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By considering a radiating gas as a single quantum-mechanical system, energy levels corresponding to
certain correlations between individual molecules are described. Spontaneous emission of radiation in a
transition between two such levels leads to the emission of coherent radiation. The discussion is limited erst
to a gas of dimension small compared with a wavelength. Spontaneous radiation rates and natural line
breadths are calculated. For a gas of large extent the effect of photon recoil momentum on coherence is
calculated. The effect of a radiation pulse in exciting "super-radiant" states is discussed. The angular corre-
lation between successive photons spontaneously emitted by a gas initially in thermal equilibrium is calcu-
lated.

" 'N the usual treatment of spontaneous radiation by.- a gas, the radiation process is calculated as though
the separate molecules radiate independently of each
other. To justify this assumption it might be argued
that, as a result of the large distance between molecules
and subsequent weak interactions, the probability of a
given molecule emitting a photon should be independent
of the states of other molecules. It is clear that this
model is incapable of describing a coherent spontaneous
radiation process since the radiation rate is proportional
to the molecular concentration rather than to the square
of the concentration. This simplified picture overlooks
the fact that all the molecules are interacting with a
common radiation field and hence cannot be treated as
independent. The model is wrong in principle and many
of the results obtained from it are incorrect.

A simple example will be used to illustrate the inade-
quacy of this description. Assume that a neutron is
placed in a uniform magnetic field in the higher energy
of the two spin states. In due course the neutron will
spontaneously radiate a photon via a magnetic dipole
transition and drop to the lower energy state. The prob-
ability of 6nding the neutron in its upper energy state
falls exponentially to zero. ' '

If, now, a neutron in its ground state is placed near the
first excited neutron (a distance small compared with a
radiation wavelength but large compared with a particle
wavelength and such that the dipole-dipole interaction
is negligible), the radiation process would, according to
the above hypothesis of independence, be unaGected.
Actually, the radiation process would be strongly
affected. The initial transition probability would be the
same as before but the probability of finding an excited
neutron would fall exponentially to one-half rather than
to zero.

The justification for these assertions is the following:
The initial state of the neutron system 6nds neutron 1
excited and neutron 2 unexcited. (It is assumed that
the particles have nonoverlapping space functions, so
that particle symmetry plays no role. ) This initial
state may be considered to be a superposition of the

'W. Heitler, The Qttantnm Theory of Radiation (Clarendon
Press, Oxford, 1936), Grst edition, p. 112.' E. P. signer and V. Weisskopf, Z. Physik 63, 54 (1930).

triplet and singlet states of the particles. The triplet
state is capable of radiating to the ground state (triplet)
but the singlet state will not couple with the triplet
system. Consequently, only the triplet part is modi6ed

by the coupling with the field. After a long time there
is still a probability of one-half that a photon has not
been emitted. If, after a long period of time, no photon
has been emitted, the neutrons are in a singlet state and
it is impossible to predict which neutron is the excited
one.

On the other hand, if the initial state of the two
neutrons were triplet with s= I, m, =0 namely a state
with one excited neutron, a photon would be certain to
be emitted and the transition probability would be just
double that for a lone excited neutron. Thus, the
presence of the unexcited neutron in this case doubles
the radiation rate.

In recent years the excitation of correlated states of
atomic radiating systems with the subsequent emission
of spontaneous coherent radiation has become an im-
portant technique for nuclear magnetic resonance
research. ' The description usually given of this process
is a classical one based on a spin system in a magnetic
6eld. The purpose of this note is to generalize these
results to any system of radiators with a magnetic or
electric dipole transition and to see what eGects, if any,
result from a quantum mechanical treatment of the
radiation process. Most of the previous work4 was quite
early and not concerned with the problems being con-
sidered here. In a subsequent article to be published in
the Review of Scientific Instrunzents some of these results
will be applied to the problem of instrumentation for
microwave spectroscopy.

In this treatment the gas as a whole will be considered.
as a single quantum-mechanical system. The problem
will be one of finding those energy states representing
correlated motions in the system. The spontaneous
emission of coherent radiation will accompany transi-
tions between such levels. In the first problem to be
considered the gas volumes will be assumed to have

3 E. L. Hahn, Phys. Rev. 77, 297 (1950); 80, 580 (1950).
4 E.g., W. Pauli, Handbnch der Physth (Springer, Berlin, 1933},

Vol. 24, Part I, p. 210; G. Wentzel, Handbuch der Physik (Springer,
Berlin, 1933), Vol. 24, Part I, p. 758.
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dimensions small compared with a radiation wave-
length. This case, which is of particular importance for
nuclear magnetic resonance experiments and some
microwave spectroscopic applications, is treated erst
quantum mechanically and then semiclassically, the
radiation process being treated classicaHy. A classical
model is also described. In the next case to be considered
the gas is assumed to be of large extent. The eGect of
molecular motion on coherence and the eGect on co-
herence of the recoil momentum accompanying the
emission of a photon are discussed. Finally, the two
principal methods of exciting coherent states by the ab-
sorption of photons from an intense radiation pulse or
the emission of photons by the gas are discussed. Calcu-
lations of these two eGects are made for the gas system
initially in thermal equilibrium. The eGect of photon
emission on inducing coherence is discussed as a problem
in the angular correlation of the emitted photons.

DIPOLE APPROXIMATION

The first problem to be considered is that of a gas
con6ned to a container the dimensions of which are
small compared with a wavelength. It is assumed that
the walls of the container are transparent to the radia-
tion field. In order to avoid

difhculties

arising from
collision broadening it will be assumed that collisions
do not aGect the internal states of the molecules. It will
be assumed that the transition under question takes
place between two nondegenerate states of the molecule.
The assumption of nondegeneracy is made in order to
limit the scope of the problem to its bare essentials. It
might be assumed that nondegenerate states are present
as a result of a uniform static electric or magnetic Geld

acting on the gas. Actually, for many of the questions
being discussed it is not essential. that the degeneracies
be split. Also, it will be assumed that there is insufhcient
overlap in the wave functions of separate molecules to
require that the wave functions be symmetrized.

Since it is assumed that internal coordinates of the
individual molecules are unaGected by collisions and
but two internal states are involved for each molecule,
the wave function for the gas may be written con-
veniently in a representation diagonal in the center-of-
mass coordinates and the internal energies of the
molecules. The internal energy coordinate takes on only
two values. Omitting for the moment the radiation Geld,
the Hamiltonian for an e molecule gas can be written

n

H=Hp+E Q E;z,

where E=Lr =molecular excitation energy. Here H o

acts on the center-of-mass coordinates and represents
the translational and intermolecular interaction energies
of the gas. ER;3 is the internal energy of the jth mole-
cule and has eigenvalues &—,'E. IIo and all the R,3

commute with each other. Consequently, energy eigen-
fu, nctions may be .chosen to be simultaneous eigen-

Qctions of JIOp +18' +23& '
y +n3 ~

Let a typical energy state be written as

4p-= ~p(rz "r-)E++—+".j (2)

Here r1 ~ r„designates the center-of-mass coordinates
of the n molecules, and + and —symbols represent
the internal energies of the various molecules. If the
number of + and —symbols are denoted by e+ and n,
respectively, then ns is defined as

no=-,'(e' —e ),
(3)e=e++e =number of gaseous molecules.

If the energy of motion and mutual interaction of the
molecules is denoted by E„then the total energy of the
system is

E,„=E,+mE. (4)

It is evident that the index m is integral or half-integral
depending upon whether m is even or odd. Because of
the various orders in which the + and —symbols can
be arranged, the energy E, has a degeneracy

(-,'n+ m)! (-,'e —m)!

This degeneracy has its origin in the internal coor-
dinates only.

In addition, the wave function may have additional
degeneracy from the center-of-mass coordinates. It
should be noted in this connection that the degeneracy
of the total wave function will depend upon whether or
not the molecules are regarded as distinguishable or not.

If the rnolecules are indistinguishable, the symmetry
of U, will depend upon the symmetries of the wave
function under interchanges of internal coordinates.
For example, the states with all molecules excited are
symmetric under an interchange of the internal coor-
dinates of any two molecules. Consequently, for these
states U, must be symmetric for Bose molecules and
antisymmetric for Fermi molecules. The limitations of
symmetry are normally without physical signiGcance as
it is assumed that the gas is of such low density that
the various molecules have nonoverlapping wave
functions.

Of the Hamiltonian equation (l), Hp operates on the
center-of-mass coordinates only and gives

BoUg =Eg Ug,

whereas E.,3 operates on the plus or minus symbol in
the jth place corresponding to,the internal energy of
the jth molecule. Except for the, factor ~~, it is analogous
to one of the Pauli spin operators. As operators similar
to the other two Pauli operators are also needed in this
development, the properties of all three are listed here.

&i[ + j
]=+-',zL . + .j (&)

& t-" ~ "j=~-'L "~" j
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It is also convenient to define the operators

Rg ——Q Rjg, k=1, 2, 3,

and the operator
R2 R 2+R 2+R 2

In this notation the Hamiltonian becomes

&=HoyER2, (10)

Here the con6guration coordinates of the molecule are
taken to be the center-of-mass coordinates and the coor-
dinates relative to the center of mass of any E—1 of
the Ã particles which constitute the jth molecule.
eI, and m~ are the charge and mass of the kth particle,
and P2 is the momentum conjugate to the position of
the 4th particle relative to the center of mass. The
molecule is assumed electrically neutral.

Since PI, is an odd operator, it has only o6-diagonal
elements in a representation with internal energy
diagonal. Hence the general form of Eq. (12) is

—A(r, ) . (eiR;1+e2R;2).

e~ and e2 are constant real vectors the same for all
molecules. The total interaction energy then becomes

+1 Z ' A(rj) (elRjl+e2Rj2) ~ (14)

Since the dimensions of the gas cell are small compared
with a wavelength, the dependence of the vector
potential on the center of mass of the molecules can be
omitted and the interaction energy (12) becomes

Hi —A(0) (eiR1+e2R2). —— (15)

Since the interaction term Eq. (15) does not contain
the center-of-mass coordinates, the selection rule on the
molecular motion quantum number g is kg=0. Con-
sequently there is no Doppler broadening of the transi-
tion frequency. This results solely from the small size
of the gas container. 5

The operators R~, R2, and R3, apart from a factor of
k, obey the same commutation relations as the three

' R. H. Dicke, Phys. Rev. 89, 472 (1953}.

R24'gm = gj24'gm

To complete the description of the dynamical system,
there must be added to the Hamiltonian that of the
radiation 6eld and the interaction term between 6eM
and the molecular system.

For the purpose of definiteness the ineraction of a
molecule with the electromagnetic field will be assumed
to be electric dipole. The main results are actually inde-
pendent of the type of coupling. The interaction energy
of the jth molecule with the electromagnetic field can
be written as

X—I—A(r, ). Q P„.

components of angular momentum. Consequently, the
interaction operator Eq. (15) obeys the selection rule
Anz=~i. In general, it has nonvanishing matrix ele-
ments between a given state Eq. (2) and a large number
of states with Am= &1. In order to simplify the calcu-
lation of spontaneous radiation transitions, it is desir-
able that a set of stationary states be selected in such a
way that the interaction term has matrix elements
joining a given state with, at most, one state of higher
and lower energy, respectively. Because of the very
close analogy between this formalism and that of a
system of particles of spin —,', known results can be taken
over from the spin formalism.

In a manner similar to an angular momentum for-
malism, e the operations II and R' commute; conse-
quently, stationary states can be chosen to be eigen-
states of R'. These new states are linear combinations
of the states of Eq. (2). The operator R' has eigen-
values r(r+1) ris in. tegral or half-integral and positive,
such that

I222I &r &-2'22. (16)

The eigenvalue r will be called the "cooperation
number" of the gas. Denote the new eigenstates by

Here
Hf, ,= (E,+2221i)f, „,

RQ, „=r(r+1)f, „.

(17)

(1g)

(19)

r=m= 2s.

This state is nondegenerate in the internal coordinates
and may be written as

(20a)

All the states with this same value of r= ~m, but with
diGerent values of m, are nondegenerate also and may
be generated as'

Pg~„——I
(R'—R2' —R,)—l(R1—2R2)]~+g„„. (21)

The operator R~—iR2 reduces the m index by unity
every time it is applied and the fractional power
operator is to preserve the normalization of the wave
function. ' The fractional power operator is de6ned as
having positive eigenvalues only.

E.U. Condon and G. H. Shortley, The Theory ofA tomzc Spectra
(Cambridge University Press, Cambridge, 1935},pp. 45-49.

See reference 6, p. 48, Eq. (3).
See reference 6, p. 48.

The degeneracy of the stationary states is not com-
pletely removed by introducing R'. The state (g, 222, r)
has a degeneracy

22!(2r+ 1)
(2o)

(-,'n+ r+ 1)!(-', 22—r)!

The complete set of eigenstates Pg, may be specified
in the following way: the largest value of m and r is
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(g, r& m~ezR~+epRp~ g, r, m~1)
=

p (eq&zez)L(r&m) (rWm+1))&. (23)

Transition probabilities will be proportional to the
square of the matrix elements. In particular, the spon-
taneous radiation probabilities will be

I=Ip(gym) (r—mg 1). (24)

Here, by setting r=m=-'„ it is evident that Ip is the
radiation rate of a gas composed of one molecule in its
excited state. Ip has the value'

4 GO

Ip
3 c

e~Pp~ ' 1 ~'
cy —$c2

mpe)~ 3 c
1 M

=——(eg'+ eP). (25)
3 c

If m=r=2n (i.e., all n molecules excited),

I=nIp. (26)

Coherent radiation is emitted when r is large but (m~
small. For example, for even m let

r= ,'n, m=0; I=-', n(--,'n+1)Ip. (27)

This is the largest rate at which a gas with an even
number of molecules can radiate spontaneously. It
should be noted that for large rI, it is proportional to the
square of the number of molecules.

Because of the fact that with the choice of stationary
states given by Eq. (21) a given state couples with but
one state of lower energy, this radiation rate $Eq.
(27)], is an absolute maximum. Any superposition state
will radiate at the rate

I=Ip Q P„, (z+m) (r m+1)—
= Ip((R&+ zRz) (Rz —zRz) ), (28)

where I'„, is the probability of being in the state r, m.
' Reference j., p. j.06.

The state P,, ; z, ;„is one of n states with this value
of m. The remaining e—1 states should be chosen to be
orthogonal to this state, orthogonal to each other, and
normalized. Since these remaining rI,—j. states are not
states of r=~e, they must be states of r=-', e—1, the
only other possibility. Again the complete set of states
with this value of r can be generated using Eq. (21),
where now r= ~pn —1, and the operator in Eq. (21) is
applied to each of the m —1 orthogonal states of
r=m=-,'m —1. This procedure can be repeated until all
possible values of r are exhausted, in which case all the
stationary states have been defined.

Kith this definition of the stationary states, the
interaction energy operator has Inatrix elements joining
a given state of the gas to but two other states. Aside
from the factor involving the radiation field operator,
the matrix elements of the interaction energy may be
written8

Al""ytl
m= —-ltl

2
nip

r=--ln
2

n - l fold degenerate

„2(n-I) Ip „(n-2)Ip

„3(n-2)Ip „2(n-3)Ip
I

l

I

I

I

, , (n-2) Ip

„2(n-3)Ip

r ~~P„rt
2

n (n-3)
fold degenerate

„(n-0)Ip

m=- —+I
rl
2
nm=—
2

nIp

(n-2)Ip
fl

(n-2) Ip

FIG. I. Energy level diagram of an n-molecule gas, each molecule
having 2 nondegenerate energy levels. Spontaneous radiation
rates are indicated. E =mE.

There are no interference terms. Consequently, no super-
position state can radiate more strongly than Eq. (27).
An energy level diagram which shows the relative mag-
nitudes of the various radiation probabilities is given
ln Flg.

States with a low "cooperation number" are also
highly correlated but in such a way as to have abnor-
mally low radiation rates. For example, a gas in the
state r=m=0 does not radiate at all. This state, which
exists only for an even number of molecules, is analogous
to a classical system of an even number of oscillators
swinging in pairs oppositely phased.

The energy trapping which results from the internal
scattering of photons by the gas appears naturally in
the formalism. As an example, consider an initial state
of the gas for which one definite molecule, and only
this molecule, is excited. The gas at first radiates at the
normal incoherent rate for a short time and thereafter
fails to radiate. The probability of a photon's being
emitted during the radiating period is 1/n. These results
follow from the fact that the assumed state is a linear
superposition of the various states with m=1 n/2, —
and that 1/n is the probability of being in the state
r= ~e. The probability that the energy will be "trapped"
is (n 1)/n. Th—is is analogous to the radiation by a
classical oscillator when rs —1 similar unexcited oscil-
lators are near. The solution of this classical problem
shows that only 1/n of the excitation energy is radiated.
The remainder appears in nonradiating normal modes
of the system.

For want of a better term, a gas which is radiating
strongly because of coherence will be called "super-
radiant. " There are two obvious ways in which a
"super-radiant" state may be excited. First, if all the
molecules be excited, the gas is in the state characterized
by

r=m= Qe. (29)

As the system radiates it passes to states of lower m
with r unchanged. This will take the system to the
"super-radiant" region m~0.

Another way in which such a state can be excited is
to start with the gas in its ground state,

m 2Q) (30)
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E 10 'kT. (31)

Under these conditions the two spin states of the proton
are very nearly equally populated and it might be
expected that thermal equilibrium would imply a badly
disorganized system. The randomness in the initial
state does not imply, however, complete randomness in
m and r. For a gas with m, large states of low r have a
high degeneracy. These states have a high statistical
weight and are favored. However, Eq. (16) sets a lower
bound on r for any m. The result is a relatively small
range of values of m and r. For a system with e mole-
cules in thermal equilibrium the mean square deviation
from the mean of m is

~/4 —e'/~. (32)

Here m is the mean of m and is for high temperatures
equal to

m= ',mE/kT. —- (33)

For a definite value of m the mean value of r(r+1) is

(34)

and the mean square deviation is

—s —m4 (33)

The expression (32)—(35) may be easily derived using
the density matrix formalism assuming the appropriate
statistical ensemble.

It is hence clear that if

and irradiate it with a pulse of radiation. "If the pu1se is
sufBciently intense, the system is lifted to energy states
with m 0 but with r unchanged, and these states are
"super-radiant. "

Although the "super-radiant" states have abnormally
large spontaneous radiation rates, the stimulated emis-
sion rate is normal. For example, with the system in the
state m, r, the stimulated emission rate is proportional
to

(r+m) (r—m+1) —(r+m+1) (r—m) = 2m. (30a)

Kith m&0 this is the normal incoherent stimulated
emission rate. For m&0 this becomes the negative of
the incoherent absorption rate.

As has been pointed out, the pulse technique for
exciting "super-radiant" states is commonly used in
nuclear magnetic resonance experiments. Here there is
one important point that needs clari6cation, however.
Instead of starting in the highly organized state given
by Eq. (30) the pulse is applied to a system that is in
thermal equilibrium at high temperatures. For example,
if the system be a set of proton spins, the energy neces-
sary to turn a spin over in the magnetic 6eld may be
about

that the percent deviation from the mean of r(r+ 1) is
small, and that the mean of r(r+1) is approximately
the smallest value compatible with the mean value of m.
Thus, in the case of a gas system at high temperature,
for suKciently large e, values of m and r cluster to such
an extent that the system may be considered as approxi-
mately in a state of definite r=m= nE/—4kT. H this
gas is excited by a pulse of the proper intensity to excite
states m 0, the radiation rate after the pulse is approx-
imately

(37)I Ior (r—+1) Isns (—E/4k T)',

which is proportional to e' and hence coherent. A better
calculation good for all temperatures gives the result
)see Eq. (78) with 8=90'j

I= siIem(n —1) tanh'(E/2kT)+-', eIs. (37a)

This is the most general form for f+ apart from a pos-
sible multiplication phase factor. Here 8 is a phase
given by the phase of the exciting pulse. In a similar
way a molecule in the excited state has its wave function
converted to

GO CO

P
—

g expi—t—L+j exp( i t ib ( .—(—39—)

SEMICLASSICAL TREATMENT

For the spontaneous radiation from super-radiant
states (es 0) a semiclassical treatment is generally
adequate. This method, which is a generalization of the
well-known picture used in describing radiation from a
nuclear spin system, " treats the molecular systems
quantum mechanically but calculates the radiation
process classically. In the following calculation the gas
system will be assumed to be excited by a radiation
pulse, which excites it from thermal equilibrium to a set
of super-radiant states. To calculate the radiation rate,
the expectation value of the electric dipole moment is
treated as a classical dipole. %hen the gas contains a
large number of molecules the dipole moment of the
gas as a whole should be given by the sum of the
expectation values of the individual dipole moments.

In thermal equilibrium the gas may be considered as
having e molecules in the ground state and e+ mole-
cules in the excited state. A molecule which is initially
in its ground state is assumed to be thrown into a super-
position state of + and —by the radiation pulse. It is
assumed that there is a unity probability, ratio. The
internal part of the wave function of the molecules after
the pulse is given by

=1 ( ei) (M
O+=—C+lexpl —s-t (+L—gexpi] -t+&

( . (38)
K2 ( 2)

m2»m»1, (36)

the percentage deviation from the mean of m is small,

"See F. Bloch and I. I. Rabi, Revs. Modern Phys, 17, 237
(1945), for a discussion of the effect of a pulse on the analogous
spin- & system.

Instead of calculating the expectation value of the
electric dipole moment it is more convenient to calculate
the expectation value of the polarization current of the

'0 F. Bloch, Phys. Rev. 70, 460 (1946),
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jth molecule given by

(y—r esPaq
(
=c(e,Z;,+ee,,)

E~-~ m~ )
= &-', cLe~ cos(cot+5)+e2 sin(~t+5)]. (40)

The plus sign is obtained from the plus state, Eq. (38),
and the negative sign from Eq. (39). Note the oscillating
time dependence which results from the states being
energy-superposition states. The polarization current
for the gas as a whole is then

j= (n+ N)—(c/2)Le~ cos(~t+8)+e2 sin(cot+6)$. (41)

The radiation rate calculated classically is then"

RADIATION LINE BREADTH AND SHAPE

Under conditions for which the above "classical
model" is valid, it is easy to calculate the natural line
breadth and shape factor. This is of considerable im-
portance in microwave spectroscopy. It has been-

customary to regard the natural line breadth as too
small to be of any practical importance. However, as
will be seen below, when coherence is properly taken
into account the natural radiation breadth of the line
may be far from negligible.

Using the above classical model, the angle between
the spin axis and the s axis (the polar angle) will be
designated as y. In this approximation the quantum
number m may be replaced by

2 GO 1 QPI= —
~
J'~ =— (n+—e)—'(eP+ eP)

3 cs 12 c
(42)

ss=r cosp) (44a)

from which, using Eq. (24), the radiation rate becomes

I=Ior' sin'y.
In thermal equilibrium n+/e = exp (—E/kT), from
which Also, the internal energy of the gas is

rt+ e=—e tanh(E/2kT). (43) mE= rE cosq. (44c)

Substituting into Eq. (42) gives the classical radiation
rate

Balancing the radiation rate to the energy loss of the
gas gives

M (I= —e'(e~'+e2')—tanh'~
12 c (2&T)

j= (Ior/E) sing,
44

from which, assuming y= 90' if t =0,

This may be compared with the quantum-mechanical sing = sech(at),
result LEq. (37a) and Eq. (25)j. For large e the two
results are equal. form as a function of time:

CLASSICAL MODEL

When the gas is in a state of definite "cooperation
number" r which has a very large value, it is possible to
represent it in its interaction with the electromagnetic
field by a simple classical model. The energy-level spac-
ing and the matrix elements joining adjacent levels are
similar to those of a rotating top of large angular
momentum and carrying an electric dipole moment. The
details depend upon e~ and e2,which in turn depend on
the nature of the original states. Let us consider a
specific example. Assume that the radiators are atoms
having a 'P~ excited state and a 'So ground state.
Assume that the degeneracy of the excited state is split
by a magnetic field in the s direction and that the nz&

——1
excited level is being used. Under these conditions e~
and e2 are orthogonal to each other and the s axis, and
the system has energy levels and interactions with the
field identical with those of a spinning top having an
electric dipole moment along its axis "and precessing
about the s axis as a result of an interaction with a
static electric field in that direction. Consequently, since
large quantum numbers are involved, to a good ap-
proximation the gas can be replaced by this classical
model, which consists of a spinning top, in calculating
both the interaction of the field on the gas and vice versa.

"Reference 1,p. 26.

e'"' sing, t&0,
A (t) = h(o=E.

0,

The Fourier transform gives the line shape and has the
value

(~q & 1 (~P—coy

~(P) =
I

—
I

—sech/—
E2)

(44d)

It should be noted that this is not of the usual Lorentz
form. The line width at half-intensity points is

5a& = 1.12Ior/E= 1.12yr. (44e)

Here y is the line width at half-intensity points for the
radiation from isolated single molecules. Putting in the
maximum value of r gives a line breadth of Ace

= 1.12ye/2, which is generally very substantially
larger than y.

RADIATION FROM A GAS OF LARGE EXTENT

A classical system of simple harmonic oscillators dis-
tributed over a large region of space can be so phased
relative to each other that coherent radiation is obtained
in a particular direction. It might be expected also that
the radiating gas under consideration would have energy
levels such that spontaneous radiation occurs coherently
in one direction.
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—-', P vk * (eg+ie2)p R; exp( —ik' r;), (46)
kI 1'=1

where E,p= E;1&iX;2.In this expression, terms involv-
ing the product of the photon creation operator and the
"excitation operator" R;+, etc., have been dropped as
these terms do not lead to first-order transitions for
which energy is conserved. The form of Eq. (46)
suggests de6ning the operators:

Rkg ——P, (R;g cosk r; R;2 sink r—;),
47

R»2 ——g;(R;~ sink r,+R;, cosk r;).
In terms of these operators the interaction energy
becomes

where
IIy= —

g pk~(vk~ eR»~++vk~ 'e R» ), (48)

R» ~ R» ~&——iR» 2 pR,——~ exp(+ik' r;),
j=l

C= Cl —$Co.

For every direction of propagation k there are two
orthogonal polarizations v» of A. By a proper choice of
polarization basis, the dot product of one of the basic
polarizations with c can be assumed zero. This radiation
oscillator is never excited and can be ignored. The
orthogonal polarization is the one which couples with
the gas. The polarization of emitted or absorbed radia-
tion is uniquely given by the direction of propagation
and need not be explicitly indicated.

The operators of Eq. (47), together with R3, obey the
angular momentum commutation relations. The oper-
ator

R»2 —R»P+R»22+R 2 (49)

commutes with the operators of Eq. (47) and with R3. In
Eq. (49) k is regarded as a axed index. This operator
does not commute with another one of the same type
having a diferent index. Omitting for a moment the
translational part of the wave function, wave functions
may be so chosen as to be simultaneous eigenfunctions
of the internal energy EE3and Rk'. They may be written

It will be assumed that the gas occupies a region
having dimensions generally larger than radiation wave-
length but small compared with the reciprocal of the
natural line width,

hk=dcujc.

It is necessary to turn again to the general expression
for the interaction term in the Hamiltonian equation
(13).The vector potential operator can be expanded in
plane waves:

A(r)=p» tv» exp(ik' r)+v». *exp(—ik' r)j. (45)

vk and its Hermitian adjoint vk are photon destruction
and creation operators, respectively. After substituting
Eq. (45) into (13), the interaction term becomes

n

II~ ——, P——vk. (e~—ie2)QR;+ exp(ik' r;)

as f „and are generated by an expression analogous to
Eq. (21):

Rg'P „=r(r+1)f „, ERyP „=mEiP,. (50)

By analogy with the development leading to Eq. (24)
it is clear that these states represent correlated states
of the gas for which radiation emitted in the k direction
is coherent. Thus, coherence is limited to a particular
direction only, provided the initial state of the gas is
given by a function of the same type as Eq. (50). The
selection rules for the absorption or emission of a
photon with momentum k are

Dr=0, Am= &1. (51)
The spontaneous radiation rate in the direction k is
given by Eq. (24), where I and Io are now to be inter-
preted as radiation rates per unit solid angle in the
direction k. This may be written as

I(k) =ID(k)I (r+m) (r—m+1)). (51a)
If a photon is emitted or absorbed having a momen-

tum k' &k, the selection rules are

hr= +1,0; Am=~ j.. (52)
To prove this, it may be noted that the commutation
relations of the 2e operators

R;~' ——R,~ cos(k r;)—R,2 sin(k r;),

R;2' ——R;~ sin(k r;)+R;~ cos(k r,),
(53)

with those of Eq. (47) are of the same type as denoted
by Condon and Shortley" as T. The selection rules
satisfied by these operators are of the type given by
Eq. (52)."The operators of Eq. (47), with k= k', may
be expressed as linear combinations of those of Eq. (53).
Hence the operators of Eq. (47), with k replaced by k',
satisfy the selection rules given by Eq. (52).

As was discussed previously in the dipole approxi-
mation, super-radiant states may be excited by irradi-
ating the gas with radiation until states in the vicinity
of no=0 are excited. In the present case the incident
radiation is assumed to be plane with a propagation
vector k. After excitation the gas radiates coherently
in the k direction. Because of the selection rules Eq.
(52), radiation in directions other than k tends to
destroy the coherence with respect to the direction k
by causing transitions generally to states of lower r.

DOPPLER EFFECT

Because of the occurrence of the center-of-mass
coordinates in the "cooperation" operator Eq. (49), it
fails to commute with IIO LEq. (1)g; hence eigenstates
of E&' are generally not stationary. This is equivalent to
the fact that relative motion of classical oscillators will
gradually destroy the coherence of the emitted radia-
tion. If, on the other hand, a set of classical oscillators
all move with the same velocity, the state of coherence

, "Reference 6, p. 59."Reference 6, pp. 60-61.



re. H. DlCKE

is stationary. The corresponding question in the case
of the quantum mechanical system is whether there
exist simultaneous eigenstates of H and Ri,' such that
coherent radiation is emitted in a transition from one
state to another. By starting with the state defined by

P„„=(expss P, r;) L+++. +$, r=e/2, (54)

and using the method leading to Eq. (21), there is
obtained the set of states

6„„=L(R,'—R,'—R,)—:(R»—'R»)3 -"V.„„. (55)

If it is assumed that the gas is free, the functions Eq.
(55) are simultaneous eigenfunctions of II and Ri,'.
Consequently, the coherence in the k direction is sta-
tionary.

These states are analogous to the c1assical oscillators
all moving with the same speed. Note one important
difference, however; from Eq. (55) the momentum of
an excited molecule is always

p+= ks, (56)

whereas if a molecule is in its ground state the mo-

mentum, as given by Eq. (55), is

p =h(s —k), (57)

the diRerence being the recoil momentum of the pho-
ton. Thus, the coherent states Eq. (55) are always a
superposition of states such that the excited molecules
have one momentum and the unexcited have another.
Hence it is clear that the recoi1 momentum given to a
molecule when it radiates in the k direction does not
produce a molecular motion which destroys the coher-
ence but rather is required to preserve the coherence.

The gain or loss in photon energy which has its origin
in the Doppler effect is equal to the loss or gain in the
kinetic energy of a radiator which results from the
photon-induced recoil. Expressed as a fractional shift in

photon frequency, this is

Aoi h(S——,'k) .k
(58)

Here M is the molecular mass. For energy states such
that

~

m ~((rs/2, Eq. (58) can be written as

Aoi v. k
(59)

(o ck

Where v is the total momentum of the gas divided by
its total mass. Equation (59) is the usual classical
expression for the Doppler shift for a radiator moving
with a velocity v. Consequently, for the highly corre-
lated states ~m

~

0 the Doppler effect can be described
in classical terms.

The stationary states Eq. (55) do not form a
complete set. In particular, the final state, a photon
being emitted or absorbed with a momentum not k, is
not one of these states. The set of stationary states may
be made complete by adding all the other possible or-
thogonal plane wave states, each being characterized by

a de6nite momentum and internal energy for each
molecule. With this set of orthogonal states, matrix
elements can be easily calculated for transitions from
the states given by Eq. (55) to states in which photons
appear having momenta not equal to k. These matrix
elements are found to have a magnitude characteristic
of the incoherent radiation process. It should be noted
that only for one magnitude of k as well as for direction
are the matrix elements of a coherent transition obtained.

PULSE-INDUCED COHERENCE RADIATION

It will be assumed in this section that a gas initially
in thermal equilibrium is illuminated for a short time
by an intense radiation pulse. The intensity and angular
dependence of the spontaneous radiation emitted after
the pulse will be calculated. In order to avoid the dif-
hculties associated with motional e6ects, the molecuIes
will be assumed so massive that their center-of-mass
coordinates can be represented by small stationary
wave packets. The center-of-mass coordinates will be
then treated as time-independent parameters in the
equation. It is assumed that the intensity of the exciting
radiation pulse is so great that. the fields acting on the
gas during the pulse can be considered as described
classically. The spontaneous radiation rate after the
exciting pulse will be calculated quantum mechanically.

Because the initial state of the gas is a mixed state
describing thermodynamic equilibrium, it is convenient
to use the density matrix formalism. "It will be assumed
that one has an ensemble of gas systems statistically
identical and that what one is calculating is certain
ensemble averages.

For a pure state, Eq. (28) shows that the spontaneous
radiation rate in the k' direction can be written as the
expectation value

I(k ) = Is(k )(Rx +Rx ). (60)

For a state which may be mixed or pure using the
density matrix formalism this becomes the trace

I(k') =Is(k') trR; pR, .+.

Here the density matrix is dined as the ensemble mean

p= LA'*PA (63)
In Eq. (63) the wave function lt is interpreted as a
column vector and the * is the Hermitian adjoint. The
symbol t ]„„signifies an ensemble mean.

Assume that the exciting radiation pulse is in the
form of a plane wave in the k direction. The fields
which act on the various molecules diGer only in their
arrival time. The Hamiltonian of the system can be
written

II= Ao~Rs —P, A, (t) (eiR;i+esR, s). (64)

Here A, (t) is a classical field quantity and

A;(t) =0, (65)
t)t;+r"R. C. Tolman, The J'rimci Ples og Statistical 3Achanics

(Clarendon Press, Oxford, 1938), p. 32S.
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po=
exp (—ER~/k T)

=2 "rI(1—» )
tr exp( —ER3/kT) i

y= 2 tanh(E/2kT).

(69)

where t; is the arrival time of the radiation pulse at the
jth molecule. Neglecting for the moment the interaction
term, the time dependence of the wave function can be
given by the unitary transformation

P(t) =exp( —ia&tR3) $(0). (66)

In general, the wave function after the interaction
with the electromagnetic 6eM can be obtained through
a unitary transformation on the wave function prior to
the pulse. The wave function of the gas after the radia-
tion pulse has passed completely over the gas can be
related to that before by

P'(t) = exp( —i(otR,)TP(0). (67)

Here T is a unitary matrix which represents the eGect
of the pulse on the gas. To 6nd the most general form
of T it is convenient to consider the effect of the pulse
on a particular molecule. Since this molecule has only
two internal states of interest, its wave function can be
regarded as a spinor in a pseudo "spin space. " Then,
apart from a multiplicative phase factor which has no
physical significance, any unitary transformation can
be represented as a rotation in "spin space. "Any arbi-
trary rotation can be represented as a rotation about
the No. 3 axis followed by a rotation about an axis
perpendicular to No. 3. Except for the arrival time the
radiation pulse is identical in its eGect on each molecule
of the gas. The operator T can be written then as the
product

T= exp[is) Q; t;R, ,]
0

~ g expi —(R(+n+R( n*)+8'RE,
2

.exp[—i(u P; t,R,~]. (67a)

The first and second rotations are through angles of' 0'

and 0, respectively, and the phase of n determines the
direction of the 2nd rotation axis. It is assumed that
~n~ =1 and that the arrival time at the jth molecule is

t, = (1/a))k r;. (67b)

Equation (67a) becomes Eq. (68) after making use of
(67b):

T= expi (Rk+n+—Rq n*) expi8'R3.
2

It should be noted that the eGect of the diGerent times
of arrival of the pulse at the various molecules is con-
tained in k r; which appears in R~+ in Eq. (68).

The reason for choosing this transformation to be a
rotation about No. 3 followed by a perpendicular
rotation is that the rotation about No. 3 is the same as
a time displacement and has no effect since the initial
state is assumed to be one of thermal equilibrium.

Assume that the initial density matrix can be written
as

tr A;8; =2 "trA; trB, ,

trR;3= trR+= 0, trR;3' 2"

trR;+R; =trR;M;p 2" '. ——

The final result is

(77)

I(k') = Io(k') —',v[1—cos8 tanh(E/2kT)

+ ~~sin28 tanh'(E/2kT)

(n~ [expi(k —k') r]A„~'—1)]. (78)

Here the symbol [ ]A, signifies a mean over all the
molecules of the gas. For the example considered in
Eq. (37a) this mean is unity, and Eq. (37a) follows by
integrating over all directions of the emitted radiation.
Aside from the factor Io(k'), the directional dependence
of the emitted radiation is given by this mean. This
factor is identical with the distribution factor for radi-
ation about a set of classical isotropic radiators which
have been excited by a plane wave. Consequently, for
a 8 of 90' and m tanh~ (E/kT) large compared with unity,
the angular distribution of radiation is just the classical
one.

The physical significance of the angle 0 is that sin'20

The density matrix after the radiation pulse is

p(t) = exp( —ia&tR, ) TpoT ' exp(ia&tR3) . (70)

The spontaneous radiation rate after the exciting pulse
is given by Eq. (62) which becomes

I(k') =Io(k') trTppT 'Rk+Rt;, (71)

since R3 commutes with R~+Rq . The radiation rate is
thus independent of the time after the exciting pulse.
This is because the eGect of the radiated field on the
gas has been neglected. Equation (71) is to be inter-
preted as the radiation rate immediately after the ex-
citing pulse. Since po and R3 commute, Eq. (71) can be
written as

I(k') = ID(k') tr exp[~~i8(R&+n+R& —n*)] ' po

~ exp[ —-,'i8(Rg+n+R& n*)] Rg+R~ . (72)

It is desirable to transform po before evaluating the
trace

p'= exp[-', i8(Rg+n+Rg n*)]

po exp[ —-', i8(R~+.n+R~ n*)]
=2 "II (1—vR 3') (73)

where
R,at~R;3 cos8——,'$(R,y'n —R; 'n*) sln8. (74)

The primed operators are obtained from Eq. (53) as

R;+' R,r'&iR, 2' ———R;~ exp(&z—k r,). (75)

The trace in Eq. (72) can now be evaluated to give

I(k') =Io(k')Q tr2 "g(1 yR, 3t)R;+ R—, . (76)
jl 8

The double prime is Eq. (75) referred to the k' direction.
To evaluate the trace the following relations are needed:
For A, and 8; functions of the R's of molecules i and j,
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is the probability of the pulse exciting a molecule in its
ground state. Also, if the exciting pulse is a constant
amplitude wave of frequency co during the duration of
the pulse, the angle 0 is proportional to the product of
pulse amplitude and duration.

If the radiating system consists of a set of particles
of spin -,'in a uniform magnetic Geld, the angle 0 has a
geometrical significance. The initial state of a particle
will have spin parallel or antiparallel to the Geld. The
radiofrequency pulse will change its state such that its
spin axis will be tipped through an angle 0. Note that
if 0= 180' the populations of the + and —populations
have been just interchanged, corresponding to a transi-
tion from a positive temperature T to the negative
temperature —T."8=90' corresponds to the excitation
of molecules to energy„. 'superposition states Eqs. (38)
and (39) for which the gas is radiating coherently.

ANGULAR CORRELATION OF SUCCESSIVE PHOTOÃS

The system to be considered here is assumed to be
initially in thermal equilibrium. It is allowed to radiate
spontaneously. The angular correlation between suc-
cessive photons is calculated. This correlation was
implicit in some of the earlier development, for example
in Eq. (51a). As an example, consider a gas composed
of widely separated molecules, all excited. Assume that
a photon is emitted in the k direction. The radiation
rate for the second photon in this direction is by Eq.
(51a).

I(k) =Ip(k)2(zz —1). (79)
This is twice the incoherent rate. It is not hard to show
that for an intermolecular spacing large compared with
a radiation wavelength the radiation rate averaged
over all directions is the incoherent rate. Hence from
Eq. (79) the radiation probability in the direction k has
twice the probability averaged over all directions.

In the problem to be considered, the system will
consist initially of the gas in thermal equilibrium having

, a temperature T (possibly negative) and a photonless
Geld. The molecules will be assumed fixed in position
and with intermolecular distances large compared with
a radiation wavelength. Photons are observed to be
emitted in the directions k&, kz, , k, & and only these
photons are emitted. The problem is one of finding the
radiation ra, te in the k, direction for the next photon.

Stated more exactly, it is assumed that there is an
ensemble of gaseous systems, each with its own external
radiation Geld. Every member of the ensemble which
is capable of radiating will eventually radiate a photon.
Those members which radiate their first photon into a
small solid angle in the direction kz, are selected to
form a new ensemble. For this second ensemble the
time zero is taken to be the time that a photon was
detected for each member of the ensemble.

It is convenient to calculate correlations for the gas
systems forming a microcanonical distribution having
an energy per gas system of zzz+. The results for a

"E.M. Purcell and R. V. Pound, Phys. Rev. 81, 279 (1951).

This is a convenient way to write the density matrix
because of the relation

t' g ) (
expl 2~z-a I=II expl 2~z-~ z Ii E ~')

j'Vi . . (V&=II cosl ~- l+»~' »nl —
I

. (»)
E ~) & ~)

Here the product is over j=1, . , n. To illustrate the
importance of Eq. (81) the trace appearing in the
denominator D of Eq. (80) will be calculated using the
relations Eq. (77).

(D=Z expl —2~zoo
l «II cosI ~-

l

zz ) z t zz)

( Vl
+2';zsml ~—

l

& e2

g ) (0)=P 2" expl —2mz zzzo
l
'cos

l
zl-

zz ) E zz)

fzzzol (—
(zzz+ zzzo)! (zzz —

zzzQ) I 2

=2zz for lzzzpl =zz/2. (82)

After one photon has been emitted and absorbed in the
photon detector, the system is again photonless and its
density matrix is (see Appendix 1)

pg ——(R z —porn zy)/(trRvz —poa z+). (83)

After s—1 photons it is

Ps—1

2h, z —. Zz —p+z+ . 8*, &+
(84)

trav, ~ — Ev~ —poR ~+

The E's are defined in Eqs. (48) and (47) or (46). The
radiation rate in the k, direction immediately after the
s—1 photon is from Eq. (62)

I(k,)=ID(k,) trR, —p, zR, +. (85)

Note that s &~-',zz+ zzzo. For any l, Zz+z =0. Consequently,

canonical distribution with a temperature T can sub-
sequently be determined as an average over the micro-
canonical distributions.

Since the initial state of the system is assumed pho-
tonless, it is sufFicient to give the explicit dependence
of the initial density matrix on the molecular coor-
dinates. Except for normalization this can be written
as a projection operator for states of molecular energy
1ÃpK A particularly useful form for this density matrix
is

n

P exp2m z—(Ez—zzzo)

(80)
n

tr P exp2zrz —(Ez—zzzo)
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the numerator of Eq. (84) can be written

1 s—1 s—1 n

Z
(s—1)!s,e" =1 u', w'"=1 j,l" =1

Xexpi[(k„—k„) r;+(k„—k. ) r1y .].
R;M1 .

pp R1+R,p.

(86)

take on different values. If Eq. (84) is substituted into
Eq. (85), the numerator is Eq. (89) with s increased by
one unit. Consequently, substituting Eq. (89) into Eq.
(85),

Ps( ',n+-mo s+—1)
I(k )=Ip(k ) . (91)

P, 1(n s+—1)
Each of the above sums is over s—1 indices, including

only terms for which all s—1 indices take on different
values. The trace of the expression appears in the
denominator of Eq. (84). In order to evaluate this
trace it is necessary Grst to evaluate

trR;D1 po R1+R;+= trpo

=t"'"(!+R)(-:+R;.). (87)

If Eqs. (80), (81), and (82) are substituted into Eq.
(87), and use is made of Eq. (77) and the equality

tr[cos (1rq/n)+ 2iR;o sin (1rq/n) ](-', +R,o)

=2" ' exp(ivrq/n), (87a)
Eq. (87) becomes

2$ 8+I ~ q !r qp
Q exp iver (s 1—2m—.p)

—cos" ~'l 7r—
l

D e=& e & n)

(n —s+ 1)!(-',n+ mp)!
lmol &on or lmpl =on s

n! (-',n+ mp —s+ 1)!
= p, l mo l

= —,'n, s) 1. (88)

Making use of Eq. (88) the denominator of Eq. (84)
can be written as

(n —s+ 1)!(-',n+ mp)!
Ps—1

n!(~n+ mo s+ 1)!—imp l
&-',n or

lmol =-;n, s=1

where
=-,'P, 1, mp ——-,'n, s)1, (89)

s—1 s—1

Z
s—1)!u, w ~ =1 u', e' ~ ~ =1 j, 1" 1

Xexpi[(k„—k ) r;+(k„—k„.) r1+ ], s)1
Pp= 1. (90)

P, g=

Here, as before, each of the above sums is over s—1
indices, including only terms for which all s—1 indices

6k= kp —k,. (92)

The symbol [ ]A„signifies an average over all the
molecular positions.

In case of a gas system at a temperature T, Eq. (91)
must be averaged over all possible values of mp to give

To restate the meaning of this equation, I(k,) is the
radiation probability per unit time per unit solid angle
in the direction k„.Io(k,) is the corresponding radiation
probability for a single isolated excited molecule. It
has been assumed that the gas was initially in the energy
state mpE [see Eq. (3)] with a random distribution
over the degeneracy of this state. The gas was observed
to radiate photons k1, ko, k, 1 previously to k,.
Equation (91) is the radiation rate immediately after
the k, 1 photon was observed. As a check on the cor-
rectness of this expression, note that the incoherent rate
is obtained if s=1. Also, for mp ——~on and k1——ko ——

=k,=k, the radiation rate Eq. (91) agrees with Eq.
(51a).

It should be noted that Eq. (91) is independent of
the ordering of the subscripts 1, , s—.1. Conse-
quently, the angular distribution of the s photon is
dependent upon the direction of a previous photon but
is independent of the previous photon's position in the
sequence of prior photons.

For a gas which contains a large number of randomly
positioned molecules and for which previous photons
have either been emitted in the direction ko or in quite
different directions, the radiation rate [Eq. (91)] is
approximately equal to the incoherent rate times the
number of photons previously emitted in this direction
plus one.

Perhaps the case of most physical interest is where
s= 2. In this case Eq. (91) becomes

—',n+mp —1
I(kp) =Ip(kp) [nl [expi4k r]A„l +'n 2],

n —1

I(k,)=Ip(k, )
mp=s —$n—1

n! exp (—mpE/kT)
(n—s+1)P. 1

~o a—,'n—1 (&n+mp) t(pn —mp)!

( mpZ)
(-,'n+mo+1 —s) expl-

(-,'n+mp)!(-', n—mp)! E kT )
(93)

(-,'n+mp+1 —s)P,
I(k,)=I,(k.)

(n —s+1)P, 1

(94)

For lE/kTl «1 and s«n, Eq. (93) can be approxi-
mated by

where
mp= ,'nE/kT. ——

It is a pleasure to acknowledge the assistance of the
author's colleague, Professor A. S. Wightman, who read
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gestions.

ment is
4'= &~A (99)

APPENDIX I

It is assumed that the system consists initially of a
gas with an energy moE and a photonless radiation
Geld. A photon and only one photon is observed to be
emitted. The eGect of the photon emission on the state
of the system is required.

There are two separate eGects to be considered.
First there is the effect on the state of the system which
has its origin in the interaction between the Geld and
gas. Second there is the eGect of the observation which
determines that a photon and one photon only has been
emitted, that this photon was emitted in the k direction,
and that the photon was absorbed in the detector. The
Grst part of the problem is solved using Schrodinger's
equation. The Hamiltonian of the system is

H=&~R3+Ho+H', Ho=+~ H~,
(95)

g pk'[vk' 'eRk'++vR' 'e Rk' —]
Here Hq is the energy of the k' radiation oscillator.
Assume a pure state represented by a wave function fo
at a time 1=0. Assume that fo is an eigenstate of R3
and is photonless. At some later time it is

( ~ H'
p(t) =exp( iHt/II)QO—=

I
1——Ht — P+ ~$0. (96)

h 2h' )
For the quadratic and higher powers of t each term
will be a sum of products of H' and (Ho+kcoR3). How-
ever, the interaction term H' consists of sums of terms
of the type

(97)Ugl = vg& ' eEg&+

and its Hermitian adjoint. The operator Uk consists
of the product of a photon annihilation operator and a
gas excitation operator. It converts an eigenstate of E3
and Ho into another such or it gives zero. The most
general term operating on fo in Eq. (96) is therefore
a product of powers of Ho+fuuR3 and terms of the type
U~. and U~ * taken in various orders. In each of these
terms Ho+AcoR3 always operates on an eigenfunction
and consequently can be moved to the end of the
product as a number, the eigenvalue. Consequently
f(t) becomes

P(t)=[1++~ g~ (t) U~.*++~ h~ (t) U~ U~.*

+ Z g~k p)U~*U~"*+ . j4o. (98)

The g's and h's are numbers, functions of the time. It
may be noted that since Po represents a photonless
state, an annihilation operator for a given radiation
oscillator k' appears only if preceded by the corre-
sponding creation operator.

Assuming that at the time t a photon measurement
is made which indicates the presence of photon k and
no other photons, the wave function after the measure-

where the operator I'& is a projection operator for the k
photon state.

(
(100)

AMy k' ( kMyI

The product is over all k'Wk. Two-photon excitation
of one radiation oscillator has been neglected.

P'= [gg(t) Up*+Pg. Hgg (/) Up*Up Ug *

++~ L~ (&) U~ U~ *U~*+ $4o. (101)

In summing over the direction of k' in the second and
third terms above, the expression

R~+Rj, ——P,t, exp[ik' (r,—r~)$ R~~ (102)

appears under the integral. By expanding the exponen-
tial in spherical harmonics it can be seen that for u/5
this integral vanishes, as it has been assumed that

k' (r,—r~)&&1 for a@b.
It should be indicated that the angular dependence is
not wholly in the exponential in Eq. (102) but exists
in part in the square of the dot product- of e and v~ .
However, this contribution to the angular dependence
includes only spherical harmonics of Gnite degree in
fact with /&3. As the only terms which need to be
included in Eq. (102) are a= 5, Eq. (102) becomes

Rq ~~ =-', +R3+ (terms from

ahab).

(103)

Independent of its position in a series of products of
U's the expression on the right side of Eq. (103) will
operate on an eigenfunction and becomes an eigenvalue
which can be removed as a number. In the higher-order
terms in Eq. (101) Uz and Uj, ~ may not appear ad-
jacent to each other, but if they do not, some other pair
such as U~-U~-~ will appear, and after removing this as
an eigenvalue another such pair will occur, and even-
tually the k' pair will be adjacent. Consequently, to all
orders in the expansion

0"=f(~) U~*Wo, . (1o4)

where f is a function of the time of observation. As the
photon detector also absorbs the photon, the wave
function must be multiplied by the annihilation operator
e-vk. This gives, except for the time factor,

P"~Rg Pp, (105)

which is another photonless state but with one quantum
less energy.

If the initial density matrix po contains only photon-
less states of the same energy moE, then from Eqs. (63)
and (105) it is transformed to

py=Ry poRg+/tr(Rg ppRy+), (106)

representing the photonless state of the ensemble of
systems after the emission, detection, and absorption of
photon described by k.


