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RNA-sequencing (RNA-seq) allows quantitative measurement of expression levels of genes and their transcripts. In this
study, we sequenced complementary DNA fragments of cultured human B-cells and obtained 879 million 50-bp reads
comprising 44 Gb of sequence. The results allowed us to study the gene expression profile of B-cells and to determine
experimental parameters for sequencing-based expression studies. We identified 20,766 genes and 67,453 of their al-
ternatively spliced transcripts. More than 90% of the genes with multiple exons are alternatively spliced; for most genes,
one isoform is predominantly expressed. We found that while chromosomes differ in gene density, the percentage of
transcribed genes in each chromosome is less variable. In addition, genes involved in related biological processes are
expressed at more similar levels than genes with different functions. Besides characterizing gene expression, we also used
the data to investigate the effect of sequencing depth on gene expression measurements. While 100 million reads are
sufficient to detect most expressed genes and transcripts, about 500 million reads are needed to measure accurately their
expression levels. We provide examples in which deep sequencing is needed to determine the relative abundance of genes
and their isoforms. With data from 20 individuals and about 40 million sequence reads per sample, we uncovered only 21
alternatively spliced, multi-exon genes that are not in databases; this result suggests that at this sequence coverage, we can
detect most of the known genes. Results from this project are available on the UCSC Genome Browser to allow readers to
study the expression and structure of genes in human B-cells.

[Supplemental material is available for this article. The sequence data from this study have been submitted to the NCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE29158.]

Gene expression is a key determinant of cellular phenotypes. A

comprehensive catalog of gene transcripts, their structures, and

abundance facilitates a better understanding of how gene expres-

sion influences phenotypic manifestations.

Microarrays (Fodor et al. 1993; DeRisi et al. 1996) have been

the predominant method for gene expression studies because of

their ability to probe thousands of transcripts simultaneously. Al-

though hybridization-based approaches are high throughput, they

are subject to biases and limitations such as the reliance on existing

gene models and potential for cross-hybridization to probes with

similar sequences. Genomic tiling arrays and other approaches

such as serial analysis of gene expression (Velculescu et al. 1995)

and massively parallel signature sequencing (Brenner et al. 2000)

have been developed to overcome some of these limitations.

RNA-sequencing (RNA-seq) is a relatively new method for an-

alyzing gene expression; it provides digital readouts for mapping and

quantifying transcriptomes (Bentley et al. 2008; Lister et al. 2008;

Mortazavi et al. 2008; Nagalakshmi et al. 2008; Wilhelm et al. 2008).

It involves isolating a population of RNA, converting it to a library of

cDNA fragments with adaptors attached, and sequencing the cDNA

library to obtain short sequences typically 30 to 400 nt in length.

The short reads are then mapped to a reference genome or assembled

de novo. The expression level for a gene can subsequently be de-

termined by counting the number of reads that aligned to its exons.

RNA-seq studies of model organisms (Cloonan et al. 2008; Mortazavi

et al. 2008) have revealed unknown aspects of transcriptomes

through refinement of transcriptional start sites, discovery of

39 UTR heterogeneity, and identification of novel upstream open

reading frames. Global surveys of alternative splicing show that

nearly 95% of all multi-exon genes in humans undergo alternative

splicing events (Pan et al. 2008).

Motivated by the ability of RNA-seq technology to study gene

expression, we sequenced the transcriptomes of human B-cells that

are part of the HapMap and 1000 Genomes Projects. We generated

44 Gb of sequence to address several questions. First, we analyzed

the gene expression landscape of human B-cells by identifying

expressed transcripts and quantifying their expression levels. Sec-

ond, we examined how sequencing depth affects the detection and

quantification of genes and their isoforms. Lastly, we evaluated the

potential of RNA-seq to uncover transcribed fragments that are not

in existing gene annotation databases.

Results

Data set

We sequenced the mRNA population of cultured human B-cells from

20 unrelated individuals from the Center d’Etude du Polymorphisme

Humain (CEPH) collection (Dausset et al. 1990). From each sample,

we obtained 44 6 8 million 50-bp reads (mean 6 standard deviation)

(see Methods). For most of our analysis, we pooled the sequences to

create an 879-million-read data set comprising 44 Gb of sequence.

We mapped the sequence reads to the reference human ge-

nome sequence (NCBI 36.1 [hg18] assembly) using TopHat (Trapnell

et al. 2009) and Bowtie (Langmead et al. 2009). Then, we assembled

the alignments into gene transcripts and calculated their relative

abundances using Cufflinks (Trapnell et al. 2010). We conducted two
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analyses: First, we provided Cufflinks with

Gencode (version 3c NCBI36) (Harrow

et al. 2006) gene annotations, and second,

we did not use any gene annotations to

find unknown gene models. We restricted

our first analysis to levels 2 and 3 Gencode

genes that are annotated as ‘‘protein cod-

ing’’ or ‘‘processed transcript’’; in this

study, we refer to this set of gene models

as ‘‘Gencode.’’

To investigate the effect of sequenc-

ing depth on various expression profiling

measurements, we created smaller subsets

of our pooled data set, analyzing depths of

1 to 9 million reads (in intervals of 1 million

reads), 10 to 90 million reads (in intervals of

10 million reads), and 100 to 700 million

reads (in intervals of 100 million reads).

Alignment results

In the 879-million-read data set, 80% of

the reads aligned to the human genome, of

which 84% aligned to unique locations

in the genome (Supplemental Table 1).

Fourteen percent of the mapped reads

aligned to two to five locations in the ge-

nome, and <2% aligned to six or more lo-

cations. We excluded all reads mapping to

six or more locations from our analyses.

Although <3% of the human genome is

composed of exons, 83% of our uniquely

mapped reads overlap Gencode exons.

These results confirm that our poly(A)+

RNA samples are highly enriched for ex-

onic sequences. We also studied fractions

of the 879-million-read data set and found

that the percentage of total reads aligning to the human genome

increases proportionally with sequencing depth for input sizes

smaller than 200 million reads, after which the value remains con-

stant. With 1 million reads, 75% of the reads aligned to the genome;

in contrast, 80% of the reads aligned with 200 million reads (Sup-

plemental Table 1). Lastly, we found that 84% of the aligned reads

mapped to unique locations across all sequencing depths.

Expression analysis

Using all of our sequence reads, we estimated the expression levels

of genes in our B-cells. Expression levels are measured in ‘‘frag-

ments per kilobase of exon model per million mapped reads’’

(FPKM) (Trapnell et al. 2010), and the expression level for a gene is

the sum of the FPKM values of its isoforms. The distribution of

gene expression values is right-skewed (Fig. 1); the median and

mean FPKM values are 26 and 338, respectively. Although we do

not wish to use an arbitrary FPKM threshold to determine whether

a transcript is expressed, analysis of all transcripts with expression

levels greater than zero will include FPKM values that are very close

to zero (bottom fifth percentile of transcript FPKM values = 0.003).

Thus, we set an FPKM value of 0.05 as the lower bound in our

subsequent analyses. Using this criterion, we detected 20,776

genes and 67,453 alternatively spliced transcripts in our B-cells. For

the majority (75%) of these transcripts, there are sequence reads

that cover at least one-quarter of their exons. The expression of

these transcripts is supported by RNA polymerase II binding and

active chromatin marks such as H3K27ac or H3K4me3 (Supple-

mental Fig. 1; Rosenbloom et al. 2009).

We surveyed the expression landscape across chromosomes by

determining the fraction of genes that are expressed within 1-Mb

intervals (Fig. 2), the gene density, and percentage of genes tran-

scribed for each chromosome (Supplemental Fig. 2). The average

gene density is 10 genes/Mb (standard deviation = 4.8), and the

average percentage of genes transcribed for each chromosome is

71% (standard deviation = 12%). We found that while chromo-

somes varied greatly with respect to gene density, they varied much

less in the proportion of genes that are expressed. For example,

while chromosome 19 is six times more gene-dense than chromo-

some 18, 87% and 82% of genes on chromosome 19 and chromo-

some 18 are expressed.

We classified genes into groups based on their FPKM values: low

expression (bottom 25th percentile; FPKM # 2.3), medium expres-

sion (middle 50th percentile; 2.3 < FPKM # 163), and high expres-

sion (top 25th percentile; FPKM > 163). Gene Ontology (GO) analysis

(Ashburner et al. 2000) revealed that low-expressing genes are

enriched for processes relating to cell adhesion (P = 2.9 3 10�20) and

ion transport (P = 1.1 3 10�15). For medium-expressing genes, genes

involved in transcription (P = 2.4 3 10�31) were found to be over-

represented. Lastly, we found high-expressing genes to be enriched in

Figure 1. Distribution of FPKM values for Gencode genes. The distribution of gene expression values
is skewed right; the median and mean FPKM values are 26 and 338, respectively. The main figure shows
genes with FPKM values less than 1000. (Inset) Genes with FPKM values greater than 1000. For per-
centiles of FPKM values for genes and transcripts, see Supplemental Tables 2 and 3.
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processes such as translation (P = 3.1 3 10�70), RNA processing (2.2 3

10�70), and RNA splicing (5.3 3 10�56). We did not find functional

categories that were enriched in all three groups, suggesting that

genes within a particular process are expressed at similar levels.

Alternatively spliced transcripts

We assessed the degree of alternative splicing activity in B-cells and

found that 94% of multi-exon genes express two or more spliced

forms. This number is consistent with the estimate by Burge and

colleagues (Wang et al. 2008) that >90% of human genes across di-

verse tissue types express multiple isoforms. For genes with two or

more expressed isoforms, we analyzed the relative abundance of

each of the alternatively spliced transcripts. We considered the

transcript with the highest FPKM value as the ‘‘major’’ isoform and

all other transcripts as ‘‘minor’’ isoforms. For every minor isoform of

a gene, we calculated the ratio of its FPKM value to that of the major

isoform. We found the distribution of these

ratios to be right-skewed with a mean of

0.26 (median = 0.17, standard deviation =

0.26) (Supplemental Fig. 3). These results

indicate that while the majority of genes

have several alternatively spliced tran-

scripts, these isoforms are not expressed at

equivalent levels. For most genes, one iso-

form is expressed more highly than others.

Comparison with microarrays

We compared our RNA-seq data to micro-

array measurements performed on the

same 20 unrelated CEPH individuals. The

gene expression levels measured by the

two methods are similar (R = 0.59) (Fig. 3)

and comparable to results by others (R =

0.69 and 0.80 in Mortazavi et al. 2008 and

Montgomery et al. 2010, respectively).

To investigate whether the digital

counts of transcript abundance produced

by RNA-seq experiments offer greater dy-

namic range than the analog-style signals

obtained from microarrays, we analyzed

the expression levels for 2597 genes for

which data were available for each of the 20

individuals. For each gene, we calculated

the dynamic range and the coefficient of

variation. We found the dynamic range to

be greater in RNA-seq than microarray

measurements: 1.78 6 0.67 versus 1.25 6

0.47 (mean 6 standard deviation). Across

the 20 individuals, the coefficient of varia-

tion values was also greater from RNA-seq

data: 0.13 6 0.09 versus 0.052 6 0.03

(mean 6 standard deviation). For the ma-

jority (90%) of the genes, the coefficient of

variation is larger in the RNA-seq data set

(see examples in Supplemental Fig. 4).

Sequencing depth

In designing an RNA-seq study, a parame-

ter of interest is the sequencing depth

needed to address various questions. To

assess the relationship between sequencing depth and expression

levels, we divided our 879 million 50-bp read data set into smaller

sets and analyzed how the detection of a gene and the measurement

of its expression level varies with increasing sequencing depth.

We first assumed that our 879-million-read data set gives a

comprehensive catalog of transcribed genes and then assessed how

many genes are detected in fractions of those reads. We found that

with 100 million reads, 81% of genes (FPKM $ 0.05) and 90% of

their transcripts were detected (Fig. 4). For each additional 100

million reads, we were able to detect on average 3% more genes and

1% more transcripts. As expected, the expression level of a gene

affects how readily it is detected; for example, with 100 million

reads, 80% of highly expressed genes (top 25th percentile; FPKM >

163) compared to 32% of the low expression genes (bottom 25th

percentile; FPKM # 2.3) were detected.

The detection of splice junctions is important as they are

necessary for isoform assembly and quantification. Of the 269,155

Figure 2. Distribution of expressed genes by chromosome. For each chromosome, we plotted the
number (y-axis) of Gencode genes residing in 1-Mb intervals along the chromosome (x-axis depicts
physical distance in megabases). (Red) The number of genes that are expressed (FPKM $0.05); (blue)
the number that are not expressed.
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Gencode junctions, 145,100 (54%) are detected in our 879-million-

read data set. This result is consistent with those reported by others:

Blencowe and colleagues (Pan et al. 2008) detected between 128,395

and 130,854 of known RefSeq junctions in diverse human tissues;

Pritchard and colleagues (Pickrell et al. 2010) detected 170,293

junctions supported by spliced ESTs from

GenBank in B-cells. With 100 million

reads, 76% of the 145,100 junctions were

detected, after which on average 4% more

junctions were detected for each addi-

tional 100 million reads (Fig. 4).

For most studies, information be-

yond whether a gene is expressed or not is

important; accurate expression levels are

needed. To study the robustness of ex-

pression levels at various input sizes, we

first assumed the expression values in our

879-million-read data set to be the ‘‘best

estimates’’ and then analyzed the se-

quencing depth necessary to achieve these

‘‘final’’ levels (Fig. 5). For the majority

(72%) of genes with FPKM values greater

than 0.05, 500 million reads are needed

for their expression values to be within

10% of their final measurements. With

100 million reads, only 6% of genes have

values that are within 10% of their ‘‘final’’

FPKM value. Furthermore, while 100 mil-

lion reads is sufficient for detection of the

majority of genes and transcripts, the ex-

pression levels of genes obtained at a

depth of 100 million reads deviate on av-

erage from their final value by 41%. These

results suggest that deep sequencing is

necessary for accurate determination of

the expression level of genes.

Next, we investigated the coverage

needed to study the relative abundance

of alternatively spliced forms of genes.

Again, we found that deep sequencing

depths are crucial. For example, PHB (Fig.

6A) is a gene with five isoforms: PHB-001

(ENST00000300408), PHB-002 (ENST0000

0419140), PHB-003 (ENST00000446735),

PHB-004 (ENST00000393345), and PHB-

201 (ENST00000434917) with FPKM

values of 519, 96, 174, 5, and 679, re-

spectively. For the least abundant isoform

(PHB-004), with 60 million reads, its ex-

pression level was at 20% of the final

FPKM. However, for the other four iso-

forms, 200 to 400 million reads were

needed to obtain expression values within

20% of their final FPKM measurements.

These results are surprising as one may

expect deeper sequencing to allow for

better quantification of transcripts that are

expressed at lower levels; however, our

data suggest that it is the highly expressed

isoforms whose expression levels increase

with larger sequencing depths. Further-

more, with less than 200 million reads, the

95% confidence intervals reported by Cufflinks for the two most

highly expressed isoforms (PHB-001 and PHB-201) overlapped each

other; however, with more than 200 million reads, the confidence

intervals for the five isoforms no longer overlapped. Another ex-

ample is CD74, which has three high-expressing variants: CD74-201

Figure 3. Expression values from RNA-seq and microarray. Comparison of FPKM values (log2-
transformed) and microarray signals for the 2597 genes detected by both platforms in 20 unrelated
individuals. For each gene, we plotted the average expression values across the 20 individuals.

Figure 4. Number of junctions, transcripts, and genes detected at different sequencing depths. The
numbers of genes, transcripts, and junctions detected in our 879-million-read data set were assumed to
be the ‘‘final’’ values. Then, the percentages of these ‘‘final’’ values detected at various sequencing
depths were determined. For example, with 100 million reads, 76% of the junctions, 90% of tran-
scripts, and 81% of genes were detected.
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(ENST00000009530), CD74-202 (ENST00000353334), and CD74-

203 (ENST00000377795) with FPKM values of 4690, 54,745, and

2252, respectively. While the expression level of the least-expressed

isoform (CD74-203) was within 10% of its ‘‘final’’ FPKM with 20

million reads, the expression values of the other two isoforms did

not reach this level until 400 million reads. Again, we see that the

expression values of the highly expressed isoforms continued to

increase with higher sequencing depths, whereas that for the iso-

form with the lowest level of expression was fairly constant.

Sufficient sequence coverage is not only needed for accurate

estimations of expression levels; they are also necessary to determine

the relative abundance of isoforms. BRD4 is a gene with four isoforms:

BRD4-201 (ENST00000263377), BRD4-202 (ENST00000360016),

BRD4-203 (ENST00000371835), and BRD4-204 (ENST00000392878)

with FPKM values of 200, 5, 65, and 139, respectively (Fig. 6B). At

low sequencing depths, the expression level of BRD4-204 was

overestimated, while that of BRD4-201

was underestimated; 60 million reads

were needed to show that BRD4-201, not

BRD4-204, is the most highly expressed

isoform.

As a final example of the effect of

sequencing depth on expression values,

we studied relative gene expression by

using two well-characterized genes—

CDKN1A, a cyclin-dependent kinase in-

hibitor; and its regulator, TP53. The ‘‘fi-

nal’’ FPKM values for CDKN1A and TP53

were 2400 and 676, respectively; the

ratio of the expression values (CDKN1A/

TP53) was 3.6. With less than 100 mil-

lion reads, the ratio of the expression

levels of the two genes ranged from

2.9 to 15; this ratio fluctuated by as

much as 300% at read depths of less

than 100 million. However, with more

than 100 million reads, the expression

ratio ranged from 3.6 to 3.7, and the

largest deviation from the ratio ob-

tained was 4%. Thus, deep sequencing is

necessary to ensure the accurate quantification of relative gene

expression.

Discovery of novel transcripts

A feature of RNA-seq is its ability to detect unknown transcripts. To

address this, we used Cufflinks without known gene models to an-

notate transcribed fragments and identified 230,006 genes. The

majority (77%) of these have already been identified by gene anno-

tation groups such as Aceview, CCDS, Gencode, Mammalian Gene

Collection, RefSeq, UCSC, and Vega. Of the remaining 53,939 tran-

scribed fragments, 6892 (13%) overlap RNA polymerase II binding

sites (Rosenbloom et al. 2009). After filtering out known genes and

fragments that overlap repetitive genomic regions (Self Chain and

RepeatMasker tracks on the UCSC Genome Browser), we have 801

‘‘unknown’’ genes. These genes have relative high expression (mean

Figure 5. Gene expression levels at different sequencing depths. The percentages of genes
that reach values within different percentages of the ‘‘final’’ level obtained at a depth of 879 mil-
lion reads were determined. With 100 million reads, only 6% of genes have FPKM measurements
that are within 10% (gold line) of their ‘‘final’’ value compared to 72% at a depth of 500 million
reads.

Figure 6. Expression levels versus sequencing depth. We plotted FPKM values for genes and their transcripts at various sequencing depths. (A) FPKM
values of five spliced forms of PHB are shown; the least abundant isoform (blue line) of PHB reaches within 20% of its ‘‘final’’ FPKM value with only 60 million
reads; however, the expression values of the other four isoforms continued to increase with more reads. (B) FPKM values of BRD4 are shown. With less than
100 million reads, the expression level of BRD4-201 (orange line) is overestimated, while that of BRD4-204 (purple line) is underestimated. (Error bars
represent 95% confidence intervals.)
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FPKM = 95), but they are quite short; the average length of these

‘‘unknown’’ genes is 0.9 kb compared to 1.8 kb for known genes.

Furthermore, only 21 of these novel genes have alternatively spliced

transcripts; we show as example a multi-isoform gene on chromo-

some 13:76902733–76925064 that has five alternatively spliced

transcripts and an FPKM value of 1400 (Fig. 7). Support for the val-

idity of this ‘‘unknown’’ gene includes an upstream 59 RNA poly-

merase II peak and overlaps with histone H3K4Me3 and H3K9Ac

marks. These findings suggest that with our data set of about 40

million reads per sample, we detected most of the known genes

(polyadenylated mRNAs) in B-cells.

Discussion
In this study, we obtained 879 million 50-bp RNA-seq reads derived

from cultured B-cells of 20 CEPH individuals to characterize the

human B-cell transcriptome and to determine the coverage needed

for various RNA-seq studies. We mapped 80% of our sequence reads

to the human reference genome, of which 84% aligned to unique

locations. We found that with 100 million reads, the number of

aligned reads increased with sequencing depth; however, with read

depths greater than 100 million, the percentages remained con-

stant. In contrast, the percentage of aligned reads that map un-

ambiguously to the genome was constant at 84% for all sequencing

depths.

We detected 20,776 Gencode genes and 67,453 of their alter-

natively spliced transcripts using an FPKM threshold of 0.05. More

than 90% of multi-exon genes are alternatively spliced, but their

isoforms are not expressed at similar levels. Rather, the majority of

genes have one isoform that is expressed at higher levels than the

other isoforms. In our expression analysis, we used an FPKM cutoff

for expression because inclusion of all transcripts with FPKM values

greater than zero will include some very small FPKM measurements.

We accompany the use of this threshold with two caveats. First, this

threshold is just a means of evaluation and should not be taken to

define gene expression. There are transcripts with FPKM values less

than 0.05 that are, indeed, expressed. Secondly, our results suggest

that the distribution of FPKM values for genes and transcripts

(Supplemental Fig. 5; Supplemental Tables 2, 3) varies with respect

to sequencing depth; therefore, the threshold of 0.05 should be

considered concurrently with the fact that it was determined using

a sequencing depth of 879 million reads.

We assumed that our 879-million pooled data set provides

a comprehensive collection of expressed genes and transcripts and

their expression levels. We found that with 100 million reads, we

detected the majority of genes (81%) and transcripts (90%), but

their expression levels were not sufficiently accurate. At 100 million

reads, only 6% of genes have FPKM measurements that are within

10% of their ‘‘final’’ values compared to 72% at 500 million reads.

Thus deep sequence coverage is needed for gene expression studies.

The coverage that we report here probably represents an upper

bound of the required depth since the increasing length of sequence

reads and the use of paired-end reads will allow more sequences to

be mapped, thus reducing the numbers of reads needed to obtain

robust expression values.

An enticing feature of RNA-seq lies in its power to detect

transcripts independent of existing information. In this study, we

uncovered 801 potential ‘‘unknown’’ genes. Most of these tran-

scribed fragments are short and comprise single exons; only 21 of

these genes are alternatively spliced. While these results do not

necessarily undermine the ability to uncover unknown transcripts

using RNA-seq, they suggest that with about 40 million reads per

sample, we can detect most of the known genes in human B-cells.

In summary, recent advances in sequencing technologies have

allowed us to obtain deep coverage of human B-cell transcriptomes

at single-nucleotide resolution. Our results provide some guidelines

for the design of gene expression studies. The B-cells in this study

have been used in many other functional (Stern et al. 1990; Linsley

et al. 1991; Peters et al. 1991) and genetic studies (Dolan et al. 2004;

Morley et al. 2004; Dixon et al. 2007); detailed information on gene

expression and structure will extend the previous analyses and fa-

cilitate future projects. Our data are available as the ‘‘B-Cell Tran-

scriptome (RNA-seq)’’ track on the UCSC Genome Browser.

Methods

Samples
Immortalized B-cell lines for 20 European-derived individuals from
the Utah pedigrees of the Center d’Étude du Polymorphisme Humain
collection (CEPH) were obtained from Coriell Cell Repositories.
No individuals were known to be blood relatives, and there is no
known history of major medical illness. Specifically, the individuals
(10 males and 10 females) are GM06985, GM07000, GM07034,

Figure 7. Newly identified gene on chromosome 13. This gene has five alternatively spliced transcripts. The RNA polymerase II peak and H3K4Me3 and
H3K9Ac marks are located at the 59 ends of the gene.
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GM07055, GM07056, GM07345, GM11832, GM11839, GM11992,
GM11993, GM11994, GM12056, GM12145, GM12155, GM12716,
GM12717, GM12750, GM12813, GM12872, and GM12891.

Cells were grown to a density of 5 3 105 cells/mL in RPMI
1640 supplemented with 15% fetal bovine serum, 100 units/mL
penicillin–streptomycin, and 2 mM L-glutamine. Cells were har-
vested 24 h after addition of fresh medium. Total RNA was extracted
from cell pellets using the RNeasy Mini-Kit with DNase treatment
(QIAGEN).

RNA-seq

RNA-seq was performed as recommended by the manufacturer
(Illumina). Briefly, poly(A) mRNA was fragmented, and first-strand
cDNA was prepared using random hexamers. Following second-
strand cDNA synthesis, end repair, addition of a single A base,
adaptor ligation, agarose gel isolation of ;200-bp cDNA, and PCR
amplification of the ;200-bp cDNA, the samples were sequenced
using the Illumina 1G Genome Analyzer.

Isoforms abundance estimation

Sequence reads were mapped using TopHat (v. 1.1.4) with default
settings. Data sets larger than 300 million reads were randomly split
into equal subsets ranging from two to four because of memory
limitations. Cufflinks (v. 0.9.3) was then used to assemble reads into
transcripts and estimate their abundances. Cufflinks was run (1)
with a reference annotation (Gencode) to generate FPKM values for
known gene models and (2) without an annotation file to create
gene bundles representing potential novel transcribed fragments.

Sequence reads selection

Across the 20 samples, 43,819,745 6 8,194,875 (mean 6 standard
deviation) reads were obtained. All reads from each sample were
pooled to form a data set consisting of 878,668,290 million random
reads. To investigate the effect of sequencing depth on RNA-seq data,
we randomly selected reads from the pooled data set and created
subsets varying from 1 to 9 million reads (in intervals of 1 million
reads), 20 to 90 million reads (in intervals of 10 million reads), and
100 to 700 million reads (in intervals of 100 million reads).

To ensure that the particular reads selected for each sequencing
depth are fairly representative, we randomly sampled 100 million
reads from the pooled 879-million data set 10 times and analyzed
the overall alignment statistics obtained across the 10 random
samplings. The percentage of total reads aligning to the genome
across the 10 randomizations was 80% 6 0.005% (mean 6 standard
deviation), of which 84% 6 0.005% (mean 6 standard deviation)
aligned to unique locations. Overall, the alignment statistics are
similar across the 10 random samplings, indicating that the partic-
ular reads chosen in each of our sample sizes is representative. Fur-
thermore, using Cufflinks, we carried out analyses to ensure that
expression values are not affected by the samplings of reads. We
found that across the 10 samplings, 17,967 genes and 69,672
transcripts were detected. Eighty-eight percent of the genes and
transcripts were detected in all samplings. The coefficients of var-
iation of the FPKM values for these genes across the 10 data sets
were 0.10 6 0.16 and 0.49 6 0.53 (mean 6 standard deviation).
Thus, the expression levels of genes or transcripts in different
samplings of 100 million reads are fairly stable.

RNA-seq and microarray analyses

For all analyses in which RNA-seq data were compared with
microarray data previously generated (GSE12526), RNA-seq data

were log2-normalized. Prior to log2 transformation, we added 2 to
the FPKM values to avoid negative values after the log2 trans-
formation.
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