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Abstract

Time-domain current measurements are widely used to characterize semiconductor material

properties, such as carrier mobility, doping concentration, carrier lifetime, and the static dielectric

constant. It is therefore critical that these measurements be theoretically understood if they are to

be successfully applied to assess the properties of materials and devices. In this paper, we derive

generalized relations for describing current-density transients in planar semiconductor devices at

uniform temperature. By spatially averaging the charge densities inside the semiconductor, we are

able to provide a rigorous, straightforward, and experimentally relevant way to interpret these mea-

surements for any planar optoelectronic device that is not dominated by external RC effects. The

formalism details several subtle aspects of current transients, including how the electrode charge

relates to applied bias and internal space charge, how the displacement current can alter the ap-

parent free-carrier current, and how to understand the integral of a charge-extraction transient.

We also demonstrate how the formalism can be employed to derive the current transients arising

from simple physical models, like those used to describe charge extraction by linearly increasing

voltage (CELIV) and time-of-flight (ToF) experiments. In doing so, we find that there is a non-

intuitive factor of two reduction in the apparent free-carrier concentration that has been missed,

for example, in the application of charge extraction models. Finally, to validate our theory and bet-

ter understand the different current contributions, we performed a full time-domain drift-diffusion

simulation of a CELIV trace and compared the results to our formalism. As expected, our analytic

equations matched precisely with the numerical solutions to the drift-diffusion, Poisson, and con-

tinuity equations. Thus, overall, our formalism provides a new and straightforward way to think

about how the internal space-charge distribution, the electrode charge, and the externally-applied

bias translate into a measured current transient in a planar semiconductor device.

∗ sahawks@ucla.edu
† schwartz@chem.ucla.edu

2



I. INTRODUCTION

Planar semiconductor diodes form the backbone of important technologies such as solid-

state lighting and photovoltaic energy conversion. The relatively simple physics associated

with these one-dimensional devices also makes them ideal for studying the properties of

emerging functional materials [1–8]. For instance, in the fields of dye-sensitized solar cells

and organic photovoltaics (OPVs) [2, 9, 10], substantial insights on recombination and charge

transport have been gained by examining photocurrent, photovoltage, and charge-extraction

transients of planar diode devices [11–25]. In terms of specific analysis, examination of the

temporal decay of photocurrent transients has been used to measure the charge-transport

properties of organic semiconductors [26–28], while the integral of these transients has been

taken to quantify initial amounts of photogenerated charge [29–31]. Additionally, charge-

extraction transients have been routinely used to probe semiconductor recombination kinet-

ics, average doping densities, and carrier mobilities [32–37].

Despite these and countless other studies, the physics of current transients in planar opto-

electronic devices is often overlooked or presumed to be obvious. Because such measurements

are ultimately a major determinant of benchmark material properties, it is especially impor-

tant that their physics be thoroughly understood both conceptually and analytically. Thus,

in this paper, we present a thorough analytical analysis of current transients in planar diode-

like semiconductor devices. Although our reference point comes from the field of OPVs, the

equations we present are general and apply to any planar semiconductor device, so long as

the transients are not dominated by external RC effects.

Our approach is based on a consideration of the average charge densities within the semi-

conductor layer. Although some information is lost by averaging, this is not particularly

restrictive because, experimentally, one often only has access to spatially-averaged values of

the carrier concentrations. After deriving an expression for the total measured current, we

then present equations describing the subtle but highly important charge on the electrodes as

well as the time integral of a current-density transient for the purpose of assessing the initial

amount of free charge in the active layer. We find that non-intuitive displacement current

effects have led to misinterpretations of charge-extraction measurements, particularly in the

organic solar cell literature. As examples, we apply our new formalism to a variety of tran-

sient current experiments commonly used to characterize the active layers of semiconductor
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diodes, including time-of-flight (ToF) [38, 39], transient photocurrent [26, 27, 40–42], and

photoinduced charge extraction by linearly increasing voltage (photo-CELIV) measurements

[43–46]. In the context of the original CELIV framework, our new, generalized formalism

reveals a common misinterpretation of CELIV integrals that results in an error in the esti-

mation of the initial free carrier concentration by at least a factor of two [44, 47, 48]. The

existence of such misunderstandings and their increasing prevalence in solar cell research

underlines the importance of the general framework described in this work. Finally, in order

to visualize our formalism and verify that it is built into common drift-diffusion solvers, we

numerically simulate a photo-CELIV trace and compare the total current calculated to that

predicted by our analytic equations. As expected, the two approaches yield precisely the

same result, confirming that our formalism is a simple, physically correct, and general way

to think about current transients in planar devices.

II. DERIVATION OF A GENERAL CURRENT-DENSITY EQUATION FOR 1-D

PLANAR SEMICONDUCTOR DIODES

A. Contributions to the Total Measured Current

To analytically analyze current transients in semiconductor devices, we begin by consid-

ering a planar diode structure at uniform temperature that is well-described by simple 1-D

electrodynamics. The relevant equations for the electric current are therefore:

dn

dt
= G−R +GD

e −RD
e +GA

e −RA
e +

1

q

dJn
dx

(1)

dp

dt
= G−R +GD

h −RD
h +GA

h −RA
h −

1

q

dJp
dx

(2)

JD = ε
dE

dt
(3)

Jtot = Jn + Jp + JD , (4)

where n, p are the mobile electron and hole concentrations, respectively, G is the generation

rate of mobile-carrier pairs, R is the recombination rate of mobile-carrier pairs, GD,A
e,h are

the generation rates of mobile carriers from localized donor- and acceptor-type trap sites,
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RD,A
e,h are the recombination rates of mobile charge into localized donor- and acceptor-type

trap sites, E is the electric field, ε is the semiconductor permittivity, q is the absolute value

of the electron charge, Jn,p are the electric current due to mobile electrons and holes, JD

is Maxwell’s displacement current, and Jtot is the experimentally measured total electric

current at a given time and position in the device. Physically, Eqs. (1) and (2) account for

the continuity of free carriers and simply add or subtract the contributions of both bulk and

trap-mediated recombination/generation to the free carrier populations.

Our goal is to use the above equations as a starting point to obtain a more insightful and

experimentally-relevant expression for Jtot (Eq. (4)) in terms of the average generation and

recombination processes and the average carrier concentrations. In this regard, it is highly

important to note that Jtot does not vary spatially within the device (see Supplemental

Material (SM) [49] for derivation), which means that the (average) total current anywhere

within the active layer is equal to the total current everywhere at a given time.

Our sign convention is chosen such that recombination current is positive and generation

current is negative, as is commonly used when reporting experimental (photo)diode currents.

Furthermore, it is important to distinguish between the generation and recombination of

mobile carrier pairs (G,R), which are shared terms in the continuity equations, and the

individual generation and recombination rates of mobile carriers through immobile trap

sites (GD,A
e,h ,RD,A

e,h ), which are not shared because an oppositely-charged mobile carrier is not

necessarily created or destroyed simultaneously. Traditionally, the GD,A
e,h − RD,A

e,h terms in

Eqs. (1) and (2) are treated as a net recombination rate within the Shockley-Read-Hall

(SRH) formalism [50, 51], but such a treatment is not necessary for the derivation at hand.

B. Mobile-Carrier Currents

To develop a new expression for Jtot, we start by integrating Eqs. (1) and (2) across the

device thickness to spatially average the continuity equations:

Jn(d) = qd
dn̄

dt
− qd〈G−R〉 − qd(〈GD

e −RD
e 〉+ 〈GA

e −RA
e 〉) + Jn(0) (5)

Jp(0) = qd
dp̄

dt
− qd〈G−R〉 − qd(〈GD

h −RD
h 〉+ 〈GA

h −RA
h 〉) + Jp(d) (6)
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where n̄d =
∫ d
0
n(x) dx and p̄d =

∫ d
0
p(x) dx are the average carrier concentrations in

the active layer, d is the semiconductor active-layer thickness, q is the elementary charge,

and 〈G−R〉 and 〈GD,A
e,h −R

D,A
e,h 〉 are the spatially averaged differences in generation and

recombination over the entire active-layer thickness. Figure 1 schematically illustrates the

formalism described above on a semiconductor energy band diagram. Eqs. (5) and (6) have

the advantage of removing the spatial derivative of the free-carrier current densities and

replacing them with the averaged quantities and processes of interest. The fact that the

current densities are evaluated at the contacts is acceptable because the quantity of interest,

Jtot, is constant at all positions throughout the active layer.

C. The Displacement Current

In order to complete the expression for Jtot (Eq. (4)), we must also derive expressions for

the displacement current JD (Eq. (3)) at either of the contacts (x = 0 and/or d) that are

decoupled from each other. We note that simply integrating Gauss’s law, dE/dx = ρ/ε, and

combining with the displacement current (Eq. (3)) will not suffice because JD(0) and JD(d)

would be coupled. To ultimately decouple JD(0) and JD(d), we must use the general 1-D

solution of Gauss’s law for a plane of charge [52] in order to relate the electric field at the

contacts to the average carrier concentrations within the active layer:

E(0) = −qd
2ε

(p̄− n̄+ N̄+
D − N̄−A ) +

σEL

2ε
(7)

E(d) =
qd

2ε
(p̄− n̄+ N̄+

D − N̄−A ) +
σEL

2ε
(8)

where N̄+,−
D,A are the average number density of immobile ionized trap sites within the active

layer, which we consider as localized electron states that can either be neutral when filled

(ND) or neutral when empty (NA), and are only singly charged. We define σEL = σ0 − σd to

represent the areal charge on the metal electrodes, with σ0,d being the areal charge densities

on the left and right metal contacts, respectively (Figure 1). The charge densities σ0,d can

be either positive, negative, or zero, and we use their difference, σEL, for the rest of the paper

because it is directly proportional to the total electric field contribution from the charge on

the metal electrodes. Additional considerations regarding the charge on the electrodes are
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presented in Section II F. below and in the Supporting Material (SM). We note, though,

that the electric field at the contacts is dependent only on the average charge within the

active layer and not on its specific distribution, which is a unique consequence of the simple

physics of charged 1-D planes [52]. Equations (7) and (8) are also the origin of the factor

of 1/2 that will carry on throughout this derivation—another consequence of the physics of

charged 1-D planes [52].

With the primary electric field contributions in hand, we can now simply apply Eq. (3)

to Eqs. (7) and (8) to obtain the decoupled displacement current at each of the contacts:

JD(0) =
qd

2

(
dn̄

dt
− dp̄

dt

)
+
qd

2

(
dN̄−A
dt
− dN̄+

D

dt

)
+

1

2

dσEL

dt
(9)

JD(d) =
qd

2

(
dp̄

dt
− dn̄

dt

)
+
qd

2

(
dN̄+

D

dt
− dN̄−A

dt

)
+

1

2

dσEL

dt
. (10)

As a check of validity, the difference in the displacement current at the two contacts ac-

cording to Eqs. (9) and (10) is proportional to the time rate of change of the charge density

within the semiconductor layer, which is expected from a simple integration of Gauss’s law.

Just like the electric fields, these simple expressions for the displacement current at the

contacts depend only on the average internal charge density and not on the charge-density

profile—a consequence of the simple physics of planar geometries.

We would now like to substitute Eqs. (9) and (10) along with Eqs. (5) and (6) into Eq. (4)

in order to obtain the total measured current density (Jtot) at the contacts and therefore

everywhere. However, in order to simplify the final result, we first derive relationships be-

tween N̄+,−
D,A and the kinetic processes that connect them, GD,A

e,h and RD,A
e,h . Fortunately, this

is done straightforwardly by summing the generation and recombination events that create

and annihilate ionized trap sites, leading to the following kinetic equations:

dN̄+
D

dt
= 〈GD

e −RD
e 〉+ 〈RD

h −GD
h 〉 (11)

dN̄−A
dt

= 〈RA
e −GA

e 〉+ 〈GA
h −RA

h 〉. (12)

As noted above, these equations only consider singly ionized states.
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FIG. 1. A schematic band diagram illustrating the device model used in this derivation in forward

(positive) bias. The semiconductor (photoactive) layer is sandwiched between metal contacts at

x = 0 and x = d. The i and s scripts on the Jn (electron current) and Jp (hole current) arrows

stand for injection and sweep out, respectively. The average carrier densities are n̄ for electrons and

p̄ for holes. The generation and recombination rates of electron-hole pairs, G and R, are distinct

from the rates of freeing and trapping carriers from traps, GD,A
e,h and RD,A

e,h . Jsurf takes into account

the ‘surface’ current that does not effectively make a transition though the semiconductor energy

gap. Note that only the relative heights of the anode/cathode depictions are meant to be part of

the implicit energy scale.

D. The Total Measured Current

We can now combine all of the relevant relations obtained above to produce a more

insightful expression for the total measured electric current density in terms of the averaged

quantities of interest. We do this by combining Eqs. (5) and (6) with Eqs. (9-12) at each

contact to obtain an expression for Jtot (Eq. (4)) as a function of time:

Jtot =
qd

2

(
dp̄

dt
+
dn̄

dt
+
∑
〈RD,A

e,h −G
D,A
e,h 〉
)

+ qd〈R−G〉+
1

2

dσEL

dt
+ Jsurf, (13)

where the summation term in Eq. (13) covers all subscript combinations displayed in Eqs. (5)

and (6), and the other terms are discussed in detail below.

Eq. (13) is the first of two primary theoretical results of this paper. Its simple form—only
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dependent upon average charge densities and kinetic processes—is a direct consequence of

the straightforward physics of charged planes. Eq. (13) and the preceding analysis provide

both a simple conceptual framework for generally thinking about current transients in pla-

nar devices as well as reveal non-trivial aspects of these measurements, such as the prefactor

of one-half in front of the first term. This general but non-intuitive factor is independent

of the carrier distributions and spatial generation/recombination profiles and arises from

the combination of Gauss’s law and the displacement current for planar 1-D electrodynamic

systems (Eqs. (7)-(10)). The factor of one-half means that uniformly injecting or extracting

only electrons or holes, for example, results in a measured current proportional to just half

of the rate of change in average hole concentration. It also means that current measured by

vacating traps, like that in thermally-stimulated currents, I-DLTS, or even charge-extraction

experiments is only half due to mobile charge carriers if sweep-out causes negligible changes

in the carrier concentrations [30, 34, 53–57]. Thus, if this factor of one-half that results from

displacement current effects is not properly accounted for, the deduced amount of charge

extracted in various experiments will be off by at least a factor of two. Although this may

not be a significant correction for many applications, it at least serves as a lesson that the

interpretation of current transients is not necessarily trivial.

Despite the fact that the factor of one-half in Eq. (13) is generally ignored, it is clearly

necessary from a conceptual standpoint. Consider the case where mobile carriers are photo-

generated within the semiconductor layer with negligible recombination, extraction current,

leakage current, or changes in the electrode charge. In such a scenario, the spatially in-

tegrated generation rate equals the rate of change of the average concentrations of both

carriers, 〈G〉 = dn̄/dt = dp̄/dt, and thus in Eq. (13) the measured current sums to zero.

This makes intuitive sense because no current should be measured if mobile carriers are

generated uniformly in a hypothetical semiconductor device with no built-in potential or

recombination. Such a simple situation could not be understood without the factor of one-

half in Eq. (13).

It is also worth noting that even if the change in electrode charge (dσEL/dt), generation,

recombination, and leakage current (Jsurf) are negligible, the average carrier concentrations

can still change implicitly by charge carrier flow through the ‘correct’ contact (i.e., extrac-

tion by ‘sweep out’ and filling by injection for a diode; see Figure 1) [26, 58], which are

critical aspects of any solar cell or LED. Indeed Eq. (13) could be optionally re-written as

9



Jtot = Ji,s+JEL +Jsur, where Ji,s is composed of the first two terms of Eq. (13) and embodies

the net injection or sweep out (extraction) of carriers into or out of the semiconductor ma-

terial, and JEL, the third term in Eq. (13), represents the current density due to changes in

the electrode charge density (see Eq. (15), discussed below), and the last term, Jsurf, takes

into account the ‘surface’ current that does not effectively make a transition though the

semiconductor energy gap.

E. The Surface Recombination Current, Jsurf

As just alluded to, the Jsurf term in Eq. (13) accounts for current that effectively traverses

the active layer without making a transition though the semiconductor energy gap. Here

Jsurf is mathematically defined as Jsurf = Jn(0)+Jp(d). For a diode, Jsurf is typically dubbed

surface recombination and includes the net electron extraction/injection at the hole-selective

contact (anode) and net hole extraction/injection at the electron-selective contact (cathode,

see Fig. 1). In other words, positive Jsurf corresponds to net carrier extraction at the wrong

contact(s) while negative Jsurf corresponds to net carrier injection at the wrong contact(s).

The Jsurf term is often referred to as ‘shunt’ or ‘leakage’ current in diodes, LEDs, and solar

cells, and herein we use all of these terms interchangeably. In addition to Ohmic-like leak-

age [59], the implied surface recombination that underlies Jsurf is expected in OPV diodes

to have an exponential voltage dependence with low ideality factor and therefore will be

important at higher biases/charge densities [60–62]. In single-carrier devices, Jsurf is often

analyzed from the standpoint of space-charge limited current [63].

F. Areal Charge Densities on the Contacts

A highly important aspect of Eq. (13) is that the seemingly benign dσEL/dt term can often

significantly contribute to the total measured current. To better understand this term, here

we discuss the physical attributes of the device that determine σEL.

The free-carrier density of the metal electrodes is typically sufficiently high such that the

electric field is zero inside them at all times [64]. Under this reasonable (but not always

true [65]) limit, the total areal charge summed over both electrodes must be equal and
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opposite to the total charge within the active layer, or σ0 + σd = −qd(p̄ − n̄ + N̄+
D − N̄−A ).

A related consequence is that the surface charge is directly proportional to the electric field

immediately outside the surface, or σ0 = εE(0) and σd = −εE(d) [66], where the sign of σ0,d

depends on the sign of the charge. These relations will be used below in conjunction with

drift-diffusion calculations to determine σEL at various times during a simulated solar cell

photo-CELIV transient.

One can conceptually imagine the σEL term as a variable quantity that is used to supply

enough electric field to meet the imposed voltage conditions. As derived in the SM, σEL is

only a function of the space-charge distribution within the device and the electric potential

drop across the active layer (V = −
∫ d
0
E dx) according to

σEL = ρ̄d− 2

d

∫ d

0

∫ x

0

ρ(x́)dx́ dx− 2εV

d
(14)

JEL =
d

2

dρ̄

dt
− 1

d

∫ d

0

∫ x

0

dρ(x́)

dt
dx́ dx− ε

d

dV

dt
, (15)

where ρ(x) = q[p(x)−n(x)+N+
D (x)−N−A (x)], x́ is a dummy variable for spatial integration,

2JEL = dσEL/dt, and ρ̄d =
∫ d
0
ρ(x) dx.

Eqs. (14) and (15) show that dσEL/dt is non-zero only if the applied bias or the spatial

distribution of net charge are changing with time. We strongly emphasize that V in Eq. (14)

and all other equations herein is just the electric potential difference across the active layer

and not the total potential difference (Vtot). The total potential difference in a diode often

includes an additional built-in (diffusion, composition, etc.) potential (VBI) that is nominally

constant with light intensity and applied bias [67]. Since VBI is usually well-approximated

as a constant, the electric potential and total potential are related by V (t) = Vtot(t) − VBI,

and the conclusions made herein are essentially unchanged.

Equations (14) and (15) also tell us something about the measured device capacitance.

This is recognized by the fact that the voltage derivative of Eq. (14) is related to the elec-

trode capacitance, though one must also account for the charge stored in the active layer

(‘chemical capacitance’) when considering the total measured capacitance of a diode [68–

70]. Interestingly, though, Eq. (15) reduces to the classical parallel-plate capacitor current,

Cg · dV/dt, where Cg = ε/d if the internal space-charge distribution is not changing in

time, independent of the space-charge distribution. In other words, Eq. (15) implies that
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the effective device geometric capacitance is independent of any static space-charge profile,

only deviating from its classical value of ε/d when the internal space-charge distribution

is changing in time. Unfortunately, since the difference in electric potential between the

contacts depends on the specific space-charge distribution, it is not possible to determine a

more simple relationship between the effective geometric capacitance, the charge on the elec-

trodes, and the potential difference across the device beyond what is presented in Eqs. (14)

and (15). Additionally, as an aside, the σEL term can be eliminated to yield a generalized

relation between the electric-field profile E(x), the electric-potential difference across the

device V , and the internal space-charge/dielectric profile ρ(x)/ε(x) (see SM Eq. (S12)).

G. Integrating the Total Measured Current

The factor of one-half in Eq. (13) is relevant to experiments on diodes because Eq. (13)

is often experimentally integrated over an extraction-current transient in order to estimate

the initial average steady-state carrier concentration in such devices [13, 16, 17, 32, 71–73].

When integrating Eq. (13) over a current transient and multiplying by 1/qd, we find that

the apparent initial carrier concentration (∆n̄meas) is

∆n̄meas =
1

2
(∆n̄+ ∆p̄) +

∆σEL

2qd
+

∫ ttr

0

(
Jsur
qd

+
1

2

∑
〈RD,A

e,h −G
D,A
e,h 〉+ 〈R−G〉

)
dt, (16)

where the difference terms are negative for an extraction current transient. These terms are

given by, for example, ∆n̄ = n̄(ttr)− n̄(0), evaluated at the start (t = 0) and finish (t = ttr)

of the transient. The left hand side of Eq. (16) is given by qd∆n̄meas =
∫ ttr
0
Jtot(t) dt and is

the apparent amount of charge extracted or injected from integration of the (experimental)

current transient.

Eq. (16) is the other primary theoretical result of this paper because integrated extraction-

current transients are widely used, particularly in the organic solar cell community, to mea-

sure average steady-state carrier concentrations [11, 13, 15, 32, 71, 74, 75]. To our knowledge,

however, a formalism describing such integrals has not been previously presented. Equation

(16) provides significant physical insight into the most common methods of experimentally

determining the average carrier densities in diode-based devices, as it details all of the ap-

parent sources of charge present in a 1-D (extraction) current transient [12, 73, 74]. Notably,
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the factor of one-half in the first term of Eq. (13) persists, which as we discuss further below

has resulted in errors in the estimation of the average charge density when such experiments

were performed on organic solar cell devices.

Examples of common methods that rely heavily on integrating current transients include

the charge extraction by linearly increasing voltage (CELIV) [43], charge extraction (CE)

[23, 32], and time-delayed collection field (TDCF) techniques [29]. Although these meth-

ods allow experimenters to estimate the total average carrier concentrations relative to a

short-circuit or quasi-depleted state, they have the downside of having to correct for the

change in charge on the electrodes (∆σEL) at the beginning and end of the transient. Equa-

tions (14) and (16) clarify this previously nebulous correction. In particular, Eq. (14) reveals

that ∆σEL is only a function of the geometric capacitance (Cg), the change in applied bias

(∆V ), and the change in the internal charge-density profile (∆ρ(x)) from the beginning

and end of the transient. In many polymer:fullerene BHJ OPVs, researchers have found

that consideration of only the voltage conditions and the geometric capacitance (the last

term in Eq. (14)) is sufficient to account for ∆σEL in their charge-extraction measurements

[17, 32, 72, 74, 76, 77]. The success of this correction implies that the OPV devices in

these experiments experienced negligible changes in the internal space-charge distribution

between the beginning and ending of the extraction transient. Since most BHJ OPVs are

thin, have low dielectric constants, and are weakly- or un-doped, this suggests that these

devices are largely space-charge free over the operational voltage regime (i.e., have a linear

band structure). This conclusion is not obvious, however, without the help of Eqs. (14) and

(16).

Finally, it is common to approximate the initial amount of photogenerated charge in

organic photovoltaic devices by integrating the a transient photocurrent (TPC) taken at a

constant DC bias [16, 17, 72]. This approach typically relies on a quick laser flash to photo-

generate mobile charge, which due to the built-in potential and/or externally-applied bias

results in a current transient. This transient is then integrated over time to estimate the ini-

tial amount of photogenerated charge. Equation (13) shows that if the bias is held constant

(∆σEL = 0) and generation, recombination, and leakage current can be ignored (or corrected

for), then the integral of the photocurrent decay is actually equal to half the sum of the

average initial photogenerated charge carrier densities. Since photogeneration typically gives

∆n = ∆p, the integral of a photocurrent transient without generation, recombination, or
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leakage current gives an apparent initial excess carrier concentration of ∆n̄meas = ∆n̄ = ∆p̄.

We note that these considerations are independent of the generation profile or initial carrier

concentration distributions.

III. ANALYTICAL APPLICATIONS OF THE MODEL: IMPLICATIONS FOR

MATERIALS CHARACTERIZATION

A. The Time-of-Flight Experiment

A classic approach to measuring the charge-transport properties of materials is via a time-

of-flight (ToF) or transient photoconductivity experiment [26, 27, 38–40, 78, 79]. Although

ToF techniques are well documented, discussing the ToF conceptual model in terms of

Eqs. (13) and (15) is insightful and illustrative of the different possible sources of current

in such measurements/models. We note that we do not consider aspects of trap-limited

dispersive transport here, but rather emphasize that the basic physics of such measurements

must first be fully understood before new/unique physical effects can be identified. Moreover,

this discussion demonstrates how readily a simple physical picture can be translated into

a theoretically measured current transient using the equations presented above and in the

SM.

In the ToF experiment, a planar device is used and the semiconducting material of interest

is made thick so that a laser flash photogenerates an approximately planar carrier packet

at one side of the device. During the measurement, a constant applied bias and/or built-in

potential is used to drive the carrier plane across the sample. Theoretically, in terms of

Eqs. (14) and (15), this situation corresponds to a space-charge profile of ρ(x) = σgenδ(x−

xσ(t)), where δ is the Dirac delta function, σgen is the charge density of the drifting plane,

and xσ(t) is the spatial position of the plane of charge. Since dV/dt = 0 and V is dependent

on xσ(t), a continuous supply of charge must be given to the electrodes in order to keep

the voltage constant as the carrier plain drifts across the sample. Thus, by inspection of

Eq. (13), the only source of current in the ToF model arises from changes in electrode charge.

The current transient is readily derived by substituting ρ(x) = σgenδ(x−xσ(t)) into Eq. (15):

Jtot = JEL =
σgen
d

dxσ(t)

dt
= qp̄µEEL, (17)
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where µ is the mobility of the carrier plane, EEL is the electric field supplied by the electrode

charge (see SM Eq. (S10)), and p̄ = σgen/qd is the spatially-averaged carrier concentration,

assumed here to arise from a plane of positive charge originating at x = 0. Since the

total current is rigorously constant everywhere (see the SM), the ToF transient also can be

rewritten as just the average drift current flowing within the device (RHS of Eq. (17)). The

solution of Eq. (17) can be readily obtained with the aid of Eq. (S10) upon substituting

ρ(x) = σgenδ(x−xσ(t)), giving the following differential equation and subsequent expression

for the ToF current transient:

dxσ(t)

dt
= µEEL =

xσ(t)

τ
− d

2τ
− µV

d
(18)

JToF = −
(
qdp̄

τ
+
qp̄µV

d

)
e
t
τ , (19)

where here τ = ε/qp̄µ is the dielectric relaxation time of the semiconductor with excess

conductive charge p̄, V is assumed to be negative, and the carrier plane starts at x = 0.

Thus, for large values of τ and high magnitudes of V , the value of JToF is, as expected,

approximately constant in time and equal to qp̄µV/d due to an approximately constant

velocity of the drifting plane of charge.

In short, this demonstrates that Eqs. (13), (14), and (S10) readily capture all the essential

features and fine details of the classic ToF experiment, illustrating how a simple physical

picture (a plane of charge moving across a device) results in an actual measured current

transient (Eq. (19)). This example thus illustrates how simple current transient models in

planar optoelectronic devices readily fit within the general relations derived in this work.

B. Determination of the Average Carrier Concentration with CELIV

As a more detailed example of the utility of Eqs. (13), (14), and (16) when applied to

charge-extraction techniques that vary the applied bias, in this Section we re-examine the

assumptions underlying the CELIV framework for measuring charge densities in solar cell

devices. The original analytical model describing CELIV transients by Juska et al [43].

considered a unipolar device with flat-band contacts and no generation, recombination, or

leakage current. This model also ignores diffusion current, considering only a slab of uniform-

density charge drifting under the influence of an electric field (Figure 2a). Lorrmann et
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al. [44] and Sandberg et al. [80] later presented an excellent analysis of the mathematical

implications of this CELIV model using the same original assumptions and equations as

Juska et al. [43]:

Jtot =
URε

d
+ nq

(
1− l(t)

d

)
dl(t)

dt
(20)

dl(t)

dt
=
µURt

d
− nqµ

2εd
l(t)2, (21)

where UR is the voltage ramp rate, d the film thickness, n is the uniform unipolar free-

carrier density, l(t) is the time-dependent extraction depth (i.e., depletion width), µ is the

unipolar carrier mobility, ε the semiconductor permittivity, and Jtot the total measured

current density. The properties of l(t) are: l(0) = w, dl(0)/dt = 0, 0 ≤ l(t) ≤ d, and

l(ttr) = d where ttr is the time taken to extract all the mobile carriers within the active

layer. Schottky junctions under the full-depletion assumption are well approximated by this

model through a finite initial steady-state depletion width, w (Figure 2a) [80].

In examining how this model is used in the literature, we find that the integral of Eq. (20)

is often misinterpreted because of the factor of one-half in the first terms of Eqs. (13) and

(16) due to improper accounting of ∆σEL. Although this factor of one-half was recently

noticed by Sandberg et al. [80] for the CELIV model described above, the origin of this term

was not understood. The issue arises from attributing the second term in Eq. (20) solely

to mobile carriers [81]. Under this seductive but incorrect assumption, subtracting the time

independent URε/d term and integrating (shaded area in Figure 2b) yields the presumed

total number of free-carriers extracted and thus the initial carrier density [46, 48].

If this were true, however, then integrating the second term of Eq. (20) from t = 0 to ttr

and multiplying by 1/qd should give the actual initial carrier concentration n. Instead, we

find that:

n̄meas,CELIV =
n

d

∫ ttr

0

(
1− l(t)

d

)
dl(t)

dt
dt (22)

=
n

2

(
1− l(0)

d

)2

(23)

=
n̄

2

(
1− w

d

)
, (24)
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FIG. 2. a.) Schematic representation of the CELIV model device under consideration. A uniform

block of free charge with local density n and average density n(1 − w/d) is swept out under a

linearly changing reverse bias pulse (inset of b.)). Here w denotes the steady-state initial depletion

width. b.) An Example CELIV current transient showing the typical portion of the curve that is

integrated to yield the initial uniform free-carrier density (n). Non-intuitively, the shaded region

is at most proportional to half of the initial average free-charge density and even further reduced

if w is non-zero.

where dqn̄meas,CELIV =
∫ ttr
0

(J(t) − URε/d) dt is the apparent initial carrier concentration in

the Juska et al. [43] model obtained by integrating the CELIV transient with URε/d sub-

tracted away and l(0) = w as the initial steady-state depletion width [80]. Thus, we see

that integrating a CELIV transient in this model over the total evacuation time, ttr, gives at

most half of the actual mobile charges extracted, which is in exact agreement with Eq. (16)

under the same assumptions.

In addition to this factor of 1/2 reduction, Eq. (24) also shows that there is another re-

duction of the apparent initial average free-charge density by an additional factor of 1−w/d.

Inspection of Eq. (16) readily reveals that this is due to electrode-charge effects. Indeed,

Eq. (16) indicates that if there is an initial steady-state depletion width, w > 0, then the

initial charge on the electrodes (σEL(t = 0)) will be finite due to the initial presence of space

charge. Thus, the ∆σEL correction in Eq. (24) will be altered from the case where w = 0

since both cases end in an identical fully-depleted state. This additional reduction due to

∆σEL is generally nontrivial since in real devices the steady-state space-charge profile can

take on shapes more complex than the simple rectangular version assumed by the CELIV

model. Overall, though, these previously nebulous aspects of current transients are decou-

pled and made obvious by Eqs. (13), (14), and (16), thus highlighting the conceptual utility

of our formalism. Overall, Eq. (16) readily corrects a common misinterpretation of CELIV
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transients and explains why, for example, Lorrmann et al. [44] concluded that a substantial

fraction of the mobile charge within the active layer was not extracted during CELIV even

after long extraction times (∼1 ms).

It is worth noting that none of the above analysis includes RC time constant effects [82],

which inevitably makes interpretation of the current transients more complicated. However,

we have found through numerical simulations that when RC effects are included at reason-

able levels (τRC ≈ 300 ns), the conclusions we have reached for low-mobility materials are

not altered. Moreover, RC effects should mostly influence the temporal shape of the current

transient, leaving the integral (Eq. (16)) largely unaffected.

IV. UNDERSTANDING THE FORMALISM VIA TIME-DEPENDENT DRIFT-

DIFFUSION MODELING: CELIV REVISITED

Lastly, to better understand each of the terms underlying the total current in Eq. (13) and

the analysis in the previous Section, we performed time-dependent drift-diffusion numerical

modeling to simulate a photo-CELIV measurement. In the following, we demonstrate that

Eq. (13) is compatible with detailed numerical drift-diffusion simulations, verifying that we

have obtained a physically correct expression for the total current.

The drift-diffusion approach involves solving the continuity equations (Eqs. (1) and (2))

along with the Poisson equation to determine the individual carrier concentrations and the

electric field during the simulation. To explicitly solve these equations, the approach assumes

that the current densities follow the drift-diffusion form

Jn = qnµnE + µnkT
dn

dx
(25)

Jp = qpµpE − µpkT
dp

dx
(26)

where µn and µp refer to the mobility of electrons and holes, respectively, and kT is the

thermal energy. We have previously performed steady-state drift-diffusion calculations to

model OPV devices using homemade code [83], and we employ the same approach here only

extended into the time domain (see the SM for a detailed description of our drift-diffusion

computational approach). In this study, the time dependence is accounted for by solving the

continuity equations and employing an implicit method to iterate forward in time. Recom-
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bination is assumed to take the simple reduced Langevin form (R = qγnp(µn + µp)/ε; see

Table I) [28, 84, 85], and the generation profile is taken from a transfer-matrix calculation

using experimentally available optical constants for the different layers [86, 87]. The device

parameters for our simulations are presented in Table I, and are loosely designed to be rep-

resentative of those of polymer-based solar cell using P3HT and PCBM [83, 88]. We chose

to simulate an organic solar cell photo-CELIV transient because photo-CELIV is a common

method for studying low-mobility semiconductors and the technique involves many of the

physical processes that our analytical model aims to capture: generation, recombination,

and a time-varying applied voltage. The 〈RD,A
e,h −G

D,A
e,h 〉 term is the only term in Eq. (13) not

accounted for in this simulation, and was therefore assumed to be zero.

We simulated the photo-CELIV experiment by first performing a steady-state calculation

to verify that the dark J-V characteristics of the device were reasonable. Then, for the tran-

sient, our virtual device was initially held in the dark at an applied bias equal to the built-in

potential, VBI (Table I). Next, these steady-state conditions were perturbed by a brief pulse

of illumination to produce excess carriers. After this pulse, the photogeneration of carriers

was set to zero and, after an additional short period of time (5 µs), a linear reverse bias

voltage ramp was applied to sweep out any remaining photogenerated charge.

To visualize Eq. (13), we explicitly calculated each term during the simulated photo-

CELIV process and compared their sum to the total current calculated from the drift-

diffusion simulation (Figure 3). We plot in Figure 3 the negative of the total current (−Jtot)

calculated by each approach since −Jtot is what is typically reported in the literature for

CELIV transients [37, 45, 89–92]. Because the drift-diffusion simulations use a different

starting formalism than Eq. (13), the fact that the two results agree precisely verifies the

legitimacy and generality of our derivation. Furthermore, as also highlighted in the ToF

Section, this shows that Eq. (13) and Eqs. (25) and (26) can be combined to examine the

materials-related aspects of these transients.

In addition to the negative of the total current, Figure 3 also shows the negative of each

component of Eq. (13). The current due to the changing electrode charge runs in the oppo-

site direction for this case because CELIV involves a reverse-bias voltage ramp. The carrier

concentrations decrease in time due to recombination, sweep-out/diffusion, and surface re-

combination current, and therefore the derivative of the average carrier concentrations are

also negative. Since generation only takes place initially and is set to zero afterwards, only
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FIG. 3. The various current contributions from Eq. (13) determined from numerical simulations

and the negative of their sum, −Jtot (upside down open triangles). Note that here the reverse

bias extraction current is plotted as positive. The simulated CELIV ramp conditions are 0.1 V/µs

starting at an initial forward bias of 0.6 V. The total current density from the simulation is also

shown (solid blue line). The simulated total current density and the summed current density from

Eq. (13) lie on top of each other, showing their precise quantitative agreement. We note that

trapping was not included in the numerical model and thus was assumed to be zero.

TABLE I. Parameters used in the drift-diffusion photo-CELIV simulation; the values chosen are

designed to roughly simulate an organic photovoltaic device

Parameter Symbol Value
Electron,Hole Mobility µn,µp 1× 10−4 cm2/V–s
Active Layer Thickness d 100 nm
Relative Permittivity εr 3.5

Injection Barriers φn, φp 0.3 eV
Langevin Reduction Factor γ 0.1

Built-in Voltage VBI 0.6 V
Effective Density of States NC, NV 1× 1020 cm−3

Temperature T 298 K
Band Gap Eg 1.2 eV

recombination contributes to the qd〈R−G〉 term in Eq. (13), which registers as a positive

current density in our sign convention.

Finally, it is worth noting that the Jsurf term is rather large and positive in the initial part

of the transient in Figure 3, corresponding to net carrier extraction at the ‘wrong’ contacts.

The reason for such a large value of this current density is that the cell is initially held at
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a forward bias equal to the built-in potential until the start of the CELIV ramp. At this

applied bias, the built-in electric field is entirely canceled, and thus a significant amount of

excess carriers get collected at the ‘wrong’ contact by way of diffusion. Real, well-working,

devices are designed to avoid this problem by having higher built-in potentials and/or block-

ing layers to prevent extraction of carriers by the ‘wrong’ contact.

All in all, Figure 3 verifies that our formalism provides another level of insight into cur-

rent transient measurements that is fully consistent with detailed time-domain numerical

drift-diffusion modeling. The benefit of our approach, though, is that it pairs the generality

of a full numerical calculation with the physical insight of a analytical model. With these

tools at hand, researchers can now understand any current transient measurement in terms

of a simple set of discrete physical processes.

V. CONCLUSIONS

In summary, we have derived a generalized equation for describing current transients in

planar optoelectronic devices at uniform temperature. Our results detail all the possible

sources of current using only fundamental physical equations and spatially-averaged values

of the quantities/processes of interest. Integrating our generalized current-density equation

provides further insight on how to interpret the apparent charge extracted from transient

current measurements, including how to account for changes in charge on the electrodes.

One unexpected result from this analysis is a factor of one-half reduction in the apparent

extracted charge due to non-intuitive displacement current effects. We have shown how this

factor of one-half, along with an improper accounting of the electrode charge, has lead to

misinterpretations of charge-extraction transients in the organic solar cell literature. We

further demonstrated how readily a simple physical picture—like that of the classic CELIV

and ToF models—can be translated into an expression for the total measured current density

as a function of time using our set of simple generalized equations. Finally, we have shown

that the derived relations are effectively built into time-domain drift-diffusion numerical

solvers, thus verifying the correctness of our approach while demonstrating a new avenue

for understanding current transients in 1-D optoelectronic devices.
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recombination in polymer/fullerene organic solar cells, Prog. Photovoltaics 15, 677 (2007).

[29] S. Albrecht, W. Schindler, J. Kurpiers, J. Kniepert, J. C. Blakesley, I. Dumsch, S. Allard,

K. Fostiropoulos, U. Scherf, and D. Neher, On the Field Dependence of Free Charge Car-

rier Generation and Recombination in Blends of PCPDTBT/PC70BM: Influence of Solvent

Additives, J. Phys. Chem. Lett. 3, 640 (2012).

24



[30] S. Bange, M. Schubert, and D. Neher, Charge mobility determination by current extraction

under linear increasing voltages: Case of nonequilibrium charges and field-dependent mobili-

ties, Phys. Rev. B 81, 035209 (2010).

[31] R. A. Street, S. Cowan, and A. J. Heeger, Experimental test for geminate recombination

applied to organic solar cells, Phys. Rev. B 82, 121301(R) (2009).

[32] C. G. Shuttle, R. Hamilton, B. C. O’Regan, J. Nelson, and J. R. Durrant, Charge-density-

based analysis of the current-voltage response of polythiophene/fullerene photovoltaic devices,

Proc. Natl. Acad. Sci. U. S. A. 107, 16448 (2010).

[33] T. Kirchartz, T. Agostinelli, M. Campoy-Quiles, W. Gong, and J. Nelson, Understanding the

Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence

of Mobility, Lifetime, and Space Charge, J. Phys. Chem. Lett. 3, 3470 (2012).

[34] S. A. Hawks, G. Li, Y. Yang, and R. A. Street, Band tail recombination in polymer:fullerene

organic solar cells, J. Appl. Phys. 116, 074503 (2014).

[35] D. Di Nuzzo, S. van Reenen, R. a. J. Janssen, M. Kemerink, and S. Meskers, Evidence for

space-charge-limited conduction in organic photovoltaic cells at open-circuit conditions, Phys.

Rev. B 87, 085207 (2013).

[36] C. M. Proctor, M. Kuik, and T.-Q. Nguyen, Charge carrier recombination in organic solar

cells, Prog. Polym. Sci. 38, 1941 (2013).

[37] R. Hanfland, M. A. Fischer, W. Brutting, U. Wurfel, and R. C. I. MacKenzie, The physical

meaning of charge extraction by linearly increasing voltage transients from organic solar cells,

Appl. Phys. Lett. 103, 063904 (2013).

[38] A. J. Morfa, A. M. Nardes, S. E. Shaheen, N. Kopidakis, and J. van de Lagemaat, Time-of-

Flight Studies of Electron-Collection Kinetics in Polymer:Fullerene Bulk-Heterojunction Solar

Cells, Adv. Funct. Mater. 21, 2580 (2011).
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