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Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic
analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis
pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations
among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger
mutations from the truly significant events. In other words, we aim to determine the Mutational Significance in Cancer
(MuSiC) for these large data sets. The integration of analytical operations in the MuSiC framework is widely applicable to
a broad set of tumor types and offers the benefits of automation as well as standardization. Herein, we describe the
computational structure and statistical underpinnings of the MuSiC pipeline and demonstrate its performance using 316
ovarian cancer samples from the TCGA ovarian cancer project. MuSiC correctly confirms many expected results, and
identifies several potentially novel avenues for discovery.

[Supplemental material is available for this article.]

The continued advancement of DNA sequencing technologies

(Mardis 2011) now allows for the rapid sequencing of large sets of

cancer cases (matched tumor and normal samples) for the purposes

of mutation discovery. This technological progression has shifted

the emphasis in cancer genomics from the analysis of a single pa-

tient sample to that of hundreds of patient samples across a broad

range of tumor types. Such an expansion of scope facilitates the

ascertainment of recurrent mutations within genes and functional

pathways. Additionally, the increasing scope permits correlating

mutations and pathways with clinical phenotypes where appro-

priate clinical data exist. The outcome of such correlation can in-

clude the identification of prognostic or diagnostic markers or the

identification of actionable targets for developing therapeutic

options that may inform clinical trials development.

To this end, we present a packaged suite of comprehensive,

user-friendly tools designed to determine mutational significance

in cancer (MuSiC). The primary goal of MuSiC is to separate the

significant events which are likely drivers for disease from the

passenger mutations present in mutational discovery sets using

a variety of statistical methods. This package provides unique prac-

tical advantages over existing software and requires a few basic

input elements: mapped reads in BAM format, predicted or val-

idated single nucleotide variants (SNVs) and indels in mutation

annotation format (MAF), a set of regions of interest (typically the

boundaries of coding exons), and any relevant numeric and/or cat-

egorical clinical data. Usage is straightforward. With a single com-

mand, a user can (1) apply statistical methods across the cohort to

identify significantly mutated genes and (2) identify significantly

altered pathways and gene sets, (3) investigate the proximity of

amino acid mutations within the same gene, (4) search for gene-

based or site-based relationships and correlations between the

mutations themselves, (5) correlate mutations to clinical features,

and (6) cross-reference the findings with relevant databases, such

as Pfam (Finn et al. 2010), COSMIC (Forbes et al. 2008), and OMIM

(McKusick 1998). These functions can be accessed individually or

run as an automated serial implementation.

To illustrate performance, we tested the MuSiC suite on an

exome capture data set consisting of 316 cases of ovarian carci-

noma (OV) that were previously described by the TCGA Research

Network (The Cancer Genome Atlas Research Network 2011). The

original analysis provided statistically supported lists of signifi-

cantly mutated genes, therapeutically targetable copy number

amplifications in several genes (e.g., MECOM, MAPK1, CCNE1, and

KRAS), evidence of overlaps between DNA methylation clusters

and gene expression subtypes, and confirmation of involvement

of the NOTCH and FOXM1 signaling pathways in serous ovarian

cancer pathophysiology. Using MuSiC, we complement the previous

results with detailed descriptions of the correlations between muta-

tion spectra and clinical data. We found evidence of mutual exclu-

sion between mutations in two major tumor suppressors, TP53 and

RB1, and strong statistical support for the correlation of germline

BRCA1 point mutations and age at disease onset (Hall et al. 1990;

Miki et al. 1994). MuSiC also helps us confirm the importance of

mutations in the P53 DNA-binding domain (Sigal and Rotter 2000).

Results

Overview

The development of MuSiC was motivated by the rapidly

expanding numbers of mutation data sets from a wide variety of

tumor types. It is imperative during post-discovery analysis to

separate the significant, or ‘‘driver,’’ mutations from the passenger

mutations to more accurately pinpoint the key genes and pathways

4These authors contributed equally to this work.
5Corresponding author
E-mail lding@genome.wustl.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.134635.111.

22:1589–1598 � 2012, Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org Genome Research 1589
www.genome.org

 Cold Spring Harbor Laboratory Press on May 7, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


critical for disease initiation and progression. MuSiC is designed

precisely to streamline this process into an easily accessible high-

throughput software exercise.

MuSiC currently consists of seven analysis modules and an

eighth execution module, ‘‘MuSiC Play,’’ which runs each analysis

module sequentially (Fig. 1). MuSiC Play parses the input and out-

put of each of the individual modules and then produces a com-

posite summary of all executed modules. Table 1 lists the type of

analysis performed and the types of variants considered by each

individual MuSiC module. More detailed descriptions of the specific

analysis algorithms performed by each module are given below.

Significantly mutated gene tests

We use the concept of ‘‘significantly mutated genes’’ (SMG) to

describe genes that show a significantly higher mutation rate than

the background mutation rate (BMR) when multiple mutational

mechanisms (coding indel and single nucleotide substitution,

splice site mutation, etc.) are considered. Specialized measurements

of the BMR may also be considered; BMRs in MuSiC are optionally

calculated across the entire sample set, across particular subgroups

of similarly mutated samples, or for each sample individually. For

each BMR subgroup considered and for each category of mutational

mechanism, the mutation rates are compared to the appropriate

BMR, and a single P-value summarizing all considerations is gen-

erated for each gene. We refer to this summarization procedure as

the significantly mutated gene (SMG) test.

We assessed multiple methods of calculating summarized

P-values, including a convolution test (CT), a Fisher’s combined

P-value test (FCPT), and the likelihood ratio test (LRT), using

a partially simulated data set (this data set and the associated test

simulations are described in the Supplemental Material). By this

approach, we determined that the P-value distribution obtained

using the CT method most closely resembled the uniform distri-

bution expected under the null (in this case, the null is such that

no gene is truly significantly mutated), while the FCPT and LRT

methods produced slightly inflated or deflated P-values, respec-

tively (Supplemental Fig. S1). During the SMG test, a false discovery

rate (FDR) also is calculated. We evaluate our SMG test results by

establishing a P-value or FDR threshold (threshold typically 0.2 or

less for FDR), and then appropriately filtering the test output.

The results of MuSiC’s SMG analysis for the ovarian cancer

data set were previously reported (The Cancer Genome Atlas Re-

search Network 2011). Briefly, there were 12 genes found to be

significantly mutated in the data set. The CT, FCPT, and LRT P-values

for these genes as well as the BMR for each mutational mechanism

category in the ovarian data set are displayed in Figure 2. BRCA1

and BRCA2 are known ovarian cancer risk genes (King et al.

2003; Pal et al. 2005). In addition to 27 (BRCA1) and 25 (BRCA2)

germline nonsense, splice site, and indel mutations, 11 and 10

nonsynonymous somatic mutations were discovered in this data

set in BRCA1 and BRCA2, respectively (The Cancer Genome Atlas

Research Network 2011).

Significantly mutated pathway/gene set analysis

To identify known cellular pathways with significant accretions of

somatic mutations in ovarian tumors, we integrated the PathScan

algorithm (Wendl et al. 2011) as a module of the MuSiC pipeline.

PathScan treats pathways as groups of genes defined by databases

such as KEGG (Kanehisa and Goto 2000), BioCarta (Nishimura

2001), and Reactome (Joshi-Tope et al. 2005), with the KEGG

definitions currently set as the default implementation. PathScan

can be configured, however, to assess any grouping of genes, including

groupings from nonpathway databases such as Pfam (Finn et al. 2010).

Using PathScan, we analyzed the OV somatic mutation data

set in two ways. First, the entire data set was analyzed regardless

of the frequency of mutation in specific genes. Secondly, due to the

overwhelming abundance of TP53 mutations, we also performed the

analysis using identical parameters but excluding TP53 mutations.

The most significant pathways identified in the first analysis

were a collection of KEGG cancer pathways including ‘‘Thyroid

Cancer’’ (hsa05216), ‘‘Bladder Cancer’’ (hsa05219), ‘‘Basal Cell Car-

cinoma’’ (hsa05217), ‘‘Nonsmall Cell Lung Cancer’’ (hsa05223), and

‘‘Melanoma’’ (hsa05218). In the midst of those significant cancer

pathways sits the ‘‘p53 Signaling’’ pathway (hsa04115) at a P-value

of 2.62 3 10�126. Also, MuSiC found the ‘‘Apoptosis’’ pathway

(hsa04210), including not only TP53 mutations but also nine

phosphoinositide 3-kinase mutations, to be affected. This latter

group of mutations includes two PIK3CA mutations, previously

implicated in both breast and ovarian cancers (Levine et al. 2005).

In the second analysis where TP53 mutations were excluded,

the collection of KEGG cancer pathways was no longer identified

as the most significant pathways in the OV data set. Instead, for

instance, this analysis identified the environmental information

processing class ‘‘Receptors and Channels’’ pathway from the KEGG

Brite database (hsa04000) as the most significant (P = 4.36 3 10�91)

Table 1. Analyses performed and the variants included for each
MuSiC module

MuSiC module Analysis type Variants included

SMG test Statistical test Optionala

PathScan Statistical test Optionala

Mutation relation
test

Statistical test Optionala

Clinical correlation
test

Statistical test Optionala

Proximity analysis Mathematical
query

Optionala

COSMIC/OMIM
analysis

Database query Optionala

Pfam annotation Database query All

aIn all of the tools, a user may optionally include only nonsynonymous
variants, or, alternatively, both nonsynonymous and synonymous variants
may be considered.

Figure 1. MuSiC flow diagram. MuSiC modules can either be imple-
mented individually with various required input files or may be imple-
mented in serial via one command where four inputs are used to execute
the entire package of tools.
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(Table 2). Limiting the analysis scope to the KEGG Pathway data-

base, a similar pathway was identified from the environmental

information processing class, the ‘‘Neuroactive Ligand-Receptor

Interaction’’ pathway (hsa04080). This pathway incurred 266

mutations across the OV data set yielding a P-value of 2.5 3 10�11.

The ‘‘Calcium Signaling’’ pathway (hsa04020, P = 4.9 3 10�8) also

rose to the level of significance from the TP53-excluded KEGG

analysis, which is interesting due to the role of calcium signaling in

many cellular processes including cell death (Crompton 2000). The

results from the OV data set feature 266 mutations throughout this

pathway, highlighted by 35 mutations in voltage-dependent calcium-

channel genes (CACNA1A-H and CACNA1S), and 25 mutations in

RYR1 and RYR2 genes, whose expression

has been correlated with tumor grade in

breast cancer (Abdul et al. 2008).

Mutation relation test

The mutation relation test (MRT) at-

tempts to reveal correlations and mutual-

exclusion relationships among significantly

and highly mutated genes in a pairwise

fashion. Positive correlations suggest that

mutations and their associated pathways

putatively function synergistically to pro-

mote carcinogenesis, while negative corre-

lations imply that the alteration of a single

component or pathway may be sufficient,

wholly or in part, for carcinogenesis.

An example heat map of the MRT

analysis for all 316 OV samples is shown

in Figure 3. For this data set, we found

examples of both concurrent mutations

and also mutually excluded mutations among the genes repre-

sented in the heat map. Co-mutators FAT3 and EMR3 (P = 0.0333)

are both members of the ‘‘Receptors and Channels’’ KEGG path-

way (hsa04000), identified as significantly mutated in the pathway

analysis described above. And there is also mild evidence of the

mutual exclusion of RB1 and TP53 mutations (P = 0.0141). Both of

these genes are tumor suppressors, and both were found previously

to be significantly mutated genes in this data set (The Cancer Ge-

nome Atlas Research Network 2011). This result is potentially

meaningful if one considers the possibility that RB1 mutations

could be driver events that act independently from TP53. It is well

known that the rate of TP53 mutations in ovarian cancer is very

Figure 2. Mutation rates and SMGs in the OV data set. (A) The cohort-wide background mutation
rates for all seven mutational mechanism categories are plotted for the OV data set. The overall BMR is
also plotted, combining all types of mutations. (B)�Log10(P) for the top 12 OV SMGs are plotted for all
three SMG tests in order of decreasing convolution test P-value.

Table 2. PathScan results for the OV data set

KEGG pathway KEGG ID
P-value (with

TP53)
P-value (without

TP53)
FDR (with

TP53)
FDR (without

TP53)

Receptors and channels hsa04000 4.36 3 10�90 4.36 3 10�90 3.24 3 10�89 6.15 3 10�88

Transcription factors hsa03000 3.14 3 10�93 3.15 3 10�41 2.60 3 10�92 2.22 3 10�39

Olfactory transduction hsa04740 2.61 3 10�32 2.61 3 10�32 1.47 3 10�31 1.23 3 10�30

Focal adhesion hsa04510 3.03 3 10�29 3.03 3 10�29 1.64 3 10�28 1.07 3 10�27

Neuroactive ligand-receptor interaction hsa04080 1.11 3 10�23 1.11 3 10�23 5.80 3 10�23 3.13 3 10�22

ECM-receptor interaction hsa04512 1.40 3 10�23 1.40 3 10�23 7.05 3 10�23 3.29 3 10�22

CAM ligands hsa04516 5.78 3 10�23 5.78 3 10�23 2.81 3 10�22 1.16 3 10�21

Cellular antigens hsa04090 1.85 3 10�19 1.85 3 10�19 8.70 3 10�19 3.26 3 10�18

Protein kinases hsa01001 1.76 3 10�16 1.76 3 10�16 8.01 3 10�16 2.76 3 10�15

Peptidases hsa01002 2.05 3 10�15 2.05 3 10�15 9.03 3 10�15 2.89 3 10�14

Cytoskeleton proteins hsa04812 1.36 3 10�14 1.36 3 10�14 5.81 3 10�14 1.74 3 10�13

Ubiquitin system hsa04121 1.60 3 10�14 1.60 3 10�14 6.64 3 10�14 1.88 3 10�13

Calcium signaling pathway hsa04020 4.24 3 10�14 4.24 3 10�14 1.71 3 10�13 4.60 3 10�13

Pathways in cancer hsa05200 3.26 3 10�73 8.81 3 10�14 2.19 3 10�72 8.87 3 10�13

Cell adhesion molecules (CAMs) hsa04514 2.02 3 10�11 2.02 3 10�11 7.91 3 10�11 1.90 3 10�10

Cytokines hsa04052 4.58 3 10�11 4.58 3 10�11 1.75 3 10�10 4.04 3 10�10

Chromosome hsa03036 6.16 3 10�11 6.16 3 10�11 2.29 3 10�10 5.11 3 10�10

Cytokine-cytokine receptor interaction hsa04060 8.46 3 10�11 8.46 3 10�11 3.05 3 10�10 6.26 3 10�10

Regulation of actin cytoskeleton hsa04810 8.79 3 10�11 8.79 3 10�11 3.05 3 10�10 6.26 3 10�10

GTP-binding proteins hsa04031 8.88 3 10�11 8.88 3 10�11 3.05 3 10�10 6.26 3 10�10

Cell adhesion molecules (CAMs) hsa04515 1.25 3 10�10 1.25 3 10�10 4.20 3 10�10 8.39 3 10�10

Tight junction hsa04530 4.26 3 10�09 4.26 3 10�09 1.40 3 10�08 2.73 3 10�08

Glycosyltransferases hsa01003 1.63 3 10�08 1.63 3 10�08 5.22 3 10�08 9.99 3 10�08

Chemokine signaling pathway hsa04062 2.38 3 10�08 2.38 3 10�08 7.46 3 10�08 1.40 3 10�07

Antigen processing and presentation hsa04612 9.47 3 10�08 9.47 3 10�08 2.90 3 10�07 5.29 3 10�07

The top 25 significantly mutated pathways as discovered using PathScan are listed here, sorted by the P-value calculated while excluding gene TP53.
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high (Ahmed et al. 2010), including the OV data set used in this

analysis (The Cancer Genome Atlas Research Network 2011). How-

ever, for the few cases that do not have a driver mutation in TP53, we

speculate, based on our mutual exclusion results, that mutations in

RB1 may represent an independent path to ovarian adenocarci-

noma. Of course, due to the small numbers of mutations present

in RB1 and EMR3 (six and five mutations, respectively), additional

data would be required to confirm any hypotheses generated using

these results.

Clinical correlation test

The clinical correlation test (CCT) can be used to determine re-

lationships between clinical phenotypes and observed mutations.

The input clinical data may be represented in either numeric or

categorical (‘‘class’’) formats. For example, in the OV data set, we

obtained clinical data for 315 of the 316 OV samples; the numeric

clinical data consisted of the patients’ ages at disease diagnosis and

also their survival periods (in days), and the categorical clinical

data for the OV data set included information about a sample’s

race, tumor stage, tumor grade, the outcome of the primary ther-

apy, and, lastly, their vital status. For both data types, the goal of

the CCT is to determine whether specific mutations/genes are as-

sociated with a particular clinical feature. As these associations can

sometimes be biased by covariate clinical features, MuSiC also of-

fers a generalized linear model (GLM) analysis option within the

CCT. This tool allows users to define any number of clinical traits as

covariates to discovered mutations and, subsequently, to eliminate

any possible biases introduced to the phenotype/mutation asso-

ciations by the covariates’ effects.

As a proof of principle, we have assessed the well-established

relationship between the presence of a BRCA1 germline variant

and a patient’s age at disease diagnosis (Hall et al. 1990; Miki et al.

1994). In the OV data set, the CCT revealed that patients with

germline BRCA1 variants were significantly correlated with earlier

disease diagnosis (P = 2.456 3 10�5, Wilcoxon rank sum test),

whereas patients with somatic BRCA1

mutations exhibited no such correlation

(P = 0.308). A boxplot of the ages at di-

agnosis for the OV samples (Fig. 4) clearly

shows that the mean age of those samples

with a germline BRCA1 mutation (51.3

yr) is lower than those samples with ei-

ther wild-type BRCA1 (60.4) or with a so-

matic BRCA1 mutation (63.1 yr). Thus,

the CCT correctly evaluated the relation-

ship between germline variants in BRCA1

and ovarian cancer susceptibility.

Proximity analysis

In certain genes, mutations tend to cluster

in close proximity within functional do-

mains. In order to find these dense ‘‘clus-

ters’’ of mutations within a mutation list, we

have developed MuSiC’s proximity analysis

module. This module searches within fixed

windows around each mutation, reporting

the number of and distances to all neigh-

boring mutations. The size of the fixed

windows utilized for searching is user-

configurable. In order to determine an ap-

propriate default size for these windows, we

have analyzed the distances between all neighboring mutations in

version 54 of the COSMIC database (see Methods). Upon finding that

over 25% of the nearest-neighbor mutations in COSMIC are within

seven (or less) amino acids of each other, we chose to search 7 aa both

upstream of and downstream from each OV mutation for dense

clusters of variants. TP53, with 302 total nonsilent somatic muta-

tions in the OV data set, dominated the proximity analysis results.

The average number of mutations within 7 aa of another TP53

mutation was 4.9, with the densest 14-aa window containing 26

nonsynonymous mutations.

Figure 3. Mutation relation analysis. A heat map showing mutations in highly mutated genes for all
316 OV samples. Dotted-line boxes highlight concurrent nonsynonymous EMR3 and FAT3 mutations
(two concurrent mutations out of five nonsynonymous mutations from EMR3 and 18 from FAT3, P =
0.0333) and mutually exclusive nonsynonymous RB1 and TP53 mutations (297 mutually exclusive
mutations out of six nonsynonymous mutations from RB1 and 299 from TP53, P = 0.0141).

Figure 4. BRCA1 variant status versus sample age of diagnosis for the OV
data set. A boxplot of the age of diagnosis of 315 OV patients grouped by
their BRCA1 mutation status. Germline BRCA1 variant status is correlated
with a lower age of diagnosis via the CCT (P = 2.456 3 10�5).
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The next-densest group of mutations occurred in DNAH5,

where there were four mutations within a space of 3 aa. Several

genes have mutations that occur in triplets within a space of 2 aa,

including UBR4 and RB1CC1. Both UBR4 and RB1CC1 have re-

lationships with RB1, a gene on the significantly mutated gene list

for the OV data set and a gene also found to harbor copy-number

alterations in the OV data set (The Cancer Genome Atlas Research

Network 2011). UBR4 is a component of the N-end rule pathway

that interacts with RB1, and RB1CC1 actually regulates the expres-

sion of RB1. RB1 itself has two mutations in close proximity (within

1 aa of each other). These high-density groups of RB1-related mu-

tations, pictured in Figure 5, may support the hypothesis that RB1

could be an additional driver of ovarian cancer.

COSMIC/OMIM query

Using the COSMIC/OMIM module of MuSiC, we attempted to find

previously reported mutations matching the query set of somatic

OV mutations. This type of analysis can provide a measure of re-

currence, as these databases generally contain information about

the studies from which their contents were derived, and the COSMIC

database deals exclusively with the somatic mutations discov-

ered in cancer studies. A summary of COSMIC/OMIM database

comparisons for those significantly mutated genes listed above

with at least one database match of any type is presented in Sup-

plemental Figure S2. This summary, however, represents only

a subset of all of the information made available via the database

queries. We found 15 exact matches in genomic position and nu-

cleotide change between the OV data set and COSMIC, including

sites in NF1, RB1, and PIK3CA, all considered significantly mutated

genes by the MuSiC pipeline. This type of match is only possible

when comparing to the COSMIC database, since OMIM entries

contain only amino acid coordinates. We identified another exact

match in the FOXG1 gene, which encodes a forkhead transcription

factor. Not only was the FOXM1 transcription factor network cited

as significantly altered in 87% of samples in the previous TCGA

study (The Cancer Genome Atlas Research Network 2011), but,

additionally, some forkhead transcription factors were previously

identified as therapeutic targets (Moumne et al. 2008; Wang et al.

2010b).

In addition to finding the above COSMIC variants which

shared positions and identical nucleotide changes with OV mu-

tations, our comparison of OV mutations to the COSMIC and

OMIM databases also identified a large set of database mutations

that altered the same amino acid in an identical manner as an OV

mutation. Of 233 such matches from COSMIC (76 from OMIM),

the overwhelming majority of these, 219

(56), were from the gene TP53. There

were 229 (76) other ‘‘position’’ matches,

defined as mutations which affect an iden-

tically positioned amino acid but which

do not cause the same residue change as

the previously reported mutation. Most

of these matches are from genes that have

been previously associated with ovarian

cancer (The Cancer Genome Atlas Research

Network 2011), such as BRAF, BRCA1,

KRAS, and again, TP53.

Pfam annotation

The Pfam annotation module of MuSiC

groups genes based on the frequency of

mutation in specific protein domains.

Grouping mutations by their protein do-

main can serve to group genes according

to putative function, since genes that share

a domain are more likely to share related

functions. We performed Pfam annotation

on the 19,356 somatic variants identified

in the 316 OV cases. Supplemental Table

S1 reports the number of nonsynonymous

mutations, synonymous mutations, and

also the number of genes harboring mu-

tations in each Pfam domain with at least

five somatic events in the OV data set.

In the analysis of the OV data, many

of the frequently mutated domains are also

the most prevalent domains in the genome,

including the seven-transmembrane G

protein-coupled receptor domain, the pro-

tein kinase domain, and the zinc finger

domain, as illustrated in Figure 6A. This

genome-wide abundance is not true, how-

ever, for the amply mutated P53 domain.

Figure 5. Proximity analysis mutation diagrams. These mutation diagrams show recurrent triplet
mutations in both UBR4 and RB1CC1, both of which harbor a relationship with tumor suppressor gene
RB1.
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Analysis of this Pfam annotation result correctly confirms the

significance of the P53 domain mutations in this cohort. Figure 6A

also shows that this domain is recurrently mutated but only in

a small number of genes, much different from all of the other

domains pictured. And lastly, Figure 6B shows that the P53 domain

has an unusually high nonsynonymous:synonymous mutation

ratio. All of these details are indicative (correctly) of an important

mutation hotspot in this cohort.

The Pfam annotation module output may also be modified

slightly and fed into the SMG test algorithm in order to produce

a mathematical result describing ‘‘significantly mutated domains’’

(rather than significantly mutated genes) and their associated

P-values. For a detailed explanation of this option, please see the

Supplemental Material, including Supplemental Table S2. The re-

sults presented therein reaffirm the significance of the mutations

in the P53 domain, as well as in the other frequently mutated

domains.

Discussion
There are several software tools available purporting to determine

mutational significance. CHASM (Carter et al. 2010), for instance,

uses a machine-learning technique to distinguish driver mutations

from passengers based on a driver/passenger mutation training set.

Mutation Assessor (Reva et al. 2011) provides a prediction of the

functional impact of a mutation based on the specificity of mul-

tiple sequence alignments and conservation scores. And tools such

as CanPredict (Kaminker et al. 2007) are database-driven, deriving

multiple metrics for each variant, starting with stored information

and models, and then making use of the metrics through a de-

cision-tree analysis. Other tools, such as ANNOVAR (Wang et al.

2010a), provide detailed annotations of genetic alterations, much

like MuSiC’s Pfam annotation module. Although not currently

publicly available, the ‘‘Firehose’’ pipeline does share some fea-

tures with MuSiC, including an SMG analysis tool and a pathway

analysis tool, PARADIGM (Vaske et al. 2010), but Firehose as a

whole is heavily focused on orderly sequencing and quality control

rather than post-discovery variant analysis.

MuSiC, on the other hand, is the first available set of com-

bined tools that enables a complete, multidimensional statistical

evaluation of next-generation-derived cancer data sets. No other

publicly available tool suite currently incorporates clinical data

along with coverage data and database references into the

determination of the most significant

mutations among a large mutation list full

of passengers. MuSiC merges several meth-

odological aspects of the above-mentioned

tools with many novel additional algo-

rithms, providing the capability of large-

cohort, data-driven statistical analysis to

the entire research community.

Use of MuSiC is straightforward. The

simplicity of the input files and tool

updating make this package extremely

accessible. MuSiC also accommodates both

large and small research organizations;

although the entire suite of tools is capa-

ble of running sequentially on a single

processor, the most CPU-intensive mod-

ules offer easily parsable options for par-

allelizing jobs across multiple machines

or across a job cluster.

Future support for the MuSiC package will be devoted to the

handling of additional file formats, such as the variant call format

(VCF), and also to the development of a graphical user interface

(GUI). We intend to design new tools aimed at incorporating

a wider variety of biological and variant data types, such as copy

alteration data, and 3D protein structures from RCSB’s Protein Data

Bank (Berman et al. 2000), to be used for improved proximity

analysis calculations. We also intend to implement recurrence

tests across other data entities, such as significantly mutated

transcripts and significantly mutated gene families. We also plan

to enhance the assessment of the functional impact of pro-

tein mutations in MuSiC through the integration of published

solutions, such as Mutation Assessor (Reva et al. 2011) and

PolyPhen-2 (Adzhubei et al. 2010), as well as through the design

of new modules which take advantage of databases that cate-

gorize such effects, such as SIFT (Kumar et al. 2009). And lastly, a

fuller integration of the results from various MuSiC modules,

many of which are currently considered in isolation, will provide an

even more comprehensive picture of cancer genomic mechanisms.

Methods

Sample data set used in this study
Alignment mapping files for the ovarian cancer cohort, as well as
all mutational data in mutation annotation format (MAF) are
available at The Cancer Genome Atlas (TCGA) website, http://
cancergenome.nih.gov/, via dbGaP. The dbGaP study accession
number is phs000178.v1.p1.

Significantly mutated gene tests

We describe our calculation of background mutation rates and
three methods for calculating summarized P-values below.

Background mutation rate (BMR)

Calculations of BMR, although simply described as the number of
mutated bases per total bases, are often controversial. Our method
is dependent upon the data available, under the premise that the
number of bases having available alignment data should provide
the denominator for the BMR calculation, since this number also
provides the upper limit to the number of bases available for mu-
tation discovery. Therefore, we first count the number of bases
with sufficient aligned read-depth based upon user-defined coverage

Figure 6. Pfam domains affected by OV mutations. (A) A histogram of the most highly mutated
domains in the OV data set next to the number of genes affected in each domain. (B) A stacked bar-
graph where the value 100% represents the total number of mutations in a particular Pfam domain.
Lighter and darker sections of the bars represent which proportions of the total mutations are non-
synonymous and synonymous, respectively.

Dees et al.

1594 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 7, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


limits set independently for the tumor and normal BAM files for each
sample in the cohort. For the purposes of our algorithm, counts are
determined for six specific reference sequence-based denominations,
with separate counts for each of A and T bases, CpG-connected C and
G bases, and lastly C and G bases not connected as CpG. We also
categorize the discovered mutations along the lines of mutational
mechanism, with separate categories for AT transitions, AT trans-
versions, CpG transitions, CpG transversions, CG (non-CpG) tran-
sitions and transversions, and a seventh ‘‘indel’’ category, for which
we use the entirety of the covered space in the sample-set when
comparing indel-affected bases versus available bases. In order to
calculate the BMR of each mutational mechanism category, the
number of mutations found in that category is divided by the
total number of bases available in which such a call could have
been made.

MuSiC allows for the calculation of BMR and for the sub-
sequent comparisons of mutation rate to BMR, to be performed
separately for each subgroup in a user-specified number of sub-
groups. If the user specifies that only one subgroup is to be con-
sidered (the default option), then the entire cohort is used in the
calculations of mutation rate and BMR for the seven mutational
mechanism categories. In this case, seven P-values are generated
for each gene and are summarized using the three methods de-
scribed below. However, if more than one subgroup is to be con-
sidered for a given cohort, the mutation rates and BMRs for the
seven mutational mechanism categories are calculated separately
for each subgroup (seven mutation rate and BMR calculations per
subgroup), with P-values generated for each category within each
subgroup. In this case, the number of P-values generated for each
gene will equal seven times the number of subgroups to be con-
sidered. All P-values for each gene are still summarized using the
three methods discussed below.

If the number of subgroups to be considered is greater than one
but not equal to the number of samples in the cohort, the BMR for
each sample is first calculated individually, and then these per-
sample BMR values are clustered using k-means clustering into the
number of subgroups specified by the user. These clustered sub-
groups are then used for all subsequent mutation rate and BMR
calculations. Alternatively, if the number of subgroups specified by
the user equals the number of samples in the cohort, then each
sample is considered independently for each mutation rate and BMR
measurement.

The BMRs calculated across the entire OV data set for each
mutational mechanism category, including the overall BMR across
all categories, are plotted in Figure 2A.

Fisher’s combined P-value test (FCPT)

FCPT combines all P-values for a particular gene into a statistic, xc,
according to Fisher’s method (Fisher 1925),

xc = � 2 +
k

i = 1

logðpiÞ;

where pi is the P-value obtained via binomial distribution for the
i-th subgroup mutational mechanism type, and k the number of
subgroup mutational mechanism categories for a gene. The final
P-value for the entire gene is calculated as the probability of
observing a value no less than xc, based on a x2 distribution with 2k
degrees of freedom.

Likelihood ratio test (LRT)

LRT constructs a likelihood ratio-based statistic (xl) for a gene,

xl = 2 +
k

i = 1

log
LðMi;CijriÞ
LðMi;CijRiÞ

� �
;

where Mi, Ci, Ri, and ri are mutation number, coverage, BMR, and
maximum likelihood estimate (MLE) of the mutation rate, re-
spectively, for the i-th subgroup mutational mechanism category
of a gene, k is the number of mutation types, and L() is the like-
lihood of observed mutation number for the i-th subgroup muta-
tional mechanism category, defined as the point probability of
observing Mi mutations given a coverage of Ci and a mutation
rate of Ri or ri. The final P-value for the entire gene is calculated as
the probability of observing a value no less than xl, based on an
approximate x2 distribution with k degrees of freedom.

Convolution test (CT)

CT calculates a summarized log statistic of joint binomial point
probability,

Sg = � +
k

i = 1

logðLðMi;CijRiÞÞ;

where Mi, Ci, Ri, k, and L() are referred to as the same as in the LRT
method. Getz et al. (2007) proposed that the P-value for a gene can
be calculated by taking one minus a left-tail probability, i.e., the
probability of observing a value less than Sg, and the semiexact
distribution of Sg can be obtained by a binned histogram-based
convolution procedure. This procedure is advantageous for the
large amounts of data involved in genome-wide investigation of
cohort mutations because it provides exact P-values in a minimum
amount of computation time; usually one must choose between
precision and length of compute. However, one disadvantage of
this convolution procedure is that the two tails of the Sg distribu-
tion are mixed, and therefore the directionality is lost. In this case,
both improbably large mutation rates and improbably low muta-
tion rates give high values for Sg. To remedy this issue, our CT
method modifies the published convolution procedure by ex-
cluding genes with mutation rates that are close to or equal to 0.
In other words, we exclude genes whose mutation rates are ex-
tremely far below the BMR, as they never would be considered
‘‘significantly mutated’’ in practice.

The output file for the SMG test is a compilation of the
P-values for each test for each gene under the null hypothesis that
the number of mutations seen in the gene is in accordance with
those seen in the background. False discovery rates are also
reported for each test for each gene.

Significantly mutated pathway/gene set analysis

Sequence data from a single cancer genome do not contain sufficient
information to adequately investigate pathway/phenotype associa-
tions. This problem requires systematic analysis of larger cohorts.
There are several published methods for identifying significantly
mutated pathways or gene sets (e.g., Lin et al. 2007; Tarca et al. 2009;
Vaske et al. 2010), but we have incorporated a new tool called
PathScan into the MuSiC package. PathScan accounts for two
important factors other methods neglect: (1) variations in gene
lengths and the consequent differences of their mutational likeli-
hoods under the null hypothesis; and (2) distribution of mutations
among samples and their proper combination into an overall
P-value.

We have configured PathScan in MuSiC to perform pathway
analysis using a wide variety of annotated databases, including
KEGG (Kanehisa and Goto 2000), BioCarta (Nishimura 2001), and
Reactome (Joshi-Tope et al. 2005), as mentioned above. The results
described above where TP53 is excluded from the pathway analysis
are achieved easily through MuSiC’s implementation of a parame-
ter called ‘‘genes-to-ignore,’’ in which the user may provide
a comma-delimited list of genes whose mutations should be skipped
over when reading the MAF file during the analysis.
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Mutation relation test (MRT)

We have developed the MRT to look for any latent relationships
among mutated genes. This module is a correlation test for two
binary variables to see whether or not any two genes are mutated
concurrently (positive correlation) or exclusively (negative corre-
lation). Because the numbers of mutated genes may vary signifi-
cantly among samples (most have only a few mutations whereas
some may have many), and because direct correlation between
genes in high-mutation-count samples is not comparable to that in
low-mutation-count samples, classic correlation analysis is invalid.
To control for this confounder, we calculate P-values in the MRT
through a restricted permutation, taking into account the distri-
bution of mutated gene numbers amongt the samples. Permuta-
tions are performed, therefore, by first calculating the numbers of
mutated genes in individual samples and then randomly per-
muting the observed mutations, keeping both the number of
mutations in each gene and also the distribution of mutated gene
number per sample constant. Concurrence and exclusion among
mutations are tested separately. This method has been successfully
applied to lung cancer data in our previous study (Ding et al. 2008).

Clinical correlation test (CCT)

The CCT module was developed for detecting correlations between
mutations and clinical features. Mutation data are again treated as
0-1 variables, where all mutations occurring within the same gene
are grouped (the default method), or optionally, where a more
strict definition of collapsing is used, grouping only those muta-
tions with identical genomic coordinates and nucleotide changes.
Clinical features can either be categorical or numerical variables,
where a Fisher’s exact test (and optionally, a x2 test) is used to
calculate P-values for categorical clinical data, and a Wilcoxon rank
sum test (and optionally, Pearson’s correlation) is used to analyze
numerical clinical data. The null model for the calculated P-values
depends on the type of clinical data being analyzed. For categorical
clinical data, the null model is that mutations happen randomly in
the various categories represented across the samples, with no
preference given to any one category. For numerical clinical data,
the null model is that mutations have no effects on a trait (i.e., that
mutations will not increase or decrease the value of the numeri-
cally reported trait).

A GLM analysis option also exists in which a user may define
an analysis model which must include a response variable and
a variant, and then any number of covariates may be considered.
The variants and covariates may all be clinical features, or, more
typically, genes from the mutation list should be listed as variants,
with clinical features making up the covariates. The output of the
GLM option includes a P-value which indicates association be-
tween the response variable and the variant, as well as other
standard outputs from a deviance analysis.

Proximity analysis

In MuSiC, we have defined proximity analysis as an investigation
of the density of mutations across a cohort in the amino acid space
of a given gene’s annotated transcript. The goal of this analysis is to
extract evidence of mutations clustered within specific domains,
an event which is significant in light of the null model where point
mutations occur at random locations throughout the genome.
Highly mutated domains across a group of samples might be in-
dicative of an underlying mechanistic association which contrib-
utes to the shared condition of the cohort, such as the onset of
disease. The specific action taken in the tool is to query the dis-
tance (in number of amino acids) between every pair of mutations

on a given transcript of a mutated gene within the sample set, and
then to determine which mutations fall within ‘‘close proximity.’’
‘‘Close proximity’’ may be determined by the user as an input to
the module, with the units of this parameter being the number of
sequential amino acids between two events.

The algorithm operates as follows: First, the amino acid po-
sition of each mutation within its respective transcript is de-
termined. Then, for each mutation in the input MAF file, two
values are calculated: (1) the number of other mutations on the
same transcript within the proximity limit set by the user; and (2)
the distance to the closest other mutation in this nearby set. (Note
that if more than one mutation occurs within the same amino
acid, the distance to the closest mutation in this case would be
0 aa.) Then, for each mutation, we report a few general details from
the MAF file in the output, such as the genomic coordinates, ref-
erence and variant bases, and the sample in which the mutation
was found. We further report the calculated values, such as the
amino acid position of the mutation within the transcript, and also
(1) and (2) listed directly above.

In the Proximity Analysis Results section, we chose to use 7 aa
as the maximum distance from any OV mutation within which to
look for clusters of mutations. This default distance was chosen
after querying the entire COSMIC mutation database (version 54,
comprising 171,473 mutations), and looking for the proximity of
mutations found in dense clusters. For each gene present in the
database, we calculated the distance between each mutation in
that gene and its closest neighboring mutation. As many muta-
tions sharing the exact same genomic coordinates are reported
more than once in COSMIC, we only used one instance of each
mutational position when calculating nearest-neighbor distances.
Through these per-gene measurements, we found that over 25% of
all neighboring mutations in COSMIC are within 7 aa of each other
(25% thus represents the first quartile of nearest-neighbor dis-
tances). We thus set 7 aa as the default range within which to
search for clusters of mutations in the proximity analysis module.

COSMIC/OMIM query

In the COSMIC/OMIM tool, a list of mutations is queried for re-
currence against both the Catalogue of Somatic Mutations in
Cancer (COSMIC) database and the Online Mendelian Inheritance
in Man database (OMIM). The usefulness of this tool is twofold;
first, recurrent events between these two databases and a list of
variations from a cohort provide a quick extension set, especially as
the databases are expanded over time, and secondly, we have
downloaded entries from the COSMIC database related to muta-
tions that report some type of amino acid transformation and
provide this file with the MuSiC package, making this type of query
very user-friendly.

The tool functions as follows: For every mutation found in the
input MAF file, information related to this mutation is gathered
from both the COSMIC and OMIM databases. Relevant in-
formation is ascertained by relating the genomic coordinate
(COSMIC) or the amino acid change (COSMIC and OMIM) asso-
ciated with the variant to all database entries. (Note that the MAF
used as input must contain an additional field with column header
‘‘amino_acid_change,’’ which is the field searched for to perform
the amino acid comparison.) A database entry must lie within the
user-specified number of bases (default = 5) or amino acids (default =

2) of the MAF variant to be considered as a ‘‘nearby’’ match. We
view the thresholds for ‘‘nearby’’ matches as adequate for taking
into account the different definitions of reference sequences and
gene transcripts that may be used by different contributors to the
databases. Alternatively, ‘‘exact’’ matches are direct overlaps in both
the location and base/amino acid change of a variant in the MAF
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and a mutation found in the database. If only the location (the
genomic coordinate or amino acid position) of a variant match
a database entry but not the nucleotide or amino acid change, these
matches are deemed ‘‘position’’ matches. We currently ignore silent
mutations in OMIM queries, as these types of mutations do not
affect protein coding. However, the positions of silent mutations are
still considered in comparison with the COSMIC database.

All discoveries based on these database queries are appended
to the input MAF file as extra columns (one column per database).
The information written to the output file by the tool will either
describe ‘‘exact’’ or ‘‘position’’ matches in amino acid or base change
or will (optionally) give all results from the gene associated with
the variant for a ‘‘nearby’’ match, one of which must qualify the
site as actually having a ‘‘nearby’’ match. If a variant has no match
in the particular database, a ‘‘novel’’ declaration is made for the
variant, and (again, optionally) all of the results found from the
associated gene will be printed next to the declaration to give
the user an idea of what matches are possible for that gene. And
lastly, if the gene for a variant is not found in the database, a message
noting this circumstance is printed along with a ‘‘novel’’ declaration
for the variant.

For each queried database, the tool further prints an output
summary which tallies the types of matches found throughout the
entire data set using that database. The user can learn, for instance,
how many sites matched exactly in both nucleotide and position,
or perhaps how many variants matched database entries in only
the amino acid category (labeled AA in the summary) while not
matching in exact position or nucleotide change (labeled NT).

Pfam annotation

Our Pfam annotation tool supposes the use of Sanger’s Pfam da-
tabase (cited above) as another avenue for defining recurrence
within the mutation list of a large group of cancer samples. The
Pfam database is a catalog of functional regions (or domains) present
within protein sequences. Referencing this list with the locations of
somatic mutations across a cohort provides knowledge about which
domains are most frequently affected by mutations in a certain dis-
ease and, therefore, may provide some insight as to the significance
(or insignificance) of the mutations in question.

In order to use the Pfam database, we have translated the
catalog’s amino acid coordinate system into a genomic position
coordinate system. The amino acid sequences chosen to be trans-
lated were ranked at every coding and splice site position in the
genome, based first on the translational and functional effect
predicted by the transcript at a given position, and then secondly
on the NCBI status of the particular transcript. The sequence of the
‘‘best’’ transcript chosen at each site was used to recover Pfam do-
mains from Sanger’s database. We have incorporated this information
into a table used by the tool via a fast-lookup program called Tabix,
available in the SAMtools package (Li et al. 2009). The Pfam anno-
tation module uses the genetic coordinates of a variant to append
a Pfam annotation domain column to the end of any MAF file.

This tool has been expanded to query a few other protein
annotation databases in addition to Pfam. We provide information
from the SUPERFAMILY database (Wilson et al. 2009), the SMART
database (Schultz et al. 2000), and the Patternscan database in our
annotation query. (Patternscan is a new version of the Prosite
database [Sigrist et al. 2010].) Patternscan provides information
similar to that of the Pfam database regarding protein domains and
families at functional sites, but SUPERFAMILYand SMART focus on
evolved protein structural families and signaling protein domains,
respectively. All of this information will be present in the output
file, comma delimited, with the name of the database separated
from the annotation result by an underscore.

Software availability

The MuSiC software tools, source code, and reference data are ac-
cessible through our website, http://gmt.genome.wustl.edu, and
are supported on Ubuntu Linux 10.04 (Lucid Lynx). Installation
on all Debian-based systems will initiate automatic updates from
our software server. The MuSiC suite is also available on CPAN
(http://www.cpan.org) and GitHub (https://github.com) under the
namespace ‘‘Genome’’ in both locations, and integration of MuSiC
into Galaxy (http://usegalaxy.org) is also available. A summary of
benchmarking statistics for each MuSiC module is available in the
Supplemental Material.
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