑ = ∆↓ ≡ ∆0 [note that this is a redefinition
of ∆0 initially given by Eq. (60)]. In such a limit, both equations become identical

∆0 = g(1 + γ)∆0 ln

(
E∗

∆0

)
, where γ =

gum

g
. (69)

This equation has one non-zero solution

∆0 = E∗ exp

(
− 1

g(1 + γ)

)
. (70)

We can see that the umklapp coupling increases ∆0.

Doped state

Now we discuss the doped system. Below we will consider two possibilities: (i) all four sectors are doped equally,
and (ii) three sectors remain undoped, and all doping only enters a single sector. Let us start with (i). In such a
situation µ > ∆s = ∆(x) for all four s. Equations (66) and (67) become identical

∆ = g(1 + γ)∆ ln

(
E∗

µ+
√
µ2 −∆2

)
, (71)

valid in all four sectors. The solution to this equation is similar to Eq. (61)

∆(x) = ∆0

√
1− x

x0
, µ = ∆0

(
1− x

2x0

)
, (72)

where we took into account that partial dopings equal to half of the total doping: xs = x/4. The expression for µ(x)
allows us to calculate ∆F (x)

∆F (x) = 4

∫ x

0

µ(x) dx = 4∆0 x−∆0
x2

x0
. (73)

This free energy is denoted as ∆Fe in the main text.
For case (ii), the calculations are more complicated. We define δσ(x) as follows ∆σ(x) = ∆0[1 − δσ(x)]. For

definiteness, we assume that the sector s = (↑, ξ) is undoped, while s = (↓, ξ) is doped. This means that ∆↑ > µ > ∆↓.
Two other sectors, (↑, ξ̄) and (↓, ξ̄), are undoped, and decoupled from s and s′. Therefore, they are characterized by
the order parameter ∆0, given by Eq. (70)

0 < δ↑ < m < δ↓, where m =
∆0 − µ

∆0
. (74)

Let us introduce yet another quantity, δS, as follows

µ+
√
µ2 −∆2

↓ = ∆0

[
1−m+

√
(1−m)2 − (1− δ↓)2

]
= ∆0(1 + δS), (75)

δS =
√

(1−m)2 − (1− δ↓)2 −m. (76)
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The parameters δσ, δS, and m are small in the limit of small doping x. However, they have different degrees of
smallness. Indeed, as we will see later

δσ = O(m), δS = O(m1/2). (77)

These relations become important when we solve the self-consistent equations in the limit of small doping.
Our goal is to solve the following equations

(1− δ↑) = g(1− δ↑)
[

1

g(1 + γ)
− ln (1− δ↑)

]
+ γg(1− δ↓)

[
1

g(1 + γ)
− ln(1 + δS)

]
, (78)

(1− δ↓) = g(1− δ↓)
[

1

g(1 + γ)
− ln (1 + δS)

]
+ γg(1− δ↑)

[
1

g(1 + γ)
− ln(1− δ↑)

]
, (79)

to find δσ as a function of m, and then determine m versus x. In the limit of small x, we expand the self-consistent
equations and, keeping in mind Eq. (77), we derive

(1− δ↑) = g(1− δ↑)
[

1

g(1 + γ)
+ δ↑

]
+ γg(1− δ↓)

[
1

g(1 + γ)
− δS +

δS2

2

]
+O(m3/2), (80)

(1− δ↓) = g(1− δ↓)
[

1

g(1 + γ)
− δS +

δS2

2

]
+ γg(1− δ↑)

[
1

g(1 + γ)
+ δ↑

]
+O(m3/2). (81)

Simplifying, we obtain

δ↑ ≈
[

δ↑
1 + γ

− gδ↑
]

+ γ

[
1

1 + γ
δ↓ + g

(
δS − δS2

2

)]
, (82)

δ↓ ≈
[

δ↓
1 + γ

+ g

(
δS − δS2

2

)]
+ γ

[
1

1 + γ
δ↑ − gδ↑

]
, (83)

Next step: (
γ

1 + γ
+ g

)
δ↑ =

γ

1 + γ
δ↓ + gγ

(
δS − δS2

2

)
, (84)(

γ

1 + γ
− gγ

)
δ↑ =

γ

1 + γ
δ↓ − g

(
δS − δS2

2

)
. (85)

Subtracting these two equations we derive

g(1 + γ)δ↑ = g(1 + γ)

(
δS − δS2

2

)
⇔ δ↑ = δS − δS2

2
. (86)

Now δ↑ can be eliminated [
γ

1 + γ
+ g(1− γ)

](
δS − δS2

2

)
=

γ

1 + γ
δ↓. (87)

This relation is equivalent to

δS − δS2

2
= αδ↓, where α =

[
1 + g(γ−1 − γ)

]−1
. (88)

Let us express δS in the limit of small doping

δS =
√

(1−m)2 − (1− δ↓)2 −m =
√

(2−m− δ↓)(δ↓ −m)−m =
√

2(δ↓ −m)−m+O(m3/2), (89)

δS2 = 2(δ↓ −m) +O(m3/2). (90)

Therefore

δS − δS2

2
=
√

2(δ↓ −m)− δ↓ +O(m3/2). (91)
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The self-consistent equation becomes

αδ↓ =
√

2(δ↓ −m)− δ↓ +O(m3/2). (92)

Its solution is

δ↓ ≈ m+
(1 + α)2

2
m2, δ↑ = αδ↓ ≈ αm+

α(1 + α)2

2
m2. (93)

Let us check the consistency of these relations with known results in the α = 0 limit. In this case

δ↓ ≈ m+
1

2
m2, δ↑ = 0. (94)

At the same time, Eqs. (61) in the regime of small x can be written as

m =
x

2x0
, δ↓(x) =

∆0 −∆(x)

∆0
≈ x

2x0
+

x2

8x2
0

. (95)

We can now exclude x to obtain

δ↓(x) ≈ m+
m2

2
, (96)

which coincides with Eq. (94).
The final step is to add doping into the formalism. To this end, we write

4x = 2νF

∫ µ

∆↓

dε
ε√

ε2 −∆2
↓

, (97)

where 4x is the doping per unit cell, νF = t0/(
√

3πt2) is the density of states per unit cell for each single Fermi surface
sheet (there are four Fermi surface sheets),

x =
νF
2

√
µ2 −∆2

↓ =
νF∆0

2

√
(1−m)2 − (1− δ↓)2 =

x0

2

√
(1−m)2 − (1− δ↓)2, (98)

where x0 = νF∆0. It is possible to show that

4x2 = x2
0(δ↓ −m)(2−m− δ↓) ⇒ 4x2 = (1 + α)2x2

0m
2 +O(m3). (99)

Deriving the latter relation we used Eq. (93), which, among other things, demonstrates that δ↓ − m = O(m2).
Equation (99) allows us to establish the following connection between doping and the chemical potential

m =
2x

(1 + α)x0
+O(x2) ⇔ µ = ∆0

(
1− 2x

(1 + α)x0

)
+O(x2). (100)

Integrating µ(x), we obtain

∆Fqm = 4∆0x−
(

4∆0

1 + α

)
x2

x0
. (101)

In the limit α→ 0 we recover the expression for ∆Fqm given in the main text [see after Eq. (30)]. The free energy (101)
must be compared against the free energy given by Eq. (73). We see that the quarter-metal is stable if (1+α)−1 > 1/4.
Equivalently,

quarter-metal is stable when α(γ) < 3. (102)

To understand what the latter requirement entails, let us examine Fig. 1, which shows α(γ) for g = 0.1. We see that
α < 3 as long as γ = gum/g < 6.8. That is, for g = 0.1, the umklapp satisfying

gum < 0.68, (103)
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FIG. 1: The function α(γ) for g = 0.1 is shown by the blue curve. The straight (red) line is γ/g.

does not violate the stability of the quarter-metal.
We note that Eq. (102) is not the absolute stability criterion, rather it describes the stability of the quarter-metal

against the transition into an ordinary metal, when all four sectors are doped equally. A comprehensive investigation
of the stability goes well beyond the present study, and, most likely, requires input from experiments.

It is interesting to note that perturbation theory in powers of small γ strongly underestimates the stability range
of the quarter-metal. To demonstrate this, we expand the expression (101) for ∆Fqm in powers of α

∆Fqm ≈ 4∆0x− 4∆0
x2

x0
+ 4∆0

αx2

x0
. (104)

Since at γ → 0, the following holds α ≈ γ/g = gum/g
2, the expression for ∆Fqm can be approximated as

∆Fqm ≈ 4∆0x− 4∆0
x2

x0

(
1− gum

g2

)
, (105)

If we use this expression, instead of the more accurate Eq. (101), we could (erroneously) conclude that the quarter-
metal is stable when (1− gum/g

2) > 1/4. This inequality can be transformed to

γ

g
=
gum

g2
<

3

4
⇔ gum <

3g2

4
. (106)

In Fig. 1 we can see the low-γ approximation α(γ) ≈ γ/g as a (red) straight line. We see that, at low g, this
approximation works only at very small γ; while for larger γ (larger gum) it is completely useless. Thus, we conclude
that the replacement [1 +α(γ)]−1 → (1−γ/g) artificially shrinks the stability range of the quarter-metal. Indeed, the
requirement (106) is very strict: at g = 0.1, as in Fig. 1, Eq. (106) demand that gum < 0.0075, cf. Eq. (103). This is
the origin of the serious disparity between the stability condition derived in the main text using simple perturbation
theory and more the sophisticated criterion (102).
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