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Abstract Effective treatments that extend survival of malignant brain tumor glioblastoma
(GBM) have not changed in more than a decade; however, there exists a minority patient
group (<5%) whose survival is longer than 3 yr. We herein present a case report of a
long-term surviving 51-yr-old female diagnosed with aMGMT unmethylated GBM. The pa-
tient was progression-free for 23 mo. Fresh primary and recurrent tumor samples were col-
lected and processed for patient-derivedmodel development.Whole-genome sequencing
(WGS) was performed concurrently with additional standard of care diagnostics. WGS re-
vealed a hypermutated genotype in the germline tissue and in both the primary and recur-
rent tumor samples. Specific to the matched tumors, an average of 30 cancer driver genes
weremutated.Noteworthy was the identification of a nonsynonymousmutation in the POLE
gene. As a possible instigator of the hypermutational genotype observed in the tumors, we
identified nonsynonymous germline mutations within the mismatch repair genes, MLH1
and PMS2. Mutations within these genes are often indicative of the pan-cancer phenotype
known as Lynch syndrome; however, their pathogenicity remains unreported. We per-
formed a drug screen of 165 compounds, which identified one compound, YM155, an ex-
perimental survivin inhibitor, that showed effectivity to the patient-derived cell lines of both
tumors. Treatment selection based on a patient’s genome to individualize treatment for
GBM patients could potentially be useful in the clinic. This is a promising avenue for further
translational research, with larger databases and integrated platforms to increase the effi-
ciency of analyzing and interpreting the individual genomic data of GBM.

[Supplemental material is available for this article.]

INTRODUCTION

Glioblastoma (GBM) remains one of the biggest therapeutic challenges in neuro-oncology.
The median survival of people diagnosed with GBM is <15 mo (Minniti et al. 2009; Stupp

5These authors contributed equally to this work.

Corresponding author:
k.mcdonald@unsw.edu.au

© 2019 Jue et al. This article is
distributed under the terms of
the Creative Commons
Attribution-NonCommercial
License, which permits reuse and
redistribution, except for
commercial purposes, provided
that the original author and
source are credited.

Ontology terms: glioblastoma;
glioma

Published by Cold Spring Harbor
Laboratory Press

doi:10.1101/mcs.a003251

| RESEARCH REPORT
C O L D S P R I N G H A R B O R

Molecular Case Studies

Cite this article as Jue et al. 2019 Cold Spring Harb Mol Case Stud 5: a003251 1 of 15

 Cold Spring Harbor Laboratory Press on March 28, 2024 - Published by molecularcasestudies.cshlp.orgDownloaded from 

mailto:k.mcdonald@unsw.edu.au
http://www.molecularcasestudies.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://molecularcasestudies.cshlp.org/
http://www.cshlpress.com


et al. 2009). Very little improvement in survival times has been measured since temozolo-
mide (TMZ) was introduced to the standard therapy regimen, back in 2005. Inherent intra-
and intertumoral heterogeneity has made treatment challenging (Jue and McDonald
2016). Selection of better therapies based on the genomics of each particular tumor is need-
ed. Promising results from other cancer types have shown longer progression-free survival in
the use of molecular profiling for target selection to determine possible treatment options
(Von Hoff et al. 2010).

Herein, we present a case report of a patient diagnosed with primary GBM who had a
recurrence 2 yr after the initial diagnosis. Both primary and recurrent tumors were sent for
standard of care diagnostics and biomarker screening. Both tumor samples taken from the
time of resection were also processed for whole-genome sequencing (WGS). At the time
of recurrence, a network analysis and drug-panel screening were performed on the recurrent
tumor sample, as well as on the primary tumor sample for a retrospective comparison. This
was performed to explore if an individualized treatment approach can be applied in the clin-
ical management of patients diagnosed with GBM.

RESULTS

Case Presentation
A 51-yr-old female patient presented (April 2014) with a history of headaches, nausea, and
alexia. Her previous medical history included a uterine leiomyoma (2010), paroxysmal atrial
fibrillation, reflux esophagitis, and chronic anxiety. Magnetic resonance imaging (MRI) re-
vealed a mass with hyperintense signal observed on the left temporoparietal lobe of the
brain (Fig. 1A). The patient had no previous history of brain tumor malignancy. Maximal sur-
gical resection with 5-aminolevulinic acid (5-ALA) infusion was performed. Histopathology
confirmedGBM, IDHwild-type,O-6-methylguanine-DNAmethyltransferase (MGMT) unme-
thylated, preserved nuclear ATRX staining, and negative EGFR immunohistochemistry (IHC)
staining. A freshly resected tumor sample was processed for WGS; however, this was per-
formed for research purposes rather than guiding management. The patient was treated
with the standard EORTC protocol consisting of concurrent chemoradiation with continuous
TMZ followed by 6 mo of adjuvant TMZ (5-d schedule). Despite beingMGMT unmethylated
(which is typically associated with a poorer response to TMZ), the patient’s disease remained
stable for 23 mo. There was an increase in T2/FLAIR changes on MRI (March 2016), and she
was rechallenged with oral TMZ. Subsequent MRI scan (May 2016) demonstrated enlarging
T2/FLAIR lesions, and TMZwas ceased. This prompted a new treatment approach consisting
of pembrolizumab, a PD-1 inhibitor, given as a monotherapy. Pembrolizumab treatment was
given over a course of four cycles, before an MRI scan revealed a new left frontal mass (Fig.
1B). The patient again underwent repeat tumor resection (September 2016), and histopa-
thology was subsequently confirmed as recurrent GBM, with a new appearance of strong
EGFR immunohistochemistry positivity (MGMT remained unmethylated). Part of the recur-
rent tumor sample was again processed for WGS. The patient was reirradiated with radiation
directed at the bed of the left frontal lesion (November 2016). Concurrently the patient was
also treated with palliative bevacizumab therapy, a monoclonal antibody to inhibit VEGF.
Several lesions distant from the original tumor bed were noted onMRI scanning. The patient
was then treated with ongoing bevacizumab and ABT-414, a novel EGFR inhibitor. TMZ was
added to the ABT-414 for one cycle but the patient experienced marked myelosuppression
so ABT-414 was continued as a monotherapy. MRI demonstrated further progression.
Unfortunately, the patient continued to deteriorate, becoming bedbound, and in the end
was sent for palliative care at home. The patient passed away 42 mo (October 2017) after
her initial diagnosis.
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Molecular Profiling
IHC staining of tissues was independently performed by the local pathology laboratory. The
proliferation marker Ki67 was relatively high at 50% for both the primary and recurrent tu-
mors. IHC expression of p53 (>50%) was also abundant in both tumors. Additionally, IHC
staining for PD-1 was performed in-house. Positive PD-1 expression was observed in <5%
of the whole-cell population. We extracted DNA from fresh frozen tumor tissues and per-
formed pyrosequencing analysis for promoter methylation of theMGMT gene. In both spec-
imens, MGMT promoter methylation was not detected. Both the primary and recurrent
tumors were IDH1 wild-type. Lack of mutation in the IDH1 gene was confirmed with both
IHC and sequencing. Codeletion of the chromosome arms, 1p/19q was absent when con-
firmed by copy-number (CN) analysis.

WGS was performed with a mean coverage of >120× and a tumor purity of 97%–100%.
Tumor-normal analysis revealed both tumors had high somatic mutation rates at 421 substi-
tutions per megabase (Fig. 2). The primary tumor had 1,336,539 somatic single-nucleotide
variants (SNVs) and 168,200 insertion/deletion (indels) mutations (Fig. 2A), whereas the re-
current tumor had 1,336,150 somatic SNVs and 181,756 indels (Fig. 2B). Both tumors had
extremely high somatic mutation counts, with ∼98% similarity between SNVs and 93% for

A

B

Figure 1. Representative MRI images of the patient’s primary and recurrent tumor. T1-weighted MRI images
of patient (A) at primary diagnosis (April 2014) (referred to as G89) and (B) at recurrence (September 2016) (re-
ferred to as G244).
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indels, whereas structural variants (SVs) excluding indels shared only 60% similarity. The pri-
mary tumor showed a CN loss on Chromosome 13 and gains in both arms of Chromosome
7, whereas the recurrent tumor had CN losses on Chromosomes 6, 9, 10, and 13 and CN
gains on Chromosome 19 and only on the p arm of Chromosome 7 (Fig. 2A,B). Of the mu-
tations identified, 4082 SNVs and small indels were found to be potentially damaging in the
primary tumor and 4124 in the recurrent. Potentially damaging mutations in this case refer
to nonsynonymous, frameshift indels, nonframeshift indels, stop-gain mutations, and stop-
loss mutations. The mutational landscape of both tumors was determined by identifying the
six classes of base pair substitutions, which contained 96 subclassifications based on base
pair substitutions (Alexandrov et al. 2013). In both tumor samples, C>T transitions were the
most frequently observed, followed by transversions. Mutational signatures observed were
signatures 1, 5, and 16 for both tumor samples. SV analysis revealed 60% of these mutations
were identical between the tumors. Bayesian algorithms were used to investigate the clonal
architecture of the samples (Miller et al. 2014; Deshwar et al. 2015). Subclonal composition
of both tumors was analyzed by examining the variant allele frequencies (VAFs) of somatic
SNVs and CN variations with clonal mutations defined as being uniformly present in all tu-
mor cells (Fig. 3A,B). Separate analysis of the tumors using PhyloWGS revealed 87.4% of
primary and 80% (n=5014) of recurrent mutations to be clonal having cancer cell fractions
of 1 with 2 and 4 subclonal populations, respectively. When analyzed concurrently, a con-
sensus phylogenetic tree revealed a large clonal cluster (75% of SNVs) giving rise to three
subpopulations. SciClone was also used for two-dimensional clonal visualization in which
the clonal cluster is clearly defined surrounded by multiple but less distinct subpopulations
(Fig. 3C). The clonal populations maintained mutational signatures of 1, 5, and 16, although
the recurrent tumor demonstrated a higher presence of signature 5 with C>T transitions
and exhibited signature 26, which is associated with defective DNA mismatch repair
(MMR) genes. Clonal status of MMR genes was examined in which 11 identical SNVs locat-
ed in exonic regions or UTRs of MMR genes (MLH1, PMS2,MSH3,MLH3) were found to be
clonal in both tumors. Although suspected in certain chromosomes of both tumors, chro-
mothripsis was not detected but more likely caused by areas of homologous repair
deficiency.

Cancer driver genes from both the primary and recurrent tumor were identified based
on a concatenated reference list of 210GBM cancer driver and predisposing genes frompre-
vious publications (Parsons et al. 2008; Vogelstein et al. 2013). Based on this reference list,
two significant nonsynonymous germline mutations of MLH1 (Chromosome 3: 37050343
A/C; rs765014361) and PMS2 (Chromosome 7: 6026775T/C, rs2228006; 6026988 G/A,

Figure 2. Circos plots and overview of genomic landscape. Circos plots represent chromosomal changes,
SNPs, indels, CN changes, minor allele CN changes, and SVs within or between chromosomes of the (A) pri-
mary, G89, and (B) recurrent, G244 tumors.
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rs1805321) were identified, although they remained clinically undetected. MLH1 and PMS2
are MMR genes involved in the repair of insertion/deletion mutations and mis-base incorpo-
ration, resulting in a global accumulation of mutations during replication. MLH1 and, to a
lesser extent, PMS2 are major drivers of Lynch syndrome, also known as hereditary nonpo-
lyposis colorectal cancer (HNPCC) (Martin-Lopez and Fishel 2013). Lynch syndrome is a type
of inherited cancer syndrome associated with a genetic predisposition to various cancer
types. For example, lifetime risk for the development of endometrial cancer is 27%–71%
(median age at diagnosis: 42–46 yr); gastric cancer 2%–30% (median age at diagnosis:

A

B

C

1,000

750

500

250N
um

be
r 

of
 v

ar
ia

nt
s

0.03
0.09

0.15
0.21

0.27
0.33

0.39
0.45

0.51
0.57

0.63
0.69

0.75
0.81

0.87
0.93

0.99
0

1,000

750

500

250

20 400 80 10060

20

40

0

80

100

60

G89.tumor VAF

G
24

4 
re

cu
rr

en
t V

A
F

N
um

be
r 

of
 v

ar
ia

nt
s

0

VAFs

0.00
0.06

0.12
0.18

0.24
0.30

0.36
0.42

0.48
0.54

0.60
0.66

0.72
0.78

0.84
0.90

0.96

VAFs

1
2

Cluster

3
4

Figure 3. Subclonal analysis. The VAFs are plotted against WGS detected mutations in the (A) primary, G89
and (B) recurrent, G244 tumors. The high-density regions around 50% VAF indicate expected heterozygous
SNVs within the clonal cluster, whereas lower VAFs are indicative of subpopulations. (C ) Two-dimensional scat-
ter plot of mutations residing in CN neutral and loss-of-heterozygosity (LOH) free regions. The x-axis repre-
sents the VAFs from the primary, G89 tumor and the y-axis represents the recurrent, G244 tumor.
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47–56 yr); cancer of the urinary tract 1%–28% (median age at diagnosis: 49–60 yr); and ovar-
ian cancer 3%–14% (median age at diagnosis: 40–47 yr). In addition to this, it has been re-
ported that the lifetime risk for the development of brain cancer is 1%–4% (median age at
diagnosis: 51 yr) (Koornstra et al. 2009). GBM is by far the most common variant of brain can-
cer associated with Lynch syndrome, followed by oligodendrogliomas and ependymomas.
In addition, Lynch syndrome–derived brain tumors are not commonly associated with micro-
satellite instability, a hallmark of many Lynch syndrome cancers (Gylling et al. 2008).

In addition to germline mutations inMLH1 and PMS2, a further 31 somatic cancer driver
genes in the primary tumor and 33 cancer driver genes in the recurrent tumor were identified
(Supplemental Table 1). Twenty-nine cancer driver genes were shared between the primary
and recurrent tumor with the presence of ARIDB1 and HNF1A uniquely observed in the pri-
mary tumor and ABL1, DSG4, EGFR, and RB1 driver mutations uniquely observed in the re-
current tumor. A somatic POLE mutation was observed in both the primary and recurrent
tumor and was subsequently confirmed with Sanger sequencing. The POLE mutation ob-
served is an unreported variant causing an E1240K protein change with unknown pathoge-
nicity. Nonsynonymous somatic MMR gene mutations were found in both tumors, MLH1
(I219V), MSH3 (R543S), PMS2 (R563L), MLH3 (P844L), and as germline mutations in saliva,
MLH1 (K164N), PMS2 (K435E, P364S) (Table 1).

A network analysis was performed based on the 31 and 33 cancer driver genes observed
in the primary and recurrent tumor samples, respectively. Pathway enrichment revealed 106
and 157 interconnected pathways affected in both the primary and recurrent tumor, respec-
tively (Fig. 4A,B). Cluster analysis revealed fivemajor groups of pathways affected in both pri-
mary and recurrent tumors. Pathways of interest were selected based on false discovery rates
of <0.05. Major pathways affected were the PTEN/PI3K/AKT pathway, DNA repair pathway
(i.e., Fanconi anemia, MMR, and homologous recombination pathway), the cell cycle path-
way, and various signaling pathways (i.e., RTK, GPCR, NOTCH, WNT, hedgehog, MAPK,
PTK6, Rho GTPases, EGFR). Of the four unique gene mutations in the recurrent tumor,
EGFR appeared predominantly in 23% of the significantly affected pathways. This finding
was also supported by the strong EGFR protein expression positivity in the recurrent tumor.

Table 1. Variant table

Gene Chr
HGVS DNA
reference

HGVS protein
reference

Variant
type

Predicted effect
(substitution,
deletion, etc.)

dbSNP/
dbVar ID

Genotype
(heterozygous/
homozygous) ClinVar ID

Somatic

MLH1 3 c.655A>G p.Ile219Val SNV Nonsynonymous rs1799977 Heterozygous Benign

MSH3 5 c.1629G>C p.Arg543Ser SNV Nonsynonymous rs780712445 Heterozygous Not reported

PMS2 7 c.1688G>T p.Arg563Leu SNV Nonsynonymous rs63750668 Heterozygous Likely benign

POLE 12 c.3718G>A p.Glu1240Lys SNV Nonsynonymous rs113594027 Heterozygous Uncertain
significance/
likely benign

MLH3 14 c.2531C>T p.Pro844Leu SNV Nonsynonymous rs175080 Heterozygous Benign/likely
benign

Germline

MLH1 3 c.492A>C p.Lys164Asn SNV Nonsynonymous rs765014361 Heterozygous Uncertain
significance

PMS2 7 c.1621A>G p.Lys541Glu SNV Nonsynonymous rs2228006 Homozygous Not reported

PMS2 7 c.1408C>T p.Pro470Ser SNV Nonsynonymous rs1805321 Homozygous Benign
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Drug Screening Panel
A drug screening assay comprising a panel of 165 compounds (Supplemental Table 2) were
tested on both the primary and recurrent PDCLs. Differential sensitivity to multiple drugs
were observed between the primary and recurrent PDCL (Fig. 4C). Of the 165 compounds

A B

C D

100
1.0

1.5

0.5

Lo
g 

(G
24

4 
IC

50
/ G

89
 IC

50
)

0.0

–0.5

–1.0

–1.5

B
or

te
zo

m
ib

R
om

id
ep

si
n

D
ac

tin
om

yc
in

M
ito

m
yc

in
D

ov
iti

ni
b

D
au

no
ru

bi
ci

n 
H

C
l

Y
M

15
5

D
ox

or
ub

ic
in

O
rn

ac
et

ax
in

e
C

riz
ot

in
ib

C
er

iti
ni

b
F

or
et

in
ib

G
E

N
Z

-6
44

28
2

B
K

M
12

8
G

an
et

as
pi

b

F
ep

re
tin

id
e

O
ba

to
cl

ax
P

on
at

in
ib

M
ito

xa
nt

ro
ne

E
pi

ru
bi

ci
n 

H
C

l
AT

75
13

C
ar

fit
zo

m
ib

Id
ar

ub
ic

in
 H

C
l

90

80

70

C
el

l v
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

60

50

40
G89 (primary)

10 100 100001000
Concentration (nM)

1

G244 (recurrent)

30

20

10

0

Figure 4. Network analysis and drug screen of patient-derived cells (PDCLs) derived from primary (G89) and
recurrent (G244) tumors. Network analysis performed using Reactome FIViz App in cytoscape, which collates
information from various pathway databases. The analysis was performed on the 31 and 33 cancer driver genes
observed in the (A) primary, G89 and (B) recurrent, G244 tumors. Nodes with black text represent driver genes
present in the patient genome. Nodes with red text represent curated linker genes predicted, based on liter-
ature, to be connected with actual mutated genes from the patient genome. Black solid lines with arrowheads
represent activating or catalyzing interactions between the connected genes. Black broken lines represent pre-
dicted functional interactions. A 165-compound screen was performed on PDCLs. The swimmer plot shown in
C represents a ratio of the IC50 treatment response (Log [recurrent IC50/primary IC50]) between recurrent and
primary PDCLs. (D) Dose–response curves for primary (G89) and recurrent (G244) PDCLs treated with increas-
ing doses of the compound, YM155. Recurrent cells (IC50: 21.92 nM) weremore sensitive to YM155 treatment
compared to primary cells (IC50: 127.30 nM).
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we found 28 compounds with an IC50 of <5 µM and six compounds that had an IC50 of <0.05
µM in the primary PDCL. In contrast, the recurrent PDCL responded to 35 compounds with
an IC50 of <5 µM, and 10 compounds with an IC50 of <0.05 µM. Unfortunately, upon further
scrutiny of the compounds, only one of the candidate treatments crossed the blood–brain
barrier. YM155, a survivin inhibitor, is an investigational compound that has been previously
tested in clinical trials of other cancer types. YM155 has shown efficacy in GBM preclinical
models (Lai et al. 2012; Householder et al. 2015). We tested this compound on both the pri-
mary and recurrent tumor specimens and observed favorable response (Fig. 4D).

DISCUSSION

WGS of patient G89 and her recurrent tumor G244 revealed a striking mutation pattern at a
rate of 421 substitutions per megabase. Melanoma, lung, stomach, colorectal, endometrial,
and cervical cancers display high mutation loads consistent with hypermutation, which may
generate drivers of malignancy. In contrast, hypermutation is a rare observation in patients
diagnosed with GBM, occurring in ∼1% of patients diagnosed with the disease (Erson-
Omay et al. 2015; Hodges et al. 2017). What was striking about this patient case was that
a de novo hypermutation phenotype was observed in the TMZ-naive tumor. TMZ-naive
hypermutated tumors were marked by absence of IDH1 somatic mutation and MGMT
gene promoter methylation, two genomic traits that were significantly associated with the
TMZ-induced hypermutagenic event in GBM and harbored inherited alterations in the
MMR machinery (Sa et al. 2018). MLH1 and PMS2 are both members of the MMR system,
and their disruption contributes to the hypermutated genotype associated with the onset
of Lynch syndrome.

The saliva DNA of the patient was shown to have a germline heterozygotic mutation in
the gene MLH1. The deleterious effects of this particular mutation were considered of un-
known significance, as assessed with ClinVar, and are undocumented in the literature
(Landrum et al. 2018). Given that this mutation is nonsynonymous, occurring in the coding
region and changing the amino acid sequence (K146N), this mutation is likely pathogenic.
Although this mutation is heterozygotic and tolerable, a “second hit” of the adjacent allele
usually follows, often viaMLH1 promoter methylation, which leads to the onset of Lynch syn-
drome. Xia and colleagues found the prevalence of MLH1 promoter methylation in Lynch
syndrome–associated colorectal cancer at >16%, suggesting that this could be the “second
hit,” given that the mutation remained heterozygous (Li et al. 2013). Loss of the mutant allele
in both tumors could be further explained by loss of heterozygosity (LOH). Ollikainen and
colleagues, reported that in a cohort of 57 patients with Lynch syndrome, 31 (54.4%), dis-
played LOH of one allele (Ollikainen et al. 2007). The prevalence of LOH of MLH1 in
Lynch syndrome suggests that the methylated MLH1 allele substituted the mutated allele
(rs765014361 A/C) while still leaving the methylated MLH1 alleles nonfunctional. Given
the saliva DNA of the patient displayed a hypermutation profile, it is likely that this mutation
played a contributing factor. The patient in this study also displayed two nonsynonymous
germline MMR mutations in the gene PMS2 (K435E, P364S), which is also associated with
Lynch syndrome. However, these mutations were considered benign by ClinVar, although
their actual effects cannot be discounted. As such, the patient put forward in this study
most likely had Lynch syndrome, which may have contributed to her hypermutation and de-
velopment of brain cancer.

Somatic mutations in the POLE gene, found in both the primary and recurrent tumors of
the patient, may also contribute to the high mutational burden and prolonged survival time.
The POLE gene plays an important role in maintaining the organization of chromosomal
DNA replication (Guerra et al. 2017). Somatic mutations in the POLE gene have been
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attributed to longer survival in colorectal and endometrial cancers (Church et al. 2013; Ahn
et al. 2016). POLE mutations were associated with a hypermutated somatic genotype and
extended progression-free survival in giant cell GBM (Erson-Omay et al. 2015; Johanns
et al. 2016). Mutations in POLE have been demonstrated to interfere with the proofreading
capabilities of DNA polymerase. It is speculated that the burden induced by the mutation of
POLE, combined with disruption of the MMR system, may prevent purposeful and optimal
tumor evolution and may promote survival in such instances (Kim et al. 2013; Meng et al.
2014). We have presented a schematic overview in Figure 5.

Tumor hypermutation has been proposed as a potential biomarker for immune therapies
(Goodman et al. 2017). Hypermutated tumors often have higher levels of neoantigens that
can be recognized by the immune system (Maleki Vareki 2018). In a large cohort study of
GBM, hypermutated tumors were associated with a higher influx of CD8+ cells (Wang
et al. 2017). However, emerging data continues to challenge the association between muta-
tional load and antitumor response to immune checkpoint blockade (Jia et al. 2018). For ex-
ample, in the CheckMate 026 NSCLC trial, mutational load was not correlated with PD-L1
expression (Carbone et al. 2017). Furthermore, only 62% of patients with dMMR status expe-
rienced a clinical benefit to immune checkpoint blockade (Le et al. 2015). The patient at the
center of this current case was treated with pembrolizumab, a PD-1 checkpoint inhibitor. The
patient only received four cycles because of progression and reoperation. However, given
that only 5% of tumor cells demonstrated PD-1 expression, it was unlikely that the PD-1
inhibitor, pembrolizumab, would display any efficacy.
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Figure 5. A schematic representation of tumor development and evolution. A germlinemutation ofMLH1 fol-
lowed by LOH is presumed to give rise to a hypermutated genotype and onset of Lynch syndrome. A further
somatic mutation of POLE in both primary and recurrent tumor may have sufficiently disrupted DNA repair to
limit positive tumor evolution and prolong survival. Total combined single-nucleotide variant (SNV), insertion/
deletion (indel), and structural variant (SV) mutations are displayed for the germline saliva DNA and primary
and recurrent tumors, with conservation of mutations between tumors displayed. (UTR) Untranslated region.
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Adistinct advantage of this case study was the availability of fresh tumor from the primary
(treatment naive) resection and the recurrent (treated with RT/TMZ) resection. The recurrent
lesion was distally located. Surprisingly, a high similarity (98%) was observed in the small var-
iant somatic genomic landscape of both the primary and recurrent tumor. This is in contrast
to previous studies in which it was observed that distantly recurring tumor growth showed a
considerable change to its genetic makeup in comparison to the primary tumor (Kim et al.
2015b). Although we are uncertain as to why smaller variants were highly conserved, appre-
ciable differences were observed when considering the larger genomic rearrangements
such as inversions, translocations, and insertions. The recurrent tumor harbored 760 more
SVs and consequentially experienced greater CN loss throughout its genome. Because of
the intratumoral heterogeneic nature of GBM, a high mutational overlap between primary
and recurrent counterparts is not indicative of identical clonal architecture. However, in
this particular case the overlappingmutational landscape shared the same subclonal lineage
as indicated by the consensus phylogenetic tree and two-dimensional analysis of the tumors
(Fig. 3). Further investigation into MMRmutations residing in exonic regions and UTRs found
all to be clonal, a result differing from the findings of Kim and colleagues who found MMR
mutations of recurrent GBM tumors to be subclonal (Kim et al. 2015a).

Network analysis revealed more than 100 interconnected pathways affected by muta-
tions from identified driver genes from the patient genome. We identified mTOR and
PARP as possible targets of interest; however, in vitro experimentations did not result in a
significant positive outcome (data not shown). EGFR was observed to be predominant in
23% of the affected pathways and was correlated to a high positive staining for EGFR on
IHC; hence, an EGFR inhibitor (ABT-414) was recommended and commenced. However,
there was no evidence of clinical benefit. A drug screen performed on a panel of 165 com-
pounds found just one drug agent that elicited high sensitivity to the PDCLs, which crossed
the blood–brain barrier; however, the drugwas experimental andwas not readily available to
the patient.

In summary, we have presented a complex case of a hypermutated GBM (both treated
and treatment-naive) that demonstrated long-term progression-free and overall survival.
The hypermutated phenotype was most likely a result of the patients’ undiagnosed Lynch
syndrome; however, the presence of mutations in POLE may also have contributed while
simultaneously conferring a survival benefit. Despite the spatially distal location of the recur-
rent tumor, typical clonal evolution was not observed. This case report demonstrates the util-
ity of sequencing at the time of diagnosis and subsequent recurrence.

METHODS

Patient Tissue Processing
Fresh tumor tissue from the two surgeries—primary and recurrent—was collected by the lab-
oratory within 15 min of the excision. The tissues were dissected and (1) flash frozen in liquid
nitrogen for molecular analysis, (2) put into PAX gene containers as a source for paraffin-
embedded tissue, and (3) dissociated into single cells to establish patient-derived preclinical
models.

Patient-Derived Preclinical Models
Patient-derived cell lines (PDCLs) from the primary and recurrent tumor were grown in RHB-A
medium (Clontech Laboratories, Inc.) supplemented with human Epidermal Growth Factor
(20 ng/mL; Sigma-Aldrich) and human Fibroblast Growth Factor—Basic (20 ng/mL; Sigma-
Aldrich) in tissue culture flasks coated with a layer of BD Matrigel Basement Membrane
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Matrix (1:100 in PBS; BD Biosciences). Cells were maintained in a 37°C, 5% CO2 incubator
(Thermo Fisher Scientific).

MGMT Promoter Methylation
The percentage level of MGMT promoter methylation was assessed by CpG pyrosequenc-
ing after a bisulfite modification step as previously described (McDonald et al. 2013). Briefly,
500 ng of tumor DNA was bisulfite modified using the EZ DNA methylation kit (Zymo
Research) according to the manufacturer’s recommendations. The pyrosequencing assay
was performed using the PyroMark MGMT kit (QIAGEN) on a PSQ 24 MA system
(QIAGEN) according to the manufacturer’s protocol. Pyromark CpG software (QIAGEN)
was used to quantify the methylation in the samples. A cutoff of 9% was used to determine
the methylation status of the samples.

Whole-Genome Sequencing
DNA was extracted from fresh frozen tumor tissue and saliva (germline DNA) using QIAmp
DNA Mini Kit (QIAGEN) following the manufacturer’s instructions. For whole tumor tissue,
the tissue was homogenized using a 23G syringe needle while suspended in the lysis buffer
provided in the kit. DNA concentration was quantified using the NanoDrop ND-1000 spec-
trophotometer (Thermo Fisher Scientific). DNA specimens were sent to the Kinghorn Centre
for Clinical Genomics (KCCG) and paired-end (2 ×150 bp) WGS was performed on the
Illumina HiSeq X Ten Sequencing platform using TruSeq DNA Nano v2.5.

The sequencing reads were aligned to the reference human genome (hg19) using the
Burrows–Wheeler Aligner v0.7.17 (BWA mem) (Li and Durbin 2010). Once aligned, PCR du-
plicates were marked and base quality recalibration conducted according to Genome
Analysis Toolkit’s Best Practices v4.0 (McKenna et al. 2010; Van der Auwera et al. 2013).
Sequencing coverage for each sample is shown in Supplemental Table 3.

Sequence alignment files (BAM files) underwent variant analysis following Hartwig
Medical Foundation’s hmftools (Priestley et al. 2018). Utilities of hmftools included the use
of Strelka v2.9.7 for single-nucleotide variant and small indel variant discovery using
Strelka’s filtering parameters to extract high-confidence variant calls (Saunders et al. 2012).
Variants that satisfied filters underwent functional annotation using ANNOVAR v2018-04-
16 and Variant Effector Predictor v95.0 (Wang et al. 2010; McLaren et al. 2016). The
ClinVar, SIFT, and PolyPhen algorithms were used to predict the functional impact of an
SNV (Kumar et al. 2009; Adzhubei et al. 2010; Landrum et al. 2018). Manta v1.4.0 was used
for SV discovery followed by hmftools break-point-inspector (BPI) (Chen et al. 2016). BPI re-
analyzedManta calls, thereby removing false positives throughmultiple filters and extracting
high confidence SV calls.

Tumor Purity Estimation
Hmftools’ purity-ploidy-estimator v2.16 was used to calculate the purity and CN profile of
each sample.

Data Visualization
To visualize the WGS analysis data, Circos plots were generated using Circos v0.69-6
(Krzywinski et al. 2009). Clonal status was analyzed using PhyloWGS v3.0 and SciClone
v1.1.0 (Miller et al. 2014; Deshwar et al. 2015), mutational signatures using
deconstructSigs v1.8.0 (Rosenthal et al. 2016), and chromothripsis using Shatterseek v0.4
(Cortés-Ciriano et al. 2018).
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Network Analysis
Network analysis was performed to determine the molecular network affected by specific
gene mutations observed in the patient’s genome. The analysis was performed by initially
screening for cancer driver genes against a reference list concatenated from previous pub-
lications (Parsons et al. 2008; Vogelstein et al. 2013). Mutated cancer driver genes were an-
alyzed using the pathway enrichment and cluster analysis function in the Reactome FIViz app
version 2016 in Cytoscape version 3.5.1.

Drug Screening Panel
For the drug screening panel, PDCLs were seeded at 2000 cells per well in a 384-well plate
coated with 0.1% gelatin. Cells were allowed to attach for 24 h prior to a 72-h drug exposure.
Cells were treated with five different concentrations (0.5 nM–5 µM) in 1:10 fold dilutions for
each compound. Treated cells were incubated at 37°C in a 5% CO2 humidified incubator.
Cell viability was analyzed using Cell-Titer Glo (Promega), a luciferase-based cell viability
assay. The drug screening panel included 165 compounds. Difference in response was
assessed by calculating for the log of the ratio between the IC50 values of the recurrent
over the primary PDCLs.

For validation of the selected drug, cells were seeded in 96-well plates and treated with
seven different concentrations. Plated cells were then incubated for 72 h at 37°C in a 5%CO2

humidified incubator. Cell viability was measured using the MTS assay.

ADDITIONAL INFORMATION

Data Deposition and Access
The MLH1 variant interpreted in this study was submitted to Clinvar (https://www.ncbi.nlm
.nih.gov/clinvar/) and can be found under accession number SCV000902257. Raw sequenc-
ing data have been submitted to NCBI SRA (https://www.ncbi.nlm.nih.gov/sra) under sub-
mission number SUB5583293.
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