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Our understanding of the development and maintenance of tissues has been greatly aided by large-scale gene expression
analysis. However, tissues are invariably complex, and expression analysis of a tissue confounds the true expression
patterns of its constituent cell types. Here we describe a novel strategy to access such complex samples. Single-cell RNA-
seq expression profiles were generated, and clustered to form a two-dimensional cell map onto which expression data were
projected. The resulting cell map integrates three levels of organization: the whole population of cells, the functionally
distinct subpopulations it contains, and the single cells themselves—all without need for known markers to classify cell
types. The feasibility of the strategy was demonstrated by analyzing the transcriptomes of 85 single cells of two distinct
types. We believe this strategy will enable the unbiased discovery and analysis of naturally occurring cell types during
development, adult physiology, and disease.

[Supplemental material is available for this article. The microarray data from this study have been submitted to the NCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession no. GSE29087.]

Comprehensive gene expression profiling was first made practical

by microarrays, which enabled the study of thousands of genes in

tens of samples. Microarrays have two major shortcomings: They

are limited to known genes, and they have limited sensitivity and

dynamic range. RNA sequencing (RNA-seq) overcomes these prob-

lems by sequencing RNA directly (Ozsolak et al. 2009) or after

reverse-transcription to cDNA (Cloonan et al. 2008; Mortazavi

et al. 2008; Wang et al. 2008). Quantitation is based simply on hit

counts, with great sensitivity and nearly unlimited dynamic range.

Tissues are rarely homogeneous, however, and therefore any

expression profile based on a tissue sample will blend the true ex-

pression profiles of its constituent cells. One way of getting around

this problem would be to analyze single cells instead of cell pop-

ulations, and indeed, single-cell methods have been developed for

both microarrays (Kurimoto et al. 2006; Esumi et al. 2008) and,

recently, RNA-seq (Tang et al. 2009). These methods are suitable for

the analysis of small numbers of single cells and, in particular, may

be used to study cells that are difficult to obtain in large numbers,

such as oocytes and the cells of the early embryo.

However, single-cell transcriptomics must confront two great

challenges. First, markers suitable for the prospective isolation of

defined cell populations are not available for every cell type,

reflecting the fact that few cell types are clearly defined in molec-

ular terms. Second, transcript abundances vary greatly from cell

to cell. For example, beta actin (Actb) mRNA content varies more

than three orders of magnitude between pancreatic islets cells

(Bengtsson et al. 2005). Similar results have been reported for RNA

polymerase II (Raj et al. 2006), human GAPDH (Warren et al. 2006;

Lagunavicius et al. 2009), SPI1 (also known as PU.1) (Warren et al.

2006), and TBP, B2M, SDHA, and EEF1G mRNAs (Taniguchi et al.

2009) and at present seems to be a common feature of the tran-

scriptome. Most of the variation may be intrinsic, caused by burst-

like stochastic activation of transcription, where brief episodes of

mRNA synthesis lasting a few minutes are separated by periods of

transcriptional silence of similar duration (Chubb et al. 2006). As

a consequence, a random sample of cells would show great varia-

tion in their content of particular mRNAs, ranging from those cells

that have just undergone a burst, to those that have nearly com-

pletely degraded their mRNA; this has been directly observed for

RNA polymerase II transcription in situ using a fluorescent probe

targeting the 52-copy repeat in that gene (Raj et al. 2006).

Recently, the power of single-cell analysis for unbiased cell-

type classification was demonstrated in an experiment based on

single-cell Q-PCR (Guo et al. 2010). By sampling not just a few, but

large numbers of, single cells and by focusing in particular on

transcription factors known to be relevant, the investigators were

able to correctly classify the three cell types known to be present in

the mouse blastocyst. However, since Q-PCR is limited to small

numbers of genes, it is not feasible to survey, for example, the

entire set of transcription factors. Thus there is a need for a method

to access the entire transcriptomes of large numbers of single cells.

Here we describe single-cell tagged reverse transcription (STRT),

a highly multiplexed method for single-cell RNA-seq on the Illu-

mina platform. We prepare barcoded cDNA libraries from 96 single

cells and analyze them by sequencing. From each transcript, a

single read is obtained, corresponding to a template-switching site

located preferentially at the 59 end of the mRNA. We then use

similarity of expression patterns to build an in silico map of cells

and how they are related. This way, both single-cell detail and cell

type–specific population averages are available and can be studied

without the mixing of data from unrelated cell types. Importantly,

both known and novel factors specifically expressed in a cell type

can be analyzed, since the resulting data set comprises the entire

transcriptome of each cell.
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Results

Single-cell tagged reverse transcription

In brief, each sample was prepared by picking single cells into the

wells of a 96-well PCR plate preloaded with lysis buffer and then by

adding reverse transcription reagents to generate a first-strand

cDNA. Eight synthetic mRNAs were added to each well as internal

controls. To incorporate a well-specific (and hence cell-specific)

barcode, we exploited the reverse transcriptase template-switching

mechanism (Schmidt and Mueller 1999) whereby a helper oligo

directs the incorporation of a specific sequence at the 39 end of the

cDNA molecule (Fig. 1A). A different helper oligo was used in each

well, with distinct six-base barcodes and a universal primer se-

quence. After cDNA synthesis, the 96 reactions were pooled, pu-

rified, and amplified by single-primer PCR in a single tube. Cell-to-

cell amplification bias was thus reduced, and the number of PCR

cycles could be kept low. The amplified samples were then adapted

for Illumina sequencing. We named the procedure STRT. For de-

tails, see Methods.

Here we report data from 92 single cells collected from two

different mouse cell types: embryonic stem cells (ES R1) (Wood

et al. 1993) and embryonic fibroblasts (MEFs; as a control, we sep-

arately prepared 96 wells with 10 pg per well of a human brain

reference RNA, henceforth called RefRNA). We obtained 110 mil-

lion raw reads on five sequencing lanes on an Illumina Genome

Analyzer IIx. Reads lacking a proper barcode, mostly caused by

errors in sample preparation or sequencing, were removed. Of the

remaining 82 million reads, 80% could be placed on the mouse

genome allowing for up to two sequencing errors, resulting in hits

to 13,879 annotated genes and 940 repeat families. The number of

mapped reads was reduced by 99% in negative control wells,

confirming that observed signals originated from bona fide cDNA

synthesis in positive wells. The remaining misassigned reads may

have been generated in part by sequencing errors, or oligonucle-

otide synthesis errors, in the barcode. Mapped reads were then

classified as illustrated in Figure 1B.

The background from, for example, genomic DNA contami-

nation or unspliced pre-mRNA, judged by hits to intronic sequence,

was low (0.1 reads per million per kilobase [RPKM]), as clearly seen

in Figure 2A and Supplemental Figure 1 (note the paucity of reads

on reverse strand and in introns). To quantify this, we determined

the number of hits to the exons, introns, 1000-bp flanking regions,

and splice junctions of each gene (Fig. 2C). Fifty-five percent of all

reads mapped to exons, and 8% mapped to splice junctions. The

remaining reads mapped to introns (9%), upstream/downstream

regions (1% each), and repeats (10%). Since introns and repeats

span much more of the genome than do exons, we then normal-

ized for the total feature length and total number of reads (Fig. 2D).

We found 9.5 RPKM in exonic sequence but only 0.1 RPKM in

introns, indicating great specificity for expressed mRNA and re-

jection of genomic DNA and unspliced pre-mRNA. Reads aligning

to repeats were dominated by the B2 family of short interspersed

elements, which are known to generate polyadenylated transcripts

(Borodulina and Kramerov 2008) and are abundantly expressed in

many tissues including the early embryo (Taylor and Piko 1987).

Strand information is often required to properly assign reads

to transcriptional units, since genes frequently overlap on opposite

strands and since the 59 and 39 UTRs are often incorrectly anno-

tated. STRT preserved strand information, as shown by the ratio of

sense to antisense reads on exons (115-fold) and splice junctions

(293-fold). We found an elevated density of reads upstream of and

downstream from genes (Fig. 2D), suggesting the frequent pres-

ence of neighboring genes in these regions, and we found evidence

of 505 pairs of expressed genes with exons overlapping in opposite

orientation.

Assessing the length of single-cell cDNA

Initial experiments showed that heating during lysis caused partial

degradation of RNA, leading to frequent hotspots of template switch-

ing. Omitting the heating step and optimizing reverse transcrip-

tion resulted in a majority of full-length cDNAs. To confirm this

observation, we examined the set of eight synthetic mRNAs added

to each well. We found that more than 85% of all reads occurred

within the first 5% of the length of the RNA, nearly all of which

Figure 1. Single-cell tagged reverse transcription (STRT). (A) Overview
of the method, illustrating the main steps in sample preparation: (i) mRNA
(brown) is reverse transcribed using a tailed oligo-dT primer (green),
generating a first-strand cDNA with 3-6 added cytosines; (ii) a helper oligo
(green) causes template-switching and thereby introduces a barcode
(shaded) and a primer sequence into the cDNA; (iii) the product is am-
plified by single-primer PCR exploiting the template-suppression effect
and is then immobilized on beads, fragmented, and A-tailed; (iv) the
Illumina P2 adapter (blue) is ligated to the free end; (v) the P1 adapter is
introduced in the library PCR step, using a primer tailed with the P1 se-
quence (blue); and (vi) the final library is sequenced from the P1 side using
a custom primer. Each read (arrow) begins by the barcode, followed by
three to six Cs, followed by the mRNA insert. (B) Illustration of read
mapping and annotation, for a two-exon gene. Reads mapping to the
sense strand of exons, as well as to splice junctions, were counted toward
the expression of the gene. Reads mapping upstream of, downstream
from, or in introns were counted for quality control purposes, and anti-
sense hits were used to judge the background level.
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were placed within a few bases of the known 59 end of the tran-

script (Fig. 2B). We conclude that our protocol had reliably iden-

tified the true 59 end of transcripts, at least up to 2.0 kb in length

(corresponding to the longest control mRNA). However, surpris-

ingly we found that hits on endogenous mRNA showed a bimodal

distribution, with a sharp 59 spike and a broader distribution of hits

approaching the 39 end (Fig. 2B; as exemplified by Pou5f1 in Fig. 2A

and several genes in Supplemental Fig. 1). In contrast to synthetic

mRNA, endogenous mRNAs of similar length showed only 16%

reads at their 59 end. In addition, longer transcripts showed a pro-

gressively larger proportion of hits to their 39 UTR. The same effect

was observed for RefRNA (data not shown). Not all genes followed

the average pattern: We found instances of very long transcripts

almost exclusively represented by 59 reads, for example, the 7-kb

Malat1 noncoding RNA; yet some short genes, for example, Actb,

apparently lacked 59 reads (Supplemental Fig. 1). The origin of

apparently truncated mRNAs warrants further investigation.

If the distribution of reads on endogenous genes were due to a

failure to complete cDNA synthesis, we would expect that quan-

tification of long transcripts may be affected. Indeed, we found a

correlation between length and expression level: The most abun-

dant genes were <2 kb on average, whereas intermediate and low-

expressed genes were >2.0 kb (Supplemental Fig. 2a). However, this

effect was also seen in microarray data from the same cell types

(Supplemental Fig. 2b) and may be explained by natural selection

for compact genes among abundant and universally expressed

genes (Eisenberg and Levanon 2003). We conclude that STRT did

not suffer a significant quantitative bias against long transcripts.

To determine the depth of sequencing required to sample

most of the available complexity, we studied the ‘‘new discovery’’

rate as a function of read depth. As shown in Supplemental Figure

3a, the sample reported here was not sequenced to saturation and

appeared to contain at least 10 million distinct molecules. This

leads to a rough lower-bound estimate of

100,000 mRNA molecules per well, not

far from the 241,000 overall average found

by normalizing against control mRNA (see

below).

In contrast, the rate of discovery of

distinct genes diminished more rapidly,

and most were detected within the first

10 million reads (Supplemental Fig. 3b,c).

Absolute mRNA abundance
in single cells

An advantage of single-cell analysis is

that the number of cells (i.e., one) in each

sample is known with certainty. If inter-

nal mRNA controls are added in known

amounts, it is therefore possible to obtain

an estimate of the total number of mRNA

molecules present in each well.

By using this approach, we estimate

that 10 pg RefRNA contained 103,000

mRNA molecules per well on average (Fig

3A), while an average of 241,000 mRNA

molecules were present in wells contain-

ing cells (Fig. 3B). Only 812 molecules

were found on average in negative con-

trol wells. Interestingly, there was a sharp

distinction between cell types. While we

found just 22,000 molecules per well in ES cells, there were

505,000 on average in MEFs, suggesting that the latter cell type

contained about 20-fold more mRNA. The same difference was

observed for ribosomal RNA (small subunit), suggesting that ES

cells contain overall less RNA than MEFs.

ES cells were karyotypically normal (data not shown), and

MEFs were primary cells, arguing against any difference in ploidy.

The most abundant endogenous ribonucleases (RNases K, 4, and

2b) were all significantly more abundant in MEFs than ES cells and

were uncorrelated with total molecule number, arguing against

active degradation in ES cells. All cells were picked on the same

occasion and in the same reagents and were amplified in the same

tube, ruling out batch effects.

It is possible that ES cells express fewer genes or, alternatively,

that cell lysis was significantly less effective in ES cells than MEFs.

To distinguish these hypotheses, we compared the relative ex-

pression levels of the 20 highest expressed genes in each cell type.

If the difference in mRNA abundance was due to incomplete lysis,

we would expect a random loss of mRNA molecules, and hence the

top genes in ES and MEF cells would account for a similar per-

centage of all mRNA. However, we found instead a striking dif-

ference: While in MEFs the top 20 genes account for 15% of all

mRNA, they accounted for 39% in ES cells. Similarly, the top

thousand genes in ES cells ranged from 1.4–2709 molecules per

cell, whereas for MEFs the range was 77–7044 molecules per cell (in

negative controls, the range was 0.05–4.6 molecules). We conclude

that the most likely explanation for the smaller number of mRNA

molecules in ES cells is that they in fact express fewer genes.

Extending this analysis to all genes shows that, indeed, a smaller

number of genes in ES cells explains a larger fraction of mRNA

molecules, compared with both MEFs and RefRNA (Fig. 3C).

To validate the finding, we extracted RNA in bulk from

a known number of cells, and found a 5.5-fold difference in total

Figure 2. Read distribution. (A) Example of reads mapped to both strands of the 5-kb Pou5f1 locus,
shown as a coverage plot. The gene structure is shown in blue below the graph. Most reads aligned near
the 59 end of the gene. (B) Density of reads as a function of the position along the transcript, in 5%
length bins. The figure shows eight synthetic mRNA (blue bars) and averages for all genes categorized
by transcript length as indicated. (C ) Read-mapping statistics, showing the fraction of all mapped reads
that overlapped each type of annotation (cf. Fig. 1B). The vertical scale shows the percentage of all reads
that mapped to exons, introns, splice junctions, 1000 bp upstream of and 1000 bp downstream from
transcriptional units, and known repeats. In each case, the black bar shows reads mapped in the sense
orientation, and the gray bar shows reads mapped in antisense. Repeats were not directionally anno-
tated and therefore were hit equally on both strands. (D) The same statistics as in C but normalized for
the total length of each feature class, expressed as RPKM. This shows more clearly the level of enrich-
ment of exons versus introns, demonstrating good specificity for mRNA and rejection of genomic DNA
and/or inspliced intronic RNA.
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RNA content (ES cells: 0.8–1.2 pg per cell; MEFs 4.8–4.9 pg per cell).

Thus ES cells express less mRNA, from a smaller number of genes,

compared with MEFs.

As a consequence of the differences in total detected molecule

number, ES cells and MEFs showed distinct distributions of de-

tected mRNA copy numbers in single cells (Fig. 3D). While the

median copy number in MEFs was 15, in ES cells it was just two.

Splice variants

As a result of the nonuniform distribution of reads along each

transcript, we could only detect alternative splicing that occurred

at specific positions. This made it difficult to perform a systematic

analysis of alternative splicing. Nevertheless, 13% of all exon-

mapping reads spanned splice junctions and were thus infor-

mative of splice patterns; this set included junctions joining ad-

jacent as well as nonadjacent exons in a total of 7339 genes. Ex-

amining these reads, we found evidence of 1580 alternatively

spliced genes, with an average of 1.9 alternative splice events each.

Quantification of gene expression levels

In order to generate a quantitative measure of gene expression

comparable to the commonly used RPKM (Mortazavi et al. 2008),

we counted the number of hits to each annotated gene and nor-

malized the data to transcripts per million (t.p.m.). We did not

normalize by transcript length (as in the RPKM measure) because

a single amplifiable molecule was generated for each input mRNA

molecule, irrespective of its length.

Since single-cell cDNA was pooled before amplification, the

yields of different cells could not be subsequently normalized. As

a consequence, cells were unequally sampled and the limit of de-

tection varied. Whereas highly expressed genes like Actb were

detected in every cell, the probability of detection decreased for

genes expressed at lower levels; the level required to reach 50%

detection probability was 29 t.p.m. in MEFs and 103 t.p.m. in ES

cells (Fig. 4A).

A scatterplot including the top 1000 genes in ES and MEF cells

(1465 genes in total) showed that cell-to-cell variability was high,

as expected (Fig. 4B). Surprisingly, the similarity was greater be-

tween ES cells than between MEFs, despite the fact that MEFs

contained more mRNA and were thus sequenced to greater depth.

The correlation coefficient was 0.86 for ES cells and 0.63 for MEFs,

compared with 0.86 for RefRNA. However, the greatest differences

were observed between cell types, where correlation coefficients

were lower and groups of cell type–specific genes could be identi-

fied. For pairwise scatterplots of eight representative cells, see

Supplemental Figure 4.

The reproducibility of expression measurements was assessed

using the eight synthetic control mRNAs included in each well.

Reproducibility was good when the number of molecules per

well was in the range 100–1000, but as the number of molecules

per well decreased, mRNA was detected in decreasing numbers of

wells. Approximately 10 molecules per well were required to

reach 50% detection probability (Fig. 4C). Nevertheless, biological

variance exceeded technical variance at all levels of expression

(Fig. 4D).

The measured expression levels agreed with those obtained by

Q-PCR and to a lesser extent microarray hybridization (Supple-

mental Fig. 5). In agreement with published reports based on sin-

gle-cell Q-PCR (Bengtsson et al. 2005), Actb mRNA abundance

showed an approximately log-normal distribution across cells

(Supplemental Fig. 6), shifted toward higher levels in MEFs com-

pared with ES cells. RNA polymerase II (large subunit) was

expressed at 12619 molecules per cell in MEFs, comparable to the

33679 t.p.m. found by direct detection in situ (Raj et al. 2006),

assuming 300,000 transcripts per cell.

Revealing cell type relationships in a two-dimensional cell map

We wished to visualize cell–cell relationships on a two-dimensional

map, such that more closely related cells would be located near each

other. In this way, we hoped to be able to detect and distinguish cell

types based solely on expression data, without relying on pre-

existing markers. A near-complete separation into distinct cell-type

clusters was achieved using a graph-based method (see Methods).

Figure 3. Number of mRNA molecules detected per cell. Approxi-
mately 2500 molecules of eight synthetic control mRNAs were spiked into
each well. Using the number of reads mapped to synthetic mRNA as
a normalizing factor, we converted the raw read counts from each well to
an absolute number of mRNA molecules. The figures show the molecule
count for each cell ordered by position on the reaction plate. (A) Molecule
counts obtained from brain reference total RNA at 10 pg per well. The
average observed was 103,000 molecules per well (negative controls:
4300 per well). (B) Molecule counts obtained from cells. A total of 48 ES
cells, 44 MEF cells, and four empty wells were included. The overall av-
erage was 241,000 per cell (negative controls: 841 per cell). Seven wells
apparently failed (molecule numbers similar to the negative controls,
shown in pale orange), and were omitted from further analysis. (C ) The
cumulative fraction of all mRNA as a function of rank order gene expres-
sion level. Apparently, a smaller number of genes was expressed, com-
pared with MEFs and RefRNA. (D) The distribution of gene copy number
across all genes and cells.
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Briefly, we constructed a graph with nodes representing cells and

with edges representing cell-to-cell similarity of expression pat-

tern. We then used a force-directed layout to project the graph

to two dimensions (Fig. 5A), resulting in only a single apparently

misplaced cell. A conventional principal component analysis (PCA)

revealed the same separation (Fig. 5B), but less distinctly. Again, a

single ES cell clustered with the MEFs. These results demonstrate

that the single-cell expression profiles contained enough infor-

mation to distinguish cell types de novo. Both PCA and graph-

based analysis clearly distinguished the cell types tested here, but

the graph-based method generated more homogenous, well-sep-

arated clusters.

We then projected gene expression data onto the map, which

provided an easy way to quickly grasp gene expression patterns in

both single cells and in the clusters representing cell types (Fig.

5C). A set of well-known ES cell markers (Dppa5a, Sox2, and Pou5f1)

were clearly specifically expressed in ES cells, although their ex-

pression levels varied widely from cell to cell (note the logarithmic

color scale). Similar results were observed for Sall4, Zfp42, Zic3, and

Esrrb. A few genes important for pluripotency (Klf4, Myc, and Klf2)

were more broadly expressed. In contrast, MEFs were characterized

by high expression of cytoskeletal and matrix proteins such as

Actb, Thbs1, and Fn1. The power of large-scale single-cell analysis

was evident in the fact that while not every cell expressed every

marker, patterns of gene activity were highly consistent at the

cluster level. For example, lower expressed transcription factors

characteristic of ES cells went undetected in some individual ES

cells, but the overall pattern of expression in the ES cell cluster was

unambiguous and consistent with their identity as ES cells. As ex-

pression levels decreased, the fraction of expressing cells also de-

creased, reflecting the stochastic nature of gene expression as well

as the sensitivity limits of the method (cf. Fig. 4A,B).

Ranking genes by their differential expression in the two

clusters revealed that MEFs were characterized by high expression

of cytoskeletal proteins, whereas ES cells were highly enriched for

ribosomal proteins. The top 10 MEF-enriched genes were cyto-

skeletal or matrix proteins (fibronectin 1, thrombospondin 1, beta

actin, tropomyosin 1, sparc (also known as osteonectin), thymosin

beta 4, collagen 1a2, and vimentin) with only two exceptions

(Malat 1 and S100a6). In contrast, the top 10 ES-enriched genes

were ribosomal (eight subunits) plus ferritin light chain 1 and 2. In

fact, of the top 60 genes enriched in ES cells, 45 were ribosomal

subunits, representing half of all known ribosomal proteins. This

may be a result of the fact that ES cells expressed fewer genes

overall, so that key housekeeping genes were relatively enriched.

Reassuringly, the known ES cell markers Dppa5a, Sox2, and Pou5f1

were also highly enriched, ranked 11, 84, and 135, respectively.

The cell map representation demonstrated that (1) individual

cells showed highly variable expression patterns (mostly due to

technical variation), yet their overall pattern of expression was

Figure 4. Quantitative accuracy. (A) Shows the probability of detection as a function of expression level for ES and MEF cells (shaded areas show 95%
intervals). (B) Representative single-cell scatterplot showing the set of genes belonging to the top 1000 in ES and MEF cells (1465 in total). (C ) The
measured copy number for each of eight synthetic control mRNAs, across the entire plate. Circles show averages, whereas blue dots show individual data
points (jittered for clarity). Zero measurements are shown along the horizontal axis, with percentage zeros indicated. For comparison, the dashed line
indicates the ideal 45° slope. (D) Comparison of technical variance (based on control RNA) and biological variance (based on the average of genes with
expression levels within 620% of the indicated copy number) across the entire plate. Error bars, 95% confidence intervals; in each case the confidence
intervals were nonoverlapping.
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sufficient to group cells of one type together as a cluster; and (2)

once a cluster of cells was formed, representing a distinct cell type,

patterns of gene expression at the cluster level were unambiguous.

We conclude that shotgun single-cell expression profiling is an

efficient strategy to access single-cell expression data in heteroge-

neous populations of cells.

Discussion
We have shown that large-scale single-cell expression profiling can

be used to form cell type–specific clusters. This allows analysis of

cell type–specific patterns of gene expression both at the single-cell

level and the population level, without the need for known

markers or even a prior knowledge that a certain type of cell exists.

We propose that this general strategy can be extended to study all

kinds of mixed samples, such as specific progenitors active during

organogenesis, small populations of stem cells embedded in adult

tissues, heterogeneous tumor cell samples, rare circulating tumor

cells, and more.

What unites all these disparate scientific lines of inquiry is the

need to unmix heterogeneous populations of cells. Currently,

unmixing is primarily achieved either by physically isolating cells

based on known cell surface markers or by genetically labeling the

desired cells so that they can be isolated based on, for example, GFP

expression. However, the use of previously known markers pre-

cludes the discovery of new cell types and always risks resulting in

mixed data if the markers were not truly specific. In contrast, we

have shown that cells of distinct types can be unmixed purely in

silico, provided that large numbers of single-cell expression pro-

files are generated. Although in this case clusters did correspond to

distinct cell-types, in general the structure of ‘‘cell-type space’’ is

unknown. Classical cell types may indeed harbor multiple distinct

substates, as exemplified by the fluctuating expression of Hes1 in

ES cells (Kobayashi et al. 2009). These substates may or may not be

possible to distinguish using large-scale single-cell transcriptome

analysis, depending on what proportion of the transcriptome is

regulated between the substates. The question of the number of

functionally distinct cell types, and substates, and their relation-

ships has hardly begun to be explored.

Importantly, then, a very high throughput, scalable method

for single-cell expression profiling was required. RNA-seq has the

advantage, over microarrays, of permitting high levels of multi-

plexing, while generating more specific, sensitive, and accurate

expression data. However, sample preparation for RNA-seq is still

labor-intensive and fairly expensive. We therefore developed a

method to prepare a barcoded single-cell cDNA sample from 96

cells in a single incubation step. As a consequence, 96 cells could be

pooled and treated as a single sample throughout the procedure,

which greatly increased our throughput and reduced cost. The

entire procedure takes 2 d to perform, from 96 living cells to fin-

ished samples loaded on the Genome Analyzer. The cost, including

all reagents and consumables to generate about 100 million 55-bp

reads on an Illumina Genome Analyzer IIx, is approximately

$5000 (that is, about $50 per cell; however, as shown in Supple-

mental Fig. 3, a larger number of reads would be necessary to reach

saturation, which will be proportionately more expensive).

A previous report detailed a single-cell RNA-seq method (Tang

et al. 2009) for the SOLiD platform. However, that method has so

far only been applied to a small number of atypically large cells (a

total of seven cells were reported, each 10- to 100-fold larger than

most somatic cells), did not maintain strand specificity (thus com-

plicating the analysis of the approximately 3000 overlapping genes

in the genome), and required a several-day procedure to prepare each

cell for sequencing. In a more recent work, the method was applied to

approximately 30 single cells, also from the early embryo (Tang et al.

2010). The lack of internal controls in that method precluded a di-

rect estimate of the total number of mRNA molecules recovered.

Here we chose to generate data on a larger number of single

cells, each analyzed at a relatively shallow depth of coverage. This

allowed us to produce a cell map with high resolution. In fact, the

more cells are added, the more accurate will be the aggregate data

obtained from each distinct cell type (cluster) and the better the

resolution in the ‘‘cell type space.’’ For example, the ES cells here

were sampled at 241 000 reads per cell on average, but altogether

Figure 5. Graph-based visualization (‘‘cell map’’). (A) Cells, represented by graph nodes (circles) were laid out randomly, and edges (gray lines) were
drawn from each cell to the five other cells it was most highly correlated with. Then, a force-directed layout was used to lay out the graph on the plane. In
this stage, cells repelled each other uniformly but were held together by edges acting as elastic springs. The resulting visual map was consistent with known
cell identities (ES cells in orange, MEFs in blue), with a single apparently misplaced cell. Note the lack of edges connecting the clusters, showing that the
graph has separated into disjoint components. (B) The same data analyzed by principal component analysis (PCA), again with a single apparently
misplaced cell but with less distinct separation by cell type. (C ) The expression of selected genes is shown on a logarithmic color scale (inset, upper right).
The top row shows genes enriched in MEFs, while the bottom row shows genes enriched in ES cells and known to be ES cell markers
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9.8 million reads were obtained from the ES cells. Thus after

identifying clusters of cells representing a distinct cell type, deeper

sequencing data with greater sensitivity were immediately avail-

able for that type. Sampling a large number of cells will be espe-

cially important when the approach is applied to complex tissues,

where some types of cells may be present only in a small minority.

In addition, as sequencing costs continue to decrease, the tradeoff

between number of cells and number of reads will become less

pressing.

An important aspect of STRT is its ability to pinpoint the exact

location of the 59 end of transcripts. This could be used to analyze

promoter usage in single cells and, in effect, provides a straightfor-

ward method for single-cell CAGE (cap analysis of gene expression).

Although we found that endogenous transcripts often were not

full length, this was not due to any inherent limitation, since

synthetic mRNAs up to 2 kb were nearly completely full length.

The discrepancy may be attributed to degradation during cell

harvesting and picking, although it is possible that it also reflects

the presence of partially degraded mRNA in living cells.

Several aspects of the method could be improved. Technical

variation may in part be explained by PCR amplification bias (we

used 20 cycles to amplify single-cell cDNA and 12 cycles for the

Illumina sample preparation). It will be important to try to further

reduce the total amount of amplification. Similarly, the efficiency

of converting mRNA into amplifiable cDNA could probably be

further increased, which would lead to increased sensitivity (cur-

rently, only about 1000–6000 genes were reliably detected in ES

cells, 2000–8000 in MEFs, as shown in Supplemental Fig. 3). An-

other shortcoming of the present method is that it does not span

the entire transcript length. This precludes systematic analysis of

alternative splicing, at least for exons located away from the 59 and

39 UTRs. It will be an important subject of future research to find

a way to barcode and amplify fragments representing the entire

transcript, while maintaining multiplexing and without also in-

cluding undesired RNA species such as ribosomal RNA.

We envisage the future use of very large-scale single-cell

transcriptional profiling to build a detailed map of naturally

occurring cell types, which would give unprecedented access to

the genetic machinery active in each type of cell at each stage of

development.

Methods

Cell culture and RNA purification
ES R1 cells were cultured as previously described (Moliner et al.
2008). MEFs were prepared as primary cells from mouse embryos
and were maintained in DMEM with 10% FBS, 13 penicillin/
streptomycin, 13 Glutamax, and 0.05 mM 2-mercaptoethanol. All
reagents were from Invitrogen. MAQC Human Brain Reference
RNA was purchased from Ambion. Total RNA was prepared from
100,000 and 300,000 counted cells using TRIzol (Invitrogen)
according to the manufacturer’s instructions and was quantified
on an Agilent BioAnalyzer using the RNA 6000 Nano chip. Con-
centration measurements by Qubit (Invitrogen) yielded similar
results.

Single-cell tagged reverse transcription

A cell capture plate (AbGene Thermo-Fast 96 catalog no. 0900) was
prepared, containing 5 mL of STRT buffer (20 mM Tris-HCl at pH 8.0,
75 mM KCl, 6 mM MgCl2, 0.02% Tween-20) with 400 nM STRT-V3-
T30 (59-biotin-AAGCAGTGGTATCAACGCAGAGTCGACT30VN-39;

this and all other oligos were from Eurofins MWG Operon) and
400 nM STRT-V2-n (59-AAGCAGTGGTATCAACGCAGAGTGCAG
TGCTXXXXXXrGrGrG-39, where ‘‘rG’’ denotes a riboguanine and
‘‘XXXXXX’’ was a 6-bp barcode) (see Supplemental Table 1). Each
well of the capture plate contained a different template-switching
helper oligo (STRT-V2-1 through STRT-V2-96) with a distinct barcode.

Cells were dissociated enzymatically using TrypLE Express
(Invitrogen), washed, and resuspended in phosphate-buffered sa-
line (PBS). A single cell was collected into each well of a 96-well
capture plate using a custom-built semi-automated cell picker, and
the plate was immediately frozen on dry ice. When total RNA was
analyzed instead, 1 mL of 10 pg/mL was added to each well.

The cell capture plate was thawed, and 5 mL reverse tran-
scription mix (4 mM DTT, 2 mM dNTP, 5 U/mL Superscript II in 100
mM Tris-HCl at pH 8, 375 mM KCl, 0.1% Tween-20, 6 mM MnCl2,
2500 molecules of control mRNA) was added to each well. The
synthetic mRNA consisted of eight different in vitro-transcribed
mRNAs (Ambion ArrayControl) ranging from 755–2000 bp, in
a dilution series (calculated to contain 1180, 1170, 88, 88, 9, 7, 0.6,
and 0.4 molecules of each species). The plate was incubated (10°C
for 10 min, 42°C for 45 min) to complete reverse transcription and
template switching.

To purify the cDNA and remove unreacted primers, 100 mL
MyOne carboxylate beads (Invitrogen) was washed twice in 100 mL
EBT (10 mM Tris-Cl at pH 8.5, 0.02% Tween-20) and then resus-
pended in 2 mL 14% PEG-6000 in 0.9 M NaCl, and 20 mL of this
mixture was added to each well. Beads from all wells were pooled,
washed in 70% ethanol twice, dried, and eluted in 37 mL EBT in
a 1.5-mL polyallomer tube (Beckman).

The cDNA was amplified in a single tube in 50 mL of 200 mM
dNTP, 200 nM STRT-PCR primer (59-biotin-AAGCAGTGGTATC
AACGCAGAGT-39), 13 Advantage2 DNA Polymerase Mix (Clon-
tech) in 13 Advantage2 PCR buffer (Clontech) with 1 min at 95°C
followed by 20 cycles of 15 sec at 95°C, 30 sec at 65°C, 4 min at
68°C, with heated lid. A 5 mL aliquot was amplified for another five
cycles and visualized on a 1.2% agarose E-gel (Invitrogen) to con-
firm the range of cDNA lengths.

The product was immobilized on MyOne C1 Streptavidin
beads. Twenty microliters of beads was washed twice in 50 mL 23

BWT (10 mM Tris HCl at pH 7.5, 1 mM EDTA, 2 M NaCl, 0.02%
Tween-20) and added to the remaining 45 mL PCR product. After
a 10-min incubation at room temperature, the beads were washed
three times in 50 mL 13 BWT and twice in EBT.

Sample preparation for high-throughput sequencing

Amplified cDNA was fragmented by DNase I in the presence of
Mn2+, which causes a preference for double-strand breaks. Beads
were resuspended in DNase I buffer supplemented with 10 mM
MnCl2 and DNase I diluted to 0.0003 U/mL in a total volume of 120
mL for exactly 8 min at room temperature. The reaction was
stopped by washing the beads five times in 50 mL EBT.

DNA ends were repaired and A-tailed as follows. Beads were
resuspended in 25 mL EBT, and 25 mL NEBNext End Repair reaction
mix (New England Biolabs) was added; then the beads were in-
cubated for 30 min at room temperature. The beads were washed
twice in EBT, then resuspended in 21 mL EBT; 2.5 mL NEBNext dA
tailing buffer and 1.5 mL Klenow exo- (both NEB) were added, and
the reaction was incubated for 30 min at 37°C, followed by two
washes in 50 mL EBT.

An adapter containing the Illumina P2 sequence (59-CAAGC
AGAAGACGGCATACGAGCTCTTCCGATCT-39 and 39-PHO-GTTC
GTCTTCTGCCGTATGCTCGAGAAGGCTAG-PHO-59) was ligated
by resuspending the beads in 25 mL EBTand adding 23 ligation mix
(23 NEBuffer 4, 2 mM adapter, 1 U/mLT4 DNA ligase, 2 U/mL SalI-HF,
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and 2 mM ATP; all reagents from NEB) and incubating for 30 min at
37°C and then washing twice in 25 mL EBT. The SalI-HF enzyme
releases 39 fragments bound to the beads.

The beads were then used as template in a 100 mL PCR re-
action (200 mM dNTP, 400 nM each primer of primers 59-AATGAT
ACGGCGACCACCGAGATCTAAGCAGTGGTATCAACGCAGAGT-39

and 59-CAAGCAGAAGACGGCATACGAG-39, 200 mM dNTP, 0.2 U/mL
Phusion polymerase in Phusion HF buffer; all from NEB) with 30 sec at
98°C, followed by 12 cycles of [10 sec at 98°C, 30 sec at 65°C, 30 sec at
72°C] followed by 5 min at 72°C. The product was purified by AmPure
XP (Beckman Coulter) and resuspended in 20 mL EBT. Yield was typ-
ically 1–3 ng/mL.

The sample was size-selected on a 2% E-gel with SYBR Safe
(Invitrogen), recovering the 200 400 bp range by Qiaquick Gel
Extraction (replacing the heating step with 15 min of vigorous
agitation).

Cluster formation and sequencing-by-synthesis was performed
in-house on a Genome Analyzer IIx according to the manufacturer’s
protocols (Illumina, Inc.).

Mapping, quantification, and visualization

Raw reads were sorted by barcode, trimmed, and mapped to the
mouse genome using Bowtie (Langmead et al. 2009). Unmapped
reads were discarded. Then, for each annotated feature in the NCBI
37.1 assembly, all mapping reads were counted to generate a raw
count for each genomic feature. Finally, the raw reads for each cell
were normalized to transcripts per million. A detailed description
of the analysis pipeline will be published elsewhere, and the soft-
ware is available from us upon request.

To visualize cells in a two-dimensional landscape, we first
computed all pairwise similarities using the Bray-Curtis distance
(because it handled the noise in low-expressed genes well; standard
correlation yielded similar results, but with a few more misplaced
cells). We then built a similarity graph by letting nodes represent
cells, and connecting each cell to its five most similar cells. A force-
directed layout was used to project the graph to two dimensions,
revealing the internal structure based on cell–cell similarities.
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