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Dispersion forces such as van der Waals forces between two microscopic particles, the Casimir-Polder
forces between a particle and a macroscopic object, or the Casimir force between two dielectric objects
are well studied in vacuum. However, in realistic situations the interacting objects are often embedded in
an environmental medium. Such a solvent influences the induced dipole interaction. With the framework of
macroscopic quantum electrodynamics, these interactions are mediated via an exchange of virtual photons. Via
this method the impact of a homogeneous solvent medium can be expressed as local-field corrections leading to
excess polarizabilities which have previously been derived for hard boundary conditions. In order to develop
a more realistic description, we investigate a one-dimensional analog system illustrating the influence of a
continuous dielectric profile.
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I. INTRODUCTION

Dispersion forces are among the weakest forces in nature
and are caused by the ground-state fluctuations of the vacuum
electromagnetic field [1]. In contrast to the theory developed
by Casimir [2] which deals with the Casimir force between
two dielectric plates in vacuum, his work originally was moti-
vated by a colloidal system—the stabilization of hydrophobic
suspensions of particles in dilute electrolytes [3]. In this de-
scription, the field fluctuations induce dipole moments inside
the considered objects which can interact with other materials.
Alternative accounts derive dispersion forces from position
dependent ground-state energies of the coupled field-matter
system [2,4]. The dispersion forces resulting from this process
are classified by three different types of interacting partners:
the Casimir force which describes the interaction of two
neutral macroscopic dielectric objects, the van der Waals force
acting between two polarizable particles and the Casimir-
Polder force connecting both by describing the interaction of
a polarizable particle with a macroscopic dielectric body. Dur-
ing recent years these forces have been well studied in several
experiments [5–8] and in theory [2,9–11]. However, most of
these investigations were restricted to laboratory conditions
by using vacuum chambers which remove any environment.
In colloidal physics, experiments and theoretical models for
medium assisted local-field corrections [12,13] were based on
the simplest model by Onsager [14,15] including a cavity sur-
rounding the particles. Note that local-field effects have been

extensively studied in the context of spontaneous emission
[12,13].

In natural situations, where these effects play an important
role, such as the Gecko feet [16] or colloids [17], this assump-
tion is not valid any more. In principle, one can assume that an
environmental medium results in a decrease of the interaction
due to the screening caused by the medium of permittivity
ε. This is expressed via a factor ε−1 leading to the expected
decrease of the potential. From fundamental quantum me-
chanics it is known that a particle embedded in a medium has
no immediate contact with the medium particles. Caused by
Pauli repulsion, a small vacuum layer is formed surrounding
the particle [18]. With respect to dispersion forces, the impacts
of an environment can be separated into two classes: the
screening of particle’s internal electrostatic wave functions,
which leads to a change of the optical properties [19], and
geometrical change of electromagnetic wave scattering. The
latter impact will be considered in this manuscript. This has
given rise to the development of a cavity model [15] de-
scribing the boundaries of both medium and particle as hard,
discontinuous changes in the permittivity. Different models
for the local-field corrections are expressed in terms of an
effective polarizability; a spherical two- or three-layer system
is considered for Onsager’s real cavity model and the finite-
size model, respectively. In the two-layer case the particle is
treated to be pointlike in the center and the optical response
is modified by the transmission of light through the boundary
following Mie reflection [Fig. 1(a)]. For larger objects, such as
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FIG. 1. Sketch of the considered setups for the spherical problem
and the one-dimensional analogon: (a) two particles embedded in
a medium creating an Onsager’s real cavity with inhomogeneous
dielectric profile; (b) one-dimensional analogon with planarly inho-
mogeneous profile; (c) two spherical nanoparticles embedded in a
medium with an inhomogeneous cavity; (d) the corresponding one-
dimensional problem with two dielectric plates of finite thickness
embedded in a medium with inhomogeneous profile.

clusters or molecules, the particle’s extension has to be taken
into account which will be modeled by replacing the point
particle with an additional layer [Fig. 1(c)]. In this case, the
excess polarizability is determined by the reflection of light
at the outer boundary. However, exact microscopic investiga-
tions have shown that these boundaries have to be described
by continuous profiles [20], which have been numerically
investigated [21].

In this manuscript, we analyze the influence of continuous
boundary profiles on dispersion forces. For simplicity we
consider planarly layered systems leading to an effective
one-dimensional model. Figure 1 illustrates the corresponding
models which represent two particles interacting via van der
Waals forces. In Fig. 1(a) the particles are embedded in
a medium and create an inhomogeneous boundary profile.
The corresponding one-dimensional situation is depicted in
(b), where we consider two planar cavities with continuous
boundaries and centered particles interacting with each other.
Figure 1(c) illustrates the finite-size cavity model with an in-
homogeneous boundary. The corresponding situation consists
of two plates of finite thickness embedded in a planar cavity;
see Fig. 1(d).

We hence consider two scenarios: two particles or two
plates in a five-layer system, representing the van der Waals
and the Casimir force, respectively. In these two cases, we
cover all important wave propagations at an inhomogeneous
profile—the transmission through and the reflection at a con-
tinuous profile.

II. CASIMIR FORCE AND VAN DER WAALS POTENTIAL

Figures 2(a) and 2(b) sketch a cross section along the
direction perpendicular to the layers for the van der Waals and
Casimir cases, respectively. Two objects are embedded in a
medium of permittivity ε2 and create a cavity with a vacuum
permittivity ε1 = 1. We focus on the impact of the continuous
boundary conditions on the dispersion forces. To this end, we
repeat the important steps of the theory via scattering Green’s
functions, derive the Green’s functions for the layered case,
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FIG. 2. Sketch of the corresponding one-dimensional dielectric
profiles for (a) the van der Waals force, where two particles are
separated by a distance l and embedded in a continuous dielectric
cavity (red curve) and (b) the Casimir force, where the two particles
have been exchanged by slabs of thicknesses d2. The third picture
(c) illustrates the corresponding cases with hard boundaries, which
is for the van der Waals force a five-layer system labeled with capital
roman numbers (I–V) and for the Casimir force a nine-layer system
(small roman numbers i–xi).

and calculate the impact of the cavity in terms of a local field
correction in analogy to the known excess polarizabilities.
Finally, we model the reflection at a continuous dielectric
profile and illustrate the effect by applying the method to
example profiles.

The Casimir force can be obtained from the electromag-
netic stress tensor [11] as a surface integral over the con-
sidered body. The Abraham-Minkowski stress tensor can be
obtained in terms of dyadic Green’s function [17]

T(r) = − h̄

π

∫ ∞

0
dξ

{
ξ 2

c2
ε(iξ )G(r, r, iξ ) + G̃(r, r, iξ )

μ(iξ )

− 1

2
tr

[
ξ 2

c2
ε(iξ )G(r, r, iξ ) + 1

μ(iξ )
G̃(r, r, iξ )

]}
,

(1)
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where G̃(r, r, ω) denotes the contributions from the magnetic
field

G̃(r, r, ω) = ∇ × G(r, r′, ω) × ∇′|r′→r, (2)

where the final derivative acts to the left. For infinite plates
located in the x-y plane it is sufficient to introduce the force
density per unit area

f = dF
dA

= ez · [T(z = b) − T(z = b′)], (3)

where b and b′ = b − d1 denote the positions of the right and
left boundary of the considered plate, respectively. The dyadic
Green function G(r, r′, ω) is the fundamental solution of the
vector Helmholtz equation for purely dielectric systems (μ =
1) [10][

∇ × ∇ × −ω2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r − r′). (4)

A similar method can be applied to calculate the van
der Waals interaction. We consider two polarizable particles
at positions r1 and r2 with polarizabilities α1 and α2. By
applying fourth-order perturbation theory to the interaction
Hamiltonian H = −d̂1 · Ê(r1) − d̂2 · Ê(r2) the van der Waals
potential can be found as [11]

UvdW(r1, r2) = − h̄μ2
0

2π

∫ ∞

0
dξ ξ 4α1(iξ )α2(iξ )

× tr[G(r1, r2, iξ ) · G(r2, r1, iξ )]. (5)

By comparing Eqs. (1) and (5) one observes that Casimir
force requires the coincidence limit (r′ → r), whereas the
van der Waals potential depends on the Green’s tensor at
two positions. Thus the Casimir force is governed by the
reflections of virtual photons and the van der Waals force by
their transmissions.

To address the influence of an inhomogeneous dielectric
profile on the van der Waals force, we separate the profile
into nine sections as illustrated in Fig. 2(a): five regions with
spatially constant dielectric function and four with continuous
profiles. The impact of the regions with continuous dielectric
function will be reduced to generalized reflection and trans-
mission coefficients entering the five layer problem, layers
I–V in Fig. 2(c).

We start our investigations by neglecting the inhomoge-
neous profile regions. As mentioned before the important
quantities are the transmission and reflections at these inter-
faces, which leads us to write the influence of the cavities in
terms of reflection coefficients and to perform the transition to
the cavities with continuous profiles via exchanging the hard-
boundary reflection coefficients with the ones determined for
a continuous dielectric profile. The situation for the Casimir
force is nearly the same. However, in this case we have to
consider two additional layers [layers iii and vii in Fig. 2(c)]
corresponding to the plates representing the interacting ob-
jects and we have to calculate the reflection coefficients at
both sides of one of these plates, e.g., the left one illustrated
in Figs. 2(b) and 2(c).

III. GREEN’S FUNCTIONS FOR PLANAR
MULTILAYERED SYSTEMS AND LOCAL FIELD

CORRECTIONS FOR PLANAR CAVITIES

In order to construct the scattering processes in the con-
sidered scenario, we start with a discontinuous multilayered
system with general reflection and transmission coefficients
and perform the transition to the continuous profile by sub-
stituting the reflection coefficients, which will be derived in
Sec. IV. We assume the width of the environment around the
particles to be small compared to the separation of the parti-
cles, d1, d2 � l , and that the latter is small enough such that
the interaction is nonretarded. This allows us to approximate
the Green’s function for the five-layer system in terms of a
local-field corrected bulk Green’s function.

The Green’s function of a system involving inhomoge-
neous media can be described by the bulk Green’s function
modified with the local field correction factors arising from
the reflection and transmission of the electromagnetic field
through the various layers of inhomogeneities of the system
[11]. That is, for the five-layer system considered here, the
full Green’s tensor can be written as, similar to the local-field
correction for cavities [22],

G(r, r′, ω) =
∫

d2k‖

(2π )2
e−ik‖·(�−�′ ) t̃ (k‖)

∣∣
r

× · G(1)(z, z′, k‖, ω) · t̃ (k‖)
∣∣
r′ , (6)

where t̃ |r and t̃ |r′ represent the generalized transmission co-
efficients close to the final and source point, respectively,
while G(1)(r, r′, ω) denotes the scattering Green’s tensor for
a bulk system. Equation (6) can be understood as the Weyl
expansion of the planar Green’s function, modified transmis-
sion coefficients. We used cylindrical coordinates r = (�, z).
The transmission and reflection coefficients marked with a
tilde denote the complete ones including multiple reflections,
whereas the ones without a tilde are the ordinary Fresnel
coefficients at a single interface.

In order to estimate the complete van der Waals interaction,
we write down the scattering Green’s function for a single
interface and obtain the multiple reflection coefficients for
the multiple reflections. The scattering Green’s tensor for a
source situated in layer 1 and field in layer 2 (z′ < z) in the
nonretarded limit is given by [11]

G(r, r′, iξ ) = c2

8πξ 2√ε1ε2

×
∫ ∞

0
dκ e−κ (z−z′ )t12κ

2 diag (1, 1,−2), (7)

where we have used κ = κ⊥
1 = κ⊥

2 = k‖. Further, in the non-
retarded limit, the transmission coefficient simplifies to the
Fresnel coefficient [11,23,24]

t12 = 2ε1

ε1 + ε2
, (8)

and consequently it becomes independent from the wave vec-
tor k. By further considering a homogeneous medium, one can
set ε1 = ε2, meaning the transmission coefficient simplifies to
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FIG. 3. Sketch of the three layer system with a centered medium
ε1 surrounded by a right ε2+ and left medium ε2− illustrating the
considered optical paths from the source point s in the centered
layer to the final point f far in the right layer. One possible path
is marked in black including the multiple scattering inside the cavity.
The multiple scattering between the final point and the outer interface
between the right and centered medium will not be considered due to
the large separation.

1 and the integral in Eq. (7) can be performed [11]:

G(r, r′, iξ ) = c2

4πξ 2ε

1

(z − z′)3
diag(1, 1,−2). (9)

We can compare this result with the nonretarded bulk Green’s
tensor [11]

G(r, r′, iξ ) = c2

4πξ 2εs3
[I − 3eses], (10)

with the three-dimensional unit matrix I, the relative coordi-
nate s = r − r′, its absolute value s = |s|, and its unit vector
es = s/s. By again setting x = x′ = y = y′ = 0 in Eq. (10), we
indeed recover Eq. (9). Thus the results are consistent.

Coming back to the original situation, which is the mul-
tilayer case, we consider the three-layer system depicted
in Fig. 3. The aforementioned two-layer system (of infinite
thickness with single interface in between) describes our
fundamental way of treating a single interface. By assuming
a large central layer we can neglect the multiple scattering
inside this layer due to the strong reduction upon propagation,
∝e−κ2l . Thus we can construct the complete transmission
via the product of the transmission coefficient entering the
middle layer t12 and exiting it t23, leading us to identify the
generalized transmission coefficients from Eq. (6):

t̃
∣∣
r = t12, t̃

∣∣
r′ = t23. (11)

Assuming that both particles are the same, the shape of the
cavities will also match each other and the transmission out of
the middle layer can be transformed to

t23 = 1 + r23 = 1 − r32 = 2 − t32, (12)

where we used the relation t = 1 + r between reflection and
transmission coefficients for a layered system, which is only
valid for a sharp interface. Thus, for a symmetric profile, we
further simplify the generalized transmission coefficients to

t̃
∣∣
r = t12, t̃

∣∣
r′ = 2 − t12. (13)

In order to adapt the transmission through a two-layer
system to the sought-after five-layer scenario, the transmis-
sion coefficient has to be modified with respect to multiple
reflections at the additional interfaces. Again, we restrict our
consideration to multiple reflections only inside the cavity
with width d . For a single cavity, it is sufficient to consider a
three-layer system, where a centered medium with dielectric
function ε1 and width d is in contact with two infinitely
extended layers with dielectric functions ε2± (where “+” de-
notes the right medium and “−” the left medium; see Fig. 3).
We consider a particle to be centered in the middle layer and
estimate the transmission of an electromagnetic wave created
at the particle into the right medium ε2+. All optical paths
starting inside the cavity and terminating in this medium can
be written as

t̃12+ = t12+ + r12+ pr12− pt12+
+ r12+ pr12− pr12+ pr12− pt12+ + · · ·
+ r12− pt12+ + r12− pr12+ pr12− pt12+ + · · · , (14)

with the propagation along the cavity p = e−κd . The first term
denotes the part which is directly transmitted, the second line
denotes all odd parts, which are initially sent towards the right
interface, and the third line denotes the even parts, which start
with a reflection at the left interface before all are transmitted
into the third layer. This equation can be recast as a geometric
series

t̃12+ = [1 + r12−e−κd ]

[ ∞∑
n=0

(r12−r12+e−2κd )n

]
t12+

= 1 + r12−e−κd

1 − r12−r12+e−2κd
t12+, (15)

where again the first term collects even and odd paths, the
second term is the sum over all multiple reflections, and finally
the transmission into the right layer. By considering the left
and right medium to be equal ε2− = ε2+ ≡ ε the local-field
corrections simplify to

t̃ = 1 + r

1 − r e−κd
, (16)

with the Fresnel reflection coefficient r = (ε − 1)/(ε + 1).
In the limit of vanishing cavity size (d → 0) the local-field
correction can be further simplified to

t̃ = 1 + r

1 − r
= ε. (17)

Note that this solution results in a discontinuity when compar-
ing with the homogeneous medium case. Summarizing, the
local-field correction, Eq. (6), reads

G(r, r′, ω) =
∫ ∞

0
dκ e−iκ (z−z′ ) 1 + r

1 − r e−κd

× G(1)(z, z′, κ, ω)

(
2 − 1 + r

1 − r e−κd

)
,

(18)
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and can be further simplified to

G(r, r′, ω) = ε(2 − ε)
∫ ∞

0
dκ e−iκ (z−z′ )G(1)(z, z′, κ, ω)

(19)
by assuming a vanishing cavity. In order to describe the
corresponding situation for the Casimir force, we again start
with the scattering Green’s function for a two layered system.
When considering an inhomogeneous profile, the generalized
transmission coefficient reads

t̃
∣∣
r = τ

1 − ρ e−κd
, (20)

where ρ denotes the reflection coefficient at and τ the trans-
mission coefficient through the inhomogeneous region, be-
cause the relation t = 1 + r is not valid anymore. Analo-
gously, one finds

t̃
∣∣
r′ = τ̃

1 + ρ e−κd
, (21)

with the transition coefficient for the opposite direction τ̃ .
To this end, the local-field corrected Green’s function for
inhomogeneous boundaries reads as

G(r, r′, ω) =
∫ ∞

0
dκ e−iκ (z−z′ )

× τ (κ )τ̃ (κ )

1 − ρ2(κ )e−2κd
G(1)(z, z′, κ, ω). (22)

In contrast to the van der Waals case, the source and
observation points have to be located in the same layer in this
case. Hence we begin our calculation with a similar expression
for the Green’s function and need to replace the transmission
coefficients by the corresponding expression for reflections,
leading to [11]

G(r, r′, ω) = i

8π2

∫ ∞

0

d2k‖

k⊥

× eik‖·(r−r′ )−i(k⊥
2 z−k⊥

1 z′ )r12e+
1 e−

1 , (23)

where in the nonretarded limit the reflection coefficient for an
s-polarized wave vanishes directly for a dielectric medium.

In this case, we have to consider a nine-layer system
depicted in Fig. 2(c) and estimate the Casimir pressure acting
on the left plate. In Fig. 2(c) the two plates of thickness d1 and
d2 are illustrated as layers iii and vii. Each of them is located
in a cavity marked by layers ii and iv with thickness δ1 and δ2

for the left plate and layers vi and viii with thickness δ3 and
δ4. Layers i and ix have an infinite thickness. Both subsystems
are separated by the middle layer v of thickness l . Before we
continue with the estimation of the local-field correction for
this case, we recall the motivation for this analysis which is
the estimation of the impact of a continuous dielectric profile
for the one-dimensional analog of the real cavity models. This
means that the two subsystems consisting of the layers i to
iv and of the layers vi to iv are fixed, as depicted in Fig. 2(c).
Thus we can treat these two subsystems as two effective layers
and can map the situation onto the well-known case of a planar
cavity resulting in the simple expression for the Casimir force

[11]

f = h̄

2π2

∫ ∞

0
dξ

∫ ∞

0
dk‖κ⊥k‖ r+r−e−2κ⊥l

1 − r+r−e−2κ⊥l
ez, (24)

where r± denotes the outside reflection coefficients for p-
polarized waves at the right, which is subsystem 2 (consisting
of the layers vi–ix), and left interface, which is subsystem 1
(layers i–iv), according to the three-layer system discussed for
the van der Waals force. Thus the initial and final points for
this consideration are located in the centered layer v. Further,
we used the fact that the reflection coefficients for s-polarized
waves vanish.

Let us consider the local-field correction for the left sub-
system 1 (layers i to iv). In terms of the nine-layer system
the effective reflection coefficient at the interface between
the fifth and the fourth layer has to be determined. It will
be constructed iteratively starting with effective reflection
between the third and second interface [24]

r̃32 = r32 + t32r21t23e−κiiδ1

1 − r32r23e−2κiiδ1
, (25)

where κii denote the imaginary part of the wave vector in the
second layer. Starting from this effective reflection coefficient,
one can continue with the next interface

r̃43 = r43 + r̃32e−2κiiid1

1 − r43r̃32e−2κiiid1
(26)

and finally

r̃54 = r54 + r̃43e−2κivδ2

1 − r54r̃43e−2κivδ2
, (27)

with the wave vectors in the third and fourth layer denoted
as κiii and κiv, respectively. Assuming that εii = εiv = 1 and
εi = εv = ε leads to equal wave vectors in the corresponding
layers and equal distances for the cavity layers (κii = κiv = κ

and δ1 = δ2 = δ) and thus only two elementary reflection
coefficients are important: the one between the cavity and the
slab r23 = r43 = r1 and between the cavity and the medium
r21 = r45 = r. Then, the generalized reflection coefficient
simplifies to

r̃ = − 1 + r2
1e−2κδ

r4
1e−4κδ + rr3

1e−3κδ − rr1e−3κδ + 2r2
1e−2κδ + 1

× [
r2r1(r2

1 − 1)e−2κIIId1−κδ + (
rr4

1 + r1
)
e−2κIIId1−2κδ

+ (
rr2

1 − r
)
e−2κIIId1−3κδ + r3

1e−2κIIId1−4κδ

+ (
rr2

1 − r1
)
e−2κδ + r2

1r e−2κIIId1 − r3
1e−4κδ + r

]
× [

r4
1e−2κIIId1−2κδ + r3

1r e−2κIIId1−κδ + r2
1e−2κδ

− r1r e−2κIIId1−κδ + r2
1e−2κIIId1 + 1

]−1
. (28)

The generalized reflection coefficient at the right interface
can be determined analogously leading to the same result by
exchanging the reflection coefficient at the slab to the other
materials r1 = (ε1 − 1)/(ε1 + 1) �→ r2 = (ε2 − 1)/(ε2 + 1).
In case of an inhomogenous boundary at the interfaces be-
tween layers i and ii and layers iv and v, the transmission
coefficients in Eq. (25) do not simplify and the generalized
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reflection coefficient reads as

r̃ = r1
[ − (

r4
1 + r1

)
e−2κiiid1−2κδ + ρr1τ τ̃ e−2κiiid1κδ

+ ρτ τ̃ e−2κiiid1−3κδ − r3
1e−2κiii−4κδ

− r2
1 (e−2κδ + e−2κiiid1 ) − 1

][
r3

1 (r1 − 1)e−2κiiid1−2κδ

+ ρr2
1τ τ̃ e−2κiiid1−κδ − r5

1e−2κiiid1−4κδ

− ρr1τ τ̃ e−2κiiid1−κδ + r2
1 (e−2κδ + e−2κiiid1 ) + 1

]−1
,

(29)

where the Greek letters denote the reflection coefficient ρ and
transmission coefficients τ , τ̃ at the inhomogeneous boundary.

Now, we restrict ourselves to the case that both slabs
consist of equal materials, leading to the same reflection
coefficient.

IV. REFLECTION AT AN INHOMOGENEOUS BOUNDARY

With respect to an arbitrary one-dimensional spatial sus-
ceptibility profile, ε(z, ω), the resulting reflection coefficient
can be obtained by solving the Riccati differential equation
[24]

R′(z) = −2κ0

√
ε(z, ω) +

(
k‖
κ0

)2

R(z)

− 1

4

ε′(z, ω)

ε(z, ω)

2k2
‖ + κ2

0 ε(z, ω)

k2
‖ + κ2

0 ε(z, ω)
[1 − R2(z)], (30)

for p-polarized waves, with κ0 = ω/c. We omit the discussion
of s-polarized waves, because they vanish in the nonretarded
limit. This equation strictly follows from the system of equa-
tions of an n-layered system (25)–(27) by increasing the
number of layers n and then decreasing their widths to zero
d → 0. We restrict ourselves to the case of infinite support
for the dielectric profile ε(z) with z ∈ R and consider the
field’s source and final points to be located at +∞. Thus,
for a given profile ε(z), the solution of the Riccati differential
equation gives the reflection coefficient R(z) at the position z
for a wave coming from the right side. For more details on
this formalism see the thorough account found in the textbook
[24]. This equation has a unique solution with the initial con-
dition R(z → −∞) = 0, which means initially no reflection
and gives rise to the condition for the considered profile that
the gradient should vanish at the initial point limz→0 ε′(z) = 0.
Analogously, we find the left sided reflection coefficients by
using the relation

R−(z) = −R+(z). (31)

Figure 4 illustrates the different profiles of inhomogeneity,
where we want to describe the reflection process. Due to
the spatial dependence of the profile the point of reflection
changes by the distance a which we assume to be equal for all
types of profiles and define its value by the crossing point of a
linear profile reaching the final value as depicted in Fig. 4.

Again, we apply the nonretarded limit to estimate the
reflection coefficients. Then the Riccati differential equation

ε1

ε2

RC
za

FIG. 4. Sketch of the different spatial dependent dielectric func-
tions for the hard boundary (red dotted curve), the linear profile
(blue curve), and the nonlinear profile (green dashed curve). The
black arrows illustrate the considered reflections which take place
for the hard boundary at the cavity radius RC and for the functional
profiles at their ends which are shifted by a distance a compared to
the hard-boundary case.

simplifies to

R′(z) = −2k‖R(z) − 1

2

ε′(z, ω)

ε(z, ω)
[1 − R2(z)]. (32)

This equation can be solved analytically for vanishing wave
vector (k‖ = 0) and results in

R(z) = tanh

{
−1

2
[ln ε(z, ω) − ln ε(−a, ω)]

}
, (33)

which can be simplified further to

R(zend ) = ε2(ω) − ε1(ω)

ε2(ω) + ε1(ω)
(34)

by assuming that the profile connects both dielectric functions
as depicted in Fig. 4. This result denotes the ordinary Fresnel
reflection coefficient in agreement to the considered case of
nonpropagating waves. Due to this fact, we can determine the
impact of the linear term describing the screening of light by
the propagation through the finite profile of the length 2a.

Corresponding to the profile plotted in Fig. 4, we choose
two different spatial profiles for the dielectric function.

(i) A linear function

ε(z, ω) = ε1(ω) + [ε2(ω) − ε1(ω)]

×

⎧⎪⎨
⎪⎩

1 for z < −a,
a−z
2a for |z| � a,

0 otherwise

(35)

and (ii) a Thomas-Fermi distributed profile

ε(z, ω) = ε1(ω) + [ε2(ω) − ε1(ω)](1 + e
2z
a )−1, (36)

approximating typical profiles; see Ref. [20]. Both profiles
have the same slope at the origin (z = 0). The width of the
inhomogeneous profiles are 2a. Thus the profiles end at the
point a. The boundary conditions are for case (i) R(−a) = 0
and for case (ii) R(z → −∞) = 0.

Numerical solutions of the Riccati differential equation
(32) are depicted in Fig. 5 where we evaluate the reflection
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Linear (fit)

FIG. 5. Geometric dependence of the reflection coefficients for
both profiles—Thomas-Fermi and linear—with the exact solution
of the Riccati (solid blue and dashed black lines) equation and the
corresponding approximations (dashed light blue and dotted gray
lines).

coefficient at the end of the inhomogeneous profile. For the
linear profile, this is the distance a, and for the Thomas-
Fermi distribution we increased the final point to 3a reaching
the final value with a deviation of less than 1%. It can be
observed that the k‖ dependence is related to the thickness of
the inhomogeneous region 2a. Several checks with different
parameters showed that the resulting curves only depend on
the product of the wave vector and the corresponding length
scale of the inhomogeneity. The depicted results can be un-
derstood by introducing the wavelength λ = 2π/k‖ leading to
the ratio of the wavelength and the inhomogeneity’s thickness
as the relevant quantity. It can be seen that if this ratio is
small a/λ < 1 the specific profile does not matter to the
result and the solution behaves like a hard boundary. In the
other case where the ratio is large a/λ > 1 the reflection
decreases to zero. The interesting region is denoted by the
case when the wavelength is comparable to the thickness
λ ≈ a. From the numerical simulations one can conclude that
the final reflection coefficient separates into a product of two
terms: one describes the dielectric properties and the other the
geometric properties

ρ[k‖, ε1(ω), ε2(ω), a] = ε2 − ε1

ε2 + ε1
· f (k‖a), (37)

satisfying the k‖ → 0 limit, Eq. (34). For both investigated
cases the expressions of the result are the same with different
parameters. In analogy to the solution of the Riccati equation,
Eq. (33), and in agreement with the numerical results depicted
in Fig. 5, we approximate the k‖ dependence of the reflection
coefficient by

f (k‖a) ≈ 1

2

[
1 − tanh

(
ln(k‖a) − λ1

λ2

)]
. (38)

The resulting parameters are given in Table I, which perfectly
match the curves with a coefficient of determination of ≈
100% for the linear profile and of 99.96% for the Thomas-
Fermi distribution. The results are in agreement with other

TABLE I. Fitting parameter for both profiles (linear and Thomas-
Fermi distributed) based on the approximation equation (38).

Profile λ1 λ2

Linear −0.555 2.028
Thomas-Fermi −2.067 1.452

studies [25–28] solving Maxwell’s equations for the linear
profile.

V. RESULTS AND DISCUSSION

Applying the local-field correction (6) to the van der Waals
potential (5) one finds

UvdW(z, z′) = − 3h̄

64π3ε2
0

∫ ∞

0
dξ

α1(iξ )α2(iξ )

ε1(iξ )ε2(iξ )

×
∫ ∞

0
dκ dκ ′ κ2e−κ (z−z′ ) τ̃ (κ )τ (κ )

1 − ρ2(κ )e−2κd

× κ ′2e−κ ′(z−z′ ) τ̃ (κ ′)τ (κ ′)
1 − ρ2(κ ′)e−2κ ′d , (39)

with the transmission coefficients at the inhomogeneous
boundary τ and τ̃ and the reflection coefficients ρ have to
be evaluated for the inhomogeneous profile which is modeled
by Eqs. (37) and (38) for the reflection. We assume that
the transmission through the inhomogeneous region can be
modeled with the Fresnel transmission through a step profile
due to the short width of the layer (hence t = 1 + r), as
we explicitly showed for the s-wave transmission; see the
Appendix.

In order to illustrate the theory we consider helium atoms
solved in water. Helium’s polarizability was taken from
Ref. [29] and the dielectric function for water from Ref. [30].
The resulting dielectric profile is depicted in Fig. 6, which
is a position-dependent dielectric function. A density can be

1

0.5

0

�(z)

z

RC

al
aTF

FIG. 6. Spatial density profile of water surrounding a helium
atom with the cavity radius RC. Simulated profile enclosed the blue
area which is approximated by a Thomas-Fermi distribution (red
line) with the corresponding thickness of the inhomogeneous region
2aTF and by a linear profile (gray line) with the thickness 2al.
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FIG. 7. Relative van der Waals potentials for the cavity model
with hard boundaries (blue dotted line), linear boundaries (black
solid line), and Thomas-Fermi distributed boundary profiles (green
dashed-dotted line) with respect to the vacuum potential. The general
reduction of the potential caused by the screening in water (factor
≈20) can be observed (red dashed line).

extracted from the simulation via

ε(z, ω) = 1 + �(z)[ε(ω) − 1], (40)

in analogy to the examples given in Eqs. (35) and (36) with
vacuum on one side [ε1(ω) = 1]. Note that the density is not
a particle density. The simulated profile is fitted to a Thomas-
Fermi distribution

�(z) = (1 + e−α(z−RC ))−1, (41)

with the cavity radius RC = 1.71 Å and the profile’s slope α =
10.1Å

−1
, via a least-squares algorithm. A comparison of this

function with the profiles used to solve the Riccati differential
equation (36) relates the fitting parameter α to the generalized
profile width al = 2/α directly denoting the thickness for the
linear profile. Using the same value to determine the thickness
of the Thomas-Fermi distributed profile would result in an
underestimation of the thickness, because one would only
take into account 73% of the profile’s amplitude. This can be
improved by increasing the layer size. To do so, we define the
thickness in this case by a threshold of 99% [�(aTF) = 0.99]
leading to aTF = − ln(0.0101)/α. The resulting parameters
are 0.198 Å for the linear profile and 0.455 Å for the Thomas-
Fermi profile. Relating these parameters to fitted profiles
depicted in Fig. 5 one can upper bound for the relevant wave
vectors of kmax ≈ 5 × 1010 m−1 for the linear profile and
kmax ≈ 2 × 1010 m−1 for the Thomas-Fermi profile.

The van der Waals potentials for helium atoms in water
are depicted in Fig. 7. A planarly layered cavity profile
surrounding two helium atoms are considered, which has an
equivalent dimension as the spherical cavity. This means that
the atoms are 1.71 Å behind the water-vacuum interfaces.
In the figure the dependent quantity is the thickness of the
intermediate layer l . This leads to a changed power law
for shorter separation in the order of the particle interface
distance. In order to compare the results are added for the
vacuum potential and the hard-boundary potential to discuss

10-9 10-8 10-7 10-6
0.01

0.02

0.03

0.04

0.05

0.06

0.07
Hard boundaries
Linear
Thomas-Fermi

va
c

FIG. 8. Relative impact of the cavity boundaries on the Casimir
force for a helium plate embedded in water relative to the force in
vacuum. Without any cavity corrections (dashed red line), with hard
boundaries (doted blue line), with the linear profile (solid black line),
and with the Thomas-Fermi distributed profile (dashed-dotted green
line).

the impact. It can be observed that the presence of the medium
reduces the potential, which is obvious due to screening
inside a medium. However, a softer boundary increases the
potential at short distances. At larger distances the impact
of the boundary’s shape vanishes, which is caused by long
wavelengths dominating the scattering in this region. It can be
seen further that a smoother profile leads to a stronger increase
of the interaction potential.

For the Casimir force, we apply the method to a similar
example, where we replace the helium atoms by two helium
plates of finite thickness d1 = d2 = d = 1.14 Å [31–33]. The
dielectric function of these plates can be estimated via the
Clausius-Mossotti relation [15,34]

ε = 1 + 2α/(4πε0d3)

1 − α/(4πε0d3)
, (42)

with the polarizability of a helium atom α, entering the
reflection coefficient

r1 = ε − 1

ε + 1
. (43)

By approximating the reflection coefficients for the cavities
via Eq. (37) and applying the result to the local-field corrected
Casimir force, Eq. (24) together with Eq. (29), the Casimir
force acting on two helium plates in water can be obtained.
The results are depicted in Fig. 8. The general reduction of
the Casimir force caused by the presence of the environmental
medium is illustrated by the dashed red line. Further, the
reduction of the interaction at short distances due to the finite
size of the cavity can be seen as well. The influence of the
profile shape is located in the region for short distances when
the profile lengths a and the separation of the plate distances l
are comparably large. Here, one observes a further reduction
which is stronger for the Thomas-Fermi distributed profile
than for the linear profile. The strong reduction which is
observed in these cases is caused by the assumed size of the
atomic layer. Many known values will not fulfill the Clausius-

062512-8



DISPERSION FORCES IN INHOMOGENEOUS PLANARLY … PHYSICAL REVIEW A 99, 062512 (2019)

Mossotti relation. Thus we chose a value at the upper bound of
the error deviation for the van der Waals radius satisfying this
relation. However, this implies a stronger dielectric function
for solid helium than it has to be, which further decreases the
interaction caused by its presence in the local-field reflection
coefficient, Eq. (29), r̃ = r̃(κiii ).

VI. CONCLUSIONS

The aim of this article was the illustration of the impact
of a cavity with a continuous boundary profile on dispersion
interactions in media. To this end, we investigated an equiv-
alent situation with a one-dimensional cavity and derived
the local-field correction induced by the cavity simplifying
the theory to be applicable for known two- and three-layer
cases. Further, we approximated the Fresnel reflection coef-
ficient at a continuous profile with a fitted function which
is valid for the cases of a linear profile or a Thomas-Fermi
distributed profile. To illustrate the impact on the relevant
dispersion forces we applied the method to the case of two
helium atoms in water (van der Waals potential) and for two
helium plates embedded in water (Casimir force). We found
that the influence is relevant at small distances. On larger
scales the impact of the continuous profile vanishes and the
hard-boundary case is a suitable description. To account for
more realistic three-dimensional systems, an adaptation of
this theory to three-dimensional spherical objects is required,
which will be the subject of further investigations.
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APPENDIX: TRANSMISSION OF s WAVES THROUGH AN
INHOMOGENEOUS BOUNDARY

A wave propagating along a continuous planar layered
system which is described by a dielectric function ε(z) can
be described by the scalar Helmholtz equation[

d2

dz2
+ k2

0ε(z) − k2
‖

]
ϕ(z) = 0, (A1)

with k0 = ω/c. For the linear profile the equation transforms
into a harmonic oscillator outside the inhomogeneous region[

d2

dz2
+ k2

0ε2
1
− k2

‖

]
ϕ

<−a
>a (z) = 0

{
for z < −a,

for z > a
(A2)

and [
d2

dz2
+ A + Bz

]
ϕ(z) = 0, (A3)

with A = k2
0
2 (ε1 + ε2) + k2

‖ and B = k2
0

2a (ε1 − ε2), which trans-
forms to an Airy equation with η = B1/3(z + A/B) and leads
to the solution

ϕ�a(z) = C�a
1 Ai(−η) + C�a

2 Bi(−η), (A4)

where the superscript of the constants C�a
1,2 indicates the cen-

tered layer for |z| � a. Analogously, one finds the constants
C>a

1,2 for z > a and C<−a
1,2 for z < −a. According to Maxwell’s

boundary conditions the scalar potential has to be continuous
and differentiable, leading to the conditions

lim
z→−a

ϕ�a(z) = lim
z→−a

ϕ<−a(z), (A5)

lim
z→−a

d

dz
ϕ�a(z) = lim

z→−a

d

dz
ϕ<−a(z), (A6)

lim
z→a

ϕ�a(z) = lim
z→a

ϕ>a(z), (A7)

lim
z→a

d

dz
ϕ�a(z) = lim

z→a

d

dz
ϕ>a(z), (A8)

resulting in a system of equations reducing the number of
constants by four. By solving the system of equations, the
transmission coefficient for a wave coming from the region
with ε1 to ε2 can be extracted as

τl = 64 3
√

6

27
eia(k1+k2 )k3

1k5
2a2 3

√
a2

k16
0 δ8a4

1a4
2

[I−1/3(a2)I−2/3(a2)

− I2/3(a2)I1/3(a2)][(I−1/3(a2) + I2/3(a2))I−2/3(a1)

+ (I−1/3(a1) − I2/3(a1))I−2/3(a2) + I−1/3(a1)I1/3(a2)

− I1/3(a1)I−1/3(a2) − I1/3(a1)I2/3(a2)

− I2/3(a1)I1/3(a2)]−1, (A9)

with the modified Bessel functions Iν (x), wave vectors in each

constant region ki =
√

εik2
0 − k2

‖ , the arguments of the Bessel

functions

ai = 4

3

√
−k6

i a2

k4
0δ

2
, (A10)

and the difference of the final dielectric functions δ = ε1 −
ε2. Due to the rotational symmetry of the profile the inverse
transmission coefficient τ̃ can be extracted by the exchange
of the dielectric functions ε1 ←→ ε2 and changing the slope
a �→ −a, which reduces to

τ̃l = k2
1

k2
2

τl. (A11)

This solution satisfies the transition to the Fresnel transmis-
sion by a �→ 0.

The numerical evaluation of this result showed a coinci-
dence over a wide range of wave vectors k‖ with the Fresnel
reflection coefficient. For low wave vectors k‖a < 1 the result
deviates much less due to the small inhomogeneous region.
For high values k‖a � 1 the results are identical due to the
transparency of the medium. Only in a small region, where
k‖a ≈ 1, the differences are larger. By comparing the corre-
sponding length scales of these regions one can assume that
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the error by using the Fresnel reflection coefficient instead of
the exact solution is negligibly small for the considered van
der Waals and Casimir interactions. By increasing the width

of the inhomogeneous region its impact on the dispersion
interaction increases as well, which means that the exact
solution has to be taken into account.
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