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The next-generation sequencing technology coupled with the growing number of genome sequences opens the oppor-
tunity to redesign genotyping strategies for more effective genetic mapping and genome analysis. We have developed
a high-throughput method for genotyping recombinant populations utilizing whole-genome resequencing data generated
by the Illumina Genome Analyzer. A sliding window approach is designed to collectively examine genome-wide single
nucleotide polymorphisms for genotype calling and recombination breakpoint determination. Using this method, we
constructed a genetic map for 150 rice recombinant inbred lines with an expected genotype calling accuracy of 99.94%
and a resolution of recombination breakpoints within an average of 40 kb. In comparison to the genetic map constructed
with 287 PCR-based markers for the rice population, the sequencing-based method was ;203 faster in data collection
and 353 more precise in recombination breakpoint determination. Using the sequencing-based genetic map, we located
a quantitative trait locus of large effect on plant height in a 100-kb region containing the rice ‘‘green revolution’’ gene.
Through computer simulation, we demonstrate that the method is robust for different types of mapping populations
derived from organisms with variable quality of genome sequences and is feasible for organisms with large genome sizes
and low polymorphisms. With continuous advances in sequencing technologies, this genome-based method may replace
the conventional marker-based genotyping approach to provide a powerful tool for large-scale gene discovery and for
addressing a wide range of biological questions.

[Supplemental material is available online at www.genome.org. Pseudomolecules harboring 1,226,791 SNPs identified
between Oryza sativa ssp. indica cv. 9311 and ssp. japonica cv. Nipponbare are available at http://www.ncgr.ac.cn/english/
edatabase.htm. The raw Illumina sequencing data are available in the EBI European Nucleotide Archive (ftp://ftp.era.
ebi.ac.uk/) with accession number ERA000078.]

The first use of DNA-based markers decades ago laid the ground-

work for gene discovery through forward and reverse genetics. The

types of markers and methods for constructing genetic maps have

evolved rapidly with advances in molecular biology techniques.

The development of PCR triggered the burst of a generation of

markers that considerably simplified experimental procedures for

marker designing and scoring. However, these markers, although

still widely used, have shown growing limitations in chromosomal

coverage, time, and cost effectiveness. The development of geno-

mics concepts and tools has set the stage for replacing the marker-

based mapping approach with genome-based high-throughput

strategies.

The availability of genome sequences opened the door to

high-throughput genotyping. This was initially accomplished by

adopting microarray technology, which detects single nucleotide

polymorphisms (SNPs) through hybridizing genomic DNA to

oligonucleotides spotted on gene chips. This genotyping method

substantially improved the efficiency of marker collection by

allowing the detection of hundreds to thousands of markers in

a single hybridization (Winzeler et al. 1998). It has been applied to

model systems such as human, Arabidopsis, and rice (Meaburn

et al. 2006; Singer et al. 2006; Jeremy et al. 2008). Although the

goal of high-throughput was achieved, serious limitations remain

for the array-based method. It is laborious, time-consuming, and

expensive to design, produce, and process microarrays suited for

specific mapping populations.

The advent of the next-generation sequencing technology

holds the promise for a methodological leap forward in genotyp-

ing and genetic mapping. The new sequencing techniques not

only increase sequencing throughput by several orders of magni-

tude but also allow simultaneously sequencing a large number of

samples using a multiplexed sequencing strategy (Craig et al.

2008; Cronn et al. 2008). These recent technical advances have

paved the way for the development of a sequencing-based high-

throughput genotyping method that combines advantages of

time and cost effectiveness, dense marker coverage, high mapping

accuracy and resolution, and more comparable genome and ge-

netic maps among mapping populations and organisms.

Here we describe the first high-throughput genotyping

method that uses SNPs detected by whole-genome resequencing.
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This type of SNP data differs from traditional genetic markers

primarily in two aspects. First, it is often not the case that all

members of a recombinant population can be scored at a given

SNP site. Second, an individual SNP site is no longer a reliable

marker or locus for genotyping due to several potential sources of

sequence errors. To deal with these unique features of the SNP data

generated by the next-generation sequencing, we developed a new

analytical framework, that is, a sliding window approach for

evaluating SNPs collectively rather than individually. The method

was applied to analyzing 150 rice recombinant inbred lines (RILs)

derived from a cross between indica and japonica rice cultivars

using sequences generated on the Illumina Genome Analyzer

(GA).

Results

Experimental design

As shown in Figure 1, RILs were developed from a cross between

rice cultivars, Oryza sativa ssp. indica cv. 93-11 and ssp. japonica cv.

Nipponbare, whose genome sequences were previously reported

(International Rice Genome Sequencing Project 2005; Yu et al.

2005). SNPs between the two genome sequences were identified as

potential markers for genotyping. A total of 150 RILs were se-

quenced using the bar-coded multiplexed sequencing strategy.

Indexed DNA samples of 16 RILs were combined and sequenced in

a lane of the Illumina GA. The 33-mer sequences of each RIL were

sorted according to the indexes and aligned with the parental

genome sequences for SNP detection. Detected SNPs were ar-

ranged according to their physical positions, with genotypes spe-

cified. Consecutive SNPs were examined in a sliding window of 15

SNPs in size. The ratio between the numbers of SNPs from the two

parents was calculated in each window and used for genotype

calling. As the window slid along the chromosome, recombination

breakpoints were determined. Recombination maps of the RILs

with a high density of SNPs and precisely defined recombination

breakpoints were constructed.

Sequencing and SNP identification

The genomes of the RILs were resequenced on the Illumina GA.

The utility of three-base indexes for multiplexed sequencing

allowed us to combine 16 RILs into one lane of the sequencer,

sequence 112 samples in seven lanes for a sequencing run (the

eighth lane was used for the control), and complete sequencing of

150 RILs in two runs. For each RIL, the reads of 33-bp sequences

(33-mers excluding the index) were sorted according to the 59

indexes. Given the throughput of 1 Gb per sequencing run, ;7.2

Mb (1000 Mb/128) 3 33/36 sequences were generated for each

RIL, equivalent to ;0.023 coverage of the rice genome.

Figure 1. Sequence-based high-throughput genotyping. Rice RILs were developed from a cross between indica and japonica cultivars. Genome sequences
of the parents were aligned and SNPs were identified. Genomes of the RILs were resequenced on the Illumina Genome Analyzer using the multiplexed
sequencing strategy. Three-base indexed DNAs of 16 RILs were combined and sequenced in one lane. Sequences were sorted and aligned with the pseu-
domolecules of parental genome sequences for SNP detection. Detected SNPs were arranged along chromosomes according to their physical locations with
genotypes indicated. A sliding window approach was used for genotype calling, recombination breakpoint determination, and map construction.
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The 33-mer short reads of RILs were aligned with the genome

sequences of the parents. Through analysis of the most updated

genome sequences of indica cv. 93-11 and japonica cv. Nipponbare,

we identified 1,226,791 SNPs or 3.2 SNPs/kb between them

(http://www.ncgr.ac.cn/english/edatabase.htm). When a 33-mer

of a RIL was aligned to a region where an SNP was detected be-

tween the parents, the genotype of the RIL was assigned at this

nucleotide position. From high-quality sequences obtained for the

150 RILs, a total of 1,493,461 SNPs were detected, which gave an

average density of 25 SNPs/Mb or 1 SNP every 40 kb for the RILs.

Genotype calling

When SNPs detected from the RILs were placed along the chro-

mosomes, we found that typically in a chromosomal region, SNPs

representing one parent were predominant and those represent-

ing the other parent were scattering among them. The presence of

minority SNPs was a result of sequence errors. Because of these

noise SNPs, the genotype of the RILs could not be simply de-

termined based on individual SNPs. That is, a SNP can no longer be

treated as a mapping locus, as in the traditional way of using

molecular markers. A sliding window approach was developed to

evaluate a group of consecutive SNPs for genotyping (Fig. 2A).

We also resequenced both parents with the three-base in-

dexes on the Illumina GA under the same experimental condition

as the RILs, i.e., mixed with RILs in 16 samples per lane. After the

33-mers were aligned with the pseudomolecules of the parental

genome sequences, we found that the resequencing data had SNP

error rates of 4.12% and 0.71% for indica and japonica parents,

respectively. This means that at a given SNP site, the chance of

getting a wrong nucleotide from the short reads is 4.12% and

0.71% for indica and japonica sequences, respectively. Based on

these error rates, we expected to detect 3.41% (4.12% minus

0.71%) more japonica SNPs than indica SNPs in the heterozygous

regions of RILs.

Taking the SNP error rates into consideration, we could cal-

culate the probability of occurrence of each genotype for a given

SNP ratio in the sliding window (Equations 1–3, Methods). In

addition to SNP errors, we need to consider the proportion of each

genotype in the RIL population. We began with the theoretical

expectation that the ratios of the three genotypes, ind/ind:ind/

jap:jap/jap, were 49.98:0.05:49.98 in the F11 generation of RILs.

Using these ratios and the estimated SNP errors, we calculated the

expected probabilities of the three genotypes based on SNP ratios

in the window of 15 SNPs (Equations 4–6, Methods).

We made genotype calling based on the highest probability

of a genotype (Equation 7, Methods) and continued this process as

the window slid base-by-base along the chromosome. After this

process was completed, we obtained a new estimate of genotype

ratios, which were then used as the new start point to calculate the

Figure 2. Sliding window approach for genotype calling and recombination breakpoint determination. (A) The top stripe of blocks represents SNPs
along the hypothetical chromosomal region. This was redrawn from the two stripes of short vertical lines below illustrating SNPs detected by aligning 33-
mers with the parental genome sequences. (Red) Indica genotype; (blue) japonica genotype. A sliding window covering 15 SNPs moves from left to right
one base at a time. For each window, the ratio of the number of indica to japonica SNPs (ind:jap) is calculated. (B) Genotype calling based on the highest
expected probabilities: Call homozygous indica genotype (ind/ind) when ind:jap $ 11:4; call heterozygous genotype (ind/jap) when 10:5 $ ind:jap $

3:12; call homozygous japonica genotype (jap/jap) when ind:jap # 2:13. Adding together the probabilities of these callings (shaded in black) gives the
calling accuracy of 99.94%. (C ) As the window slides, genotypes are called and recombination breakpoints are determined. Green and brown arrows
point to breakpoints between two homozygous genotypes and between the heterozygous and homozygous genotypes, respectively. The resulting
recombination map for this chromosomal region is illustrated in a solid bar, in which red, blue, and yellow represent genotypes ind/ind, jap/jap, and ind/
jap, respectively. Identified breakpoints are indicated between SNPs.
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probabilities and make genotype calling again. This process was

repeated until the ratios stabilized at 48.94:0.82:50.24 for ind/

ind:ind/jap:jap/jap. The higher proportion of the heterozygous ge-

notype than expected could be due to selection for heterozygosity

and/or occasional cross-pollen contamination during the process

of population development.

With this presumably closest estimate of genotype ratios, we

calculated the genotype probabilities and used them for the final

genotype calling (Fig. 2B). For a given indica:japonica SNP ratio, the

genotype with the highest expected probability was called. A

window with an indica:japonica SNP ratio of 11:4 or higher was

called ind/ind, 2:13 or lower was called jap/jap, and any ratio in

between was called ind/jap. The slightly different thresholds for

the two homozygous genotypes were due to unequal SNP error

rates between the parental genotypes (also see below). This ge-

notype calling strategy had an expected calling accuracy of

99.94% (Equation 8, Methods).

Recombination breakpoint determination

As the window slid along the chromosome, genotypes were called

based on SNP ratios. A genotype remained unchanged until it hit

a recombination breakpoint (Fig. 2C). There are two kinds of

breakpoints, with one separating two different homozygous ge-

notypes and the other separating a homozygous genotype and the

heterozygous genotype; the former is predominant in RILs and the

latter occurs most frequently in F2 populations. When the sliding

window hit a homozygous/homozygous breakpoint, genotype

changed from homozygous into transiently heterozygous, fol-

lowed by a change to the other homozygous genotype. During the

process, the SNP ratios passed through the 8:7/7:8 boundary only

once, where the breakpoint was determined. When the sliding

window hit a homozygous/heterozygous breakpoint, genotype

changed from homozygous into heterozygous, followed by the

fluctuation of SNP ratios at the 8:7/7:8 boundary before any

change into a homozygous genotype again. The breakpoint was

determined at the boundary of the homozygous and heterozygous

genotypes. After all genotypes were called and recombination

breakpoints were determined, we identified a total of 5074

breakpoints for the 150 RILs, or 33.8 per RIL.

Error analyses

To set up suitable experimental parameters for a genotyping study

using this method, the SNP error rate is a key factor to consider.

While the error rates were estimated experimentally above from

resequencing of the parental genomes, an independent theoretical

calculation would help dissect the source of errors and their rela-

tive contribution. Three sources of sequence errors could con-

tribute to total SNP errors, including (1) RIL sequence errors

occurring in the three-base indexes, defined as Ei; (2) RIL sequence

errors occurring in 33-mers, defined as Em; and (3) errors existing

in the genome sequences of the mapping parents, 1 and 2, defined

as Ep1 and Ep2 (Supplemental Fig. 1).

Because any error at the third base of the index automatically

disqualifies the sequences from further analysis, errors at the first

two sites of the index together determine Ei. Given the estimated

average per-base error rate of 0.3% at the 59 end of Illumina GA

reads (Dohm et al. 2008), the sequence error rate for the first two

bases of the index combined is 0.6%. Because there are two alleles

(one from each parent) of a roughly equal frequency in our

mapping population, an index error causing incorrect sorting of

a 33-mer has a 50% chance to yield a wrong genotype. Thus, Ei is

estimated at 0.3%.

For sequence errors in the 33-mers, an error leads to wrong

genotype assignment only when the error occurs at the SNP site

(1/33 chance) and happens to match the base of the other parental

allele (1/3 chance). Given the reported average error rate of 2.8%

for the 33-mers (Craig et al. 2008), Em is estimated at 0.03% (2.8%

3 1/33 3 1/3).

Errors in the genome sequences of the parents can cause ar-

tificial SNP detection in RILs. We resequenced the genome of

indica 93-11 with 0.63 coverage on the Illumina GA and estimated

that the errors in the original genome sequences would give an

SNP error rate, Epi, of 3.9%. Because the map-based sequences of

japonica cv. Nipponbare were about one order of magnitude more

accurate than the shotgun sequences of indica cv. 93-11 (99.99%

versus 99.9% [International Rice Genome Sequencing Project

2005; Yu et al. 2005]), the SNP error rate for japonica cv. Nippon-

bare, Epj, is estimated at 0.39%. Taken together, the SNP error rates

of homozygous indica and japonica genotypes are calculated as:

Eind/ind = Ei + Em + Epi = 0.3% + 0.03% + 3.9% = 4.23%, Ejap/jap = Ei +

Em + Epj = 0.3% + 0.03% + 0.39% = 0.72%. These estimates are

remarkably close to the SNP errors observed from our multi-

plexed resequencing of both parents (4.12% for indica and 0.71%

for japonica).

Of these sources of errors, the quality of parental genome

sequences varies among organisms whose genomes are sequenced

with different strategies. To analyze this variable, we conducted

simulation for the two most plausible situations (Fig. 3). First, one

parent often has high-quality genome sequences in the case where

one strain, such as japonica cv. Nipponbare, was sequenced to serve

as a model system. Then, the genome of the other parent can be

resequenced using the next-generation sequencers. In this sce-

nario, one parent has an invariably low error rate (e.g., Ep1 = 1%),

while the error rate for the other parent can vary depending on

resequencing coverage (e.g., Ep2 = 2, 4, . . ., 20%). Second, we con-

sider that the strain with high-quality genome sequences does not

serve as a mapping parent but provides the reference for rese-

quencing the genomes of the mapping parents. In this scenario,

sequence errors of both parents can vary (e.g., Ep1 = Ep2 = 2, 4, . . .,

20%). We also considered two types of mapping populations for

the simulation, including a RIL population with genotype ratios

set at 49.5:1:49.5, and an F2 population with genotype ratios set at

1:2:1.

In the first scenario, the accuracy of genotype calling stays

above 99% for the RIL population even when the error rate for one

parent goes up to 20% (Fig. 3A, left). For the F2 population, the

accuracy drops below 99% when the error rate of the parent goes

up to 6%, but it stays above 95% all the way to the 20% error rate.

In the second scenario, the accuracy for RILs drops below 99% at

an error rate of 16% for both parents but stays above 95% all the

way up to the 20% error rate. For the F2 population, the accuracy

drops below 99% and 95% at the error rates of 4% and 12%, re-

spectively (Fig. 3A, right).

We then asked whether increase in the window size, i.e.,

windows containing a larger number of SNPs for a given physical

distance, would improve the accuracy of genotype calling. For the

first scenario analyzed above, we took the critical error rate of 6%

of the one parent that dropped the accuracy of the F2 population

below 99% for simulation. We found that a slight increase in the

window size brought the calling accuracy back to the 99% level

(Fig. 3B, left). For the second scenario, we conducted simulation

for three critical errors rates, including the error rate of 16% for
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both parents that dropped the accuracy below 99% for the RIL

population, and the error rates of 4% and 12% that dropped the

accuracy of the F2 population below 99% and 95%, respectively.

As the window size increased from 15 to 20, which was equivalent

to the increase in sequencing coverage of mapping populations

from 0.0203 to 0.0273 for rice, the accuracy rose from 98.9% to

99.3% for RILs with the parental error rate of 16%, and from 98.6%

to 99.5% for F2 with the error rate of 4% (Fig. 3B, right). For F2,

with the parental error rate of 12%, the accuracy rose from 93.5%

to 96.6% as the window size increased from 15 to 20, and to 99.4%

as the window size further increased to 35, equivalent to the in-

crease in resequencing coverage from 0.0203 to 0.0463 for rice.

Finally, we consider the feasibility of this method for map-

ping larger genomes with variable SNP densities between the

parents. We conducted a simulation to estimate the amount of

sequences required for a RIL to reach certain mapping resolutions

as the SNP density varied. The simulation was run for two genome

sizes, 389 Mb and 2500 Mb, equivalent to those of rice and mice,

respectively (Equation 9, Methods) (Mouse Genome Sequencing

Consortium 2002; International Rice Genome Sequencing Project

2005). The results are illustrated in Figure 3C.

For our rice mapping population, where SNP density between

the parents was D = 3.2 SNPs/kb, an average of 3.0 Mb effective

sequences (Se) were required for each RIL to reach the resolution R

= 25 SNPs/Mb (or 1 SNP per 40 kb). The total amount of sequences

obtained for each line on average was 7.2 Mb, of which 3.0 Mb or

42% were defined as effective sequences while the remaining low-

quality sequences could not be used for genotyping. Considering

rice RILs derived between varieties with a lower SNP density, for

example, 1 SNP/kb between two varieties of the indica cultivar

(data not shown), an average Se of ;9 Mb, or the total amount of

;21 Mb sequences (assuming the same effective sequence ratio of

42%), is required to reach the same mapping resolution of 25

SNPs/Mb (Fig. 3C, left). Considering next the example of mouse

populations that have larger genomes and lower SNP densities

than rice (g = 2500 Mb [Mouse Genome Sequencing Consortium

2002] D » 1.3 on average [Frazer et al. 2007]), our simulation

indicates that ;48 Mb effective sequences or ;115 Mb total

Figure 3. Simulation of genotype calling accuracy. (A) Effect of parental genome sequence quality on calling accuracy. (Left) One parent has high-
quality genome sequences that give an SNP error rate of 1%, while the genome sequence quality of the other parent is allowed to vary and gives SNP
error rates from 2% to 20%. (Right) Genome sequence qualities of both parents are allowed to vary and give the same SNP error rates from 2% to 20%.
Two types of populations, RIL and F2, are considered, with ratios of three genotypes set at 49.5:1:49.5 and 1:2:1, respectively. Window size is set at 15.
Genotype calling accuracy is calculated according to Equation 8 in Methods. (B) The effect of window size on calling accuracy. (Left) The critical error rate
of 6% that drops the calling accuracy of F2 below 99% in the above figure is used. (Right) Three critical error rates are used, including 16% for both parents
that drops the calling accuracy of RIL below 99%, 4% for both parents that drops the accuracy of F2 below 99%, and 12% for both parents that drops the
accuracy of F2 below 95%, in the above figure. When window sizes are measured by the number of SNPs covering the same physical distance, increase in
window sizes is equivalent to the increase in resequencing coverage. Rice is taken as an example to show resequencing coverage for the corresponding
window size. (C ) The amount of effective sequences (Se) required for a RIL to reach a range of mapping resolutions (R) as SNP densities (D) vary. (Left)
Simulation for the rice genome size, 389 Mb. Red dot indicates the location of the rice RIL of this study (D = 3.2 SNPs/kb, R = 25 SNPs/Mb). (Right)
Simulation for the mouse genome size, 2500 Mb. Red dot indicates Se required for a mouse RIL with D = 1.3 and R = 25.
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sequences (assuming the same effective sequence ratio of 42%) are

required for a mouse RIL to reach the same resolution of R = 25

SNPs/Mb (Fig. 3C, right).

Bin map construction and quantitative trait loci (QTL) analysis

To conduct genetic analyses, we converted the recombination

maps into a skeleton bin map (van Os et al. 2006). We aligned all

chromosomes of the 150 RILs and compared them for the minimal

of 100-kb intervals (Fig. 4A). Adjacent 100-kb intervals with the

same genotype across the entire RIL population were recognized

as a single recombination bin (e.g., Fig. 4B,C). In this way, we

obtained a total of 2334 recombination bins for the 150 RILs, which

captured the vast majority of recombination events detected in

the population. The average physical length of the recombination

bins was 164 kb, ranging from 100 kb to 5.8 Mb. The genotypes and

physical locations of the bins are given in Supplemental Table 1.

A linkage map was constructed with these bins serving as

markers. It had a total genetic distance of 1539.5 cM with an av-

erage interval of 0.66 cM between the bins (Supplemental Table 1).

This map was used for identifying QTL controlling plant height.

When grown in Hangzhou, China, indica cv. 93-11 and japonica cv.

Nipponbare were 124.4 and 84.3 cm tall, respectively; the height

of the RILs ranged from 72.0 to 181.0 cm. Our analysis of the

150 RILs detected four QTL, with likelihood of odds (LOD) peaks

overlapping with Bin 248 on chromosome 1, Bin 501 on chro-

mosome 2, Bin 731 on chromosome 3,

and Bin 2300 on chromosome 12, which

explained 31.3%, 11.9%, 7.6%, and 6.6%

of phenotypic variance, respectively. The

QTL of the largest effect was mapped on

Bin 248 occupying physical position of

40.1–40.2 Mb on chromosome 1, which

contains the semi-dwarf gene, sd1, lo-

cated at 40.14 Mb, responsible for rice

‘‘green revolution’’ (Sasaki et al. 2002).

The result demonstrates that this new

genotyping method provides a powerful

tool for accurate QTL mapping and sub-

sequent gene cloning.

Discussion
Recombinant populations were the basis

for Mendel’s genetic experiments and

continued to serve as a key to the study of

genes, genomes, and genetic variations.

Genotyping with various types of mo-

lecular genetic markers has long been

a laborious and time-consuming step that

limited the power and efficiency of genetic

analyses and gene discovery. Here we show

that the next-generation sequencing

technology allows the development of an

ever-fast, cost-effective, informative, and

reliable genotyping method. Genotyping

a typical mapping population of several

hundred individuals with ultraresolution

can be completed at a genomics service

center in weeks rather than months to

years required for conventional types of

markers.

Our studies of the rice RILs demonstrated the advantages of

this new genotyping method over the commonly used PCR-based

approach. Before the sequencing-based method was developed for

the F11 RIL population, we genotyped the RIL population at its F8

stage using 287 insertion–deletion markers, including micro-

satellites, which were amplified by PCR and scored on agarose

gels (data not shown). The linkage map constructed from the PCR

markers had an average coverage of a genetic distance of ;5 cM or

a physical distance of ;1.4 Mb per marker, which is higher than

the majority of previously reported rice genetic maps. Designing,

screening, and collection of these PCR markers took three people

more than one year of intensive work to complete. In this study, in

contrast, we obtained an average coverage of 40 kb per SNP from

data that could be generated within two weeks on the Illumina

GA. Thus, the sequencing-based high-throughput method is

much more time and cost effective than the conventional PCR-

based genotyping approach.

More important is the markedly improved mapping accuracy

and resolution of the sequencing-based method. A recombination

breakpoint is determined between two SNPs that are 40 kb apart

on average. This provides a much finer resolution than the PCR-

based mapping, which only allows a resolution equivalent to the

marker density, in this case, a 1.4-Mb interval on average (Sup-

plemental Fig. 2A). The new method thus improves the resolution

of recombination breakpoints by 353. Additionally, an average

coverage of one SNP per 40 kb almost eliminates the chance of

Figure 4. Recombination and bin maps. (A) Aligned recombination maps of 150 rice RILs. Red, ind/
ind; blue, jap/jap; yellow, ind/jap. (B) Aligned chromosome 1 of the first ten RILs. Scale indicates physical
distance. A vertical line labels a recombination breakpoint. A region between two vertical lines across all
RILs is recognized as a recombination bin. (C ) Bin map of the 10 RILs.
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missing any double-crossovers in the mapping population. Sup-

plemental Figure 2B illustrates two examples, where double-

crossovers were detected by the sequencing-based method but

were not identified by the PCR-based method because of the

limited marker density.

To evaluate the generality and feasibility of the method for

various types of populations from different organisms, several

technical issues need be discussed. First, genome sizes and abun-

dance of SNPs between the mapping parents are important

parameters for setting the level of resequencing throughput. To

empirically determine an appropriate throughput level, we rese-

quenced a randomly selected RIL using one entire lane of the

Illumina GA, which yielded 0.323 coverage of the genome. A total

of 123,302 SNPs were detected, giving an average of 1 SNP every

3.15 kb. The combination of 16 samples in one lane using three-

base indexes would yield 0.023 coverage for each RIL and an SNP

density of 1 per 50 kb, which should be sufficient for detecting

recombination events in the population of 150 RILs. The average

density of 1 SNP per 40 kb actually obtained for the 150 RILs was

higher than expected. We also randomly sampled 1/2, 1/4, 1/8,

and 1/16 of the SNPs from those generated by 0.323 sequencing

of the RIL. The genotypes and recombination breakpoints were

consistently identified for the various sample sizes, suggesting that

sequencing 16 samples per lane was sufficient for this study.

Based on the SNP density, we chose the window size of 15

SNPs for genotyping, which covered on average 600 kb or 2.3 cM

of rice chromosomes. We tested the effect of different window

sizes on map construction and QTL analysis by using window sizes

of 7, 11, 19, and 23 SNPs. The window sizes of 11, 19, and 23

yielded nearly identical results as the size of 15 in the identifica-

tion of the largest QTL for plant height on chromosome 1 (Sup-

plemental Fig. 3). However, the 7-SNP-window analysis yielded

multiple QTL peaks around sd1 with relatively low LOD values,

suggesting that the small window size may lack adequate power

for accurate genotyping. Evidently, the higher resequencing cov-

erage permits the use of larger windows covering the same phys-

ical and genetic intervals and consequently more accurate map-

ping but is subjected to a trade-off of lower throughput and higher

cost.

We then conducted a simulation to address the question of

how much more work is required for mapping organisms with

larger genome sizes and/or lower SNP densities. For mouse RILs,

;153 more sequences are required to reach the same mapping

resolution than the rice RILs (Fig. 3C, right). Because the most

updated Illumina GAII system has reached the level of throughput

as high as 20G, which is 203 higher than the system that gen-

erates our rice data, time and cost required for mapping mouse

inbred lines of the same size can be less now than that for this rice

study. Furthermore, the effective sequence ratio should also in-

crease as sequencing technology improves. In this study, about

40% of the 33-bp single-end reads that mapped to multiple loca-

tions of the parental genomes were discarded. By resampling the

japonica genome sequences (see Methods), we estimated that fewer

than 20% of reads would still be mapped to multiple genomic

locations if they were 76-bp pair-end reads from the updated

Illumina GAII system.

Because this genotyping method requires the availability of

genome sequences of the mapping parents, the quality of the

genome sequences becomes an important issue. Our simulation

suggests that as long as one parent has high-quality genome

sequences, the accuracy of genotype calling will be relatively in-

sensitive to even relatively high error rates of the other parent (Fig.

3A), which can always be obtained relatively easily from genome

resequencing. When the genome sequences of both parents are

subjected to high error rates, e.g., both generated from genome

resequencing, the accuracy of genotype calling could drop below

an acceptable level more quickly. An F2 population is more sen-

sitive than RILs to higher error rates because it requires much more

frequent calling between homozygous and heterozygous geno-

types. Nevertheless, the accuracy can be improved rather sub-

stantially by even a small scale-up of resequencing coverage for the

mapping populations (Fig. 3B), which is becoming increasingly

easy to do as the throughput of the next-generation sequencers

keeps increasing. Therefore, as sequencing technology improves,

the sequence-based genotyping method, which has already looked

promising, will continue to gain higher accuracy and efficiency.

The easy adjustment of resequencing throughput also allows

us to obtain suitable levels of marker density and breakpoint res-

olution for addressing different questions with the least time and

resource investment. Sequencing coverage can be scaled up any

time for the entire or a part of the mapping population whenever

new questions arise to require higher marker density or more

precisely defined breakpoints. Particularly, recombination break-

points can be determined very precisely using this method, the-

oretically within 1 kb for the rice RILs, given high enough

resequencing coverage. Such a fine resolution will enable the de-

tection of double-crossovers that usually remain unidentified by

other types of genetic markers. This consequently improves the

accuracy of QTL detection and enhances the efficiency and success

rate of gene cloning. Precisely identified recombination break-

points also allow the characterization of genome regions that

exhibits unique genetic features such as recombination hot spots.

Taken together, this genome-based methodology enabled by the

next-generation sequencing technology will tremendously sim-

plify and accelerate genetic analyses aiming at large-scale gene

discovery and addressing a wide range of biological questions.

Methods

Plant material and DNA isolation
RILs were developed from a cross between Oryza sativa ssp. indica cv.
93-11 and ssp. japonica cv. Nipponbare followed by self-fertilization
to F11. The population was developed in the experimental field at
China National Rice Research Institute in Hangzhou, Zhejiang
Province. For genotyping, total genomic DNA was isolated from
leaf tissues using the DNeasy Plant Mini Kit (Qiagen). For QTL ana-
lysis, plant height of a RIL was determined as the mean of mea-
surements from five individuals.

Multiplexed sequencing by Illumina GA

Genomic DNA of each RIL individual was fragmented to <500 bp
by sonication (Bandelin, Sonopuls GM200). The fragments were
treated with T4 DNA polymerase, T4 polynucleotide kinase, and
Klenow DNA polymerase for end repairing, followed by treatment
with Klenow fragment 39–59 exo and dATP to generate a pro-
truding 39 A for ligating with the adaptor carrying a three-base
index. Sixteen 3-bp indexes, including AAT, ACT, AGT, ATT, CAT,
CCT, CGT, CTT, GAT, GCT, GGT, GTT, TAT, TCT, TGT, and TTT,
were linked to adapters as described in Cronn et al. (2008). The
indexed DNA samples were run on 2% agarose gels, and fragments
of 150–180 bp were recovered and purified. Each sample was then
amplified by PCR for 18 cycles. DNAs of 16 RILs with different
indexes were mixed in an equal molar concentration and loaded
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into one lane of the Illumina GA for 36-cycle sequencing, with the
Illumina PhiX sample used as control. Image analysis and base
calling were performed using Illumina GA processing pipeline
V0.2.2.6. The ‘‘sol2sange’’ pipeline in the software MAQ (Li et al.
2008) was used to convert Illumina FASTQ to Sanger standard
FASTQ format. A custom Perl script was written to sort sequences
based on the 59 indexes. Thirty-three-mer sequences were ob-
tained after trimming the three-base indexes.

SNP identification

The latest versions of BGI indica 93-11 contigs (ftp://ftp.genomics.
org.cn/pub/ricedb/SynVs9311/9311/Sequence/Contig/) were aligned
with International Rice Genome Sequencing Project (IRGSP)
pseudomolecules of japonica cv. Nipponbare (Build 4.0, http://
rgp.dna.affrc.go.jp/IRGSP/Build4/build4.html) using the software
NUCMER (Kurtz et al. 2004). Candidate SNPs were identified us-
ing the DiffSeq program (with default setting of parameters) in
the EMBOSS package (Rice et al. 2000). The original trace files of
BGI 93-11 (ftp://ftp.ncbi.nih.gov/pub/TraceDB/) were adopted to
remove low-quality SNPs using the SSAHASNP program in the
ssaha2 package V1.0.9 (Ning et al. 2001). The custom-made indica
cv. 93-11 pseudomolecules were generated by replacing the bases
of the japonica cv. Nipponbare pseudomolecules with those of
indica at the SNP sites.

The 33-mers of the RILs were aligned with the indica and
japonica pseudomolecules using software SSAHA2 V2.0.0 (http://
www.sanger.ac.uk/Software/analysis/SSAHA2/). An SNP was de-
tected for a RIL when a 33-mer matched perfectly the unique se-
quence of one parent and had a 1-bp mismatch with that of the
other parent, where an SNP had already been identified between
the parents. The genotype of the RIL was then recognized at this
SNP site. Low-quality sequences, including primarily short reads
that matched multiple locations of either genome and that did not
match perfectly with at least one of the parental genomes, were
discarded.

To estimate the proportion of short reads matching multiple
locations of the parental genome as the function of read length
and end types (single vs. pair ends), sequences of different length
and end types were randomly extracted from the Nipponbare ge-
nome with 0.023 coverage and then aligned with the genome
sequences. The proportion of the short reads that matched mul-
tiple locations was calculated.

Genotype calling

Given the SNP error rates of three genotypes, Eind/ind, Eind/jap,
and Ejap/jap, the probability of finding k japonica SNPs in a win-
dow of n consecutive SNPs for each genotype follows a binomial
distribution:

pind=indðkÞ=
n

k

 !
3 E k

ind=ind 3 ð1� Eind=indÞn�k ð1Þ

pind=japðkÞ=
n
k

� �
3 ð

1 + Eind=jap

2
Þk 3 ð

1� Eind=jap

2
Þn�k ð2Þ

pjap=japðkÞ=
n
k

� �
3 ð1� Ejap=japÞk 3 E n�k

jap=jap ð3Þ

Given the proportions of the three genotypes in the pop-
ulation, lind/ind, lind/jap, and ljap/jap, the expected probabilities of
finding the genotypes for an observed k are:

Pind=indðkÞ = pind=indðkÞ 3 lind=ind ð4Þ

Pind=japðkÞ= pind=japðkÞ 3 lind=jap ð5Þ

Pjap=japðkÞ = pjap=japðkÞ 3 ljap=jap ð6Þ

A genotype is called based on the highest probability in
a given window:

PmaxðkÞ= maxfPind=indðkÞ;Pind=japðkÞ; Pjap=japðkÞg ð7Þ

The accuracy of genotyping calling is given by Bayes method:

Pn = +
n

k = 0

PmaxðkÞ ð8Þ

A computer program was developed for implementing these
algorithms and conducting all analyses including constructing
physical and bin maps from the Illumina GA sequence data. The
program can be found in the Supplemental Material.

To estimate the amount of effective sequences (Se) to be
generated for a RIL, the following equation was used for the sim-
ulation:

Se =
g 3 R

D
ð9Þ

where variable R represents intended mapping resolution (the
number of SNPs to be identified per Mb), variable D represents the
SNP density between the two mapping parents (the number of
SNPs per kb), and g is a constant representing the genome size of
the mapping parents.

Bin map construction and QTL analysis

The maps of the RILs were aligned and compared for their geno-
types for a 100-kb interval. Adjacent 100-kb intervals with the
same genotype across all RILs were combined into a re-
combination bin. The linkage map was constructed from the re-
combination bins serving as genetic markers using MAPMAKER/
EXP V3.0 (Lincoln and Lander 1993). QTL were identified using
composite interval mapping implemented in the software pack-
age Windows QTL Cartographer V2.5 (Wang et al. 2007). A 10-cM
scan window was employed, and the likelihood ratio statistic was
computed every 2 cM. LOD values and R2 were determined based
on likelihood ratio tests under a hypothesis allowing both additive
and dominance effects. QTL were called for LOD values of 3.0 and
higher.
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