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Abstract 

Self-shaping of curved structures, especially those involving flexible thin layers, has 

attracted increasing attention because of their broad potential applications in e.g. 

nanoelectromechanical/micro-electromechanical systems (NEMS/MEMS), sensors, artificial 

skins, stretchable electronics, robotics, and drug delivery. Here, we provide an overview of 

recent experimental, theoretical, and computational studies on the mechanical self-assembly 

of strain-engineered thin layers, with an emphasis on systems in which the competition 

between bending and stretching energy gives rise to a variety of deformations, such as 

wrinkling, rolling, and twisting. We address the principle of mechanical instabilities, which is 

often manifested in wrinkling or multistability of strain-engineered thin layers. The principles 

of shape selection and transition in helical ribbons are also systematically examined. We hope 

that a more comprehensive understanding of the mechanical principles underlying these rich 

phenomena can foster the development of new techniques for manufacturing functional three-

dimensional structures on demand for a broad spectrum of engineering applications.  
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I. Introduction 

 

  The spontaneous bending, twisting, and wrinkling of thin layers are ubiquitous in 

both natural and synthetic systems. These phenomena have garnered significant interests from 

the scientific community because of their potential applications in sensors [1], actuators [2], 

micro-robotics [3], nanoelectromechanical systems (NEMS) [4], active materials [5], 

optoelectronics [6], stretchable electronics [7], and drug delivery systems [8]. These 

deformations often stem from a need to release potential energy in presence of surface 

stresses [9], misfit strains [10], residual strains [11-13], thermal stresses [14], 

swelling/shrinkage [15,16], or differential growth [17,18]. As such, deformations are 

often triggered by environmental factors, such as humidity, temperature, and pressure. 

Significant research has been devoted to causing asymmetric deformation in thin layers 

under uniform environmental change, often by introducing some level of anisotropy 

into the system. This behavior allows the construction of systems that can have 

multiple complex responses to simple changes in scalar signals. 

 

  In synthetic thin structures, if a flexible layer is extended with a geometrically limited 

boundary, wrinkling or buckling in the perpendicular direction will occur. Strain engineering 

in a thin layer could produce a variety of three-dimensional (3D) structures besides wrinkles. 

For instance, self-rolling of a layer with a strain gradient can lead to the formation of tube or 

scroll-like structures [2]. Experimental and theoretical investigations about formation 

mechanisms of these novel micro/nano-structures have previously been carried out. With the 

rapid development of nanostructures and nanodevices, these structures are being pursued for 
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many applications like flexible electronics, stretchable electronics, nanophotonics, robotics, 

and microfluidics. 

 

  Furthermore, helices can be considered as a special subclass of structures formed 

through rolling. They are chiral structures with broken left-right symmetry [19], which can be 

either left-handed or right-handed with a mirror image that has an opposite handedness or 

chirality. It is natural to think that such symmetry-breaking comes from the chirality of the 

microscopic building units, but this is not always the case [12]. Spontaneous helical ribbons 

can form either under terminal loads (e.g., tensile forces or torques) [20] or in the 

absence of terminal loads [9,15,21-23]. Shape transitions between purely twisted 

ribbons (or helicoids), cylindrical helical ribbons, and tubules have been frequently 

observed in twist-nematic elastomers [1,24], peptides [22,25], strained multilayer 

composites [9,15,21-23], and nanoribbons [10,26]. These transitions are often driven 

by the complex interplay between molecular interactions, environmental stimuli, 

elastic properties, and nonlinear geometric effects. 

 

  Twisting can exist in thin layers outside of the uniform helix shape subclass, 

and can occur even when the driving forces are not off-axis with respect to the 

geometric axes of the material [12]. Twists in thin layers have an associated 

handedness and can even switch handedness [17]. Off-axis competition between the 

internal chirality of the building units of the thin layer and macroscopic forces acting 

on the layer can also form twists. 



4	
	

 

  The article covers analysis of these afore-mentioned deformation modes such 

as wrinkling, rolling and twisting, along with examples and applications of each. This 

is followed by a synthesis of current promising research directions and future 

applications. Readers interested in the mechanics of thin layer deformation are 

encouraged to refer to some excellent recent reviews for a more comprehensive 

understanding of recent developments [27-30]. 

 

Recently, wrinkling in nanoparticle films has received a great deal of attention. The 

most common films include graphene [31-33], nanocrystals [34-37], and nanotubes [38-40]. 

While the following discussion avoids focusing on nanoparticle films in depth, they are an 

important subset of wrinkling research and the reader is encouraged to refer to those articles. 

It should also be noted that while the discussion of wrinkling and rolling mechanics is 

primarily focused on inorganic materials, polymer sheets are becoming increasingly important 

in science and engineering. For a discussion of the specific mechanics of polymer surfaces, 

we point the reader to J. Rodriguez-Hernandez’s excellent review [41].	

 

II. Self-assembly and strain distribution in wrinkles 

 

A. Wrinkling vs. rolling in a strain-engineered flexible layer 

 

A flexible pre-strained layer attached to a fixed boundary, adopts a 3D structure in 
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order to minimize strain energy [42-44]. Typical deformations reported in literature include 

wrinkling [45,46], bending [43,44,47], folding [48-50], and ridging [51], depending on the 

strain gradient and magnitude. Normally, a small strain gradient produces wrinkles while a 

large strain gradient makes the layer bend or roll into a curved structure [52]. Real materials 

are more complicated, as competition between bending and stretching energy can cause 

transitions between wrinkling and rolling states after the flexible layer is set free in one end 

and fixed in the other end. 

 

FIG. 1. Schematics of (a) released bi-layer, (b) bent bi-layer with inner radius R, and (c) 

wrinkled structure with deflection profile ζ(x, y), amplitude A, and wavelength λ. (d) Ew 

(solid line) and energy of planar relaxation (dashed line) as a function of h. (e) Wavelength λ 

(solid line, left axis) and amplitude A (dashed line, right axis) as a function of length h, in the 

case of wrinkled structure. Vertical dotted-dashed line marks the hcw. Reprinted with 

permission from Ref. [52] (Copyright 2009 by the American Physical Society). 

 

Theoretical analyses have been carried out on both the wrinkling and rolling cases 
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[29,42,52-60]. A simple analysis can be done using an isotropically strained bi-layer structure. 

Shown in Fig. 1 [52], the bi-layer with thicknesses d1 and d2 is subjected to biaxial strain ε1 

and ε2 respectively. The bi-layer is free hanging over a distance h and is initially in a 

strained state over the length L. The released portion is free to elastically relax, constrained 

only by the fixed boundary (see the dashed line in Fig. 1a) [52]. The average strain and strain 

gradient of the bi-layer are defined as  and  

respectively, and . The initial elastic energy (given per unit area) of the bi-layer is 

, where Y and ν are Young’s modulus and Poisson’s ratio 

respectively. In the bending case, the fixed boundary limits relaxation in the x direction and 

the strain is relaxed via bending in the y direction to form a curved structure with inner radius 

R (Fig. 1b). Since the layers are thin, the stress component in the radial direction (through the 

thickness direction) must be zero at equilibrium [61]. The total elastic energy of the bent film 

Ebent is calculated by integrating the elastic strain energy density from the outer to the inner 

film surface [52]. The equilibrium elastic energy of the rolled structure Ebent can be obtained 

by minimizing the energy and is normalized to E0 and then compared with the wrinkle energy 

Ew [52]. In the wrinkling case (Fig. 1c), the deflection of the bi-layer can be written as a 

function , where A is the maximum amplitude of the wrinkle at the free 

end, k is the wrinkle wave number in the x direction, and . In the 

calculation of the wrinkle energy, Ew is averaged over one wavelength, L=λ, and L is 

numerically minimized with respect to A, λ, and γ (where λ is the wavelength of the 

wrinkle, and γ is the magnitude of relaxation in the y direction). The wrinkle energy as a 

function of wrinkle length is given in Fig. 1d, and it is found that there is a minimum critical 
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wrinkle length hcw, for wrinkle formation. The value of hcw is  [52]. For 

h<hcw, energy minimization provides only a trivial minimum of the wrinkle energy with A=0 

and λ→∞ [62], corresponding to a planar relaxation in the y direction (dashed line in Fig. 

1d). For h>hcw, wrinkling can occur, and both λ and A increase with h, as demonstrated in 

Fig. 1e. The preferred equilibrium shape of a free-hanging film could be found by comparing 

these two normalized energies, Ebent and Ew. h>hcw does not guarantee wrinkle formation. 

Large h also allows the bi-layer to roll if the strain gradient (or Δε) is also large. A wrinkled 

structure is only formed when the strain gradient is small enough; even if h>hcw [29,52]. For a 

typical bi-layer consisting of 10 nm In0.1Ga0.9As and 10 nm GaAs, Young’s modulus Y=80 

GPa, and Poisson ratio υ=0.31, the ε1 and ε2 were systematically changed to calculate the 

favorable shape as a function of h and Δε, and the obtained phase diagram is shown in Fig. 

2. When Δε=0.20 % and =-0.36 %, bending is favored when h<700 nm. With larger h, 

the wrinkled structure has lower energy and is favorable [52]. The boundary between the two 

shapes is shown as a solid line in Fig. 2. For higher  like -1.0 %, the phase boundary curve 

moves upwards (see dashed line in Fig. 2) and the wrinkling region is enlarged [52]. Fig. 2 

shows that for wrinkled structure, the wavelength λ increases with h, while for bent structure, 

the equilibrium radius Req decreases with increasing Δε. One should note that at small 

length scales, continuum theory may not always be accurate, as misfit dislocations in the 

boundary, surface properties, and size effects play an increasing large role. 

ε−≈ 257.2 dhcw

ε

ε
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FIG. 2. Phase diagram of favorable shapes of strained bi-layer based on the energetic 

comparison between Ew and Ebent. Solid curve indicates the boundary separating the bent and 

wrinkled shapes. Req is shown for the bent structure and wavelength λ for the wrinkled 

structure. The dashed curve is the phase boundary curve for  =-1.0%. Reprinted with 

permission from Ref. [52] (Copyright 2009 by the American Physical Society). 

 

For an anisotropically strained flexible layer, the situation is simpler. The coordinate 

system is the same as in Fig. 1a. If the y direction is the most compliant direction, the layer 

will bend or roll in this direction [29]. If the x direction is the most compliant direction, 

deformation is dependent on hcw. When h<hcw the boundary (dashed line in Fig. 1a) does not 

allow the strain to relax along x direction and the strain will be retained, but when h>hcw the 

released layer attempts to bend in the x direction and the constraint thus causes the wrinkles 

[29,42].  

ε



9	
	

 

In the above investigation, only pure bending and pure wrinkling are considered, and 

the favorable shapes are decided by the energy minimization. However, experimental results 

sometimes show obvious deviation from these theoretical predictions and the parameters 

during release can considerably influence the final geometry [63].  For example, Figures 3a-

3d show the SEM images of the sample morphologies as a function of etching time, and the 

superposition of bending/rolling and wrinkling is obvious [64]. For an etching distance h = 

3.4 μm (Fig. 3a), one can see a bent layer corresponding roughly to 1/6 of a tube 

circumference along with wrinkles of wavelength λ = 30 ± 3 μm on its edge. For h = 5.7 

μm, the released layer is rolled up to about 1/3 tube circumference, and the wrinkles have a 

wavelength of λ = 76 ± 10 μm (Figs. 3b and 3c). The layer with the etching distance of h = 

10.3 μm has rolled up to about 1/2 tube circumference with large wrinkles of wavelength λ 

= 124 ± 19 μm, as shown in Fig. 3d. These results show co-existence of rolling and 

wrinkling and demonstrate a large departure from previous analytical scaling predictions [64]. 

The strained bi-layer is forced to accommodate both the rolled-up and the wrinkled 

morphology (due to the strain gradient and the average strain present in the bilayer) even 

though it is energetically the less favorable state. In such cases, finite-element method (FEM) 

simulation gives more accurate predictions. The anomalous results are believed to be the 

result of additional effects during relaxation of strained bi-layer, such as stress focusing and 

capillary forces, which can have a significant effect but were not taken into account in the 

analytical calculations [64,65].  
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FIG. 3. Morphology evolution for increasing etching time. SEM images are shown for: (a) h = 

3.4 μm (top view); (b) h = 5.7 μm (top view); (c) h = 5.7 μm (side view), (d) h = 10.3 μm 

(side view). Reprinted with permission from Ref. [64]. 

 

The relationship between bending and wrinkling can be more than just competition or 

co-existence. Researchers investigated the bending behavior after releasing an initially 

wrinkled layer, and found that rolling parallel to wrinkle is more favorable due to the energy 

barrier existing in the calculation [65]. However, the external forces exerted during the 

fabrication process can strongly influence the final geometry [65]. While not discussed in this 

review, the transition between wrinkling and crumpling is another important mechanism 

governed by primarily geometric constraints [66], especially in crystalline sheets [67]. 

 

  

B. Internal and external control for a wrinkled layer 
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FIG. 4. (a) A schematic illustrating the formation of the wrinkles perpendicular to the etching 

front.  The subsequent bond-back effect leads to the formation of nanochannel network. 

Adapted with permission from Ref. [68]. (b) Optical microscopy images showing a linear 

nanochannel network with single-sided (upper panel) and double-sided branch channels 

(middle panel). A corresponding SEM image (bird view) of a single-sided linear nanochannel 

network is given in the lower panel. Adapted with permission from Ref. [68]. (c) Si ribbon 

structures formed on a PDMS substrate pre-strained to 50%. Reprinted by permission from 

Macmillan Publishers Ltd:  Nature Nanotechnology, Ref. [69] (Copyright 2006). 

 

Practically, there are two methods frequently used to build and control wrinkling 

structures. The first approach, the internal control method, introduces internal strain into the 

active layer and is consistent with aforementioned theoretical model. In 2007, Mei et al. [68] 

reported the formation of SiGe wrinkle arrays using this method. Briefly, A thin strained 

functional layer (e.g. SiGe layer), deposited onto a sacrificial buffer layer is partially released 
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from the surface of the substrate by selectively etching off the sacrificial layer. Once the 

strained functional layer is freed from the substrate while one side is still fixed on the 

substrate, the strain elastically relaxes and causes wrinkles perpendicular to the etching front. 

The subsequent bond-back effect to the substrate leads to the formation of the ordered 

nanochannel network (Fig. 4a) [68]. Fig. 4b shows the SiGe wrinkles formed with a straight 

etching front produced by photolithography or mechanical scratching. The network shown in 

the upper image of Fig. 4b consists of a single-sided branched channel network directly 

connected to the main channel. The middle image shows a double-sided branch nanochannel 

network, with the main channel running in between the wrinkled branch channels. Fig. 4b is a 

top-down SEM shows that the open branch channel ends are arcs 300-500nm wide and 

120nm high. The geometry of the wrinkle (channels with arc-shaped cross-section) deviates 

from the ideal case used in the theoretical calculation and the measured periodicity is smaller 

than the value predicted by calculation [68]. This discrepancy is due to the interaction 

between the free-hanging film and the substrate once the wrinkling amplitude becomes larger 

than the thickness of the sacrificial layer (which was not considered in the previous model). If 

the wrinkled film partially bonds back to the surface of the substrate, the layer cannot adapt 

its equilibrium periodicity, resulting in a decrease of practical periodicity. However, the film 

is not expected to tightly bond back to the surface during under-etching, making periodicity 

increase with longer etching length. Although the wrinkles in the present case are not ideally 

sinusoidal due to the bond-back effect, the channels formed may have important applications 

in micro-/nano-fluidics and biology [68]. Since the wrinkles are perpendicular to the etching 

front and the etching front can be well defined by conventional photolithography, complex 
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channel arrays can be produced [70]. Malachias et al. [70] found that in two-dimensional (2D) 

case, the self-assembly of the channels is influenced by shape, size, spacing of the etching 

start windows, and layer thickness. Under optimal conditions, ordered micro-/nanochannel 

arrays could be formed.  

 

By contrast, the second approach, the external control method, does not require the 

release of the functional layer from the substrate. In this approach, the substrate is compressed 

or shrunken, and the surface functional layer is “expanded” related to the substrate, causing 

wrinkles.[69,71] A typical wrinkle structure produced using this approach is shown in Fig. 4c. 

To produce ordered wrinkle arrays, Sun et al. [69] patterned surface chemical adhesion sites 

on pre-strained polydimethylsiloxane (PDMS) substrate by UV light illumination through a 

photomask. Exposure to UV light creates patterned areas of ozone proximal to the surface of 

the PDMS [72]. The ozone converts the unmodified hydrophobic surface to a highly polar and 

reactive surface (activated surface), which allow various inorganic surfaces to form strong 

chemical bonds [73]. The unexposed sections therefore interact only weakly with other 

surfaces [74].	The inorganic ribbons (here: Si) were transferred to the treated PDMS substrate 

after baking in an oven at 90oC for 5 min. Heating facilitated conformal contact and the 

formation of strong siloxane linkages between the activated areas of the PDMS and the native 

SiO2 layer on the Si ribbons. Relaxing the strain in the PDMS led to the formation of Si 

wrinkles through the physical separation of the ribbons from the inactivated regions of the 

PDMS [69]. The geometry of the wrinkles produced is tunable by changing the size and 

distribution of the activated regions. Inorganic semiconductor wrinkles have important 



14	
	

applications in flexible electronics and stretchable electronics shown by the works from the 

Rogers group at the University of Illinois at Urbana-Champaign [75-77]. 

 

It is worth pointing out that the external control method is not limited to relaxing pre-

strained substrates [78,79]. Processes which produce substrate deformation may also be used. 

Bowden et al. [80] found that wrinkles in thin metal films formed due to thermal contraction 

of an underlying substrate. In fact, wrinkles can be easily produced on a treated PDMS 

substrate. Chung et al. [81] reported plasma-assisted wrinkle formation. The process includes: 

(i) heating the PDMS; (ii) exposing the PDMS to oxygen plasma to obtain a thin film of 

silica-like materials; (iii) cooling down to generate the wrinkles. The wavelength and 

amplitude of wrinkles can be controlled by heating temperature and time of plasma treatment. 

Generally, a higher temperature induces larger strain, leading to larger wrinkle amplitude. 

Increased exposure time thickens the silica-like layers and affects both the wavelength and 

amplitude [81].  

  

C. Strain distribution of wrinkled layers: neutral plane 

 

A pre-strained flexible layer can form wrinkled structures when minimizing its elastic 

energy [52,54,59,64,68]. But it is worth noting that final wrinkled structure is not strain-free. 

Due to the curved flexible layer, the strain has a distribution profile along the depth. This 

distribution can be simulated by FEM or analytically modeled by considering the geometry 

before and after wrinkling [82,83]. In this section, we will specifically discuss experimental 
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results about strain distribution in wrinkles. The position of the neutral plane (where strain is 

zero) is a key point in this part.  

 

In a simplified model [84,85] with a curved layer of thickness t and curvature r, the 

peak strain is given by 

 .    (1) 

The strain is compressive on one surface and tensile on the other, with an approximately 

linear variation between the two extremes and the neutral plane in the middle [85]. The 

location of the neutral plane is crucial for designing flexible electronics, since the device layer 

should be there to avoid destructive bending [86]. For a device fabricated on the surface of a 

substrate (e.g. PDMS), the addition of a compensating layer on top is necessary to adjust the 

location of the neutral plane. Kim et al. [86] used the method to calculate the location of the 

neutral plane in a multi-layer system. For layers from 1 to n with strain moduli of E1,…En and 

thicknesses of t1,…tn, the neutral plane can be characterized by a distance d from the top 

surface and d is given by 

 .  (2) 
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FIG. 5. (a) Schematic of the unetched (strained QW), bonded back (partially relaxed QW), 

and wrinkled (bent QW) structures. (b) Band diagram and quantized energy levels 

corresponding to the structure shown in (a). Light-gray lines are guides to the eyes. (c) 

Transition energy of the bent QW as a function of the bending curvature. Three bent QW 

models are presented. Reprinted with permission from Ref. [87] (Copyright 2007 American 

Chemical Society). 

 

However, the real geometry of the 3D structure may deviate from theoretical 

simulation (e.g. the bond-back effect [68]), making calculations not always accurate. In 

addition, the experimental evidence of the strain distribution can rarely be directly obtained, 

especially in a very thin flexible layer. Optical methods are an effective way to probe the 
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strain status in materials, although they are indirect methods that then need further fitting. 

Since the strain modifies the band structure of materials, the light emission from a wrinkled 

light-emitting layer can change. Luminescent InGaAs quantum wells (QW) were embedded 

into a GaAs nanomembrane and acted both as a local strain sensor and strain source, and 

therefore the shift of QW emission indicates the strain state in the layer after formation of 

wrinkle [87]. After the mechanical relaxation, different emission wavelengths from different 

regions can be detected:	 the emission from the under-etched region is strongly red-shifted 

with respect to the unetched region, and the bonded back region exhibits the longest 

wavelength [87]. The lattice deformations and strain states in an unetched layer and in a 

wrinkled layer, including the bonded-back and the wrinkled regions, are schematically 

displayed in Fig. 5a. The as-grown InGaAs QW has a thickness below the critical value for 

dislocation introduction, and therefore the compressive strain is fully confined in the QW 

layer before etching (left panel of Fig. 5a). After etching the layer, the bonded back region 

was released from the substrate and partially relaxes its internal strain. The equilibrium 

configuration is between the fully strained QW (without tensile strain in the barrier layers) 

and the fully relaxed QW (with high tensile strain in the barrier layers), and tensile strain 

0.237% exists in the barrier layers (above and below the QW layer) due to strain energy 

minimization (see middle panel of Fig. 5a) [47,87]. For the wrinkled case in the right panel of 

Fig. 5a, the bending of the nanomembrane generates an inhomogeneous strain distribution 

where the lattice constant in the growth direction depends on the inner lattice constant and the 

curvature, and the strain distribution varies linearly with the distance from the inner wrinkle 

surface to the outer surface [87]. Assuming a position for the neutral plane (dotted line, 
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indicating no change of the strain state before and after bending) [61], the residual forces can 

be obtained, which can be tensile or compressive as shown in the right panel of Fig. 5a. Based 

on the strain status and linear deformation potential theory [88], the band diagram and the 

energy levels of the QW can be obtained, as shown in Fig. 5b. The transition energies are 

1.3762, 1.3638, and 1.3683 eV for strained, partially-relaxed, and wrinkled regions, 

respectively [87]. In order to gain more insight into the strain status of the wrinkle layer, the 

dependence of the calculated transition energies on the curvature are shown in Fig. 5c for 

three different models. The first model assumes strain energy minimization at a fixed 

curvature (Bent QW I). The second model assumes that the neutral plane is sitting at the 

center of the QW (Bent QW II). In contrast, a variable position of the neutral plane is 

considered as a fitting parameter in the third model (Bent QW III). Fig. 5c shows transition 

energies for strained and partially relaxed QWs. The first two models indicate only a redshift 

of transition energy compared to that of partially relaxed region, and therefore are 

inconsistent with the experimental results. Only the third model where the position of the 

neutral plane is varied gives consistent results in the curvature range of 1-2 μm-1. Fig. 5c 

indicates that the wrinkles result in a complicated strain state, which is possibly due to the 

external forces originating from the bond-back effect during the drying process [47,87]. 
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FIG. 6. Micro-Raman mapping measurements of the wrinkled Si layer, and the corresponding 

section analysis: (a) and (c) 514 nm laser; (b) and (d) 325nm laser. Reprinted with permission 

from Ref. [71] (Copyright 2013, AIP Publishing LLC). 

 

Since Raman scattering is very sensitive to the internal strain of the flexible layer, 

Guo et al. [71] also carried out Raman mapping experiments on a wrinkled Si layer (on 

PDMS substrate) to investigate this complex strain distribution. To probe the strain 

distribution along the depth, two lasers (514 and 325 nm) were used as Raman excitation 

sources. Typical color-coded Raman peak (Si-Si TO phonon) positions extracted from 

mappings using the two excitation sources are shown in Figs. 6a and 6b, respectively. The 

peak position, i.e., the strain status at the point probed, shows periodic alternation along the x 

direction while keeping constant along the y direction. After the two images are aligned, it is 

striking to observe that the locations of the crest lines (i.e., the maximum wavenumber) of 

Raman mapping measured by 514 nm laser correspond exactly to the valley lines (i.e., the 
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minimum wavenumber) of the counterpart obtained by 325 nm laser [71].  In order to 

simplify further investigation, a line-cut along x direction was performed, as shown in Figures 

6c and 6d. The experimental results present the typical sinusoidal shape, consistent with a 

computed fit to a sine function, shown by the solid line. The periodicity of the peak positions 

along the x direction is similar to that obtained from morphological characterization [71]. For 

the results obtained with 514 nm laser, the Raman peak of unstrained bulk Si ωbulk=520.7 cm-

1 is found in the middle of the sine curve (dotted line in Fig. 6c). In 325 nm laser case (Fig. 

6d), the maximum wavenumber (ω2max) decreases significantly and approaches ωbulk, and the 

minimum wavenumber (ω2min) becomes much smaller than ωbulk. Since the detection depth 

of a Raman signal correlates with the wavelength of the excitation laser, it is believed that the 

above phenomenon results from the inhomogeneous strain distribution along the depth of the 

Si layer [71].   

 

To simplify theoretical analysis of the strain distribution, the Si layer/PDMS substrate 

system is separated into two basic elements: the suspended Si wrinkle and the unattached 

elastomeric PDMS substrate in wrinkled shape. For the suspended Si wrinkle, Von Karman 

elastic nonlinear plate theory [61,84,89] is used, so the dominant strain distribution in the 

deformed wrinkles is 

	 ,                       (3) 

where  is the initial strain (the compressive strain due to the relaxation of pre-strain in 

PDMS, ~4.87 % for the present case),  denotes the in-plane displacements in the x 

direction,  is the deflection of the Si layer which can be written as  , 
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, where A and  are the amplitude and the wavelength of the wrinkle, respectively, 

and z is the distance to the center of the wrinkles. The uniform nature of strains suggests that 

the in-plane displacement should be written as [90] 

 .                                  (4) 

Then the strain field can be written as 

 .																	        (5) 

The strain distribution is tuned by cos(kx) and z. At the crest or the valley of the 

wrinkle, cos(kx) is equal to +1 or -1 and the depth distribution of the strain varies as z 

changes. The PDMS substrate also plays a significant role in deformation. Shearing forces at 

the Si layer/PDMS interface cause tension at the valley and compression at the crest, resulting 

in displacement of the neutral plane. Fig. 7 shows the forces in the crest and valley of the 

sheet, with tensile strain on the top and compressive strain on the bottom. The neutral plane, 

where εxx(x, y, z)=0, is negative at the crest and positive at the valley [71].  
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FIG. 7. Theoretical model for the strain distribution in the wrinkled silicon layer. Reprinted 

with permission from Ref. [71] (Copyright 2013, AIP Publishing LLC). 

 

 

The detection depth of the Raman system is determined by the wavelength of the 

excitation source [91]. A 325nm laser can only penetrate 8nm (1/3 of the total thickness) in Si, 

but a 512nm laser can fully penetrate the sample. Crests generate a high wavenumber TO 

mode, while valleys generate a low one. The strain is also asymmetric, with the magnitude of 

compression at the crest higher than tension in the valley (Fig. 6c). This phenomenon is 

exacerbated when using a 325nm laser, as the neutral plane of the crest is similar to the 

maximum penetration depth. The wavenumber at the crest (ω2min) becomes much lower than 

it should be, while the valley wavenumber (ω2max) stays close to ωbulk (Fig. 6d) [71]. 
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III. Fabrication and modeling of self-rolled-up tubes 

 

A. Mechanical self-assembly of rolled-up tubes: materials and fabrication 

 

Strain gradients in a flexible layer can cause bending along the direction with the 

smallest Young’s modulus, through energy minimization [92,93]. Specifically, as shown in 

Fig. 8, a strained bi-layer was produced with its top layer in-plane compressed and its bottom 

layer tensilely-stressed. When the sacrificial layer is selectively etched away, the strained bi-

layer becomes detached from the substrate. Its top layer contracts, while its bottom layer 

expands, which results in rolling [94]. If the shape of the layer is adapted to this rolling 

direction, micro-/nanotubes can be formed as shown in Fig. 8 [44,94,95]. In previous 

literature, several approaches have been proposed to introduce the necessary strain gradient or 

strain difference into flexible layers with a bi- or multi-layered structure, which will be 

discussed in the following. 
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FIG. 8. When a bi-layer is freed, its top layer contracts, and its bottom layer expands, causing 

the bi-layer to roll-up. From Ref. [96], reprinted with permission from AAAS. 

 

The first method utilizes lattice mismatch in an epitaxial bi-/multi-layer structure. The 

advantage of this method is that the strain gradient can be well controlled and thus the tube 

diameter is tunable (see discussion later). If the thickness of the layer is smaller than the 

critical value, the layer is coherent, and one can easily calculate the strain gradient based on 

the well-known values of the lattice constants [97,98]. For instance, a Ge layer epitaxially 

grown onto a Si(001) substrate creates a 4% misfit strain at the interface if the Ge is fully 

strained [29]. In compound semiconductor materials, the lattice constant varies with the 

material composition and thus allows strain tuning. Not only group IV [44,95,99,100], but 

also group III-V [101-103], and even II-VI [104] semiconductor materials have been strain-

engineered and rolled into a tubular geometry. However, in thick layers, this method is 

inaccurate because the layer can be plastically relaxed via dislocations and the strain gradient 

cannot be well calculated by considering only lattice mismatch. 

 



25	
	

 

FIG. 9. Optical images of rolled-up microtubes made out of a) Pt, b) Pd/Fe/ Pd, c) TiO2, d) 

ZnO, e) Al2O3, f) SixNy, g) SixNy/Ag, and h) diamond-like carbon. Adapted with permission 

from Ref. [94]. 

 

Other methods may also be used to introduce a strain gradient, but quantitative 

determination of the strain is difficult. The strain normally depends on experimental 

parameters during layer growth/deposition which can be manipulated to generate the required 

gradient [105]. For instance, non-epitaxial vapor deposition of thin layers may also be 

inherently strained [29]. In addition, it was found that the heating or cooling of materials with 

different thermal expansion coefficients can introduce strain into the layers [29]. By changing 

the experimental conditions, Mei et al. [94] have prepared microtubes from flexible layers. As 

shown in Fig. 9, pre-stressed inorganic layers deposited onto polymer sacrificial layers (here: 

photoresist) are released by removing the sacrificial layer with acetone or other organic 

solvents, and roll up into microtubes. Since the sacrificial layer is organic and can be easily 

removed by organic solvents, flexible layers of almost any inorganic material can be rolled. 

Figs. 9a-h show examples of rolled-up microtubes: a) Pt, b) Pd/Fe/Pd, b) TiO2, b) ZnO, e) 
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Al2O3, f) SixNy, g) SixNy/Ag, and h) diamond-like carbon [94]. Moreover, the photoresist 

sacrificial layer can be easily patterned using conventional photolithography, and the flexible 

layer is replicated from the pattern during deposition, which is convenient for future device 

fabrication. Here, the layers were deposited by non-epitaxial methods, and it is believed that 

the strain gradient was introduced by a combination of substrate temperature evolution, 

deposition rate, and base pressure during deposition [94]. In multi-crystal layers, different 

grain sizes in the flexible layer exert different strain levels [106]. 

 

It is worth noting that although they are not commonly used, there are other 

approaches reported to introduce a strain gradient into a flexible layer. Theoretical 

investigation proved that surface reconstruction can create a strain gradient: a (2×1)-type 

reconstruction of Si (001) surface can create a self-driving force that bends the Si layer [107]. 

In polymers, distinct swelling properties of chemically dissimilar polymers in solvents can 

provide the strain gradient needed for bending [108]. For instance, polystyrene (PS) and 

poly(4-vinylpyridine) (P4VP) can be dip-coated on Si substrate to form a bi-layer structure. 

Upon exposure to water, PS demonstrates minimal water uptake, forming a stiff hydrophobic 

layer. P4VP is relatively less hydrophobic and will swell in acidic aqueous solutions because 

of protonation of polymer chains [108,109]. This mechanical effect was successfully 

employed for rolling microtubes [110]. 

  

B. Mechanical self-assembly of rolled-up tubes: modeling 
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The rolling of a flexible layer is a mechanical self-assembly process. To construct a 

complex 3D structure, the rolling direction and its misalignment with the crystal orientation 

of the flexible layer should be carefully considered. If the strain gradient was fixed, the 

mechanical properties of the layer would influence the rolling direction significantly. In a 

single-crystal epitaxial layer, anisotropy in the crystal structure leads to anisotropic 

mechanical properties [58]. For instance, the Young’s moduli in the GaAs <100> and <110> 

directions are 85.3 and 121.3 GPa respectively [111,112]. The Young’s moduli in Si along the 

<100> and <110> directions are 130.2 and 168.9 GPa respectively [113]. Calculation by 

energy minimization shows that rolling along the direction with the smallest Young’s 

modulus (the softest direction) is preferred [58]. To demonstrate this phenomenon 

experimentally, Chun et al. [114] designed a wheel pattern with eight anchored stripe pads 

orientated symmetrically in the <100> and <110> directions (Fig. 10a). The results of the 

In0.3Ga0.7As/GaAs bilayers released from the (001) GaAs substrate are shown in Fig. 10b. The 

center image shows all pads around the wheel and the zoomed-in image for each pad is laid 

out in the outer periphery. The four pads with longer edges oriented along the <100> 

directions (diagonal lines of the wheel) formed tubes, with rolling taking place in the <100> 

direction and stopping at the foot anchors. For those four oriented along the <110> directions, 

the rolling still occurred in the <100> directions, and thus formed ‘turn-over’ triangular 

patterns. The persistent rolling along the <100> direction, regardless of how the rectangle 

stripe patterns are oriented, proves the anisotropy of stiffness in cubic GaAs crystals [114]. 

On the other hand, if the layer is fabricated by a non-epitaxial method, there is no anisotropy 
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from crystal structure, but it was found that the softest direction is that perpendicular to the 

deposition direction [115].  

 

 

FIG. 10. A patterned wheel of anchored rectangular pads (a) before and (b) after lithography 

in SEM, with magnified pads displayed in (b). In0.3Ga0.7As/GaAs film was grown on (100) 

GaAs. Copyright 2008 IEEE. Reprinted with permission from Ref. [114]. 
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FIG. 11. Two and three-dimensional plots of rolling direction as a function of tube 

circumference (c), width (a), and rectangular layer length (b). Blue indicates long side rolling, 

red short side, and green for a combination. Reprinted (adapted) with permission from Ref. 

[63] (Copyright 2010 American Chemical Society). 

 

Chun et al. [63] specifically investigated the rolling behavior of rectangular layer, 

where both sides are the softest directions, and the results are summarized in Fig. 11. The 

rolling direction is plotted as a function of three parameters, b/a, c/a, and a, where a is the 

length of the rectangular membrane, b is the width, and c is the circumference of the tube. 

There are three types of rolling behavior can be observed in the experiment. The blue and red 

dots represent long-side rolling and short-side rolling, respectively, and the green dots are 

mixed cases with some tubes rolled up from the long side and some from the short side. Fig. 

11 shows that the rolling direction depends on not only the dimension of the starting layer (a 

and b) but also the tube circumference (c). Rolling occurs exclusively on the long side when 

(c/a > 2) or (b/a > 9), but is mixed when (c/a<<1) and (b/a) is low. Mixed and short rolling 

are also more likely to occur in sheets of larger size [63].  



30	
	

In an experimental study, researchers noticed that chemical etching anisotropy may also 

impact the rolling behavior [58]. Time evolution of rolling shows a complicated process [63]. 

The final rolling direction depends on the length and width of the layer, the energy of the final 

state, the history of the rolling process, the kinetic control of the etching isotropy, and the 

diameter of the tube [63].  

The modeling of the tube geometry is another important concern. Considering the 

spiral cross-section of rolled-up tube, one can calculate the number of rotations N as [116] 

,  (6) 

Where L= 2π(r + (n − 1)d)!
!!!  is the rolling distance, d is the layer thickness, and r is the 

tube radius of the initial turn [116]. The initial diameter/radius, on the other hand, should be 

determined by the strain gradient, the hardness, and the thickness of the layer. A few models 

have been proposed in previous literature. For a bi-layer structure, the diameter D can be 

calculated based on a macroscopic continuous mechanical model [103,117] using the 

equation: 

 , (7) 

where d=d1+d2 is the total thickness of the bi-layer, ε is the in-plane bi-axial strain between 

the two layers, n=Y1/Y2 is the ratio of Young’s modules, and m=d1/d2 is the ratio of the 

thicknesses of the two layers. In 2006, Songmuang et al. [118] proposed a slightly modified 

model based on their tube which rolled from partially strain-relaxed single-material layer. In 

such a case, the layer was divided into two regions: the lower region close to sacrificial layer 

experiences either a tensile or a compressive strain, and the upper layer is relaxed. The 

diameter of the tube can be described by [55,118] 
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  (8) 

It should be mentioned that the Poisson’s ratio may also be considered if the material 

has anisotropic mechanical properties [118]. Investigations showed that calculated diameters 

from these models agree well with the experimental results [103,119,120], although FEM 

may give even more accurate predictions. The imperfection of the above models are possibly 

due to thickness deviation or additional strain [58]. The strain relaxation along the tube axis, 

as probed by x-ray diffraction [121] and optical characterization [122], may also influence the 

rolling process and tube geometry. 

 

IV. Mechanics and geometry in self-assembled helical structures 

 

A. Self-assembly of amphiphilic aggregation 

 

Chirality, or handedness, is of key importance in many physical and chemical 

systems. Molecular interactions, for example, are often strongly dependent on the chirality of 

the constituent molecules [123]. Helices are typical examples of chiral structures [19]. The 

self-assembly of helical structures, such as amphiphilic aggregates, is ubiquitous in natural 

and engineering systems, and has since served as an efficient, “bottom-up” way of 

manufacturing nanostructures. For example, lipid bilayers can self-assemble into helices 

driven by Ca2+-mediated intermembrane binding [124]. Helical ribbons that arise through 

packing of amphiphilic molecules have since been investigated through both experiments and 

theoretical modeling [123,125-130].  

21

3
21 )(1

3
1

dd
ddD +

=
ε



32	
	

 

  Many molecules self-assemble in aqueous environments into larger aggregates, which 

can exhibit a variety of geometric shapes, from vesicles to twisted ribbons. Based on 

continuum theory, Helfrich and Prost developed a theoretical model for the bending of 

anisotropic membranes to interpret the formation of tubes and helical ribbons from 

different amphiphiles [131]. By assuming that the chiral molecules are packed with 

some twist with respect to the nearest neighbours, the theory showed that this 

molecular twist can be propagated throughout the membrane, thus creating a bending 

force that results in the formation of helical ribbons or tubules. Later, Ou-Yang and 

Liu [132] followed this membrane elasticity approach, but introduced a new linear 

term by viewing chiral lipid bilayers as cholesteric liquid crystals to study the helical 

structures. The analysis showed that a twisted ribbon shape and a helix with a 45o 

would form as intermediate states before transitioning into tubes, consistent with 

previous experimental observations [132]. However, more recent experiments 

demonstrated that helical ribbons can be stable states and that the helix angle was not 

necessarily 45o [133].  

 

Chung et al. [126] made perhaps the first attempt to interpret the appearance of 

different helix angles through a theoretical approach. Subsequently, Selinger and Schnur 

further developed a theoretical model, based on Helfrich and Prost’s continuum theory, to 

find that the molecular chirality or tilt can result in the helical winding of a membrane and the 

radius can be predicted in terms of the continuum parameters [134] (Fig. 12). Soon afterwards, 
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Selinger and co-workers extended this theory and considered membrane anisotropy to 

interpret the possibility of modulated state of tubules (Fig. 12c). Yet another contribution 

from Selinger et al. [129] was to show that helical ribbons can actually be equilibrium 

configurations instead of being just intermediate states. 

 

FIG. 12. Schematic illustration of the shape evolution of chiral bilayer membranes (a) with 

the molecules tilted with respect to their neighbors (indicated by the arrows) twisted into a 

helical ribbon (b) and a closed tubule when the lipid molecules are deposited from the 

saturated solution. From Ref. [128], reprinted with permission from AAAS. 

 

B. Mechanical self-assembly of helical ribbons: microfabrication 

  Helical ribbons are an important set of geometric shapes among chiral structures. 

Such shapes often arise as a result of the competition between bending and in-plane stretching 

energy driven by certain internal or external forces. The sources of driving forces include, but 

are not limited to, surface stresses [9,135,136], residual stresses [137], misfit strains [10,138-

140], molecular tilt [123,129,141], differential growth [17,142], swelling/de-swelling 

[11,15,23,143] and the coupling between piezoelectricity, electric polarization, and free 

charge carrier distribution [144].  
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Strained multilayer structures have received intensive attention from the scientific 

community due to the applications as sensors and actuators in microelectromechanical/nano-

elecromechanical systems (MEMS/NEMS). As mentioned earlier, the mechanical principles 

of residual stress/strain-induced bending of a multilayer can be exploited to manufacture 

micro-/nano-scale architectures. Prinz et al. [95] demonstrated that three-dimensional rolled-

up nanohelices can be fabricated, through a “top-down” approach, by using an InAs/GaAs 

bilayer with lattice mis-match strain. The InAs layer is subjected to compression and the 

GaAs is in tension, because the lattice spacing of InAs is about 7.2% larger than GaAs. The 

bilayer rolled up (toward GaAs) to partially relax the interlayer strain due to mis-match, after 

the sacrificial layer (AlAs) was etched. This method relies on the fact that both layers are 

crystalline materials and grown epitaxially with respect to each other such that the lattice mis-

match strain provides the driving force for bending. This is the first report in which the 

molecular-beam-expitaxy overgrown structures with nanotubes and nanohelices were 

fabricated. By controlling the geometric orientation of the strip, researchers can control the 

formation of rings or helices with preferred pitch angles (Fig. 13). 

 

Since then, a variety of different crystalline materials have been used to manufacture 

bilayer or trilayer nanorings or nanohelices [10,138,145-147]. For instance, Bell et al. [145] 

manufactured three-dimensional InGaAs/GaAs nanosprings again using AlAs as a sacrificial 

layer and employing wet etch to release the patterned bilayers. Since crystallographic 

anisotropy dictates that the <100> direction is the preferred roll-up direction, helical ribbons 
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with different pitches and helix angles formed depending on the misorientation angle of the 

ribbon’s geometric axes and the bending direction (Fig. 13). This fabrication methodology 

takes advantage of the strain engineering principle discussed above and achieves on-demand 

manufacturing of semiconductor nanohelices with remarkable precision and reproducibility 

with potential applications as sensors and microrobotics.  

 

 

FIG. 13. (a) InGaAs/GaAs strain-induce curl; (b) releasing the strain generates helices; (c) 

bilayer fabrication; (d) helix pitch is a function of pattern orientation. Reprinted (adapted) 

with permission from Ref. [145]. Copyright 2006 American Chemical Society. 

 



36	
	

Zhang et al. [10] further studied the anomalous coiling phenomena in rolled-up 

SiGe/Si and SiGe/Si/Cr nanohelices. These nanohelices were manufactured using the same 

methodology as described above. Interestingly, when the width was reduced from 1.3 to 0.7 

μm, the pitch and helix angle of the SiGe/Si/Cr helical nanohelix first decreased, then 

increased, and finally decreased until a self-overlapping ring formed. Noticeably, the chirality 

also switched from right-handed, to mixed, and to left-handed, suggesting that there could be 

some edge effects that influenced the morphology. Indeed, Zhang et al. [10] took into 

consideration the edge effects by hypothesizing that the edge stress would become 

increasingly dominating when the width decreased, leading to the change of chirality, and the 

final self-overlapping state when the width fell below a threshold value (Fig. 14). Dai and 

Shen subsequently used a Cosserat rod theory to interpret this abnormal phenomenon by also 

considering the increasing edge effects as the width became larger [148].  

 

 

FIG. 14. SEM top view images of SiGe/Si/Cr helical nanoribbons (the layer thickness is 

11/8/21 nm). The inset of (h) does not have a Cr layer. The arrows in (a) denote the <110> 

direction on the substrate. All the strips in (a)-(g) have a misorientation angle of 10o from 

<110>. The width decreases from 1.30 to 0.70μm at an interval of 100nm from (a) to (h). In 
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(h), both nanoribbons have a misorientation of 5o. Reprinted (adapted) with permission from 

Ref. [10] (Copyright 2006 American Chemical Society).  

 

C. Mechanical self-assembly of helical ribbons: modeling 

 

 

 

FIG. 15. Tunable helical ribbons. (a) Illustration of a helical ribbon. The principal bending 

directions, r1 and r2, are rotated from the geometric axes, dx and dy, by a misorientation angle 

ϕ. (b). (c) a piece of latex rubber sheet is pre-stretched twice as much in the vertical direction 

than in the horizontal direction before a series of adhesive strips were attached to it along 

different misorientation angles (ϕ =0o, 15o, 30o, 45o, 60o, 75o, and 90o). The ribbon at the 

center is made of prestretched top and bottom layers with a misorientation angle of 30o. The 

released multilayer strips deformed into coiled shapes with the pitch and helix angle 

depending on ϕ. Reprinted with permission from Ref. [9] (Copyright 2011, AIP Publishing 

LLC). 
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More generally, a helical ribbon bends around two principal axes, r1 and r2, with 

principal curvatures,  and , as shown in Fig. 15a. The principal bending axes form a 

misorientation angle ϕ with the geometric axes dx and dy. Chen et al. [9] showed that the 

coordinates of the centerline can be parameterized as functions of the arclength s, and the 

geometric properties, such as the pitch p, the helix angle θ, and the helix radius R, can all be 

determined by the three independent geometric parameters, , ,and ϕ : 

 , , ,  (9) 

where ,  ,  and 

.    (10) 

Further, they considered the deformation of a ribbon driven by surface stress (f+ and f-) acting 

on the top and bottom surfaces respectively, by minimizing the total energy 

,  (11) 

where  is the strain tensor, C is the elastic stiffness tensor, and the coordinate z is defined as 

the distance from the mid-plane along the thickness direction. Analytical solutions were then 

obtained for the case f+ is zero. The theoretical predictions agree well with the table-top 

experiments (shown in Fig. 15b), in which an elastic strip adhesive is bonded to a pre-

stretched latex rubber sheet to produce helical ribbons with different shapes depending on the 

misorientation angle ranging from 0 to 90o (Fig. 15c).  
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FIG. 16. (a) Open Bauhinia pods. (b) Manufacturing a mechanical analog of Bauhinia pod. 

Bonding two perpendicularly pre-stretched latex rubber sheets and gluing them together, 

forms a residually stressed compound sheet. A strip is cut from the sheet along a direction that 

forms an angle θ  with either direction. (c)-(e) Narrow strips cut at angle θ

= 0°, 15°, 30°, 45°, 60°, 75° and 90° from a latex sheet, Bauhinia pods and theoretical 

predictions respectively. (f) Dependence of radius and pitch on angle θ. Symbols correspond 
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to data points of latex sheet, whereas lines are the theoretical predictions. (a)-(f) are from Ref. 

[15], reprinted with permission from AAAS. (g) The schematics for the method used to create 

paper models, which generates the coiling behavior that mimics plant structures. (h) The 

shapes of paper models for different combinations of the two control parameters: the 

dimensionless width and the misorientation angle. (g) and (h) are from Ref. [149], reprinted 

with permission from AAAS. 

 

Armon et al. [15] also developed a theoretical framework to describe the formation of 

helical ribbons driven by incompatible target metrics and applied the model to interpret the 

chiral opening of Bauhinia seed pods (Fig. 16a). The authors bonded prestretched latex rubber 

sheets to create a range of helical ribbon shapes. The predicted pitches and radii and the 

transitions between cylindrical helical ribbons and helicoids (which will be discussed in detail 

in the next sub-section) agreed well with the resulting ribbon shapes. Bauhinia seedpods have 

been exploiting this mechanism to twist open into two pieces with opposite handedness for 

millions of years. Forterre and Dumais [149] further used paper models to illustrate the 

“phase space” of such helical ribbons. The fibers in their papers were typically aligned 

parallel to one side, so gluing two pieces of papers with perpendicularly aligned fibers formed 

an anisotropic bilayer. When immersed in water, this bilayer attempted to bend along both 

directions, creating saddle-shaped structures with negative Gauss curvature. When the strips 

were cut along different directions, helical ribbons of different shapes formed (Fig. 16h).  

 

Since the theoretical approaches by Armon et al. [15] and Chen et al. [9] do not 
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require the details of any microscopic interactions, the models can predict shape formation 

from any initially flat elastic sheet driven by residual stresses/strains, surface stresses, 

swelling/shrinkage or differential growth [149].  

 

 

FIG. 17. (a) Theoretical cross-section of isosceles nanoribbons, where X(s) is path of the 

perimeter. The grey area is the imaginary mirror image. (b) Coiled nanoribbons immersed in 

water. (a) and (b) are adapted from Ref. [150] with permission. (c) Left panel: a flat sheet 

made of the composite gel with 1 mm-wide patterned stripes of PNIPAm gel (PG) and 

PNIPAm/PAMPS gel (BG) that form an angle to the long axis of the sheet. Right panel: A 
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helical ribbon formed when subjected to an external stimulus. (d) Helical ribbons generated 

after incubating the gel sheets for 24 hours in a 1M NaCl solution. The right panels display 

conical helices generated in the NaCl solution by gradually changing the geometric 

parameters such as the ribbon width. (c) and (d) are reprinted by permission form Macmillan 

Publishers Ltd: Nature Communications, Ref. [151] (Copyright 2013). (e) 365nm UV light is 

used to selectively crosslink PNIPAM copolymer sheet. The photomask restricts the regions 

of the sheet that are exposed to light, while the edges of the sheet under the edges of the 

photomask receive an intensity gradient of light, giving rise to a crosslinking gradient. (f) The 

swelling constant 𝛺 is low in the center of the ribbons, indicating that the centers have a 

limited capacity to swell. The edges are able to swell much more, resulting in a helix with 

defined radius 𝑅! in a swollen state. (e)-(g) are reprinted from Ref. [152] (Copyright 2014 

with permission from Elsevier). 

 

Pham et al. [150] designed and manufactured a class of stretchable nanoribbons able 

to transform into helices when immersed in water. Ribbons were constructed from metal, 

polymer, and ceramic materials using evaporative deposition. The nanoribbons have the cross 

section of an isosceles triangle, and this geometric asymmetry causes the ribbons to 

spontaneously curl in an attempt to reduce energy (Fig. 17a). The helices are formed only to 

the degree that they prevent the ribbon from self-intersection, leading to tight coils with low 

pitch (Fig. 17b).  Handedness is governed by the asymmetry of the cross-section. 

 

 Helices are common in plant tendrils, and have the tendency to reverse their chirality 
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midway across their length. Godinho et al. study this perversion and create temperature-

dependent cellulose liquid crystal fibers that mimic this effect [153]. Hydroxypropylcellulose 

was acetylized and crystalized, then electrospun into active micro and nanofibers. These 

fibers would wind upon heating while decreasing their tension. The authors also explored 

how the intrinsic curvature of the electrospun cellulose fibers is a product of fabrication, and 

that the twist is due to off-core defects [154]. 

 

It is also worth mentioning that interfacial energy can also induce helical or even 

multiple-stranded helical shapes. Ji et al. [155] found that the interfacial adhesion could be 

responsible for the shaping of some double helices at the microscopic scale. Such double 

helices have been observed in a variety of systems including DNA [156,157], carbon 

nanofibers [158], and carbon nanotubes [159,160]. 

 

V. Mechanical principles of shape transitions in self-assembled layers 

 

A. Mechanical buckling induces formation of helical ribbons 

 

While mechanical buckling has traditionally been perceived as a failure mechanism, 

in recent years researchers have employed buckling to construct a variety of geometric shapes 

including helices. Wu et al. [151] developed a new “small-scale”, modulation-based strategy 

to fabricate two-dimensional sheets that mechanically self-assemble into three-dimensional 

helical shapes. Inspired by the self-shaping of fibrous organs of plants, they developed 
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stimuli-responsive single-layer composite materials that can undergo shape transformations. 

More specifically, they patterned a hydrogel sheet with stripes of alternating chemical 

compositions at a misorientation angle to the geometric axis of the ribbon. The difference in 

the swelling/de-swelling ratios and elastic moduli between alternating stripes leads to a shape 

transformation of the 2D sheet into a helical ribbon, driven by a reduction in stretching energy. 

Remarkably, instead of having a residual strain/stress gradient (often through a multilayer 

design), as was the case in previous works, the single layer in this study meant that there was 

initially zero elastic modulus and stress/strain gradient along the thickness direction. In fact, 

the formation of helical ribbons here is due to mechanical buckling associated with the release 

of in-plane stretching energy, so the bending direction is always along the direction of the 

stripes. Cylindrical helical ribbons with both right-handedness and left-handedness were 

generated with equal probability (Fig. 17c). 

 

The buckling of thin hydrogel sheets has also been shown to be controllable and 

reversible, paving the way for designing materials that respond naturally to their environment. 

Bae et al. [152] developed a simple manufacturing method to induce helical self-assembly 

when exposed to changes in temperature. Rather than changing the chemical composition of 

hydrogel sheets at different points, the researchers photo-crosslinked the gel in such a way as 

to limit crosslinking on the edges of the ribbon (Fig. 17e-f). The edges of the resulting ribbon 

were thus able to swell more than the center. Like the hydrogel ribbon developed by Wu et al. 

[151], the ribbon releases in-plane stretching energy by curling around a radius 𝑅! (governed 

by the width of the ribbons). The curling of these ribbons was reliably reversible when the 
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ambient temperature was increased to 50°. At these temperatures, the ribbons were less able 

to swell and the resulting in-plane stress between the edge and center was lower, reducing the 

curvature of bending. The authors posited that this behavior could have applications as a 

micro-knot that can be tightened or loosened in response to temperature. It should be noted 

that, unlike the periodically patterned hydrogel sheets in Wu et al. [151], a hydrogel ribbon 

that curls under edge effects alone has a natural pitch of 0 – i.e. it has no off-axis bias will 

naturally form a helix only to the extent that it prevents self-intersection (Fig. 17b). A bias 

could theoretically be introduced using the off-axis stripe techniques of Wu et al. [151], 

nevertheless. Interestingly, the authors found that the side of the ribbon exposed directly to 

UV light during photo-crosslinking would reliably end up as the inside of the curled ribbon. 

This was because the up/down orientation of the ribbon with respect to the light introduced a 

crosslinking gradient in the z-direction. The side closer to the light cross-linked more, making 

it less able to swell and pushing it to the inside of the curl. 

 

 

FIG. 18. (a) Flowchart showing the halftone lithographic patterning method. A simple 
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photomask is used to give the entire region a low dose of UV, and then a halftone photomask 

gives selective high doses of UV. (b) Enneper’s minimal surfaces generated from radially 

symmetric patterning. Surfaces with 3 to 6 nodes are generated. (c) Sphere generated from 

asymmetric patterning, with areas of high distortion excised. From Ref. [161], reprinted with 

permission from AAAS. 

 

While crosslinking-gradient edge effects serve as an extremely simple way to 

manufacture shape-morphing sheets, significantly more complicated structures can be built by 

selectively crosslinking the whole surface of a sheet. Kim et al. [161] used a “halftone 

lithography” approach to achieve arbitrary swelling and shrinking of sheets in two dimensions. 

They created an acrylic acid monomer solution with benzophenone photo-crosslinking units 

that gels proportionally to the amount of UV light received, allowing smooth variations in 

crosslinking levels. Rather than use difficult-to-produce grayscale photomasks, the authors 

opted to simulate gradations through the use of a halftone process, where the density of tiny 

circular regions of high UV is used to simulate varying levels of exposure (Fig. 18a). This 

gives a wide range of possible crosslinking levels with only two binary photomasks. With this 

method, the authors first showed that it was possible to easily produce common shapes that 

require only radially symmetric patterning such as saddles, cones, and Enneper’s minimal 

surfaces (Fig. 18b). These minimal surfaces were formed by mapping the swelling equation: 

𝛺 𝑟 = 𝑐 1 + !
!

! !!! !
,     (12) 

where n is the number of nodes and 𝛺 is the swelling ratio. It was found that the number of 

nodes on the resulting 3D shape could indeed be predictable varied, showing good agreement 
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with theory. More interesting shapes are possible with patterning that varies in two 

dimensions, such as a sphere. The authors took a conformal mapping of a square onto a 

sphere:  

𝛺 𝑥, 𝑦 = 2
𝑑𝑛 𝛼 𝑠𝑛 𝛼 !

1 + 𝑐𝑛 𝛼 ! ! ,𝛼 =
𝑥 + 𝑖𝑦
𝑅

|
1
2
where 𝑑𝑛, 𝑠𝑛, 𝑐𝑛 are Jacobi elleptic functions 

This mapping has the advantage of concentrating distortion (which corresponds to extremely 

high or low levels of crosslinking) to a few small points, which could simply be excised from 

the sheet before swelling. The resulting (Fig. 18c) approximates a sphere, though the corners 

do not meet because of singularity effects.  

 

 

  

FIG. 19. (a) Phase diagram showing the cutoff point for when polymer bilayer particles will 

form complete tubes and rings (above lines) versus arcs and coils (below lines). x-axis is ratio 

of layer thicknesses, y-axis is radius of curvature, and each line corresponds to a different 

biaxial modulus. (b) Examples of structure found above and below the lines. (a) and (b) are 

reprinted with permission from [162] (Copyright 2008, AIP Publishing LLC).  
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There has been significant research into the development of PDMS based adaptive 

bilayers that respond naturally to changes in environmental conditions, since PDMS’s high 

biocompatibility makes it a promising candidate for drug delivery. Simpson et al. [163] shows 

that when plated with a dissimilar material, such as gold, the interfacial tension between the 

two materials causes controlled wrinkling. This wrinkling can be directed by locally 

modifying the thickness of either layer, leading to the creation of complex structures. The 

bilayers that they created were able to coil and uncoil in response to temperature changes, 

allowing them to capture and release poly(ethylene glycol). In a similar study, Kalaitzidou 

and Crosby [162] showed that it was possible to create adaptive polymer bilayer particles that 

underwent shape actuation when exposed to interfacial stress. These small particles changed 

the characteristics of the fluid flows they were in based on whether they were in a rolled or 

unrolled state. Sheets of PDMS were cured and plated with a gold layer through e-beam 

evaporation. These sheets were then cut into pieces with set lengths and widths, which 

determined their subsequent shape transformation. They found that when both dimensions are 

significantly larger than the PDMS sheet thickness, the particles tended to roll into tubes and 

rings. As the thickness increased, the particles rolled into open structures such as arcs and 

helices (Fig. 19a-b). This process was shown to be reversible, with the coils and tubes 

returning to a two-dimensional state upon sufficient temperature increase. They showed that 

the small size of the coils allow them to be used as adaptive particles in solution to control the 

flow of that solution based on temperature. This is generalizable to a large close of responsive 

polymers and environmental stimuli. 
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FIG. 20. Various structures formed by LC elastomers adhered to a polystyrene layer. Bends, 

folds, and twists were introduced, as well as a four-arm grabbing structure. Reproduced 

(adapted) from Ref. [164] with permission of The Royal Society of Chemistry. 

 

Agrawal et al. [164] showed that uniformly aligned liquid crystal elastomers could be 

made to actuate in complex shapes by affixing a secondary polystyrene layer that locally 

varies in thickness. When heated, the LC elastomer attempts to contract along its alignment 

director but is inhibited by the polystyrene layer. In regions of thin polystyrene the balancing 

of deformation energy causes small wrinkles, but as the polystyrene becomes thicker, the 

wavelength and amplitude of the wrinkles increase until the sheet folds. The authors show 

that applying polystyrene films on opposite layers can make further complex shapes. A four-

arm grabbing actuator was made by selectively patterning the arms of a cross (Fig. 20). The 

polystyrene is placed on top of the LC where the alignment director is parallel to the direction 
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of the intended bend, while it is place under the LC with perpendicular alignment. When 

heated, both sets of arms curl upward in a grasping motion. This pattern can be extended to a 

planar LC elastomer / polystyrene bilayer, which will result in an actuator that functions like a 

leaf – closing when the temperature rises too high and opening when it falls. 

 

 

FIG. 21. a) Thermal cycle of shape memory fiber-embedded elastomers. When stretched and 

cooled below glass transition temperature of fibers, the composite bends on unloading. When 

reheated, it returns to a flat state. b-c) Self-folding box made from this technique, where the 

fibers are embedded in the folds. Reprinted with permission from Ref. [5] (Copyright 2013, 

AIP Publishing LLC). 

 

Shape memory alloys have long been a promising material in the field of shape-

morphable structures but have been hindered by their lack of flexibility. Recent advances are 

helping to remove this barrier, such as the work of Ge et al. [165], who designed a composite 

structure where shape memory fibers were embedded in an elastomer matrix [165]. This 

allowed them to encode shape-morphing behavior into the fibers. Using a multimaterial 3D 

printer, glassy shape-memory fibers with preprogrammed shape effects were printed into the 
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elastic matrix. When the resulting material is stretched and cooled below the glass transition 

temperature of the fibers, it curls when the stretching force is released. When the heated to 

above the glass transition temperature, the material recovers its original shape (Fig. 21a). The 

authors used this property to design and print a self-folding box, in which each of the hinges 

were composed of this curling design. The box is stretched and cooled and upon release folds 

itself. When reheated, it similarly unfolds (Fig. 21b-c). 

 

 

 

FIG. 22. a) Nano-helix structure formed from wavy silicon ribbon selectively bonded to 

elastomer sheet. b) A similar technique is used to make double helix structures, where the 
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second layer of helices stands on top of the first. This second layer is not bonded to the 

elastomer. From Ref. [166], reprinted with permission from AAAS. 

 

Xu et al. [166] have shown that it is possible to induce buckling-driven self-assembly 

of helical ribbons in almost arbitrary materials. Winding silicon ribbons were placed on a 

prestretched elastomer. Using UV light to generate ozone at specific points on the surface of 

the ribbon induces the formation of hydroxyl groups, which allows the ribbon to bind to the 

prestretched elastomer at well-defined points. When the elastomer is allowed to relax, the 

ribbons deform out of plane in order to minimize internal stress (Fig. 22a). In this case the 

radius of the resulting helix, as well as the pitch and chirality, is all determined by the spacing 

of the bonding hydroxyl groups in relation to the ribbon. Unlike the helices made of 

hydrogels in Bae et al.’s work [152], these helices once formed are permanent. The authors 

also found that by using finite element analysis to pre-compute the strain on the ribbons they 

were able to manufacture multilayer architectures. The higher layer strips of silicon, rather 

than buckling around hydroxyl bonding sites, would buckle around their joins to other silicon 

strips, enabling the formation of double-layered helices (Fig. 22b). This new technique is very 

promising primarily because of the impressive maturity of silicon lithography technology. 

Since the deformations rely on the same techniques that are used to pattern silicon chips, 3D 

out-of-plane nanostructures can be made at extremely high resolution. The authors showed 

that this technique was also extensible to metals and other semiconductors, indicating 

impressive versatility. 
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B. Shape transitions in helical ribbons 

 

Recent studies have shown that shape transitions can occur between purely twisted 

ribbons, helicoids, spiral ribbons, and tubules by changing the relevant geometric parameters, 

such as the magnitudes and signs of the principal curvatures, the misorientation angle, or the 

geometric dimensions [9,15,21-23]. These changes often result from external stimuli, such as 

changes in temperature[24,167], pH, or swelling/deswelling [15,23]. 

 



54	
	

 

FIG. 23. (a) Schematic representation of cylindrical helical and purely twisted ribbons. The 

bottom shapes feature the locally cylindrical and saddle-like curvatures in these multilayered 

ribbons. Reprinted by permission from Macmillan Publishers Ltd: Nature, Ref. [127] 

(Copyright 1999). (b) Side view of schematics of the direction of TNE ribbons. (c) A 

schematic diagram shows the top view of L- and S- geometry. (e) Temperature dependence of 

the inverses of pitch and diameter of the helices. The lines (both dashed and solid) represent 

theoretical predictions. The (red) circles and (blue) squares represent the data of the L-

geometry and the data of the S-geometry respectively. (f) Cylindrical helical ribbons formed 
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by the wide twisted-nematic-elastomer (TNE) where the thickness of the ribbons is 

35.2 𝜇𝑚.The L-geometry ribbon is left handed at 374 K and right handed at 336 K.  Adapted 

from Ref. [24] with permission. 

Oda et al. [127] studied the transition between helicoids and spiral ribbons in charged 

gemini surfactants when the length of the molecular chain changed (Fig. 23a). These shape 

transitions were also observed in twist-nematic-elastomers [1,24]. Sawa et al. [24] found that 

thin ribbons underwent a similar transition when the width varied and developed a theoretical 

model by introducing a term in the total potential energy that accounts for molecular twist. 

Twist-nematic-elastomer ribbons can form purely twisted or cylindrical helical shapes 

depending on the temperature and/or width. This shape selection arises from the competition 

between bending energy and in-plane stretching energy. A ribbon with a small width-to-

thickness ratio can easily adopt a twisted shape with a large Gauss curvature; while one with a 

large width-to-thickness ratio will stay in a shape with nearly zero Gauss curvature to 

minimize the total potential energy (and in particular the stretching energy). The change in 

temperature, on the other hand, results in local stretches (or shrinks) along the nematic 

director caused by residual effects from temporary chiral dopants. They also showed that 

certain liquid crystal elastomer ribbons could switch chirality when transitioning with changes 

in temperature. 
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FIG. 24. Monostable and bistable helices. (a) Mono-stable helical ribbons. An elastic strip 

was bonded to a prestretched latex rubber sheet, with a misorientation angle ϕ ranging from 0 

to 90o at a 30o interval. The pre-stretches are 0.24 and 0.12 in the vertical and horizontal 

directions, respectively. (b) Mono-stable helical ribbons. (c) Bistable-helical ribbons. (d) The 

other stable shapes of the same ribbons in (c). The color is indexed according to the out-of-

plane displacement. Reprinted with permission from Ref. [22] (Copyright 2014, AIP 

Publishing LLC). 

 

Armon et al. [15,23] and Guo et al. [22] independently examined shape transitions in 

strain-engineered elastic ribbons and came up with similar criteria that a transition would 

occur at when the dimensionless “width”  (where  is the width,  is the 

thickness, and is the principal curvature) exceeds the threshold value. So the transition in 

shape (as well as multistability, as will be discussed later) is actually dictated by the 

HW // κ W H

κ
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combination of these three geometric parameters. Guo et al. [22] further performed theoretical 

analysis and experiments (Fig. 24) to study such shape transitions and the associated change 

in multistability. Finite-element simulations (Fig. 25) were also employed to quantitatively 

investigate such shape transitions [168]. (In fact, these shape transitions not only occur in 

surfactants, strained elastic ribbons, and liquid crystal elastomers, but also in seedpods and 

peptides related to Alzheimer’s diseases.) 

 

 

 

FIG. 25. The stable helical configurations driven by misfit strains in bilayer ribbons modeled 

using finite element simulations.  The misfit strain in the top layer is 
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, ,  and m; (C) , , , m, and 

m; (D) , , ,  m, and m. Transition from 

a purely twisted ribbon (C) to a spiral ribbon (D) occurs when the misfit strain is increased by 

five times. The color (in this figure and the following) is indexed according to the total 

displacement to help visualize the deformation involved. With kind permission from Springer 

Science+Business Media, Ref. [168] (Copyright 2014). 

Among the key parameters that control the shape of the deformed ribbon are the 

misfit strains, the misorientation angle, the width, the thickness, and the elastic layer 

properties. Notably, a purely twisted ribbon forms (Fig. 24b and Fig. 25b) when the principal 

misfit strains are such that 

.                                                                                                     (13) 

This result agrees well with the previous study by Chen et al. [9], namely, a purely twisted 

ribbon forms if and only if (where and are the principal 

curvatures). 

       It is worth pointing out the differences between a helicoid and a purely twisted ribbon, 

which can be confusing at times [169]. A helicoid is the only ruled minimal surface besides a 

plane. In fact, the centerline of a helicoid ribbon does not necessarily have to be straight, but 

can also be a helix. In comparison, a purely twisted ribbon has a straight centerline and the 

radius of the bounding cylinder is zero. Mathematically, a helicoid has principle curvatures 

and  such that . Therefore, a purely twisted ribbon becomes a helicoid when 

and . 
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Cranford and Buehler [170] developed a multiscale molecular dynamics approach by 

adopting a two-dimensional coarse-grained model to recapitulate the mechanical self-

assembly of mono- and multi- layer graphenes. A spontaneous transition from a purely 

twisted configuration (helicoid) to a coiled shape in graphene ribbons was identified, which 

gave rise to a strain filled with more homogeneity. The results are similar (but not identical) 

to the experimental observations and theoretical predictions by Armon et al. [15,23] and Guo 

et al. [22], as well as the results by Lee et al. [171], Kit et al. [172], and Chen et al. [137], but 

in the work by Cranford and Buehler, the transition to the coiled shape is mainly because of a 

mechanical instability “between the imposed strain of the twisted graphene ribbons and the 

bending stiffness” [170]. As a result, this transition occurs more frequently in stiffer or thicker 

graphene ribbons.  

 

Recently, Wu et al. [151] demonstrated the possibility of achieving multiple 

“programmed” shape transformations between different geometric shapes under ambient 

conditions by integrating multiple, small-scale modulated structural components within planar 

sheets. Continuous, reversible shape transformations in response to external thermal or 

chemical stimuli, from planar sheets to three-dimensional arcs, to helices, and tubules, were 

fulfilled by this novel design strategy which exploits mechanical buckling principles. This 

approach can be readily extended to other materials such as elastomers and liquid crystalline 

polymers to enable new functionality that can be coupled with shape transitions.  
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FIG. 26. (a) Saddle-shape structure formed from concentric ring-patterned sheet. b) 

Icosahedron formed from projection-patterned sheet. c) Multi-stage material that coils upon 

reaching 40° and uncoils upon reaching 65°. d) Multi-stimulus material that curls into a long 

thin tube under high pH and a short fat tube under high salinity. Reprinted (adapted) with 

permission from Ref. [173] (Copyright 2013 American Chemical Society). 

 

Therien-Aubin et al. [173] developed a hydrogel able go through multiple shape 

transformations in response to a wide range of stimuli, including temperature, pH, ionic 

strength, and CO2. These gels also responded differently to various stimuli. They first showed 

that a sheet treated with poly(N-isopropylamide) and patterned with a truncated icosahedron 

would assume the shape of an icosahedron when exposed to a NaCl solution. By using a 

different chemical treatment, they were able to force a sheet printed with circles of chemicals 
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to adopt a saddle shape when exposed to CO! (Fig. 26a), and an icosahedron-patterned sheet 

to adopt a similar structure (Fig. 26b). These transformations were reversible and showed 

resilience to hysteresis. The authors then patterned a hydrogel ribbon to respond to heat: as it 

was heated above ambient temperature, it curled into a helix, but when heated above the 

lower critical solution temperature of the doping chemical, it returned to a flattened state (Fig. 

26c). Finally, a hydrogel sheet was manufactured that responded to both pH and ionic 

concentration. The sheet was patterned with stripes along the width that activated under 

changes in pH, while stripes along the length moved in response to changes in ambient ionic 

concentration. This resulted in a gel that was able to assume a gradient of shapes based on the 

relative strengths of the two stimuli: when exposed to high pH alone, the sheet rolled into a 

tight long cylinder, and when exposed to high ionic concentrations alone, the sheet rolled into 

a wide compressed cylinder (Fig. 26d).  
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FIG. 27. (a-b) LC helix curling, uncurling and inversion under UV light exposure. Helices 

where the handedness is reinforced by the alignment director will curl when exposed to UV 

light, but those where handedness is opposite to alignment director will uncurl and eventually 

invert. (c-f) When selectively irradiated by UV light near the kink, the end of the helical 

ribbon constructed from liquid crystal polymer moves away and off axis from the other end. 

Reprinted by permission from Macmillan Publishers Ltd: Nature Chemistry, Ref. [174] 

(Copyright 2014). (g-h) Diagram showing how alignment director of the initial LC network 

informs the handedness of the resulting helix. (g) and (h) are reprinted (adapted) with 

permission from Ref. [175] (Copyright 2014 American Chemical Society). 
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Furthermore, the chemical-mechanical coupling in these model systems may advance 

the current understanding of the deformation and actuation of fibrous living organs [151]. In 

particular, Iamsaard et al. [174] showed that helical ribbons constructed from liquid crystal 

polymer networks could be designed to mimic the response of plant tendrils unfolding (Fig. 

27a-f). Current research indicated that the elongation of rectangular plant cells in one 

direction and shrinking of the cells in the transverse directions to cause tendril unwinding is 

very similar to the shape-change of liquid crystals under stimulation [153]. The authors 

attached a helical coil with right-hand chirality to a coil with left-hand chirality, joined at a 

kink (the equivalent to a tendril perversion in plants). When selectively irradiated near the 

kink by UV light, side belonging to the right-handed helix coiled further while the side 

belonging to the left-handed helix uncoiled (Fig. 27f). This behavior caused the end of the 

synthetic tendril to move both away and off axis from the other end, as the kink became a 

joint where macroscopic bending can take place. 

 

Liquid crystal polymer networks have also been made to actuate in response to 

changes in humidity. De Haan et al. [175] constructed a LC polymer sheet that could undergo 

bending and twisting when stimulated by uniform humidity (Fig. 27g-h). After dipping in 

KOH and rinsing in water, the sheet bent towards the untreated side, but when dried it bent 

towards the other side (Fig. 27f).  The authors treated the sheets with basic solution in specific 

patterns and observed the resulting shape change in humidity. A ribbon treated with an 

alternating pattern assumed an accordion shape in low humidity, while a ribbon with narrow 

treated bands formed a sharp hinge. They then cut a ribbon with an alignment 45° off-center 
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and showed that it curled right-handed around an axis in the dry state and became straight in 

high humidity, forming helices (Fig. 27g). 

 

 

FIG. 28. (a) Diagram showing programmed shape transition under hydration. (b), (c) Dry and 

wet states of uniform curling and uncurling composites. (d), (e) Dry and wet states of twisting 

composites. Reprinted by permission from Macmillan Publishers Ltd: Nature 

Communications, Ref. [176] (Copyright 2013). 

 

Plant shape change, on the other hand, is generally driven by uniform changes in 

environmental conditions, such as humidity. Thus, any asymmetric shape-change must be 

encoded in the plant’s internal heterogeneous structure, usually through the judicious 

placement of stiff cellulose microfibrils (CMFs) that respond differently to humidity than the 

surrounding tissue. Erb et al. [176] developed a framework for manufacturing synthetic 

shape-change composites based on this natural design. The authors investigated the 

reinforcement architecture seen in seed dispersal units that bend and twist. Aluminum oxide 
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platelets electrostatically bonded to super-paramagnetic iron oxide nanoparticles were used to 

simulate the effect of CMFs while also allowing the orientation of the platelets to be 

controlled by weak external magnetic fields. These platelets were mixed into fluid polymer 

solutions to produce bulk hygroscopic composites, and the resulting solutions were gelled in 

the presence of magnetic fields. Composites that bend were produced using a bilayer 

configuration to mimic pinecone architecture, in which the first layer was deposited under the 

influence of a uniform magnetic field, and the second from a rotated uniform field (Fig. 28a). 

When the resulting composite was dried, it bent towards the layer with the platelets oriented 

perpendicular to the long axis (Fig. 28b-c). A similar system that twisted like a seed dispersal 

unit was built by changing the bending bilayer configuration to have all the platelets also off-

axis by 45°. This caused the layers to attempt to expand in directions perpendicular to one 

another and results in a twist (Fig. 28d-e). Both the bending and twisting systems could be 

brought back to a flat state through drying. Multi-responsive composites were also obtained 

that responded to both hydration and heat. Hydrogel with alumina platelets in the twisting 

bilayer configuration would twist to the right when heated as the gel lost its ability to store 

water. When hydrated over a long period of time, the composite would twist with the opposite 

chirality.  

 

Many of the physical systems mentioned above have been inspired by biological 

phenomena. In turn, systematic studies on the chemical-mechanical coupling in these model 

systems may advance the current understanding of the deformation and actuation of fibrous 

living organs [151]. 
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C. Change of handedness 

 

 

FIG. 29. (a) Fiber ribbon that overwinds around the perversion when pulled. (b) Twistless 

spring with low bending stiffness and high twisting stiffness that unwinds when pulled. From 

Ref. [11], reprinted with permission from AAAS. (c)-(e) are reproduced (adapted) from Ref.  

[12] with permission of The Royal Society of Chemistry. (f) Helices with decreasing cross-

section height-to-width ratio. The structure moves from helix, to hemihelix, to hemihelix with 

multiple perversions. (g) Number of perversions as function of aspect ratio and prestrain. 

Adapted from Ref. [177] with permission. 
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FIG. 30. (a-c) Thin stretched rubber sheets are stitched to unstretched rubber tubes to induce 

twisted patterns that resemble the looping guts in chick embryos in (c). (d-e) Scaling laws for 

the loop shape, size, and number at three stages in the development of chick guts. Reprinted 

by permission from Macmillan Publishers Ltd: Nature, Ref. [17] (Copyright 2011). 

 

While many of the helical structures have a uniform chirality or handedness (i.e., are 

either left-handed or right-handed), change of handedness can occur under certain 

circumstances. For example, growing plant tendrils were found to switch handedness after the 

two ends were fixed in space; the tendrils would develop coexisting left-handed and right-

handed parts connected by perversions (Fig. 29 a-b) [11,178,179]. Inspired by these tendril 

perversions, Huang et al. [12] bonded two elastomer strips of unequal length, one of which 

was prestretched, to create hemi-helices and performed finite element simulations to interpret 

their findings. Savin et al. [17] also constructed hemi-helical structures to mimic the looping 

guts in developing embryos. They prestretched a rubber sheet and stitch to it a rubber tube 
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along the side (Fig. 30a). When relaxed, the tube developed a pattern featuring multiple hemi-

helical segments connected by perversions (Fig. 30b), resembling the shape of chick guts (Fig. 

30c).  

 

Gerbode et al. [11] constructed bilayer silicone ribbons, one layer of which was 

prestretched, to study the physical mechanisms of the coiling and overwinding of the 

cucumber tendrils. Again, the topological constraint from the two fixed ends dictated that 

perversions would form, but the perversions that connect the helical segments of opposite 

handedness also allowed for rotations, causing an increase in the number of helical turns. 

Their study showed that when bending stiffness is smaller than twisting stiffness, the ribbon 

would unwind upon extension. However, for a helix with a round cross-section, the bending 

stiffness is always larger than the twisting stiffness, which indicates that overwinding would 

occur upon extension. As a result, the “twistless springs” can undergo axial extension simply 

through overwinding without paying an additional energy penalty for changing the curvature, 

a good strategy for creating soft springy tendrils that will stiffen upon further deformation 

[11].  

 

Liu et al. [177] further investigated the transitions between a helix and a hemi-helical 

structure (with perversions). It was found that the twist buckling instability could prevent the 

system from going to the lowest energy state. These buckling modes have led to the formation 

of hemihelices that include multiple perversions but have higher energy than a simple helix. 

The system, once trapped in the metastable state, would have to be deformed by external 
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forces and torques in order to return to the global energy minimum state. The researchers used 

a combination of experiments, finite element simulations, and theoretical analysis (based on 

Kirchhoff’s rod theory) to demonstrate that the aspect ratio, which is closely related to the 

ratio between the bending stiffness and twisting stiffness, plays a key role in determining the 

number of perversions per unit length.  

 

 

FIG. 31. (a) Geometry of a symmetric mesa design. Both ends (in red) are fixed. (b) A 

strained nanoribbon with symmetric left-handed and right handed segments (both ends 

being fixed). Here, ∅! = ∅! = 75°, and ε! = 0.024. (c) SEM image of a typical helical 

structure (diameter of 1.4 μm) formed by a V-shaped mesa with both ends fixed to the 

substrate. The two arms of the V-shaped mesa form helices, with opposite chirality. 

The inset shows the mesa design and the rolling direction of the helix as indicated with 
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a white arrow. (d) A helical nanoribbon with both left-handed and right-handed 

segments with only one fixed end. Here, ∅! = 50°, ∅! = 40° and ε! = 0.05. In the 

upper segment (of length 0.8 μm), the effective misfit strain tensor of the bottom 

layer is . In the lower segment (of length 2.4 μm), the effective misfit 

strain tensor of the bottom layer is . The color indicates the total 

displacement. (a), (b) and (d) are reproduced (adapted) from Ref. [169] with 

permission of The Royal Society of Chemistry. (c) and the inset of (d) are adapted 

from Ref. [138] (Copyright IOP Publishing, reproduced with permission, all rights 

reserved). 

 

Yet another way of fabricating a helical ribbon with both left-handed and right-

handed parts is by virtue of a V-shaped mesa design (Fig. 31a-c) [138,146]. For example, Fig 

31 shows such a structure can be achieved by designing a mesa shape where 2α + ∅! +

∅! = 270°. In order to for the left- and right-handed helical segments to be symmetric, it 

should follow that ∅! =  ∅!. In Fig. 25b, it is set that ∅! = ∅! = 75° and α = 60°. 

  

  In all the cases discussed above, the changes in handedness occurred when the 

ribbon had two fixed ends. However, such geometric constraint is not a necessary 

condition for a switch in handedness. It was found that in SiGe/Si/Cr nanobelts left-

handed and right-handed segments could co-exist when the misalignment angle was 

slightly larger than 45o and the tip had an influence towards the preferred chirality 

[138]. Although a qualitative interpretation of this behavior was given, quantitatively 

220 UUb ee ⊗= εε

220 LLb ee ⊗= εε
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modeling of this phenomenon was not achieved until recently [169]. An FEM 

simulation approach was employed to model this behavior (Fig. 31b). A bilayer 

nanoribbon of length L = 3.2 μm, width w = 0.1 μm, thickness h! = h! = 5nm, and 

misfit strain ε! = 0.05 is partitioned into two connected regions of length 0.8 and 2.4 

μm, respectively. The misalignment angle between the ribbon’s long axis and the 

major bending axis <100> in the lower part and the upper part are both 50o. The 

resulting simulation shows co-existence of both left- and right-handed segments 

separated by a short perversion [11,178], in agreement with the experimental 

observations made by Zhang et al. [138] (Fig. 31d). Nevertheless, the physical 

mechanism of this perversion is different from that of tendril perversions since the 

boundary conditions are different. 

 

VI. Multi-stability in strained multilayer systems 

Some mechanical structures can exhibit more than one stable shape 

[10,42,62,63,71,88]. For example, the lobes of the Venus flytrap (Dionaea) can be triggered 

to snap within a fraction of a second to capture insects [180]. Slap bracelets and tape springs 

are another set of multistable structures [13]. In recent years, multistable structures have 

received much attention because of their applications in micropumps, valves, deployable 

aerospace structures [10], mechanical memory cells [71], artificial muscles, bioinspired robots 

[19], and energy harvesting devices [43]. Such structures have inspired the design of 

deployable or smart actuation devices with multiple stable shapes, each of which can function 

independently. 
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A. Multistability in Venus flytrap and bio-inspired structures 

 

Forterre et al. [180] used the mechanical instability principle to interpret the snap-

through of the leaves in the Venus flytrap. They put arrays of UV fluorescent markers on the 

surface of the leaves to calculate the principal curvatures ( and ). In their experiment, an 

ultraviolet light was used to irradiate the Venus flytrap and a high-speed camera videotaped 

the trap closure process. From the recorded data, the researchers adopted the spatially 

averaged Gaussian curvature and mean curvature in order to simplify the analysis. Leaf-

cutting experiments were also performed to measure the intrinsic principal curvatures in a 

closed trap, as shown in Fig.  32a. Moreover, a simple model based on elasticity theory was 

proposed which took into account the non-trivial coupling between bending and stretching of 

a plate. The leaf was modeled as a thin elastic shell with a radius L, thickness H, Young’s 

modulus E, and intrinsic principal curvatures and . It is assumed that at time t=0, 

in order to simplify the analysis. The total elastic energy at time t is

, where (i 

= x, y) are the normalized principal curvatures, and is the de-normalization factor for the 

principal curvatures. The dimensionless parameter depicts the nonlinear 

coupling between bending and stretching.  

 

By minimizing the total energy with respect to and (i.e., ), at 

different values of , the leap shape can be resolved as a function of . It was then shown 
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that the dimensionless parameter , which is related to the size, thickness, and curvature, 

controls bistability of the Venus flytrap (Fig.  32b). In particular, when , the 

system only has one minimum energy state; when , the system becomes 

multistable (Fig.  32b). 

 

FIG. 32. (a) Measurement of the strain field; (b) the closed leaf is cut to illustrate the natural 

principal curvatures; (c) mean curvature as Km a function of Kxn. (a)-(c) are reprinted by 

permission from Macmillan Publishers Ltd: Nature, Ref. [180] (Copyright 2005). (d) 

α

8.0≈< cαα

8.0≈> cαα
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Snapping surface of concave microlenses that mimics the Venus flytrap. Adapted from Ref. 

[181] with permission. (e) A swelling-induced snapping microbot made of hydrogel shell with 

microfluidic channels embedded (a scanning electron microscope image embedded). 

Reproduced (adapted) from Ref. [182] with permission from The Royal Society of Chemistry. 

 

Inspired by the Venus flytrap, Holmes and Crosby used a mechanical buckling 

mechanism to create bistable snapping surfaces [181]. Fig. 32d shows doubly-curved bistable 

shells generated through biaxial compression. PDMS patterned with holes is prestretched and 

crosslinked with a top layer of uncured PDMS. This forms concave and convex microlenses 

that exhibit snapthrough. Varying geometric parameters such as lens size and spacing can 

control the curvature of these lenses. 

 

Lee et al. [182] further designed snapping robots using a similarly bioinspired 

strategy. A jumping microgel device was manufactured as shown in Fig. 32e. By creating a 

dome-shaped hydrogel shell that could swell or deswell in response to external stimuli and 

employing elastic instability, the researchers were able to achieve rapid actuation. The self-

jumping device can accomplish a snap-through motion within a period of 12 ms. Upon 

swelling, the microgel legs of the device snap-buckle, resulting in a rapid jump. The power 

density of this device approaches that of human muscle. 

 

Shankar et al. [183] show that a lightweight snap-through actuator can be designed 

through the use of azobenzene-functionalized polymers. By using bistable arches, the authors 
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were able to generate a snap through with a speed as high as 100mm/s. These actuators buckle 

in response to light, making them especially suitable as small remotely and precisely 

triggerable actuators. Leong et al. [184] have produced a similar snapping micro-gripper 

structure that can be remotely activated both by chemicals and heat. These grippers can be 

used to perform cellular-scale tasks on command. 

 

 

 

FIG. 33. (a) Blue and yellow latex sheets were perpendicularly prestretched and bonded to a 

thicker elastic strip. The multilayer sheet forms a doubly curved shape that conforms to a 

torus (b). Small (c) and large (d) thin squares form saddles, while thin strips form stable semi-

cylinders. (e,f). Reprinted with permission from Ref. [185] (Copyright 2012 by the American 

Physical Society). 
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B. Bistable and neutral stable shells 

 

Chen et al. [185] developed a theoretical model to study bistability in strained 

multilayer systems complemented with tabletop experiments. Monostable and bistable shapes 

were manufactured by prestretching two pieces of rubber sheets uniaxially along 

perpendicular directions, and then bonded with layer of adhesive elastic sheet made of acrylic 

(Fig.  33a, c-f). The composite layers can either be monostable or bistable depending on the 

geometric dimensions: they are monostable when the system is either narrow or thick but 

bistable otherwise. The geometric and mechanical conditions of bistability were studied 

through a theoretical model that models the deformation of an initially flat elastic strip onto 

the surface of a torus (Fig.  33b) with two geometric parameters ( and ). By comparing 

the bending and in-plane stretching energy in the model, two dimensionless parameters (the 

first related to both the mechanical driving forces and geometric parameters, and the second 

purely associated with the forces) were identified to be controlling bistability. The first 

parameter, , involves the surface stress f, the Young’s modulus E, the 

width W, and the thickness H. When it is below the threshold value, the multilayer system is 

monostable, as shown in Fig. 34c and 34d; when it goes beyond the threshold; the system 

becomes bistable (Fig. 34e-f).  Noticeably, the parameter is essentially equivalent to the 

geometric parameter [15,149,185], but the former does not involve the 

unknown curvature , therefore is more suitable for the purpose of designing multistable 

structures. Guo et al. [22] employed this model to address the shape transition and associated 

change in multi-stability as discussed before.  
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The second parameter, , dictates the nature of the multistability.  is a 

necessary but not a sufficient condition for bistability (Fig. 34a, e-g); when , the system 

can exhibit neutral stability (Fig. 34c, h) if the first parameter is above the critical value. 

 

FIG. 34. (a) Multistable shell design space, with bistability in red. (b-g) Total strain energy as 

a function of misfit axis orientation, for orientations: , ,  

, , , and . (a)-(g) are reprinted 

with permission from Ref. [185] (Copyright 2012 by the American Physical Society). (h) A 

variety of shapes of a pre-stressed shell structure with zero-stiffness. The shell can be 

12 / ff≡β 0<β

1≡β
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transformed from one configuration to another either along the clockwise or anti-clockwise 

path and each shape can be held merely by friction with the table’s surface. First published in 

Journal of Mechanics of Materials and Structure in 2011, from Ref. [186] (published by 

Mathematical Sciences Publishers copyright 2011). (i). Adapted from Ref. [187] with 

permission (Copyright 2011 ASME). 

 

In fact, structures featuring neutral stability have been created as zero-stiffness elastic 

structures [16,186,187]. Guest and co-workers studied a prestressed shell structure that can 

deform with zero twist rigidity as shown in Fig. 34h. Experiments and analytical modeling 

have been carried out to gain insights on such novel mechanical properties [186,187]. Guest 

et al. [186] proposed a simple analytical model based on the assumption that the shell is not 

extensional and that the curvature is uniform throughout the shell (neglecting possible edge 

effects). As a result, the shell’s mid-plane can be considered to lie on the surface of a cylinder 

and bending along any arbitrary axis is energetically equally favorable. Seffen and Guest [187] 

modified these governing equations to obtain analytical solutions for both the opposites-sense 

and same-sense prestressed shells that exhibit bistability and neutral stability, respectively. 

For isotropic materials, previous studies showed that an elastic shell enters a neutrally stable 

state (with zero twist rigidity) under same-sense prestressing when the prestress is sufficiently 

large, which was observed in heated plates [188] although it had not been quantitatively 

characterized as in a neutral stable state until recently [186,187]. By contrast, opposite-sense 

prestressing can result in a bistable state when the driving force is large enough, which is 

similar to a bifurcation phenomenon first studied by Hyer that occurred during the curing of 
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unsymmetrical laminates. Hyer discovered that a flat plate with anisotropic mechanical 

properties deformed initially into a saddle shape with a negative Gauss curvature, but when 

the curing temperature further increased, the shell could no longer be stable in a doubly 

curved shape and would bifurcate into a configuration with nearly zero Gauss curvature, 

albeit with two opposite bending directions [188].  

 

FIG. 35. (a) Images and schematic diagrams of a circular disc buckles axisymetrically with 

principal curvatures 𝜅! = 𝜅! , and bifurcates with two distinct positive curvatures. (b) 

Normalized curvature versus non-homogeneously swollen time. (c) By minimizing the total 

strain energy, the relationship between normalized curvature and normalized time is obtained 

and is in good agreement with experimental data. (d) The circular disc relaxes back to its 

original flat state. Reproduced (adapted) from Ref. [16] with permission of The Royal Society 

of Chemistry. 

 

The mechanisms for such bifurcation phenomena have since been investigated by a 

number of researchers [15,16,185,187-190]. Holmes et al. [16] investigated the bending of 

slender crosslinked polydimethylsiloxane beams by soaking one side of the beams in one of 
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two different solvents (analogous to applying a thermal gradient) and measured the resulting 

curvature over time. They then developed analytic solutions that provided quantitative 

characterization of curvature timescales and normalized parameters. It was found that the 

beams bend quickly to their maximum curvature but relax slowly. The author further 

investigated axial symmetric quasi-2D discs characterized by two principal curvatures. When 

bifurcation occurs, Karman plate theory predicts that the two principle curvatures become 

unequal in magnitude and rotate azimuthally, while the material points stay horizontally 

locked. This phenomenon, analogous to thermal swelling, was experimentally verified by 

marking points on the plates - during dynamic rotation, the points moved only in the vertical 

direction.  

Moreover, researchers have designed and studied new devices consisting of multiple 

pre-stressed pieces to exhibit multistability [191,192]. For example, Lachenal et al. [191] 

created a joined structure from two pre-stressed flanges to have two stable shapes and 

analyzed the mechanical behaviors using a combination of experiments, finite element 

analysis, and a simple analytical model. Pirrera et al. [192] further developed cylindrical 

lattices comprised of hinged helical strips to exhibit bistability and neutral stability that mimic 

the multistable behaviors of the virus bacteriophage T4. These multistable structures can 

serve as outstanding candidates for energy absorption devices, morphing structures, and 

deployable structures for a variety of engineering applications. 

 

VII. Outlook 
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This review provides a comprehensive overview of state-of-the-art techniques for 

mechanical self-assembly of strain-engineered flexible layers. By programming prescribed 

strain into these flexible layers, they can be made to wrinkle, roll, or twist predictably both at 

manufacturing and when activated by stimuli. We explore the mechanics of strain-induced 

bending multilayers as well as of spontaneous helix formation, and show experimental 

examples manufactured from materials such as hydrogel bilayers and liquid crystal polymer 

networks. Shape transitions and multistability in the resulting structures, including in helical 

ribbons, are also discussed. In order to limit the article’s length, certain aspects of large soft 

layers deformation like creasing instability [187,188] are not discussed. Various methods to 

harness this kind of nonlinear behavior was shown in a recent review [193]. 

 

While there have been significant advances in techniques to manufacture self-

assembling strain-engineered layers, gaps remain in our understanding of folding mechanics, 

and large improvements in the mechanical properties of most layers are necessary before they 

are commercially viable. Shape morphing layers are also slower and weaker than other 

classes of actuators. Although piezoelectric materials can actuate on the order of milliseconds, 

composites that rely on changes in temperature, humidity, or light take minutes or hours to 

fully morph from one shape to another. Certain voltage stimulated polymer composites can 

lift many times their own weight, but most layers can lift only a small fraction. This is a result 

of both the relative slowness of environmental signals and their very low energy density. In 

addition, some layers have significant issues with hysteresis, which limits their ability to be 

reused [194-196]. More work needs to be done both in improving environment-triggered 
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layers for use in adaptive surfaces and in developing flexible materials that can actuate in 

response to more energy-dense chemical or electrical triggers. 

 

 

Shape-morphing flexible layers have a wide range of applications as sensors, 

actuators, and adaptive surfaces. Because they passively actuate in response to environmental 

changes like temperature, humidity, salinity, and pH, these materials and structures make 

excellent candidates for environment sensors. Unlike traditional passive sensors, flexible 

layers can adopt any shape and thus it is significantly easier to add them to structures and 

devices. In addition, their thin profile and potential sensitivity makes them suitable for 

artificial skin, as they are simpler than the matrices of hard sensors currently used in the field. 

Their small footprint and low material cost allow them to be constructed cheaply and 

efficiently.  

One can also imagine broad uses as passive actuators, such as blinds that open and 

close in response to temperature and sunlight or solar panel actuators that mimic plants to 

track the movement of the sun. Passive solar panel movement increases the overall efficiency 

of the panels, which can add up to a huge amount of energy over large installations. Briefly 

discussed in the review are layers that exhibit multistability over a single stimulus. This 

behavior, if harnessed through clever engineering as actuation for an origami robot, could 

allow the robot to function indefinitely without an onboard power source. This is important 

primarily for scientific robots operating in extreme environments such as the deep sea, artic 

tundra, and other planets. If the robot can passively or semi-passively move autonomously, it 
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frees up power for scientific instruments. More broadly, self-assembling layers that transition 

under stimuli are useful for all systems where functionality is to be built into form.  
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