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Abstract

Starting from the quantized version of Maxwell’s equations for the electro-

magnetic field in an arbitrary linear Kramers-Kronig dielectric, spontaneous

decay of the excited state of a two-level atom embedded in a dispersive and

absorbing medium is studied and the decay rate is calculated. The calcu-

lations are performed for both the (Clausius-Mosotti) virtual cavity model

and the (Glauber-Lewenstein) real cavity model. It is shown that owing to

nonradiative decay associated with absorption the rate of spontaneous decay

sensitively depends on the cavity radius when the atomic transition frequency

approaches an absorption band of the medium. Only when the effect of ab-

sorption is fully disregarded, then the familiar local-field correction factors

are recovered.
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I. INTRODUCTION

Spontaneous emission is a prime example of the action of vacuum fluctuations on phys-

ically measurable processes. Since the early work of Einstein [1] spontaneous emission has

been a major ingredient in the understanding of the effects of what one calls the vacuum in

quantum field theory. The radiation properties of an excited atom located in free space have

been a subject of many studies (for a comprehensive list of original articles, see, e.g., [2]).

In particular, the rate of spontaneous emission in free space (half the Einstein coefficient) is

given by

ΓSE = Γ0 ≡
ω3
Aµ

2

3πh̄ǫ0c3
, (1)

where ωA is the transition frequency of the atom and µ is the dipole matrix element of the

transition. The question has been arisen of how a surrounding medium modifies that decay.

Simple arguments based on the change of the mode density suggest that the spontaneous

emission rate inside a non-absorbing dielectric should be modified according to [3]

ΓSE = nΓ0, (2)

where n is the real refractive index of the medium. In Eq. (2) it is assumed that the local

field the atom interacts with is identical with the electromagnetic field in the continuous

medium. Since in reality the atom is in a small region of free space, the local field felt by

the atom is different from the field in the continuous medium [4], and the decay rate may

be expected to be modified to

ΓSE = nξΓ0, (3)

where ξ is the local-field correction factor. Different models have been used to calculate it.

In the (Clausius-Mosotti) virtual cavity model it is given by [5]

ξCM =

(

n2 + 2

3

)2

, (4)

whereas the (Glauber-Lewenstein) real cavity model leads to [6]
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ξGL =

(

3n2

2n2 + 1

)2

. (5)

Recently, experiments have been reported [7,8] from which the real-cavity model may be

favored.

As already mentioned, in Eqs. (2) – (5) it is assumed that the refractive index of the

medium, which may vary with frequency [i.e., n → n(ωA) in Eqs. (1.2) – (1.5)], is real.

However, in reality the refractive index must be a complex function of frequency,

n(ω) = η(ω) + i κ(ω). (6)

It is well known that causality requires the permittivity of the medium, ǫ(ω)=n2(ω), to be

a complex function of frequency whose real part (responsible for dispersion) and imaginary

part (responsible for absorption) are related to each other by the Kramers-Kronig relation.

Only when the atomic transition frequency ωA is sufficiently far from a medium resonance,

so that absorption may be disregarded, the imaginary part of the refractive index (at the

atomic transition frequency) may be neglected: n(ωA)≈ η(ωA).

Describing the (undisturbed, continuous) medium in terms of a complex permittivity, in

[9,10] it is argued that Eqs. (3) – (5) can be extended to the spontaneous emission of an

atom embedded in a lossy dielectric as

ΓSE = η(ωA)ξ(ωA)Γ0, (7)

where the local-field correction factors (4) and (5) are now regarded as being squares of

absolute values,

ξCM(ωA) =

∣

∣

∣

∣

∣

n2(ωA) + 2

3

∣

∣

∣

∣

∣

2

, (8)

ξGL(ωA) =

∣

∣

∣

∣

∣

3n2(ωA)

2n2(ωA) + 1

∣

∣

∣

∣

∣

2

. (9)

Further, in [10] the total decay rate is decomposed as

Γ = Γ⊥ + Γ‖, (10)
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where the rates Γ⊥ and Γ‖, respectively, are related to the transverse and longitudinal

electromagnetic fields in the medium. The rate Γ⊥ is identified with the cavity-radius-

independent rate ΓSE given by Eq. (7), and it is argued that the rate Γ‖, which depends on

the cavity radius R as Γ‖ ∼R−3, is responsible for nonradiative decay via energy transfer

between the atom and the surrounding (absorbing) dielectric.

¿From the study of resonant energy transfer between two guest molecules in a perfect

lattice of absorbing molecules [11], in [12] it is argued that (within the approximations

made) the rate of spontaneous emission is given by Eq. (7) together with Eq. (8), i.e., with

the local-field correction factor that corresponds to the virtual-cavity model. However, the

total decay rate is purely transverse; i.e., it results only from the transverse part of the

electromagnetic field in the medium,

Γ = Γ⊥ = Γ(1) + Γ(2). (11)

It consists of an R-independent far-field term Γ(1), which has the form of Eq. (7) [together

with Eq. (8)] and is interpreted as the spontaneous emission rate, and a R-dependent term

Γ(2), which in the near-field zone is proportional to R−3 and describes nonradiative energy

transfer.

Recently it has been shown [13] that the decay rates suggested in [9,10] for the virtual-

cavity model are wrong in general, because the quantum vacuum in the presence of a dis-

persive and absorbing dielectric is not introduced correctly. The fluctuating part of the

polarization field is not fully included in the local field coupled to the atom and therefore

effects such as nonradiative energy transfer from the guest atom to the medium via virtual

photon exchange (i.e., transverse-field-assisted energy transfer) are omitted. It is just the

contribution to the local field of the fluctuating part of the polarization which gives rise

to the relevant terms ∼ R−3 and ∼ R−1 in the transverse decay rate of an excited atom

surrounded by an absorbing medium [13]. It is worth noting that the results have been

confirmed within a microscopic approach to the problem more recently [14].

In the virtual-cavity model, the electromagnetic field inside the cavity, i.e., the local
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field, is modified by the presence of the cavity, but the modification of the field outside the

cavity is disregarded. Hence the local field introduced in this way is not exactly the field

that couples to the atom in reality. On the contrary, in the real-cavity model the mutual

modification of the fields outside and inside the cavity are taken into account in a consistent

way; i.e., the atom interacts with a field that exactly satisfies both Maxwell’s equations

and the fundamental commutation rules of quantum electrodynamics. It may be therefore

expected that the real cavity model is more suited for describing the spontaneous decay

than the virtual cavity model. In particular, the Power-Zienau-Woolley transformation (see,

e.g., [15]) suggests that (in dipole approximation) only the transverse electromagnetic field

contributes to the decay rate via radiative decay and nonradiative decay associated with

virtual photon exchange, the latter being typical for an absorbing medium.

In this article we consider, within the frame of rigorous quantization of the electromag-

netic field in an arbitrary linear Kramers-Kronig consistent dielectric [16–18], the sponta-

neous decay of an excited atom embedded in an absorbing dielectric, applying the real-cavity

concept. We find that the rate formulas suggested in [10] for the real-cavity model are es-

sentially wrong. At first, only the transverse electromagnetic field contributes to the decay

rate, i.e., Γ‖ ≡ 0, which contradicts [10]. At second, the (purely transverse) rate not only

contains an R-independent term but also terms proportional to R−1 and R−3 which are

closely related to nonradiative decay – a result which also contradicts [10]. As expected,

nonradiative decay is only observed for an absorbing medium. It is worth noting that when

the atomic transition frequency is sufficiently far from an absorption band of the medium,

so that absorption may be neglected, our result exactly agrees with that derived in [6] for a

non-absorbing medium.

The paper is organized as follows. After introducing the quantization scheme, in Sect. II

the problem of spontaneous decay of an exited atom in an absorbing medium is considered.

In Sect. III the results for decay rate with the virtual cavity model are outlined, and Sect. IV

presents a detailed analysis of the decay rate with the real cavity model. The results are

discussed in Sect. V. Lengthy calculations are given in the Appendix.
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II. BASIC EQUATIONS

Our analysis of the spontaneous decay of an excited atom embedded in an absorb-

ing medium is based on the scheme for quantization of the electromagnetic field in lin-

ear Kramers-Kronig dielectrics developed in [16–18]. We start with the phenomenological

Maxwell’s equations in the (temporal) Fourier space, without external sources,

∇ · B̂(r, ω) = 0, (12)

∇ ·
[

ǫ0ǫ(r, ω)Ê(r, ω)
]

= ρ̂(r, ω), (13)

∇× Ê(r, ω) = iωB̂(r, ω), (14)

∇× B̂(r, ω) = −i
ω

c2
ǫ(r, ω)Ê(r, ω) + µ0ĵ(r, ω), (15)

where ǫ(r, ω) = ǫR(r, ω) + iǫI(r, ω) is the (spatially varying) permittivity satisfying the

Kramers-Kronig relations. When there are no external charges and currents, then ρ̂(r, ω)

and ĵ(r, ω), respectively, are the operator noise charge and current densities that are asso-

ciated with absorption according to the dissipation-fluctuation theorem. They satisfy the

equation of continuity,

∇ · ĵ(r, ω) = iωρ̂(r, ω), (16)

and they are related to the noise polarization P̂
N
(r, ω) as

ĵ(r, ω) = −iωP̂
N
(r, ω), (17)

ρ̂(r, ω) = −∇ · P̂
N
(r, ω). (18)

Let f̂(r, ω) be an infinite set of bosonic field operators which may be viewed as being collective

excitations of the electromagnetic field, the medium polarization, and the reservoir. All

operators in the theory can then be expressed in terms of these basic field operators using

the relation
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ĵ(r, ω) = ω

√

h̄ǫ0
π
ǫI(r, ω) f̂(r, ω). (19)

In particular, from Maxwell’s equations the electric field (in Fourier space) is given by a

convolution with the classical dyadic Green function,

Êk(r, ω) = iµ0

∫

d3r′ ωGkk′(r, r
′, ω)ĵ

k′
(r′, ω), (20)

where Gkk′(r, r
′, ω) satisfies the partial differential equation

[

∂ri ∂
r
k − δik

(

△r +
ω2

c2
ǫ(r, ω)

)]

Gkk′(r, r
′, ω) = δik′δ(r− r′). (21)

Integration with respect to ω then yields the operator of the electric field as

Ê(r) = Ê(+)(r) + Ê(−)(r), Ê(−)(r) =
[

Ê(+)(r)
]†
, (22)

Ê
(+)
k (r) =

∫ ∞

0
dω Êk(r, ω) = iµ0

∫ ∞

0
dω
∫

d3r′ ωGkk′(r, r
′, ω)ĵ

k′
(r′, ω). (23)

Substituting in Eq. (23) for the current density the expression given in Eq. (19) yields the

electric field in terms of the bosonic basic fields. It can be proven [18] that the quantization

scheme is fully consistent with QED for arbitrary linear dielectrics, i.e.,

ǫ0
[

Êk(r), B̂l(r
′)
]

= −ih̄ǫklm∂
r
mδ(r− r′), (24)

[

Êk(r), Êl(r
′)
]

=
[

B̂k(r), B̂l(r
′)
]

= 0. (25)

The electric and magnetic fields can be of course expressed in terms of vector (Â) and

scalar (ϕ̂) potentials. In what follows we will set the scalar potential equal to zero. This

gauge condition implies that both the transverse and the longitudinal electric fields are

obtained from the vector potential

Â(r) = Â(+)(r) + Â(−)(r), (26)

Â
(+)
k (r) = µ0

∫ ∞

0
dω

∫

d3r′Gkk′(r, r
′, ω)ĵ

k′
(r′, ω). (27)
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Let us now consider the case when an external (two-level) atomic system at position rA

is present. Treating the interaction of such a guest atom with the electromagnetic field in

dipole and rotating wave approximations, the Hamiltonian of the total system can be given

by

Ĥ =
∫

d3r
∫ ∞

0
dω h̄ωf̂ †(r, ω)f̂(r, ω) +

2
∑

α=1

h̄ωαÂαα −
[

iω21Â21 Â
(+)(rA)·d21 +H.c.

]

. (28)

Here the atomic operators Âαα′=|α〉〈α′| are introduced, with |α〉 being the energy eigenstates

of the guest atom (α=1, 2). The energies of the two states are h̄ω1 and h̄ω2 (h̄ω2>h̄ω1), and

ω21= ω2−ω1 and d21, respectively, are the atomic transition frequency and dipole moment.

Note that in the interaction term in Eq. (28) the Â2 term and the counter-rotating terms

have been dropped.

In the Heisenberg picture the equations of motion then read as, on recalling Eqs. (19)

and (27),

˙̂
A22 = −

ω21

h̄
Â21 Â

(+)(rA)·d21 +H.c., (29)

˙̂
A11 = −

˙̂
A22 , (30)

˙̂
A21 = iω21Â21 +

ω21

h̄
Â(−)(rA)·d21

(

Â22 − Â11

)

, (31)

˙̂
f i(r, ω) = −iωf̂i(r, ω) +

ω21ω

c2

√

ǫI(r, ω)

h̄πǫ0
(d21)kG

∗
ki(rA, r, ω) Â12 . (32)

Substituting in the vector potential in Eqs. (29) – (31) for f̂i(r, ω, t) the formal solution of

Eq. (32), i.e.,

Â
(+)
i (r, t) = Â

(+)
free i(r, t) +

ω21

πǫ0c2
(d21)k

∫ ∞

0
dω
[

ImGik(r, rA, ω)
∫ t

t′
dτ e−iω(t−τ)Â12(τ)

]

, (33)

a system of integro-differential equations for the atomic quantities is obtained. [Note that

Eq. (A3) has been used for deriving Eq. (33).] At this stage a Markov approximation can

be introduced, and the integro-differential equations reduce to Langevin-type differential

equations (Appendix A)

8



˙̂
A22 = −ΓÂ22 −

[

Â21
ω21

h̄
Â

(+)
free(rA, t)·d21 +H.c.

]

, (34)

˙̂
A11 = −

˙̂
A22 , (35)

˙̂
A21 =

[

i(ω21 − δω)− 1
2
Γ
]

Â21 +
ω21

h̄
Â

(−)
free(rA, t)·d21

(

Â22 − Â11

)

, (36)

where Γ is the rate of spontaneous decay of the excited state of the guest atom,

Γ =
2ω2

Aµkµk′

h̄ǫ0c2
ImGkk′(rA, rA, ωA) (37)

[µk ≡ (d21)k, ωA ≡ω21], and δω is the (contribution of the dielectric to the) Lamb shift [see

Eq. (A6)]. Note that Â
(±)
free(r, t) evolves freely. From Eq. (20) together with Eqs. (19) and

(A3) it can be proved that the quantization scheme exactly yields, in agreement with the

dissipation-fluctuation theorem, the relation [19]

ImGkk′(r, r
′, ω′) δ(ω − ω′) =

πǫ0c
2

h̄ω2
〈0|
[

Êk(r, ω), Ê
†

k′(r
′, ω′)

]

|0〉. (38)

As long as the Markov approximation applies, the spontaneous decay can be described in

terms of the rate (37), the rate formula being valid for arbitrary dielectrics and geometries.

Especially, for an atom in vacuum we have

ImGkk′(rA, rA, ωA) =
ωA

6πc
δkk′ (39)

[see Eqs. (B1) – (B5) for ǫ=1], which leads to the well-known result (1),

Γ = Γ0 =
ω3
Aµ

2

3πh̄ǫ0c3
. (40)

A guest atom in a dielectric is situated in a small free-space region and is surrounded by

medium atoms. Frequently a cavity model is used for describing the situation. An atom in

an empty cavity in an otherwise continuous medium is considered and it is assumed that

the linear dimensions of the cavity are much less then the atomic transition wavelength. In

particular, for isotropic systems a spherical cavity of radius R may be considered. With

regard to Eq. (37), the “only” problem that remains is the calculation of (the imaginary

part of) the classical Green tensor for a dielectric medium of given permittivity which is

disturbed by a small free-space inhomogeneity.
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III. VIRTUAL CAVITY MODEL

In the virtual cavity model it is assumed that the field outside the sphere is not modified

by the small region of free space inside the sphere, and the (local) electric field E′(r, ω)

inside the sphere is given by [20]

Ê
′
(r, ω) = Ê(r, ω) +

1

3ǫ0
P̂(r, ω), (41)

where E(r, ω) and P(r, ω), respectively, are the electric and polarization fields in the unper-

turbed continuous medium. From Maxwell’s equations (13) and (15) together with Eqs. (16)

– (19) it is seen that

P̂(r, ω) = ǫ0 [ǫ(r, ω)− 1] Ê(r, ω) + P̂N(r, ω), (42)

where

P̂N(r, ω) = i

√

h̄ǫ0
π
ǫI(r, ω) f̂(r, ω) (43)

is the noise polarization associated with absorption. For classical optical fields at room

temperatures the noise polarization weakly contributes to the polarization and the local

field, and therefore it may be neglected. Obviously, for quantum fields and especially for

the quantum vacuum, whose coupling to the guest atom gives rise to the spontaneous decay,

the noise polarization must not be omitted, because it is nothing other but a part of the

quantum vacuum. Combining Eqs. (41) and (42) yields the local-field operator

Ê
′
(r, ω) =

1

3
[ǫ(r, ω) + 2]Ê(r, ω) +

1

3ǫ0
P̂N(r, ω). (44)

It can be shown that the local electromagnetic field satisfies the equal-time commutation

relations [13]

ǫ0
[

Ê ′
k(r), B̂

′
l(r

′)
]

= −ih̄ǫklm∂
r
mδ(r− r′)

{

1 + 1
9
[ǫ(r, 0)− 1]

}

, (45)

[

Ê ′
k(r), Ê

′
l(r

′)
]

=
[

B̂′
k(r), B̂

′
l(r

′)
]

= 0, (46)
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Comparing with the correct commutation relations, we see that the virtual cavity model may

be regarded as being consistent with QED (over the whole frequency domain), provided that

ǫ(r, 0) ≪ 10; (47)

i.e., the value of the static permittivity must not be too large.

Now we can turn to the calculation of the spontaneous decay rate, Eq. (37). Recalling

Eq. (38), we may write

ImGkk′(r, r
′, ωA) δ(ω − ωA) =

πǫ0c
2

h̄ω2
〈0|
[

Ê
′

k(r, ω), Ê
′†

k′(r
′, ωA)

]

|0〉 (48)

with |r−rA|, |r
′−rA|<R and Ê′ from Eq. (44). Since Ê in Eq. (44) is determined by Eq. (20)

with the Green tensor for the field in the undisturbed continuous medium, knowledge of the

imaginary part of that Green tensor is sufficient to calculate the decay rate. However, for

r, r′→ rA a singular contribution to the rate is observed, which reflects the fact that the

description of the dielectric as a continuous medium contradicts a precise determination of

the position of the guest atom. The problem might be overcome by regularization, e.g.,

by averaging Eq. (48) over the sphere. Combining Eqs. (37) and (48) and using Eq. (44)

[together with Eqs. (19), (20), and (43)] yields [13]

ΓCM =
2ω2

Aµkµk′

h̄ǫ0c2

∣

∣

∣

∣

∣

ǫ(ωA) + 2

3

∣

∣

∣

∣

∣

2

ImGM
kk′(r, r

′, ω)

+
4ω2

A

3h̄ǫ0c2
ǫI(ωA)µkµk′ Re

[

ǫ(ωA) + 2

3
GM

kk′(r, r
′, ωA)

]

+
2

9h̄ǫ0
ǫI(ωA)µkµk′δkk′δ(r− r′) (49)

(the bar introduces averaging over the sphere), where GM
kk′(r, r

′, ω) is the Green tensor of the

mean field in the undisturbed medium, and ǫ(ωA)≡ ǫ(rA, ωA). Note that the permittivity

can be assumed to be constant over the small sphere. The first term in Eq. (49) corresponds

to the result obtained in [9,10], without taking account of the contribution of the noise

polarization to the quantum vacuum. The noise polarization gives rise to the second term

and the third term in Eq. (49) – terms that are proportional to ǫI(ωA) and typically observed

for absorbing media.

11



When the position of the guest atom in the medium is sufficiently far from inhomo-

geneities (such as the surface of the dielectric body) the Green tensor GM
kk′(r, r

′, ω) in

Eq. (49) may be identified with that for bulk material as given in Appendix B. Insert-

ing for GM
kk′(r, r

′, ωA) in Eq. (49) the result of Eqs. (B1), (B2), and (B5) and averaging with

respect to r and r′ separately over a sphere, on assuming equidistribution, we derive [21]

ΓCM = Γ
‖
CM + Γ⊥

CM, (50)

where Γ
‖
CM and Γ⊥

CM, respectively, are related to the longitudinal and transverse parts of the

Green tensor,

Γ
‖
CM = Γ0

4ǫI(ωA)

27|ǫ(ωA)|2

(

c

ωAR

)3

, (51)

Γ⊥
CM = Γ0

{

η(ωA)

[∣

∣

∣

∣

∣

ǫ(ωA) + 2

3

∣

∣

∣

∣

∣

2

−
2ǫ2I(ωA)

9

]

+ ǫI(ωA) [ǫR(ωA) + 2]
[

8

15

(

c

ωAR

)

−
2

9
κ(ωA)

]

+
25ǫI(ωA)

54

(

c

ωAR

)3
}

+O(R) (52)

(|R
√

ǫ(ωA)ωA/c| ≪ 1), with Γ0 being the free-space spontaneous emission rate defined in

Eq. (1). From inspection of Eqs. (50) – (52) it is seen that, when absorption can be dis-

regarded, i.e., ǫI(ωA) ≈ 0 and hence ǫ(ωA) ≈ ǫR(ωA), n(ωA) ≈
√

ǫR(ωA), then ΓCM ≈ Γ⊥
CM

reduces to ΓSE given in Eq. (3) with the local-field correction factor (4). It is further seen

that for absorbing media the rate Γ⊥
CM becomes quite different from that given in Eq. (7)

with the local-field correction factor (8), because of the effect of the noise polarization. For

more details, the reader is referred to [13]. Most recently, a more microscopic derivation of

the decay rate has yielded, apart from regularization factors, the same results [14].

It is worth noting that the R-dependent terms in Eq. (52) solely result from the noise

polarization. In particular, the term ∼ R−3 may be regarded as describing nonradiative

decay via dipole-dipole energy transfer from the guest atom to the surrounding medium.

From Eqs. (50) – (52) it is seen that the terms∼R−3 can be combined to obtain an overall

rate for the nonradiative dipole-dipole energy transfer. Obviously, the decomposition of ΓCM

12



in Γ⊥
CM and Γ

‖
CM has nothing to do with a decomposition in radiative and nonradiative decay

channels in general.

It should be pointed out that the averages in Eq. (49), which correspond to regularization

at r→r′, can be taken in different ways. In other words, the R-dependent terms in Eqs. (51)

and (52) are determined only up to some regularization factors. Hence, not only the the

cavity radius R but also the scaling factors of the absorption-assisted ∼ R−1 and ∼ R−3

terms are undetermined in the model.

IV. REAL CAVITY MODEL

In the real cavity model the exact Green tensor for the system disturbed by a small

free-space inhomogeneity is inserted in the rate formula (37). In other words, the electro-

magnetic field inside and outside the cavity exactly solves Maxwell’s equations (12) – (15)

together with the standard boundary conditions at the surface of the cavity. In contrast to

the virtual cavity approach, in the real cavity approach the field inside the cavity exactly

satisfies the fundamental QED equal-time commutation relations (24) and (25), and the

Green tensor does not lead to a singular contribution to the decay rate. The Green tensor

for an inhomogeneous problem of that type can always be written as a sum of the Green

tensor for a homogeneous problem and some tensor that obeys a source-free wave equation

and ensures the boundary conditions to be satisfied [22]. Since the guest atom is situated

in an empty cavity, the relevant Green tensor reads as

Gkk′(r, rA, ωA) = GV
kk′(r, rA, ωA) + G̃kk′(r, rA, ωA) (r → rA) (53)

where GV
kk′(r, rA, ωA) is simply the vacuum Green tensor, which is given by Eqs. (B1) –

(B3) with ǫ(ω)= 1, and G̃kk′(r, rA, ωA) describes the effect of reflection at the cavity surface.

Obviously, GV
kk′(r, rA, ωA) has no longitudinal imaginary part,

ImG
V‖
kk′(r, rA, ωA) = 0 (r → rA) (54)

Since the tensor G̃kk′(r, rA, ωA) is related to a source-free problem, it is transverse, and hence
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G̃
‖
kk′(r, rA, ωA) = 0 (r → rA). (55)

The imaginary part of Gkk′(rA, rA, ωA) is therefore equal to the imaginary part of the trans-

verse part of the Green tensor, so that the rate formula (37) in the real cavity model reads

ΓGL =
2ω2

Aµkµk′

h̄ǫ0c2
ImG⊥

kk′(rA, rA, ωA). (56)

In other words, in the real cavity model the longitudinal field does not contribute to the

decay rate. Thus, the longitudinal decay rate Γ
‖
GL given in [10] is an artifact.

In order to calculate ΓGL further, let us again consider a spherical cavity of radius R in

bulk material, with the guest atom being situated at the center of the sphere. The Green

tensor for a spherical two-layer system is given in Appendix C. From Eqs. (53) – (55)

together with Eq. (B5) [for ǫ(ω)= 1] and Eq. (C22) it follows that

ImG⊥
kk′(rA, rA, ωA) =

ωA

6πc

[

1 + ReCN
1 (ωA)

]

δkk′, (57)

with the reflection coefficient CN
1 (ωA) being given by Eq. (C23). Hence, for a spherical

cavity the spontaneous decay rate (56) takes the form of

ΓGL = Γ0

[

1 + ReCN
1 (ωA)

]

, (58)

where Γ0 is the free-space spontaneous emission rate (1). The reflection coefficient CN
1 (ωA)

in Eq. (58) is a function of R and given in Eq. (C23) explicitly. For ωAR/c=2πR/λA ≪ 1

we expand it in powers of R to obtain

CN
1 (ωA) = −

3i[ǫ(ωA)−1]

2ǫ(ωA)+1

(

c

ωAR

)3

−
9i[4ǫ2(ωA)−3ǫ(ωA)−1]

5[2ǫ(ωA) + 1]2

(

c

ωAR

)

+
9ǫ5/2(ωA)

[2ǫ(ωA) + 1]2

−1 +O(R), (59)

from which it follows that

ΓGL = Γ0

{

9ǫI(ωA)

|2ǫ(ωA)+1|2

(

c

ωAR

)3

+
9ǫI(ωA)[28|ǫ(ωA)|

2+12ǫR(ωA)+1]

5|2ǫ(ωA) + 1|4

(

c

ωAR

)

+
9η(ωA)

|2ǫ(ωA) + 1|4

[

4|ǫ(ωA)|
4 + 4ǫR(ωA)|ǫ(ωA)|

2 + ǫ2R(ωA)− ǫ2I(ωA)
]

−
9κ(ωA)ǫI(ωA)

|2ǫ(ωA) + 1|4

[

4|ǫ(ωA)|
2 + 2ǫR(ωA)

]

}

+O(R). (60)
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Needless to say that when setting ǫ(ω) = 1, then the free-space spontaneous emission

rate is recovered. When the atomic transition frequency is far from an absorption band

of the medium, then absorption may be disregarded, i.e., ǫI(ωA) ≈ 0 [and hence ǫ(ωA) ≈

ǫR(ωA), n(ωA) ≈
√

ǫR(ωA)]. From inspection of Eq. (60) we see that for ǫI(ωA) → 0 the

term proportional to R0 is the leading term, which exactly gives rise to the rate formula (3)

together with the correction factor (5), i.e., we recover the familiar result derived in [6] for

real refractive index. We further see that for an absorbing medium the rate formula cannot

be given in the form of Eq. (7) together with Eq. (8), as is suggested in [10]. Equation

(60) reveals that for an absorbing medium terms proportional to R−3 and R−1 are observed,

so that the decay rate sensitively depends on the radius of the sphere. In particular, the

near-field term proportional to R−3 can again be regarded as corresponding to nonradiative

decay via dipole-dipole energy transfer from the guest atom to the medium.

It should be pointed out that the condition that ωAR/c≪ 1; i.e., the (optical) wavelength

λA of the atomic transition must be large compared with the radius R of the cavity, is in

full agreement with the Markov approximation used in order to introduce a decay rate.

From inspection of Eq. (C23) it is seen that the (real part of the) reflection coefficient

CN
1 (ω) becomes a rapidly varying function of frequency for ωR/c>∼1, and hence the Markov

approximation fails. In that case the sphere acts like a micro-cavity resonator and memory

effects must be included in the temporal evolution of the atom, which prevents the excited

state from decaying exponentially.

V. DISCUSSION

To illustrate the results, we have computed the (virtual cavity model) decay rate ΓCM,

Eq. (50) – (52), and the (real cavity model) decay rate ΓGL, Eq. (60), of an atom in a spherical

cavity of radius R in a surrounding medium with the single-resonance model permittivity

ǫ(ω) = 1 +
ω2
P

ω2
T − ω2 − iγωT

. (61)
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Plots of the rates as functions of the atomic transition frequency are given in Figs. 1 – 6.

The figures reveal that the two models can yield decay rates that are quite different from

each other. Far from the absorption band of the medium the difference is rather quantitative

than qualitative [Figs. 2 and 4]. In the absorption band and in the vicinity of the absorption

band, i.e., in the region between the medium resonance ωT and the longitudinal frequency

ωL =
√

ω2
T + ω2

P (in the figures, ωL = 1.1ωT ), a quantitatively and qualitatively different

behavior of the two rates can be observed [Figs. 1, 3, 5, and 6]. In particular, the rate

obtained with the real cavity model can substantially exceed the rate obtained with the

virtual cavity model. The differences between the two rates are less pronounced for strong

absorption; i.e., when the value of the bandwidth parameter γ in Eq. (61) is sufficiently large

(compare Fig. 1 with Fig. 3, and Fig. 5 with Fig. 6). In that region the rates sensitively

respond to a change of the radius of the cavity (compare Fig. 1 with Fig. 5, and Fig. 3 with

Fig. 6).

Obviously, an excited atom in an absorbing medium undergoes both radiative and non-

radiative damping, and in dense media nonradiative decay can be much faster than radiative

one. In particular, for small cavity radius the ∼ R−3 dipole-dipole energy transfer terms in

the two rates can strongly enhance them. Since the radiationless decay typically happens at

the longitudinal frequency ωL, one observes, for sufficiently small values of γ, a shift of the

maximum of the decay rate from ωT to ωL with decreasing value of R (compare Fig. 5 with

Fig. 1). Even when the atomic transition frequency is relatively far from the medium reso-

nance, so that the imaginary part of the permittivity becomes relatively small, the values of

the two rates can notably differ from those obtained from Eq. (3) together with either Eq. (4)

or (5), because of the ∼ R−3 near field contributions to the rates. It should be stressed that

Eqs. (3) – (5) apply only when nonradiative decay can be fully excluded from consideration.

Otherwise the near-field terms can give rise to observable effects, as is illustrated in Figs. 2

and 4.

The rates ΓCM and ΓGL differ essentially in the way the cavity radius is introduced.

As already mentioned, in the virtual cavity model the needed coincidence limit of the two

16



spatial arguments of the imaginary part of the Green tensor cannot be performed, because

of the singularity of the Green tensor of the (undisturbed) medium, and regularization is

required. In the paper, a small fictitious distance |r −r′| 6=0 between two neighboring atomic

positions inside a sphere of radius R is kept in order to get a finite value, and the result

is then averaged with regard to r and r′ separately over the sphere. In contrast, in the

real cavity model the limit r, r′ → rA can be performed exactly and a proper rate can be

obtained, R being the radius of the real cavity. ¿From the above it is suggested that the

value of the parameter R may be different in the two models in order to fit each other (note

that in Figs. 1 – 6 the two rates are compared for equal values of R).

Another consequence of the via smoothing introduced radius of the sphere in the virtual

cavity model is that there is a non-vanishing ∼ R−3 longitudinal-field contribution to the

decay rate. Hence, the nonradiative dipole-dipole energy transfer from the atom to the

surrounding medium is obtained from the interaction of both transverse and longitudinal

electromagnetic field components with the atom, ΓCM = Γ
‖
CM + Γ⊥

CM. On the contrary,

the real cavity model leads to a decay rate that solely results from the interaction of the

atom with the transverse field, ΓGL = Γ⊥
GL. Here, the dipole-dipole energy transfer fully

corresponds to a second-order process via virtual photons. It is worth noting that for not too

small values of the radius of the virtual cavity (in our example, R>∼0.1 λA) the contribution

of Γ
‖
CM to ΓCM is small, so that it may be disregarded and hence ΓCM ≈ Γ⊥

CM (see Figs. 5

and 6).

Equation (37) defines the total energy relaxation rate of the (two-level) atom, which re-

sults from both radiative and nonradiative decay, and the question arises of what is the spon-

taneous emission rate. In [10] the transverse contribution to the decay rate is associated with

spontaneous emission, whereas the longitudinal contribution is associated with nonradiative

decay. However, the exact result obtained with the real cavity model reveals that there is

no longitudinal contribution to the decay rate, and hence the transverse contribution must

be associated with both spontaneous emission and nonradiative decay. Similarly, the decay

rate obtained from the study of the resonant energy transfer between two guest molecules
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surrounded by a perfect lattice of absorbing molecules contains only transverse-field con-

tributions and describes both radiative and nonradiative relaxation processes [11,12]. In

[12] it is suggested that the spontaneous emission rate be identified with the R-independent

(far-field) contribution to the decay rate. Since the ∼ R−3 near field contribution may be

regarded as resulting from nonradiative decay via dipole-dipole energy transfer, the question

remains of what is the meaning of the remaining terms. Moreover, from our analysis of, e.g.,

the real cavity model it is seen that R must not substantially exceed the atomic transition

wavelength λA. Otherwise, the Markov approximation does not apply and the calculated

decay rate becomes unphysical. In order to answer the question of what is really sponta-

neous emission, the model should be extended such that light detection at certain distances

from the guest atom is included.

Both in the virtual cavity model and the real cavity model the dielectric is described in

terms of a continuous polarization field that does not resolve the positions of the microscopic

constituents of the medium. In reality an excited guest atom does of course not interact with

a continuous medium, but it “sees” the discrete distribution of the microscopic constituents

of the medium, at least the nearest-neighbor grouping. Hence a refined treatment of the

medium should also allow for the presence in the cavity of nearest-neighboring medium

species whose interaction with the guest atom is considered separately. The enlarged cavity

can then be chosen such that the guest atom cannot “resolve” the discrete structure of the

medium outside the cavity and the continuous description applies [23,24].
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APPENDIX A: MARKOV APPROXIMATION

Equation (32) can be formally integrated to obtain

f̂i(r, ω, t) = f̂free i(r, ω, t) +
ω21ω

c2

√

ǫI(r, ω)

h̄πǫ0
(d21)kG

∗
ki(rA, r, ω)

∫ t

t′
dτ e−iω(t−τ)Â12(τ), (A1)

where f̂free(r, ω, t) evolves freely. Substituting in the vector potential in Eqs. (29) – (31) for

f̂i(r, ω, t) the expression given in Eq. (A1) yields a system of integro-differential equations for

the atomic quantities, which cannot be solved analytically in general. Usually the Markov

approximation is introduced. It is assumed that (after performing the ω integration) the

time integral effectively runs over a small correlation time interval τc. As long as we require

that t− t′≫τc, we may extend the lower limit of the τ integral in Eq. (A1) to minus infinity

with little error. Further we require that τc be small on a time scale on which the atomic

system is changed owing to the coupling to the electromagnetic field. In this case in the τ

integral in Eq. (A1) the slowly varying atomic quantity Â12(τ)e
iω21τ can be taken at time t

and put in front of the integral,

∫ t

t′
dτ e−iω(t−τ)Â12(τ) ≈

∫ t

−∞
dτ e−iω(t−τ)Â12(τ)

≈ Â12(t)
∫ t

−∞
dτ e−i(ω−ω21)(t−τ) = Â12(t) ζ(ω21 − ω)

(A2)

[ζ(x)=πδ(x)+ iPx−1; P denotes the principal value]. Thus, the future of the system is now

determined by the present time only. We substitute in Eq. (A1) for the time integral the

expression given in Eq. (A2), calculate the vector potential, Eqs. (26) and (27). With the

help of the relation (see, e.g., [18])

∫

d3s
ω2

c2
ǫI(s, ω)Gkm(r, s, ω)G

∗
lm(r

′, s, ω) = ImGkl(r, r
′, ω) (A3)

we find after some calculation

Â
(+)
i (rA, t) = Â

(+)
free i(rA, t) +

ω21

πǫ0c2
(d21)k

∫ ∞

0
dω ζ(ω21−ω)ImGik(rA, rA, ω) Â12(t). (A4)
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In order to obtain Eqs. (34) – (36), we eventually substitute in Eqs. (29) – (31) for the

positive and negative frequency parts of the vector potential the expressions according to

Eq. (A4). It can be easily seen that the real part of the ζ function (i.e., the δ function) in

Eq. (A4) leads to Γ given in Eq. (37). The principal-value integral in Eq. (A4) which arises

from the imaginary part of the ζ function contributes to the Lamb shift and reads

δω =
2ω2

21(d21)k(d21)k′

h̄ǫ0c2π

∫ ∞

0
dω

ImGkk′(rA, rA, ω)

ω − ω21
, (A5)

which can be rewritten as

δω =
2ω2

21(d21)k(d21)k′

h̄ǫ0c2

[

ReGkk′(rA, rA, ω21)−
1

π

∫ ∞

0
dω

ImGik(rA, rA, ω)

ω + ω21

]

. (A6)

Equation (A6) holds because of the Kramers-Kronig relation (or Titchmarsh’s theorem) for

the Green function. Note that the real part of the vacuum Green function is infinite for r=

r′= rA and regularization is required. The resulting vacuum Lamb shift may be thought of

as being included in the atomic transition frequency, so that δω in Eq. (36) may be regarded

as being solely due to the surrounding dielectric.

APPENDIX B: GREEN TENSOR FOR A HOMOGENEOUS DIELECTRIC

Following [10,19], the Green tensor for bulk material can be given by

Gkk′(r, r
′, ω) = G

‖
kk′(r, r

′, ω) +G⊥
kk′(r, r

′, ω), (B1)

where (ρ= r− r′)

G
‖
kk′(r, r

′, ω) = −
c2

4πω2ǫ(ω)

[

4π

3
δ(ρ) δkk′ +

(

δkk′ −
3ρkρk′

ρ2

)

1

ρ3

]

(B2)

and

G⊥
kk′(r, r

′, ω) =
c2

4πω2ǫ(ω)

{

(

δkk′ −
3ρkρk′

ρ2

)

1

ρ3
+ k3

[

(

1

kρ
+

i

(kρ)2
−

1

(kρ)3

)

δkk′

−

(

1

kρ
+

3i

(kρ)2
−

3

(kρ)3

)

ρkρk′

ρ2

]

eikρ
}

, (B3)
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are related to the longitudinal and transverse electric fields. In Eq. (B3), the complex wave

number

k =
√

ǫ(ω)
ω

c
= [η(ω) + iκ(ω)]

ω

c
(B4)

has been introduced. In particular for small values of |kρ|, |kρ|≪ 1, the exponential eikρ in

Eq. (B3) can be expanded to obtain

G⊥
kk′(r, r

′, ω) =
1

4π

{

ρkρk′

2ρ3
+
δkk′

2ρ
+

2iω

3c
[η(ω) + iκ(ω)] δkk′

}

+O(ρ). (B5)

APPENDIX C: GREEN TENSOR FOR AN EMPTY SPHERE SURROUNDED

BY A HOMOGENEOUS DIELECTRIC

Following [25], the Green tensor of a system that consists of an empty sphere surrounded

by a homogeneous dielectric can be given in terms of spherical Bessel functions and spherical

harmonics. When r and r′ lie in the sphere (with the center of the sphere being the origin

of the coordinate system), then the associated Green tensor G(r, r′, ω) is given by

G(r, r′, ω) = GV(r, r′, ω) + G̃(r, r′, ω), (C1)

where GV(r, r′, ω) is the vacuum Green tensor, and

G̃(r, r′, ω) =
iω

4πc

∑

e,o

∞
∑

n=1

n
∑

m=0

{

2n+1

n(n+1)

(n−m)!

(n+m)!

× (2−δ0m)
[

CM
n (ω)M e

o
nm

(

r,
ω

c

)

M e

o
nm

(

r′,
ω

c

)

+ CN
n (ω)N e

o
nm

(

r,
ω

c

)

N e

o
nm

(

r′,
ω

c

)] }

.

(C2)

Here M e

o
nm(r, k) and N e

o
nm(r, k) are the (even and odd) vector Debye potentials, and the

quantities CM,N
n (ω) are the generalized reflection coefficients. Introducing the abbreviating

notations

Jni = jn(kiR), (C3)

Hni = h(1)n (kiR), (C4)
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J ′
ni =

1

ρ

d[ρjn(ρ)]

dρ

∣

∣

∣

∣

∣

ρ=kiR

, (C5)

H ′
ni =

1

ρ

d[ρh(1)n (ρ)]

dρ

∣

∣

∣

∣

∣

ρ=kiR

(C6)

(k1=
√

ǫ(ω)ω/c, k2=ω/c), the reflection coefficients can be given by

CM,N
n (ω) =

TH,V
F,n (ω)RH,V

P,n (ω)

TH,V
P,n (ω)

, (C7)

where

RH
P,n(ω) =

k2H
′
n2Hn1 − k1H

′
n1Hn2

k2Jn1H ′
n2 − k1J ′

n1Hn2
, (C8)

RV
P,n(ω) =

k2Hn2H
′
n1 − k1Hn1H

′
n2

k2J ′
n1Hn2 − k1Jn1H ′

n2

, (C9)

TH
P,n(ω) =

k2[Jn2H
′
n2 − J ′

n2Hn2]

k2Jn1H ′
n2 − k1J ′

n1Hn2
, (C10)

TH
F,n(ω) =

k2[J
′
n2Hn2 − Jn2H

′
n2]

k2J
′
n2Hn1 − k1Jn2H

′
n1

, (C11)

T V
P,n(ω) =

k2[J
′
n2Hn2 − Jn2H

′
n2]

k2J ′
n1Hn2 − k1Jn1H ′

n2

, (C12)

TH
F,n(ω) =

k2[Jn2H
′
n2 − J ′

n2Hn2]

k2Jn2H
′
n1 − k1J

′
n2Hn1

. (C13)

The vector Debye potentials are defined by

M e

o
nm(r, k) = ∇×

[

ψ e

o
nm(r, k)r

]

, (C14)

N e

o
nm(r, k) =

1

k
∇×∇×

[

ψ e

o
nm(r, k)r

]

(C15)

with

ψ e

o
nm(r, k) = jn(kr)P

m
n (cos θ)

(

cos

sin

)

mφ, (C16)

and can be given by

M e

o
nm(r, k) =

im

sin θ
jn(kr)P

m
n (cos θ)

(

cos

sin

)

mφ eθ − jn(kr)
dPm

n (cos θ)

dθ

(

cos

sin

)

mφ eφ, (C17)

N e

o
nm(r, k) =

n(n + 1)

kr
jn(kr)P

m
n (cos θ)

(

cos

sin

)

mφ er

+
1

kr

d[rjn(kr)]

dr

[

dPm
n (cos θ)

dθ

(

cos

sin

)

mφ eθ ∓
im

sin θ
Pm
n (cos θ)

(

sin

cos

)

mφ eφ

]

, (C18)
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jn(kr) is the spherical Bessel function of the first kind and Pm
n (cos θ) is the associated

Legendre polynomial. Note that from Eqs. (C14) and (C15) it follows that G(r, r′, ω) is a

(two-sided) transverse tensor function.

Since for kr→ 0 we have

jn(kr)
kr→0
−→

(kr)n

(2n+ 1)!!

(

1−
1

2(2n+ 3)
+ . . .

)

, (C19)

from inspection of Eqs. (C17) and (C18) we find that

M e

o
nm(r, k)

kr→0
−→ (kr)n, (C20)

N e

o
nm(r, k)

kr→0
−→ (kr)n−1. (C21)

Hence, at the center of the sphere only the TM-wave vector Debye potentials N e

o
10(r, k) and

N e

o
11(r, k) contribute to G̃(r, r′, ω) in Eq. (C2),

G̃kk′(r, r
′, ω)

∣

∣

∣

r=r
′=0

=
iω

6πc
CN

1 (ω)δkk′, (C22)

where [n≡
√

ǫ(ω)]

CN
1 (ω) =

[i+ z(n + 1)− iz2n− z3n2/(n+ 1)] eiz

sin z − z(cos z + in sin z) + iz2n cos z − z3(cos z − in sin z)n2/(n2 − 1)
(C23)

with

z =
Rω

c
. (C24)
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FIG. 1. The spontaneous decay rate Γ, Eq. (37), is shown as a function of the atomic transition

frequency ωA near a medium resonance for the model permittivity (61) (ωP =0.46ωT , γ=0.05ωT )

and R=0.02λA. The solid line corresponds to the real-cavity model, ΓGL from Eq. (60), and the

dotted line corresponds to the virtual-cavity model, ΓCM from Eq. (50), the broken line indicating

the transverse-field assisted rate Γ⊥
CM from Eq. (52).
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FIG. 2. The spontaneous decay rate Γ, Eq. (37), is shown as a function of the atomic transition

frequency ωA far from a medium resonance for the model permittivity (61) (ωP =0.46ωT , γ =

0.05ωT ) and R=0.02λA. The solid line corresponds to the real-cavity model, ΓGL from Eq. (60),

and the dotted line corresponds to the virtual-cavity model, ΓCM from Eq. (50), the broken line

indicating the transverse-field assisted rate Γ⊥
CM from Eq. (52). For comparison, the rate ΓGL as

obtained from Eq. (3) together with (5) is shown (dashed line).
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FIG. 3. The spontaneous decay rate Γ, Eq. (37), is shown as a function of the atomic transition

frequency ωA near a medium resonance for the model permittivity (61) (ωP =0.46ωT , γ=0.2ωT )

and R=0.02λA. The solid line corresponds to the real-cavity model, ΓGL from Eq. (60), and the

dotted line corresponds to the virtual-cavity model, ΓCM from Eq. (50), the broken line indicating

the transverse-field assisted rate Γ⊥
CM from Eq. (52).
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FIG. 4. The spontaneous decay rate Γ, Eq. (37), is shown as a function of the atomic transition

frequency ωA far from a medium resonance for the model permittivity (61) (ωP =0.46ωT , γ =

0.2ωT ) and R=0.02λA. The solid line corresponds to the real-cavity model, ΓGL from Eq. (60),

and the dotted line corresponds to the virtual-cavity model, ΓCM from Eq. (50), the broken line

indicating the transverse-field assisted rate Γ⊥
CM from Eq. (52). For comparison, the rate ΓGL as

obtained from Eq. (3) together with (5) is shown (dashed line).
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FIG. 5. The spontaneous decay rate Γ, Eq. (37), is shown as a function of the atomic transition

frequency ωA near a medium resonance for the model permittivity (61) (ωP =0.46ωT , γ=0.05ωT )

and R= 0.2λA. The solid line corresponds to the real-cavity model, ΓGL from Eq. (60), and the

dotted line corresponds to the virtual-cavity model, ΓCM from Eq. (50), the broken line indicating

the transverse-field assisted rate Γ⊥
CM from Eq. (52).
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FIG. 6. The spontaneous decay rate Γ, Eq. (37), is shown as a function of the atomic transition

frequency ωA near a medium resonance for the model permittivity (61) (ωP =0.46ωT , γ=0.2ωT )

and R= 0.2λA. The solid line corresponds to the real-cavity model, ΓGL from Eq. (60), and the

dotted line corresponds to the virtual-cavity model, ΓCM from Eq. (50), the broken line indicating

the transverse-field assisted rate Γ⊥
CM from Eq. (52).
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