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Pollen, the male gametophyte of flowering plants, represents an ideal biological system to study developmental processes,
such as cell polarity, tip growth, and morphogenesis. Upon hydration, the metabolically quiescent pollen rapidly switches
to an active state, exhibiting extremely fast growth. This rapid switch requires relevant proteins to be stored in the mature
pollen, where they have to retain functionality in a desiccated environment. Using a shotgun proteomics approach, we
unambiguously identified ;3500 proteins in Arabidopsis pollen, including 537 proteins that were not identified in genetic
or transcriptomic studies. To generate this comprehensive reference data set, which extends the previously reported pollen
proteome by a factor of 13, we developed a novel deterministic peptide classification scheme for protein inference. This
generally applicable approach considers the gene model–protein sequence–protein accession relationships. It allowed us to
classify and eliminate ambiguities inherently associated with any shotgun proteomics data set, to report a conservative list
of protein identifications, and to seamlessly integrate data from previous transcriptomics studies. Manual validation of
proteins unambiguously identified by a single, information-rich peptide enabled us to significantly reduce the false dis-
covery rate, while keeping valuable identifications of shorter and lower abundant proteins. Bioinformatic analyses
revealed a higher stability of pollen proteins compared to those of other tissues and implied a protein family of previously
unknown function in vesicle trafficking. Interestingly, the pollen proteome is most similar to that of seeds, indicating
physiological similarities between these developmentally distinct tissues.

[Supplemental material is available online at http://www.genome.org. The data from this study have been submitted to
public protein repository PRIDE (http://www.ebi.ac.uk/pride/) under accession nos. 8743–8750.]

The plant life cycle alternates between a diploid and a haploid

generation, the spore-producing sporophyte and the gamete-

producing gametophyte, respectively (Supplemental Fig. S1). Unlike

in animals, where meiotic products directly differentiate into

gametes, the haploid spores undergo several mitotic divisions to

form multicellular gametophytes, which in turn form the gametes.

In the anther, microspores initiate male gametophyte (pollen) de-

velopment through an asymmetric division forming a large vege-

tative and a smaller generative cell (McCormick 2004). The latter is

engulfed into the cytoplasm of the vegetative cell and divides again

to form the two sperm cells (Fig. 1A,B). The mature pollen is released

from the anther and, after deposition on the stigma, the pollen grain

germinates, grows a pollen tube, and transports the sperm cells to

the female gametes where double fertilization ensues. Conse-

quently, the pollen grain—although in a silent state—must be

poised for these rapid physiological changes. Since pollen is a vehi-

cle for dispersal, it is largely dehydrated and has to survive harsh

environmental conditions before it reaches a fertilization partner.

Mature pollen represents a largely autonomous, highly sim-

plified organism, which is specialized for the dispersal and trans-

port of male gametes. It is ideally suited for the study of cell growth

and morphogenesis as well as processes underlying dehydration

and prolonged survival (Hepler et al. 2001; Boavida et al. 2005).

Since pollen is the main allergen for type I allergy, and more than

400 million people suffer from seasonal asthma or hay fever, pollen

biology is of major medical interest (Taylor et al. 2007).

Most of our knowledge about pollen development and func-

tion is based on genetic analyses and transcriptomics studies in

a few plant model systems such as Arabidopsis thaliana or Zea mays.

Expression evidence for ;12,000 genes has been reported from

various stages of pollen development (Becker et al. 2003; Honys

and Twell 2003, 2004; Pina et al. 2005; Schmid et al. 2005). The

transcriptome complexity of mature pollen (6500 expressed gene

models) was lowest among 79 Arabidopsis tissues characterized in

the AtGenExpress data set, and stood out based on its very broad

distribution of expression levels, which included a prominent

fraction of low expressed genes, as well as a minor fraction of

highly expressed genes (Schmid et al. 2005).

Transcription is not essential for the mature pollen grain and

during pollen tube growth (Mascarenhas 1965; Onodera et al.

2008), suggesting that significant control is exercised at the post-

transcriptional level. As the correlation between pollen transcript

and protein levels is not known and the ATH1 array used in tran-

scriptome studies covers only 83% of the protein-coding gene
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models of the Arabidopsis reference database TAIR7, proteomic

studies promise additional insights. Despite this, our knowledge

about the pollen proteome is very limited: 2D gel electrophoresis

approaches have collectively identified 266 distinct proteins

(Holmes-Davis et al. 2005; Noir et al. 2005; Sheoran et al. 2006).

Mature pollen represents a difficult system for a proteomics ap-

proach in terms of sample preparation, where sufficient quantities

of protein have to be collected. Moreover, the significant amount

of genome duplication in higher plants, combined with the ex-

pectation (based on transcriptomics data) that a large percentage of

proteins can only be identified by a single peptide, poses a signifi-

cant data analysis challenge.

The peptide-centric nature of shotgun proteomics has the

effect that identified peptides often cannot be unambiguously

assigned to one protein. This makes a subsequent biological data

interpretation very difficult and requires strategies to extract the

maximum of unambiguous protein evidence. To address this issue,

we have devised a novel deterministic peptide classification and

protein inference scheme for shotgun proteomics data, which

differs from the existing approaches such as ProteinProphet

(Nesvizhskii et al. 2003), EBP (Price et al. 2007), and IDPicker

(Zhang et al. 2007) in three aspects: (1) Our deterministic classifi-

cation is the only approach that considers the gene model–protein

sequence–protein accession relationships and classifies each pep-

tide sequence according to its information content (Fig. 2B,C).

Thus it distinguishes unique peptides from those shared by several

proteins, either encoded by the same gene model or by distinct

gene models; (2) in contrast to probabilistic approaches, it only

considers peptides above a certain confidence threshold after the

peptide spectrum matching process, not peptides of lower score,

hence the name deterministic. By filtering less informative, am-

biguous peptides a conservative cumulative protein list with

a minimal number of false or ambiguous protein assignments can

be generated, allowing researchers to draw firm conclusions from

the final data set; (3) by considering the protein–gene model re-

lationship, our classification scheme facilitates the seamless in-

tegration with transcriptomics data sets.

Using shotgun proteomics, we identified ;3500 proteins,

expanding the mature pollen proteome by a factor of 13. Manual

validation of all unambiguous single hit protein identifications

enabled us to eliminate a large number of false positive identi-

fications and to provide a reference data set of high quality. In-

tegration of our proteomics data with published transcriptomics

data sets allowed us to report >500 proteins that were not pre-

viously identified in mature pollen. Functional analysis of the

mature pollen proteome provided novel insights into pollen

function and development, related to dehydration, prolonged

survival, protein stability, post-transcriptional control, and rapid

tip growth.

Results and Discussion

Identification of peptides from mature pollen

We performed shotgun proteomics experiments on highly pure,

mature Arabidopsis thaliana pollen grains (Fig. 1C). Extensive

coverage of a biologically complex protein sample depends on

reducing its complexity by biochemical processing (Fig. 2A). We

used a four-buffer sequential protein extraction protocol (Supple-

mental Methods) and fractionated the proteins using gel electro-

phoretic separation (one-dimensional SDS-PAGE) and a gel-free,

chromatography-based peptide separation method: isotope-coded

affinity tagging (ICAT) (Gygi et al. 1999). In this context the ICAT

method was used for reduction of sample complexity (Supple-

mental Methods). Using this methodology, we could identify

lower abundant proteins as well as proteins with distinct bio-

chemical properties.

Mass spectrometric analysis was performed using electrospray

ionization-based liquid chromatography–tandem mass spectrom-

etry with a two-dimensional linear ion trap. We performed 15

experiments (Supplemental Fig. S2) and identified 22,248 distinct

peptides corresponding to at least 3599 proteins. Using a novel,

deterministic classification scheme, we could unambiguously as-

sign either one protein sequence or the encoding gene model for

3467 of these proteins (Table 1). Our data was uploaded into the

public protein repository PRIDE (http://www.ebi.ac.uk/pride/)

under the accession numbers 8743–8750 and in the AtProteome

database as ‘‘Pollen proteome map of Arabidopsis thaliana’’ (http://

fgcz-atproteome.unizh.ch/; Baerenfaller et al. 2008).

Overall integrative workflow

To assess to which extent our proteomics study provides additional

and novel insights, a robust data integration strategy is required.

We used the Arabidopsis database TAIR7 as a common reference

point to compare our proteomics data with previous tran-

scriptomics data sets. Our overall workflow (Fig. 2A) integrates

Figure 1. Arabidopsis thaliana male gametophyte (pollen grain). (A) Schematic representation of a mature pollen grain, which contains two sperm cells
enclosed in the cytoplasm of a vegetative cell. Characteristics of the vegetative cell include a large vacuole and nucleus. The pollen coat is composed of an
external layer (the exine) and an internal layer (the intine). (B) DNA staining with DAPI (diamidino-2-phenylindole) showing the vegetative nucleus and
two sperm nuclei. (C ) Purity of mature pollen grains collected on the 6-mm mesh. Scale bars, 10 mm.
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several steps: (1) a thorough in silico

analysis of the TAIR7 Arabidopsis protein

reference database (Supplemental Fig. S3)

combined with our novel deterministic

classification scheme (Fig. 2B), (2) pollen

protein extraction/fractionation maxi-

mizing the biochemical diversity of pro-

teins, (3) estimation of the overall false

discovery rate (FDR) by a decoy database

search strategy, (4) manual validation

of all single peptide hit protein iden-

tifications by information-rich peptides,

and (5) seamless integration with tran-

scriptomics data after reanalysis against

the TAIR7 genome release.

Peptide classification and deterministic
protein inference

The protein inference problem, typical

of shotgun proteomics (Nesvizhskii and

Aebersold 2005), is further accentuated

by the significant amount of genome

duplications in higher plants. In order to

extract the maximum of unambiguous

protein evidence, we have developed a

novel, generic deterministic peptide clas-

sification scheme. This scheme evalu-

ates the uniqueness of each peptide

sequence, and thus its information con-

tent, by considering the gene model–

protein sequence–protein accession re-

lationships. Peptides were classified in

terms of whether they unambiguously

identify a certain protein, or merely im-

ply a gene model, but not a specific pro-

tein isoform. This classification is based

on preprocessing of the TAIR7 protein

database (Supplemental Fig. S3), to de-

fine the identifiable proteome and to

create an index of the gene model–

protein sequence–protein accession rela-

tionships. The database search result for

each assigned spectrum is then compared

to this index (Fig. 2B), allowing us to

classify identified peptides into one of

five classes (Fig. 2C). Class 1a peptides

unambiguously identify a single unique

protein sequence and represent peptides

with the highest information content.

Class 1b peptides unambiguously iden-

tify a unique protein sequence, which

could be encoded by several splice iso-

forms of the same gene model. These

isoforms all encode an identical protein

sequence, i.e., their transcripts only differ

in the 59 and/or 39 untranslated region

(UTR) sequences. Class 2 peptides un-

ambiguously identify a gene model, but

cannot be used to distinguish between

several distinct protein sequences encod-

ed by different splice isoforms. Class 3a Figure 2. (Legend on next page)
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peptides unambiguously identify one

protein sequence, but this sequence can

be encoded by several gene models from

distinct loci. Finally, class 3b peptides can

be derived from different protein se-

quences encoded by several gene models

from distinct loci and have the least

information content. Existing protein

inference approaches either use proba-

bilistic reasoning for aggregating pep-

tides, including peptides with scores well

below the confidence threshold, into

protein groups (Nesvizhskii et al. 2003;

Price et al. 2007), or extract the minimal

set of protein groups that explain all the

observed peptides (Zhang et al. 2007).

However, they do not capture the gene

model–protein sequence relationship,

which is part of our inference process

assigning clear information content to protein identifications of

classes 1b, 2, or 3a and differentiating them from class 3b. This

additional information content of peptides also suggests that an

extension of the standards for protein identification, which rely on

two unique peptides (Carr et al. 2004; Bradshaw et al. 2006), seems

appropriate. Due to their ambiguity, class 3b peptides should not

qualify as a second peptide, while class 2 peptides limit the iden-

tification to the gene model level and not to a particular protein

isoform encoded by this gene model. Our classification approach

allows us to filter a data set according to information content,

which can be useful in different contexts: Proteins identified by

peptides of classes 1a, 1b, and 2 (and their corresponding gene

models) can be seamlessly integrated with transcriptomics data,

while selection of unambiguously identified proteins (identified

by peptides of classes 1a, 1b, 3a) provides the most accurate data set

for protein parameter analysis. An in silico analysis of protein

reference databases of several organisms, including human,

underlines that our classification scheme is generally applicable

(Table 2). While the percentage of the most relevant class 3b pep-

tides is highest in Arabidopsis (5.4%), other organisms also have

significant amounts of class 3b peptides (1.2% to 4.1%; Table 2). In

principle, any reference database with a clear relationship between

gene models and encoded protein isoforms can be analyzed using

this deterministic classification scheme.

Mature pollen proteome reference data set

For stringent data processing, we searched the mass spectra against

the TAIR7 reference database concatenated with a decoy database

plus roughly 260 additional common contaminants (keratins,

trypsin, etc.) and only considered peptide identifications with a

PeptideProphet probability (Keller et al. 2002) of $0.9 (excluding

contaminant hits), yielding roughly 143,200 spectra. Based on the

decoy database search (Elias and Gygi 2007), we determined an

overall spectra FDR of 1.4% for our data set, translating to ;1000

wrongly assigned peptides (0.7%) among the forward database

hits. In large-scale shotgun proteomics experiments, up to 30% of

the proteins are identified by a single mass spectrum (Nesvizhskii

and Aebersold 2005). Since the error rate among single spectrum

protein identifications is higher than for proteins identified by

multiple spectra, these identifications are often discarded without

further validation, with the consequence of loosing valuable in-

formation on truly expressed proteins.

Our classification scheme, however, en-

ables us to extract the high information

content (classes 1a–3a) single hit protein

identifications (1407). The correspond-

ing spectral assignments were manually

validated and 35% of them (482/1407)

were accepted as correct assignments,

systematically reducing the FDR of the

entire data set.

The calculation of spectra FDR is

based on the assumption that the num-

ber of false positives among the forward

database hits equals that among the de-

coy hits. Similar assumptions cannot be

made on the peptide or protein level since

true positive spectra collapse first into

peptides and then into proteins, whereas

the false positives tend to be distributed

randomly in the ‘‘decoy space.’’ The 965

spectra pointing to decoy proteins col-

lapsed into 809 decoy peptides and 792

Figure 2. Overall workflow and peptide classification scheme. (A) Our workflow integrates the in
silico analysis of the Arabidopsis reference protein database (TAIR7; Supplemental Fig. S3) to generate an
identifiable proteome index (open boxes); the extraction, biochemical processing, and digestion of
pollen proteins followed by mass spectrometric analysis and identification of peptides (green boxes); the
manual validation of single hit proteins following deterministic peptide classification and protein in-
ference (blue boxes); the reanalysis of transcriptomics data after remapping of the probe sets versus the
TAIR7 genome and elimination of ambiguous probe sets (orange boxes); and finally the integration of
proteomics and transcriptomics data allowing for discovery of novel information (pink box). (B) In silico
analysis of TAIR7 allows definition of the identifiable proteome and the protein sequence–protein
accession–gene model relationships. Comparison of the database search results with this identifiable
proteome index (29,988 distinct protein sequences) allows us to classify each experimentally observed
peptide (143,187) according to its information content and to subsequently report a conservative list of
unambiguous protein identifications, as well as a likely list of proteins identified by ambiguous peptides.
(C ) Schematic visualization of our classification into five evidence classes. We show examples of ex-
perimentally observed peptides of class 1a (e.g., QNASYQAGQATGQTK, which unambiguously iden-
tifies AT5G65880.1); class 1b (e.g., NVTDLIMNVGAGGGGGAPVAAAAPAAGGGAAAAPAAEEK, which
could imply three proteins with identical sequence that may only differ in their 59 or 39 UTRs [only the
59 UTRs are represented as dark gray boxes], namely AT1G01100.1, AT1G01100.2, and AT1G01100.4 of
the gene model AT1G01100, but not the splice variant AT1G0110.3, which has a different protein
sequence); class 2 (e.g., AAGVSIESYWPMLFAK, which implies all splice variants of gene model
AT1G01100 [in this case two distinct protein sequences]; class 3a (e.g., EGDILTLLESER, which un-
ambiguously identifies one protein sequence that can be encoded by the distinct gene models
AT3G10090.1 and AT5G03850.1). Finally, class 3b gathers peptides pointing to different protein
sequences encoded by different gene models (ambiguous protein identifications).

Table 1. Summary of identified spectra, peptides, and proteins by evidence class

Evidence
class

No. of
spectra

No. of spectra
(post validationa)

No. of distinct
peptides

No. of distinct
proteins

Class 1a 85,816 85,041 15,040 2861
Class 1b 8081 8044 1241 250
Class 2 12,579 12,469 2446 326
Class 3a 828 825 104 30
Class 3b 35,883 35,883 3417 132b (min)–2,557 (max)
Total 143,187 142,262 22,248 3599 (min)

The total number of spectra for each respective evidence class, the distinct peptides (after validation of
the single hit protein identifications), and the distinct number of protein identifications per class are
shown. The latter number is conservative in that only gene models of class 2 are listed that are not
already implied by a higher information content-based identification (classes 1a, 1b). For class 3b, we
cannot give an exact protein count, the smallest protein set explaining these peptides amounts to 132
proteins, whereas the maximum number of proteins could include up to 2557 proteins.
aInformation-rich peptides implied by a single mass spectrum (classes 1a�3a) were manually validated;
the final number of spectra post-validation is provided in column 3.
bA minimum number of proteins implied by class 3b peptides is shown.
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decoy proteins. A FDR of 1% on the spectra level can result in

protein FDR levels of up to 8%–11% (Balgley et al. 2007). By

eliminating 925 single hits with our manual validation (Supple-

mental Methods), in the best-case scenario we would have elimi-

nated 95% of the assumed false positives and roughly 40 false

positive spectra would remain among the forward hits. In the

worst case these would point to 20 proteins and imply a protein

FDR of 0.5%. Even if we assume that 200 false positive spectra

would remain, our spectra, peptide, and protein FDR would max-

imally amount to 0.14%, 0.9%, and 2.9%, respectively.

Using this workflow, we identified 143,187 redundant and

22,248 distinct peptides, which correspond to at least 3599 distinct

protein sequences in mature Arabidopsis thaliana pollen (Table 1);

3467 of these proteins (encoded by 3465 gene models) were

identified by peptides of high information content (classes 1a, 1b,

2, 3a), allowing us to unambiguously assign either one protein

sequence or the encoding gene model (Table 1). For two cases of

proteins identified by class 1a peptides, we observed two closely

related splice isoforms (Supplemental Fig. S4). For the significant

amount of class 3b peptides (15.4% of our distinct peptide

sequences), we report a minimal list of 132 protein identifications

that could completely explain the experimental peptide evidence

(Supplemental Table S1). However, if all proteins that could pos-

sibly be implied by the 3b peptides were considered to be present in

the sample, they would amount to 2557 proteins, illustrating why

these class 3b peptides are difficult to integrate into a reference data

set (Table 1); hence, we excluded them from further functional

analyses. The final list of the identified protein sequences, the

contributing peptides, the information from previous tran-

scriptomics and 2D gel proteomics experiments, and their evi-

dence code are provided in Supplemental Table S1. An overview of

the spectral and distinct peptide coverage of the 3467 proteins is

provided in Supplemental Figure S5.

Our final reference data set of 3467 unambiguous protein/

gene model identifications expands the previously described Ara-

bidopsis pollen proteome by a factor of 13: Three 2D gel electro-

phoresis studies had identified between 95 and 135 distinct

proteins each (Holmes-Davis et al. 2005; Noir et al. 2005; Sheoran

et al. 2006) and a combined total of 266 distinct proteins (at the

gene model level). Our proteomics data set shows a high overlap

ranging from 82% to 97% with these previous data sets. Overall,

only 28 proteins identified by the 2D gel electrophoresis analyses

were missed in our study (Fig. 3A). For some of the 28 proteins we

have class 3b peptide evidence, indicating that the overlap is even

higher (Supplemental Table S2). All 12 proteins for which we have

no peptide evidence were reported in the study by Sheoran and

colleagues (Supplemental Table S2), with which we have the lowest

overlap of 82% (Fig. 3A). This can, in part, be explained by the use

of a different Arabidopsis accession as gene expression differences

have previously been reported between Landsberg erecta and Col-0

(Schmid et al. 2003).

Integration of proteomics with transcriptomics data

To assess whether our shotgun proteomics data set contributed any

novel insights into pollen biology we compared it to previous

transcriptomics studies of mature pollen (Pina et al. 2005; Schmid

et al. 2005) or pollen development (Honys and Twell 2004). Since

the genome sequence and annotation have evolved significantly

after the initial design of the probe sets for the ATH1 array (;2001),

we reanalyzed these data sets using publicly available, stringently

remapped Affymetrix probe sets to exclude probes that hybridize

to multiple genome locations. Previous studies had shown that

a high percentage of false hybridization results could be eliminated

in this manner (Dai et al. 2005), and that updated probe sets im-

proved both the precision and accuracy of microarray data

(Sandberg and Larsson 2007). Among a total of 21,022 gene

models that provide unambiguous gene expression evidence

(Supplemental Fig. S6), 11,150 (;53%) are actively expressed

during all stages of pollen development (Fig. 3B; Supplemental

Table S3). In contrast, when we integrated the expression evidence

from three studies on mature pollen (requiring an expression sig-

nal in at least three of the overall six arrays), only 6708 gene models

(31.9%) are transcribed (Fig. 3C).

Integration of the reanalyzed transcriptomics data with our

pollen data set (we only considered gene models identified by

proteins of classes 1a, 1b, or 2) revealed that 537 gene models

identified in the mature pollen proteome (15.5% of the entire data

set) are either not represented on the ATH1 array (326) or no

consistent expression evidence has been reported (211).

A comparison with the reanalyzed transcriptomics data from

all four stages of pollen development (Honys and Twell 2004)

(uninuclear microspores [UNM]; bicellular pollen [BCP]; tricellular

pollen [TCP]) to the mature pollen (MP) proteome (Fig. 3C; Sup-

plemental Table S4) revealed that >83% of the mature pollen

proteome had a corresponding transcript detected in early pollen

development. Transcripts of only very few proteins in our data set

are specifically transcribed in mature pollen, such that either there

Table 2. Peptide evidence classes for the pollen proteome and several in silico analyzed model organism proteomes

Experimental data In silico analysis

Pollen
proteome

Arabidopsis
thaliana

Drosophila
melanogaster

Caenorhabditis
elegans

Saccharomyces
cerevisiae

Mus
musculus

Homo
sapiens

Database
version

TAIR7 TAIR7 Flybase 5.2 Wormpep 140 SGD 08/2007 NCBIM 37.53 NCBI 36.53

Class 1a 15,040 (67.6%) 481,708 (82.0%) 274,963 (70.3%) 370,033 (84.1%) 156,329 (97.7%) 335,406 (56.0%) 283,504 (46.6%)
Class 1b 1241 (5.6%) 22,732 (3.9%) 31,666 (8.1%) 34 (0.0007%) NA 33,887 (5.7%) 37,103 (6.1%)
Class 2 2446 (10.9%) 49,830 (8.5%) 80,065 (20.4%) 56,188 (12.7%) NA 206,263 (34.4%) 261,270 (42.9%)
Class 3a 104 (0.5%) 1142 (0.2%) 210 (0.005%) 798 (0.2%) 421 (0.3%) 1237 (0.2%) 2089 (0.3%)
Class 3b 3417 (15.4%) 32,099 (5.4%) 4375 (1.2%) 13,015 (3.0%) 3267 (2.0%) 22,240 (3.7%) 25,069 (4.1%)
Total 22,248 587,511 391,279 440,068 160,017 599,033 609,035

The number and percentage of distinct peptide identifications in our experimental pollen proteome data set are shown compared to in silico predictions
of the peptide evidence classes for Arabidopsis and other organisms. For yeast, splice variants were not considered. NA, not applicable.
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is a significant delay between transcript and protein accumulation,

or the proteins, but not their mRNAs, are very stable. Thus, many

transcripts that are expressed during earlier stages of pollen de-

velopment appear to be deposited as proteins in the mature pollen

in preparation for the rapid physiological changes that occur

during germination. Including our proteomics data, the number of

expressed gene models in mature pollen amounts to 7901 (29.2%

of the 27,029 protein-coding gene models of TAIR7), the number

of expressed gene models during all stages of pollen development

to 11,687 (43.2%; Supplemental Table S4).

To assess the correlation between protein abundance and

gene expression signals, we compared the spectral count of pro-

teins identified by peptides of classes 1a, 1b, and 2 to the average of

the hybridization signals of the respective gene models in the data

set of Schmid et al. (2005), the only mature pollen study with three

replicates. We noted an overall positive, but weak correlation

(Pearson correlation 0.25; Supplemental Fig. S7). Since the spectral

count is biased by a number of factors including peptide de-

tectability and protein length, we calculated the absolute protein

expression measurement (APEX) values (Lu et al. 2007) for our

pollen data set. The correlation of the APEX values and hybrid-

ization signals was higher (Pearson correlation 0.31; Supplemental

Fig. S7B), similar to what had been reported for Saccharomyces

cerevisiae and Escherichia coli (Lu et al. 2007). The low correlation

can, in part, be explained considering that mature pollen was

characterized by a broad range of expression levels including many

low abundant transcripts (Schmid et al. 2005), and that correla-

tions tend to be better for abundant transcripts and proteins (de

Godoy et al. 2008). We further observed that gene models whose

transcripts were expressed, but whose encoded proteins we did not

detect, tended to have significantly lower hybridization signal

distributions (Supplemental Fig. S7A). Overall protein detectability

is one of the factors influencing this: The distribution of the mean

peptide detectability values (an outcome of the training step for

the APEX calculation) of identified proteins is significantly shifted

to higher values compared to that of proteins we did not identify,

but whose gene models were expressed (P-value < 1.5 3 10�10;

Supplemental Fig. S7C). Finally, the abundance of proteins iden-

tified by 2D gel approaches is much higher than that of the 537

proteins we imply for the first time in pollen biology (Supple-

mental Fig. S8).

Our validated single hit protein identifications are signifi-

cantly enriched for shorter proteins compared to those of rejected

single hit proteins (P-value < 10�10). We used the favorite codon

frequency (FCF) as an in silico predicted measure for protein

abundance (Duret and Mouchiroud 1999), since we have no APEX

values for the rejected single hits. The validated single hits are

mainly proteins <500 amino acids (Fig. 4). For very short proteins

<200 amino acids, higher protein abundance seems required in

order to identify a protein by a single peptide. These results can be

explained by the fact that fewer peptides can be detected for

short and/or low abundant proteins. Our classification, which di-

rected the focus of manual validation on the small, information-

rich part (roughly 1% of all spectra) of our data set, allowed us to

keep valuable single hit identifications, and showed that not

all ‘‘one-hit wonders’’ (Veenstra et al. 2004) should be discarded

per se.

Validation of proteome data by genetic studies

It is difficult to provide experimental validation for large-scale data

sets as the one reported here. One way of assessing the quality of

the pollen reference data set is to take advantage of the genetic

tractability of Arabidopsis and to check for the presence of proteins

that are known to play a role in pollen development. To this end,

we used a set of 127 genes whose disruption causes a defect in

pollen development or function (Supplemental Table S5). Since

male transmission defects can arise at any stage of pollen devel-

opment—pollen germination, pollen tube growth, guidance and

reception, and double fertilization—we performed stage-specific

Figure 3. Venn diagrams visualizing the overlap of our pollen proteome
data set with previous proteomics and transcriptomics studies. (A) Over-
lap of the gene models identified by four different proteomics studies of
Arabidopsis mature pollen. The published gene model identifiers were
compared to our 3465 gene models that encode 3467 proteins (classes
1a–3a). (B) Overlap of the mature pollen proteome with previous tran-
scriptomics data sets, and (C ) transcripts expressed in mature pollen
versus those expressed in earlier stages of pollen development.
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comparisons between the proteome data set and genes exhibiting

a pollen phenotype if mutated. Proteins suggested to be involved

at early stages of pollen development (i.e., UNM, BCP) were not

among the mature pollen proteome data set as expected (1/27).

This finding, however, suggests that most of these gene products

are not reused at later stages of pollen development or germina-

tion. In contrast, 67/100 mutations affecting mature pollen and

pollen tube growth were represented in the mature pollen pro-

teome. These included genes that are active throughout pollen

development (CALS5, ADL1C, TPLATE) (Kang et al. 2003; Dong

et al. 2005; Van Damme et al. 2006), genes with an enhanced ac-

tivity in post-mitotic pollen grains (TUA1) (Carpenter et al. 1992),

and genes affecting maturation of the pollen grain (VHA-A, GPT1)

(Dettmer et al. 2005; Niewiadomski et al. 2005). Similarly, genes

affecting pollen hydration, germination, and pollen tube growth

were present: GRP17 (Mayfield and Preuss 2000), ACA9 (Schiøtt

et al. 2004), SEC8 (Cole et al. 2005), POK (Lobstein et al. 2004;

Guermonprez et al. 2008), VANGUARD1 (Jiang et al. 2005),

ATAPY1 (Wolf et al. 2003), ATPPME1 (Tian et al. 2006) (Supple-

mental Table S5). In summary, our proteome data set included two

thirds of the proteins known to affect the mature pollen grain or

the growing pollen tube, while proteins that are required at earlier

stages were not. The validation of 67 of the identified proteins by

previous genetics studies, which identified 100 genes affecting the

mature pollen, confirms that we obtained a rather comprehensive

proteome of the mature pollen grain.

Comparison with an Arabidopsis protein tissue index

We compared our pollen proteome data set with a recently de-

scribed Arabidopsis tissue index (Baerenfaller et al. 2008). The large

number of protein identifications (13,029) was reported at the gene

model level. Our mature pollen data set contributed 488 novel

identifications, such that the total number of experimentally iden-

tified gene models in Arabidopsis increases to 13,517 gene models,

i.e., a coverage of 50% of the protein-coding gene models of TAIR7.

Among the nine tissues included in our further analysis (we did not

consider the suspension cell culture data set), pollen has the lowest

number of identified gene models (3465), while the most gene

models have been identified in roots (6125; Supplemental Table S6).

We analyzed the percentage of gene models that show a tissue-

restricted expression and observed the highest percentage of se-

lectively expressed genes in roots (17.7% of all root gene models),

closely followed by pollen (17.0%) and seed (13.6%) (Supple-

mental Table S6). These proteome-based results are comparable

with results from large-scale transcriptome analyses (Schmid et al.

2005), where roots and seeds showed a larger number of specifi-

cally expressed transcripts than, for example, leaves (5.8% selec-

tively expressed gene models in our study). A hierarchical cluster

analysis of the gene models identified in the eight Arabidopsis tis-

sues and the 3465 gene models identified in pollen suggested that

pollen is quite dissimilar to the other tissues. Surprisingly, despite

a distinct developmental origin and a different tissue composition,

pollen clusters closest together with seed (Fig. 5A; Supplemental

Fig. S9). This may, in part, be because pollen and seeds share

physiological properties: Both survive for prolonged periods in

a dehydrated state, and both are a means of dispersal, existing as

independent organisms until germination.

To specifically compare the properties of the identified pro-

teins rather than the gene models, we classified all peptides from

the Baerenfaller et al. (2008) study according to our deterministic

model and used 12,043 unambiguously identified protein se-

quences (classes 1a and 1b). In Figure 5B, we show that the dis-

tribution of values for the predicted parameter ‘‘protein instability’’

(computed at http://www.expasy.ch with the tool ProtParam) is

statistically significantly lower for the proteins identified by

Baerenfaller and colleagues compared to all distinct TAIR7 proteins

(P-value < 10�10). A protein instability value <40 indicates that

a protein is preferentially stable (Guruprasad et al. 1990). The

Figure 4. Validated single peptide hit proteins tend to be shorter pro-
teins of varying abundance. 2D density plots of protein length and pre-
dicted protein abundance based on FCF values for proteins identified by
a validated single peptide hit (A, red), and proteins identified by a rejected
single peptide hit (B, blue). (C ) A different view of the previous plots (red,
areas of relative overrepresentation of the validated single hit proteins;
blue, areas where false-positive identifications are overrepresented) shows
that validated single peptide hit identifications tend to be shorter proteins.
Very short proteins that were successfully identified are preferentially
higher abundant proteins.
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proteins identified in mature pollen are significantly more stable,

which may explain their survival in a dehydrated state; their value

distribution compared to the tissue index data set is again statis-

tically significantly shifted to lower values (i.e., more stable pro-

teins, P-value < 10�10; Fig. 5B). Among the other eight tissues, we

find that the protein instability value distribution of seed proteins

is closest to that of mature pollen proteins. The parameter ‘‘protein

instability,’’ which assesses dipeptide composition of proteins and

was originally linked to in vitro protein stability (Guruprasad et al.

1990), thus appears to correlate with in vivo stability, since both

seeds and pollen survive in a largely dehydrated state. Further-

more, a correlation of relative amino acid frequency with protein

half-life had been reported by a study quantifying protein half-

lives in vivo for >3750 proteins from S. cerevisiae (Belle et al. 2006).

Alanine, glycine, valine, and lysine showed the highest relative

frequency increase in the pollen proteome when compared to all

distinct proteins of TAIR7 (Fig. 5C). These four amino acids had

the strongest positive correlation with the protein log half-life

(Belle et al. 2006), implying that they may have a role in protein

stability. The frequencies of three amino acids with the strongest

negative correlation with protein half-life, serine, asparagine, and

histidine, were all underrepresented in the pollen proteome

(Fig. 5C).

Functional analysis of the pollen proteome

To identify the overall trends of over- or underrepresentation of

specific functional categories in the mature pollen proteome, we

carried out a functional annotation using the systematic FunCat

classification scheme (Ruepp et al. 2004). We analyzed three data

sets: all protein-coding gene models of TAIR7 (27,029), the gene

models identified in mature pollen (3465), and the gene models

exclusively identified in our mature pollen proteome data set (537)

(Fig. 3C). For this first-pass analysis we considered the first to third

level FunCat annotations (Fig. 6; Supplemental Table S7). We

noted a statistically significant overrepresentation of the first-level

categories ‘‘metabolism,’’ ‘‘energy,’’ ‘‘protein fate,’’ ‘‘protein synthe-

sis,’’ ‘‘cellular transport,’’ and ‘‘development,’’ while the categories

‘‘cell cycle,’’ ‘‘DNA processing,’’ ‘‘transcription,’’ and ‘‘unclassified

proteins’’ (Fig. 6) were underrepresented. Functional categories such

as metabolism and energy, shown to be predominant in previously

reported pollen transcriptome and proteome studies, are also over-

represented in our proteome data set (Fig. 6). Even though physio-

logical activity is kept at a minimum in the dehydrated, quiescent

pollen, the onset of germination requires a burst of metabolism that

needs to be energetically supported. Therefore, an overrepresenta-

tion of different metabolic and energy processes is expected in the

mature pollen proteome. Among the 537 gene models providing

novel insights, we find a higher proportion of unclassified proteins

(Fig. 6), indicating a potential connection of unclassified proteins

and processes important for pollen biology.

While statistically not significant (due to low representative

number of gene models), the observed overrepresentation of the

functional category ‘‘storage protein’’ (Fig. 6) supports the idea that

the pollen grains do not store only transcripts (Becker et al. 2003;

Honys and Twell 2003, 2004; Pina et al. 2005) but also proteins

(Holmes-Davis et al. 2005), which will be used for pollen tube

formation and growth. The categories ‘‘protein synthesis,’’ ‘‘pro-

tein fate,’’ and ‘‘regulation of metabolism and protein function’’

are also overrepresented in the mature pollen proteome (Supple-

mental Fig. S10). The translation of the stored transcripts is likely

a prioritized event at germination and during the initial stage of

pollen tube formation. Among ‘‘protein fate,’’ the subcategories

‘‘protein folding’’ and ‘‘protein stabilization’’ are overrepresented,

indicating that, in addition to the higher stability of pollen pro-

teins reported above, there are also factors that ensure protein

stability in the dehydrated pollen grain. The subcategory ‘‘protein

Figure 5. Comparison of the mature pollen proteome with the pro-
teomes of other Arabidopsis thaliana tissues. (A) Cluster dendrogram
(Ward method) using the Jaccard-based distance as a measure of dissim-
ilarity between protein lists. The clustering implies that pollen is quite
dissimilar with respect to the other tissues; the most similar tissue is
‘‘seed.’’ (B) Proteins of mature pollen are preferentially stable proteins. The
distributions of protein instability parameter values of several data sets are
shown: 29,988 distinct TAIR7 protein sequences (black line), un-
ambiguously identified proteins by Baerenfaller et al. (2008) (12,043;
blue line), and unambiguously identified protein sequences in mature
pollen (classes 1a, 1b, 3a; 3141 proteins; red line). (C ) Amino acid fre-
quency analysis of all mature pollen proteins versus all distinct proteins in
TAIR7. The normalized frequency of the amino acids for both data sets
is shown on the left (light red, mature pollen; light blue, TAIR7), and
the relative difference on the right. (Blue) Amino acids occurring at a lower
relative frequency in the pollen proteome; (red) amino acids with higher
relative frequency.
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degradation’’ is also overrepresented (Supplemental Fig. S10). This

may be related to the fact that many processes in plants are regu-

lated by protein degradation (Lechner et al. 2006), and that the

transition from a quiescent to a highly active metabolic state

requires both protein synthesis and degradation.

Consistent with the crucial role of vesicle trafficking and se-

cretion for rapid pollen tube growth, the category ‘‘cellular trans-

port’’ is overrepresented in our data set (Fig. 6). The subcategories

‘‘protein transport,’’ ‘‘vesicular transport,’’ ‘‘cytoskeleton-dependent

transport,’’ and ‘‘cellular export and secretion’’ are all essential to

polarized tip growth (Supplemental Fig. S10). Polarized tip growth

is regulated by small GTPases (Cheung and Wu 2008) and the

finding that the subcategories ‘‘nucleotide exchange factor’’ and

‘‘regulator of G-protein signaling’’ are overrepresented (Supple-

mental Fig. S10) is consistent with the prominent role they play

during pollen tube growth. These findings demonstrate, however,

that all these functional categories are already present in the

dehydrated, mature pollen grain, which is ready for a rapid ger-

mination and pollen tube growth, providing insights into the

regulation of the switch from a quiescent to an active state.

The ‘‘cell cycle and DNA processing’’ category is underrep-

resented, which is expected, as in mature Arabidopsis pollen all the

cellular components of the male gametophyte are formed and no

cell division occurs. Transcription is another category that is un-

derrepresented. Transcription factors are predominantly small,

basic, low abundant proteins that are often missed in shotgun

proteomic studies (Brunner et al. 2007; Baerenfaller et al. 2008).

This finding is consistent with previous observations showing that

transcription is not essential for pollen tube growth (Mascarenhas

1965; Onodera et al. 2008). Moreover, the subcategories of ‘‘tran-

scription’’ showed the following trends: While ‘‘RNA synthesis’’ (of

ribosomal, transfer, and messenger RNA) was underrepresented or

absent, the subcategories related to the processing or modification

of these RNAs were overrepresented (Supplemental Fig. S10). The

transcripts stored in dehydrated pollen are likely to require the

presence of specific proteins, such as RNA chaperones, RNA

annealers, and RNA helicases (Rajkowitsch et al. 2007), which help

the stored RNAs to get translated upon germination. Indeed, RNA

helicases are highly overrepresented in the subcategory ‘‘RNA

processing’’: We identified 16 genes with predicted RNA helicase

activity, two belonging to the Eukaryotic Initiation Factor 4A (EIF

4A) class, and 14 other helicases that also contain a DEAD/DEAH

domain. We have also identified the two polyA-binding proteins

(PABP) that are known to interact with EIF to regulate translation

initiation (Kuhn and Wahle 2004) and show restricted expression

in reproductive tissues, PAB3 and PAB5 (Belostotsky 2003). The

overrepresentation of post-transcriptional processes in the mature

pollen grain indicates that the processing and translation of stored

transcripts is one of the first events triggered at germination and

during initial pollen tube growth.

Analysis of protein domains and protein families indentified
in the pollen proteome

The function of a protein is reflected by its functional domains. We

carried out a comparative Pfam (Finn et al. 2008) analysis of the

3467 pollen proteins and the 29,988 distinct TAIR7 protein

sequences. The overrepresented Pfam domains were related to

protein folding and stabilization, small GTPase protein signaling,

vesicle transport, cytoskeleton and cell wall reorganization, and

calcium binding and transport (Supplemental Table S8). Un-

derrepresented Pfam domain families included those present in

Figure 6. Functional analysis of the mature pollen proteome. Classification of the major FunCat categories for three data sets: all protein-coding gene
models of TAIR7 (27,029), 3465 gene models identified in our mature pollen proteome study, and 537 gene models exclusively identified in our study.
Asterisks indicate statistically significant over- or underrepresentation (for the comparison of the pollen proteome versus TAIR7, P-value < 0.05).
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F-box associated proteins, transcription factors, and membrane

proteins (data not shown). In combination, the FunCat and Pfam

analyses highlighted the importance of (1) the dehydrated state,

(2) the rapid transition to a highly active physiological state, and

(3) polar tip growth and associated signaling pathways.

The extreme dehydrated state of mature pollen requires fac-

tors that facilitate the long-term storage of proteins and lipids. One

class of proteins associated with cellular tolerance to dehydration is

the late embryogenesis abundant proteins (LEA), a family of low

molecular weight proteins that are highly hydrophilic and heat

stable. LEA proteins provide protection from dehydration not only

in plants, but also in bacteria, cyanobacteria, nematodes, and

rotifers, and are induced by either drying, freezing, or salt stress

(Hong-Bo et al. 2005; Hundertmark and Hincha 2008). LEA pro-

teins are represented in our data set with 14 members, five be-

longing to the LEA_4 group, the most prominent in Arabidopsis

(Hundertmark and Hincha 2008), which also includes genes af-

fecting gametophyte development (Pagnussat et al. 2005). Addi-

tionally, two of the three proteins of the PvLEA group, which get

induced upon dehydration in the bean Phaseolus vulgaris, are

present in the mature pollen proteome (Colmenero-Flores et al.

1999; Hundertmark and Hincha 2008). While having been studied

extensively during seed development, the role of LEA proteins has

been neglected in pollen studies.

The dehydrated state of pollen likely requires chaperones to

facilitate conformational changes and stabilize stored proteins.

Pfam analysis showed a significant overrepresentation of several

domains required for chaperone function, such as heat shock

proteins HSP70 and HSP90, chaperonin subunits CPN10 and

CPN60_TCP1, DNAJ and DNAJ-C ( J-domains associated with the

HSP70 heat-shock system), and universal stress protein Usp (Sup-

plemental Table S8). Pollen and seeds share several components

related to desiccation, such as the LEA proteins and chaperones.

Moreover, we found that, at the whole proteome level, these tis-

sues are most similar to each other. We suggest that these findings

are related to the fact that both mature pollen and seeds are

a propagule for dispersal and survive prolonged periods in a desic-

cated state.

Neutral lipid granules present in seeds, the tapetum, and

pollen oil bodies are maintained and stabilized by a layer of am-

phipathic lipids (phospholipids) and amphipathic structural pro-

teins, the oleosins (Kim et al. 2002). Oleosin mutants were shown

to affect the attachment of the pollen to the stigma surface and

water uptake for germination (Mayfield and Preuss 2000). From the

16 Arabidopsis oleosin genes, we identified seven of the eight

oleosins present in the anther tapetum, and two of the three

oleosins expressed in both maturing seeds and microspores, but

none of the oleosins specific to seeds (Supplemental Table S9).

Importantly, we could identify tapetum oleosins, for which no

gene expression was reported in pollen. This is consistent with

oleosins being synthesized in the tapetum and then transferred

onto the pollen grain as components of the exine (Fig. 1A).

The pollen proteome also revealed the complexity of apical

tip growth (Fig. 7): While we detected all the proteins previously

shown to be functionally important, we also show the presence of

many additional members of these gene families. Vesicle traffick-

ing, which ensures sustained tip growth, is regulated by small

GTPases and SNAREs (soluble N-ethylmaleimide sensitive factor

attachment protein receptors) (Cai et al. 2007). Protein domains

specific to both classes of proteins were shown to be overrep-

resented by the Pfam analysis and, additionally, one third of the

Arabidopsis predicted SNAREs (Sanderfoot et al. 2000) and nearly

half of the predicted small GTPases (Vernoud et al. 2003) are

present in the pollen proteome (Supplemental Tables S8, S9). The

best represented families of small GTPases are the RAB family, with

a critical role in determining the specificity of vesicle targeting, and

the ARF (small ADP ribosylation factor) family, which is involved

in the recruitment and assembly of the vesicle protein coat—

clathrin and/or non-clathrin—from the cytosol onto the donor

membranes. Members of the Rop/Rac GTPase family and their

direct regulators, RopGEFs (GEF, guanine nucleotide exchange

factor; Gu et al. 2006; Zhang and McCormick 2007; Kost 2008),

were shown to regulate pollen tube tip growth (Fig. 7). Notably,

only RopGEFs but no Rop/Rac GTPases were identified in the

pollen proteome. Since the Rop/Rac GTPase transcripts were

present in mature pollen but tip growth occurs only after germi-

nation, it is likely that these key regulators of tip growth are stored

as transcripts in the mature pollen and are translated only upon

hydration and germination.

Homologs of SNARE proteins, regulators of vesicle fusion

with the target membranes, were identified in the Arabidopsis

genome and shown to affect male gametophyte development

(Sanderfoot et al. 2000, 2001). All classes of SNAREs were over-

represented in the mature pollen proteome: the plant homologs of

the syntaxin, synaptobrevin, and SNAP25 families (Supplemental

Tables S8, S9). The Exocyst complex participates in targeted

exocytosis by tethering vesicles to exocytic membrane regions

(TerBush et al. 1996). In Arabidopsis, homologs of all eight mem-

bers of the Saccharomyces cerevisiae Exocyst complex were predicted

and a functional role in pollen germination and tube growth was

shown for SEC3, SEC8, and EXO70A1 (Cole et al. 2005; Hala et al.

2008). We could identify in the pollen proteome the majority of

the Arabidopsis putative Exocyst complex members: SEC3a, SEC5a,

SEC5b, SEC6, SEC8, SEC10, SEC15a, SEC15b, EXO70-A2, and

EXO70-C1, but not EXO84 (Supplemental Table S9).

Recently, reactive oxygen species (ROS) have been implicated

in Rop GTPase-regulated polarized growth (Uhrig and Hulskamp

2006), but it is unclear how exactly ROS play a role in the regulation

Figure 7. Vesicle transport during pollen tube growth. The mature
pollen proteome contains a wide range of proteins involved in vesicle
transport processes (i.e., small GTPases and their regulators; SNAREs; the
Rho-GDF refer to phosphoinositide-specific phospholipase C). Number of
gene family members identified in the pollen proteome is listed over the
total number of gene family members identified in the TAIR7 proteome.
We were able to identify most of the potential members of protein
complexes (i.e., Exocyst complex) shown to play a role for vesicle selec-
tion for exocytosis processes in yeast and animals. Additionally, we
identified a family of proteins containing a domain of unknown function
1216 (DUF1216) that are predicted to play a role in vesicle transport.
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of pollen tube growth. In our data set, we could identify proteins

involved in the ascorbate-glutathione cycle that scavenges hy-

drogen peroxide: L-ascorbate peroxidases (4/8; the latter number

referring to the total number of proteins in this class among dis-

tinct TAIR7 proteins), glutathione dehydrogenases (2/5), and

glutathione-disulfide reductases (2/2). We also identified proteins

involved in the removal of superoxide radicals: catalases (2/3), Cu–

Zn superoxide dismutases (2/3), a manganese superoxide dismutase

(1/2), and an iron superoxide dismutase (1/3) (Supplemental Table

S9). ROS may be involved in pollen-stigma interactions and pollen

tube growth (McInnis et al. 2006; Potocky et al. 2007); ROS were

detected at the pollen tube tip and also in the stigmatic papillae, to

which the pollen adheres at pollination. Given the high level of

ROS in the extracellular environment and the specific localization

at the tip of the pollen tube, it seems likely that a balance of ROS

production and removal in the pollen tube is crucial for the spatio-

temporal distribution of ROS and may be required for normal tip

growth. Moreover, the high level of ROS on stigmatic cells and its

reduction in papillae to which a pollen grain adhered (McInnis

et al. 2006) suggest a role of ROS in pollen germination.

Potential roles for proteins of unknown function
in pollen development

Proteins containing the Pfam domain of unknown function

DUF1216 (one or two copies) were among the most abundant

proteins identified in the mature pollen proteome based on spec-

tral counts (Supplemental Table S10): Four members were among

the top 10 proteins AT3G28830.1, AT3G28790.1, AT3G28980.1,

AT5G61720.1 (as reference, the oleosin GRP17 was the third most

abundant pollen protein). With 10 of the 11 family members being

present, the DUF1216 domain family was significantly over-

represented (P-value < 2.3 3 10�7; Supplemental Table S8). We

were unable to find distant homologs or a predicted structure for

this family using sensitive HMM-HMM (hidden Markov model)

comparison methods. Our reanalyzed transcriptomics data in-

dicated that eight of the 11 members are expressed in both early

and late pollen stages; for two additional members represented by

one ambiguous Affymetrix probe set, our proteomics data could

unambiguously identify both proteins (Supplemental Table S10).

Meta-analysis of transcriptomics data from various Arabidopsis

tissues (Zimmermann et al. 2004) indicated that expression of the

DUF1216 family is restricted to flowers, which contain pollen. So

far, no mutant phenotypes have been described for any of the

DUF1216 protein members, most likely due to their redundant

function.

A proteome-scale probabilistic gene network generated by the

integration of several high-throughput functional genomics data

sets using a Bayesian framework allowed accurate prediction of

gene function in yeast (Lee et al. 2004). A similar network analysis

in Caenorhabditis elegans could place groups of unclassified genes

into a functional context and enabled the accurate prediction of

phenotypic effects following perturbation of gene function (Lee

et al. 2008). We looked for predicted interaction partners of the

DUF1216 family in an Arabidopsis gene network that covers 19,647

of the protein-coding genes in TAIR7 (72.7%); 3118 of the mature

pollen gene models are represented in this network, accounting for

15.8% of the network nodes. For the five DUF1216 genes present in

the network (all annotated with the cellular component GO cate-

gory ‘‘endomembrane system’’), 108 interaction partners were

predicted by various lines of evidence. Our data integration re-

vealed that we could find proteomics evidence (43 interactors) or

transcriptomics evidence (53 interactors in mature pollen; 63 in

earlier pollen stages), and combined evidence for pollen expres-

sion for a total of 67 predicted interactors (62%). Compared to 16%

of interactors expected to be present, this is a highly significant

enrichment (P-value < 2 3 10�27). Furthermore, five mutants known

to affect pollen development (Supplemental Table S5) were among

these 67 interactors. Several of the interactors are annotated

with functional GO categories associated with vesicle trafficking:

t-SNARE activity (13 annotated gene models among 67 interactors,

19 in the entire network), SNAP receptor activity (3/7), and SNARE

binding activity (2/5). In total, 18 out of 31 gene models in the

network that belong to these vesicle trafficking categories are

present (P-value < 1 3 10�7) (Supplemental Table S10; Fig. 7). Based

on these findings, we predict that DUF1216 family proteins are

involved in vesicle trafficking, highlighting the value of proteomic

analysis in providing insights into proteins of previously unknown

function.

Conclusion

We report an extensive proteomics reference data set for mature

Arabidopsis pollen. Independent genetic evidence from pollen

mutant studies support that our data set is of high quality and

covers a significant part of the truly expressed pollen proteome.

To address the protein inference problem typical of shotgun pro-

teomics (Nesvizhskii and Aebersold 2005), we have developed a

generic deterministic peptide classification scheme. This scheme

enabled us to classify the peptide evidence according to in-

formation content, to infer a list of protein identifications with

a minimum of false or ambiguous assignments, to focus the time-

consuming manual validation on a small part of our data set

(roughly 1%), and to seamlessly integrate transcriptomics data.

Based on the large fraction of low expressed genes in

mature pollen (Schmid et al. 2005), we expected a significant

percentage of single hit protein identifications. After manual val-

idation, we only accepted 35% of the single hits, which were in-

deed significantly enriched for short and low abundant proteins as

predicted. We demonstrate that manual validation of ‘‘one-hit

wonders’’ (Veenstra et al. 2004) adds significant value to our

data set, while concomitantly lowering the overall FDR at the

spectra, peptide, and most dramatically at the protein level.

Therefore, we believe that manual validation of information-rich

single hit protein identifications could become a standard pro-

cedure for generating reference data sets using shotgun proteomics

approaches.

For an optimal data integration, we selected the Arabidopsis

TAIR7 database as a common reference point. Transcriptomics data

were stringently reanalyzed against the TAIR7 genome release,

while proteomics data was searched against the TAIR7 database

using a decoy database strategy. The seamless integration of these

data sets allowed us to provide novel insights into pollen biology

and development. In many cases our classification enables us to

report which of several possible proteins encoded by a gene model

were actually observed, providing more information than the

transcriptomics data. A detailed analysis of functional categories

and protein domains illustrates the importance of stored proteins

and post-transcriptional regulation for the rapid switch from

a quiescent state to a rapidly growing pollen tube upon germina-

tion. In agreement with the existence of the pollen proteins in

a desiccated state, we observed a significantly higher stability of

pollen proteins compared to those expressed in other tissues. In

summary, the mature pollen proteome reference data set reported
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here allowed us to propose functions for many previously un-

characterized proteins.

Our classification scheme supports future targeted quantita-

tive proteomics studies. We have previously outlined how pro-

teotypic peptides (PTPs, all peptides of classes 1a, 1b, and 3a that

unambiguously identify one protein sequence) can be used to

target and quantify a set of proteins relevant to a specific biological

question, similar to a microarray experiment (Kuster et al. 2005;

Ahrens et al. 2007). Experimental PTPs for protein families or en-

tire signaling pathways of interest can be selected from our refer-

ence data set, and if needed, complemented with in silico predicted

PTPs (Mallick et al. 2007). Their analysis by highly sensitive

targeted single reaction monitoring measurements can provide

complete quantitative data series that are paramount for sys-

tems biology and mathematical modeling approaches. Pollen, as

a simple cell biological system, is particular amenable to such

approaches.

Methods

Pollen collection and protein extraction
Arabidopsis thaliana plants of the Col-0 accession were grown un-
der greenhouse conditions set at constant humidity (60%), fol-
lowing a 16-h light/8-h dark cycle at a temperature of 21°C day/
16°C night. Highly pure mature pollen grains were collected as
described in Supplemental Methods and stored at �80°C. Ap-
proximately 30–35 mg of pollen was used for a sequential protein
extraction, using a series of four buffers as described in Supple-
mental Methods.

Isotope-coded affinity tagging (ICAT)

ICAT procedures were carried out according to the manufacturer’s
protocol for Cleavable ICAT Reagent Kit for Protein Labeling (Ap-
plied Biosystems). For details see Supplemental Methods.

Mass spectrometry

ESI-based LC-MS/MS was performed with a 2D linear ion trap,
Finnigan LTQ (Thermo Electron Corporation) equipped with an
Ultimate Nano HPLC System (Dionex Corporation). Samples were
injected by a FAMOS Autosampler (Dionex Corporation) and
separated on a custom-made reverse-phase tip column (0.075 3

100 mm) packed with C18 material (AQ, 3 mm, 200 Å, Bischoff
GmbH). Peptides were analyzed at a flow rate of 250 nL/min of
solvent A (5% acetonitrile, 0,2% formic acid in water). The elution
of peptides (75 min) followed a gradient of 45% solvent B (80%
acetonitrile, 0,2% formic acid in water) for 50 min and 100% sol-
vent B for the next 15 min. Mass spectra were acquired in the mass
range of 400–2000 m/z and up to six data dependent MS/MS
spectra were recorded from a single survey scan.

In total, we performed 15 independent experiments ac-
counting for 250 total mass spec runs (an overview of mass spec-
trometry runs is shown in Supplemental Fig. S2).

Classification of experimentally identified peptides

A novel, deterministic protein classification scheme based on the
peptide information content was used in order to minimize errors
by protein inference. For more details of the five peptide classes,
see main text and legends of Table 1 and Figure 2B,C. Class 3a and
3b proteins are listed in Supplemental Table S1 but are not shown

in PRIDE and/or in the AtProteome database. The method to infer
a minimal list of proteins that explain all peptide evidence is de-
tailed in the Supplemental Methods.

Functional classification

We classified the 27,029 protein-coding gene models of TAIR7 and
the 3465 pollen proteome gene models according to the FunCat
Database (http://mips.gsf.de/projects/funcat). P-values of over- or
underrepresented functional classes were calculated based on
hypergeometric tests (Fisher’s exact test) and corrected for multiple
testing with the 17 major categories shown. Asterisks shown in
Figure 6 indicate a P-value < 0.05. For a more fine-grained func-
tional analysis at the protein level, the 29,988 distinct TAIR7
protein sequences were searched against the Pfam database of
hidden Markov models (release 22, July 2007, 9318 protein family
models), as described (Brunner et al. 2007). The statistical signifi-
cance of the overrepresentation of certain Pfam domain fam-
ilies among the 3467 experimentally identified proteins was
assessed by hypergeometric tests (Fisher’s exact test). The P-values
were adjusted for multiple comparisons (for the 65 selected
Pfam domain families shown in Supplemental Table S8) by using
the routine p.adjust in R with the method ‘‘Holm.’’ We show
both P-values before and after multiple testing correction (for
domains with few members, a biologically relevant observation
will often not be supported by the statistics after multiple testing
correction).

Comparison of the pollen proteome with tissue-specific
A. thaliana proteomes

Our pollen proteome data set was compared with an A. thaliana
proteomics tissue index data set (Baerenfaller et al. 2008). The
published peptide evidence was classified according to our novel
classification scheme, and lists of identified gene models were
compiled for each tissue (carpel, cotyledon, flower, flower bud,
juvenile leaf, root, seed, and silique; data for cell suspension culture
were not further considered in our comparative analysis). The
Jaccard coefficient was used as a measure of similarity between the
gene model lists, according to formula (1). Thus, the similarity of
two lists is calculated from the size of the intersection of the two
sets divided by the size of the union of the two sets.

JðA;BÞ = A \ Bj j= A [ Bj j ð1Þ

dJðA;BÞ = 1� JðA;BÞ ð2Þ

This similarity was converted to a distance for the purpose of
clustering according to formula (2). Hierarchical clustering was
performed using the routine hclust in R (http://www.r-project.org)
with the agglomeration method ‘‘Ward.’’ Clustering results are
shown in Figure 4A as a dendrogram, and in Supplemental Figure
S9 as a heatmap.

Gene expression data sets

Data from several previous transcriptomics studies on different
stages of pollen development were downloaded and further pro-
cessed: ArrayExpress accession no. E-MEXP-285 for the mature
pollen data described in Pina et al. (2005); E-TABM-17 for the
mature pollen data set from Schmid et al. (2005); Gene Expression
Omnibus accession no. GSE6162 for the data set described in
Honys and Twell (2004).
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Remapping Affymetrix oligonucleotide probe sets

To apply the same stringency to the transcriptomics data set as to
our proteomics data set, i.e., not considering evidence that points
to several distinct gene models or protein sequences encoded by
different gene models (class 3b), we remapped the Affymetrix
probe sets against the TAIR7 database release using the custom CDF
libraries (version 10) downloaded from the Brainarray microar-
ray laboratory (http://brainarray.mbni.med.umich.edu/Brainarray/
Database/CustomCDF/CDF_download_v10.asp) and eliminated
probe sets that could be mapped to multiple positions in the ge-
nome (Supplemental Fig. S6; Supplemental Table S3). A detailed
description of the remapping procedure is provided in Supple-
mental Methods.

Spectral counts and correlation to transcriptomics
hybridization signal

CEL Files were processed using the Bioconductor implementation
of the MAS5 algorithm for computing expression signals (Hubbell
et al. 2002) and detection P-values (Liu et al. 2002). A probe set was
called present if the detection P-value was <0.05. We only assessed
the correlation of gene expression data and spectral counts for
proteins of classes 1a, 1b, and 2, for which we can unambiguously
assign the respective gene model.

Calculation of APEX values

We calculated the absolute protein expression measurement
(APEX) for the pollen data set as described by Lu et al. (2007), using
the 40 most abundant pollen proteins (based on total spectral
counts) to create the training set, and an estimate of 2.5 3 108 as
the total number of protein molecules per cell. A detailed de-
scription of the APEX calculation procedure is given in the Sup-
plemental Methods.

Amino acid frequency calculation

For each of the 29,988 distinct protein sequences in TAIR7 we
calculated a 20-dimensional vector of frequencies of amino acids
and normalized it using the protein length in order to remove the
length bias. These vectors of normalized frequencies were summed
up for the 29,988 distinct sequences and then divided with 29,988.
The same procedure was repeated for the 3467 distinct protein
sequences of our pollen proteome data set. Figure 5C (left) com-
pares the absolute frequencies using a bar chart, Figure 5C (right)
shows the relative amino acids frequency differences for the pollen
proteome versus the distinct sequences of TAIR7.
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tion of the vacuum wand and gel cutter. The Center for Model
Organism Proteomes is funded by the University of Zurich (http://
www.mop.uzh.ch) as part of the University Research Priority
Program Systems Biology/Functional Genomics. C.H.A. dedicates

this work to the late Elke Ahrens and U.G. to the late Dmitry
Belostotsky.

References

Ahrens CH, Brunner E, Hafen E, Aebersold R, Basler K. 2007. A proteome
catalog of Drosophila melanogaster: An essential resource for targeted
quantitative proteomics. Fly 1: 182–186.

Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M,
Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S.
2008. Genome-scale proteomics reveals Arabidopsis thaliana gene
models and proteome dynamics. Science 320: 938–941.

Balgley BM, Laudeman T, Yang L, Song T, Lee CS. 2007. Comparative
evaluation of tandem MS search algorithms using a target-decoy search
strategy. Mol Cell Proteomics 6: 1599–1608.

Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA. 2003. Transcriptional
profiling of Arabidopsis tissues reveals the unique characteristics of the
pollen transcriptome. Plant Physiol 133: 713–725.

Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK. 2006. Quantification of
protein half-lives in the budding yeast proteome. Proc Natl Acad Sci 103:
13004–13009.

Belostotsky DA. 2003. Unexpected complexity of poly(A)-binding protein
gene families in flowering plants: Three conserved lineages that are at
least 200 million years old and possible auto- and cross-regulation.
Genetics 163: 311–319.

Boavida LC, Becker JD, Feijo JA. 2005. The making of gametes in higher
plants. Int J Dev Biol 49: 595–614.

Bradshaw RA, Burlingame AL, Carr S, Aebersold R. 2006. Reporting protein
identification data: The next generation of guidelines. Mol Cell
Proteomics 5: 787–788.

Brunner E, Ahrens CH, Mohanty S, Baetschmann H, Loevenich S, Potthast F,
Deutsch EW, Panse C, de Lichtenberg U, Rinner O, et al. 2007. A high-
quality catalog of the Drosophila melanogaster proteome. Nat Biotechnol
25: 576–583.

Cai H, Reinisch K, Susan F-N. 2007. Coats, tethers, rabs, and SNAREs work
together to mediate the intracellular destination of a transport vesicle.
Dev Cell 12: 671–682.

Carpenter JL, Ploense SE, Snustad DP, Silfloway CD. 1992. Preferential
expression of an alpha-tubulin gene of Arabidopsis in pollen. Plant Cell 4:
557–571.

Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A.
2004. The need for guidelines in publication of peptide and protein
identification data: Working Group on Publication Guidelines for
Peptide and Protein Identification Data. Mol Cell Proteomics 3: 531–
533.

Cheung AY, Wu HM. 2008. Structural and signaling networks for the polar
cell growth machinery in pollen tubes. Annu Rev Plant Biol 59: 547–
572.

Cole RA, Synek L, Zarsky V, Fowler JE. 2005. SEC8, a subunit of the putative
Arabidopsis Exocyst complex, facilitates pollen germination and
competitive pollen tube growth. Plant Physiol 138: 2005–2018.

Colmenero-Flores JM, Moreno LP, Smith CE, Covarrubias AA. 1999. Pvlea-
18, a member of a new late-embryogenesis-abundant protein family that
accumulates during water stress and in the growing regions of well-
irrigated bean seedlings. Plant Physiol 120: 93–104.

Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers
RM, Speed TP, Akil H, et al. 2005. Evolving gene/transcript definitions
significantly alter the interpretation of GeneChip data. Nucleic Acids Res
33: e175. doi: 10.1093/nar/gni179.

de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, Walther
TC, Mann M. 2008. Comprehensive mass-spectrometry-based proteome
quantification of haploid versus diploid yeast. Nature 455: 1251–
1254.

Dettmer J, Schubert D, Calvo-Weimar O, Stierhof YD, Schmidt R,
Schumacher K. 2005. Essential role of the V-ATPase in male
gametophyte development. Plant J 41: 117–124.

Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma D. 2005. Callose
synthase (CalS5) is required for exine formation during
microgametogenesis and for pollen viability in Arabidopsis. Plant J 42:
315–328.

Duret L, Mouchiroud D. 1999. Expression pattern and, surprisingly, gene
length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis.
Proc Natl Acad Sci 96: 4482–4487.

Elias JE, Gygi SP. 2007. Target-decoy search strategy for increased confidence
in large-scale protein identifications by mass spectrometry. Nat Methods
4: 207–214.

Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund
K, Eddy SR, Sonnhammer EL, et al. 2008. The Pfam protein families
database. Nucleic Acids Res 36: D281–D288.

Grobei et al.

1798 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on April 25, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Gu Y, Li S, Lord EM, Yang Z. 2006. Members of a novel class of Arabidopsis
Rho guanine nucleotide exchange factors control Rho GTPase-
dependent polar growth. Plant Cell 18: 366–381.

Guermonprez H, Smertenko A, Crosnier M-T, Durandet M, Vrielynck N,
Guerche P, Hussey PJ, Satiat-Jeunemaitre B, Bonhomme S. 2008. The
POK/AtVPS52 protein localizes to several distinct post-Golgi
compartments in sporophytic and gametophytic cells. J Exp Bot 59:
3087–3098.

Guruprasad K, Reddy BV, Pandit MW. 1990. Correlation between stability of
a protein and its dipeptide composition: A novel approach for predicting
in vivo stability of a protein from its primary sequence. Protein Eng 4:
155–161.

Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. 1999.
Quantitative analysis of complex protein mixtures using isotope-coded
affinity tags. Nat Biotechnol 17: 994–999.

Hala M, Cole R, Synek L, Drdova E, Pecenkova T, Nordheim A, Lamkemeyer
T, Madlung J, Hochholdinger F, Fowler JE, et al. 2008. An Exocyst
complex functions in plant cell growth in Arabidopsis and tobacco. Plant
Cell 20: 1330–1345.

Hepler PK, Vidali L, Cheung AY. 2001. Polarized cell growth in higher plants.
Annu Rev Cell Dev Biol 17: 159–187.

Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S. 2005.
Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics
5: 4864–4884.

Hong-Bo S, Zong-Suo L, Ming-Ana S. 2005. LEA proteins in higher plants:
Structure, function, gene expression and regulation. Colloids Surf B
Biointerfaces 45: 131–135.

Honys D, Twell D. 2003. Comparative analysis of the Arabidopsis pollen
transcriptome. Plant Physiol 132: 640–652.

Honys D, Twell D. 2004. Transcriptome analysis of haploid male
gametophyte development in Arabidopsis. Genome Biol 5: R85. doi:
10.1186/gb-2004-5-11-r85.

Hubbell E, Liu WM, Mei R. 2002. Robust estimators for expression analysis.
Bioinformatics 18: 1585–1592.

Hundertmark M, Hincha DK. 2008. LEA (Late Embryogenesis Abundant)
proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics
9: 118. doi: 10.1186/1471-2164-9-118.

Jiang L, Yang SL, Xie L, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D.
2005. VANGUARD1 encodes a pectin methylesterase that enhances
pollen tube growth in the Arabidopsis style and transmitting tract. Plant
Cell 17: 584–596.

Kang B-H, Rancour DM, Bednarek SY. 2003. The dynamin-like protein
ADL1C is essential for plasma membrane maintenance during pollen
maturation. Plant J 35: 1–15.

Keller A, Nesvizhskii AI, Kolker E, Aebersold R. 2002. Empirical statistical
model to estimate the accuracy of peptide identifications made by MS/
MS and database search. Anal Chem 74: 5383–5392.

Kim HU, Hsieh K, Ratnayake C, Huang AHC. 2002. A novel group of oleosins
is present inside the pollen of Arabidopsis. J Biol Chem 277: 22677–22684.

Kost B. 2008. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant
cells. Trends Cell Biol 18: 119–127.

Kuhn U, Wahle E. 2004. Structure and function of poly(A) binding proteins.
Biochim Biophys Acta 1678: 67–84.

Kuster B, Schirle M, Mallick P, Aebersold R. 2005. Scoring proteomes with
proteotypic peptide probes. Nat Rev Mol Cell Biol 6: 577–583.

Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. 2006. F-box
proteins everywhere. Curr Opin Plant Biol 9: 631–638.

Lee I, Date SV, Adai AT, Marcotte EM. 2004. A probabilistic functional
network of yeast genes. Science 306: 1555–1558.

Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM. 2008. A single
gene network accurately predicts phenotypic effects of gene
perturbation in Caenorhabditis elegans. Nat Genet 40: 181–188.

Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington
CA, Ho MH, Baid J, et al. 2002. Analysis of high density expression
microarrays with signed-rank call algorithms. Bioinformatics 18: 1593–
1599.

Lobstein E, Guyon A, Ferault M, Twell D, Pelletier G, Bonhomme S. 2004.
The putative Arabidopsis homolog of yeast Vps52p is required for pollen
tube elongation, localizes to Golgi, and might be involved in vesicle
trafficking. Plant Physiol 135: 1480–1490.

Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein
expression profiling estimates the relative contributions of
transcriptional and translational regulation. Nat Biotechnol 25: 117–
124.

Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B,
Schmitt R, Werner T, et al. 2007. Computational prediction of proteotypic
peptides for quantitative proteomics. Nat Biotechnol 25: 125–131.

Mascarenhas JP. 1965. Pollen tube growth and RNA synthesis by tube and
generative nuclei of Tradescantia. Am J Bot 52: 617.

Mayfield JA, Preuss D. 2000. Rapid initiation of Arabidopsis pollination
requires the oleosin-domain protein GRP17. Nat Cell Biol 2: 128–130.

McCormick S. 2004. Control of male gametophyte development. Plant Cell
16: S142–S153.

McInnis SM, Desikan R, Hancock JT, Hiscock SJ. 2006. Production of reactive
oxygen species and reactive nitrogen species by angiosperm stigmas and
pollen: Potential signalling crosstalk? New Phytol 172: 221–228.

Nesvizhskii AI, Aebersold R. 2005. Interpretation of shotgun proteomic
data. Mol Cell Proteomics 4: 1419–1440.

Nesvizhskii AI, Keller A, Kolker E, Aebersold R. 2003. A statistical model for
identifying proteins by tandem mass spectrometry. Anal Chem 75:
4646–4658.

Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, Unte US, Rosso
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