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Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which
typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids,
are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes
with the help of lipid binding proteins in a sequential manner. Because of a functionally
impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumu-
late in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick
type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in
the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few
lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal
system, such as lipids and proteins, causing a “traffic jam.” This can impair lysosomal func-
tion, such as delivery of nutrients through the endolysosomal system, leading to a state of
cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases
with significant residual catabolic activities and without brain involvement.

Lysosomal lipid storage diseases are a group of
inherited catabolic disorders in which typi-

cally large amounts of complex lipids accumu-
late in cells and tissues. Macromolecules such
as complex lipids and oligosaccharides are con-
stitutively degraded in the acidic compartments
of the cell, the endosomes, and lysosomes, into
their building blocks. The resulting catabolites
are exported to the cytosol and reused in cel-
lular metabolism. When lysosomal function is
impaired because of a defect in a catabolic
step, degradation cannot proceed normally
and undegraded compounds accumulate. Lyso-
somal lipid storage diseases comprise mainly
the sphingolipidoses, Niemann-Pick type C dis-
ease (NPC), and Wolman disease, including the

less severe form of this disease, called cholesteryl
ester storage. NPC is a complex lipid storage
disease mainly characterized by the accumula-
tion of unesterified cholesterol in the late endo-
somal/lysosomal compartment (Bi and Liao
2010). The sphingolipidoses are caused by de-
fects in genes encoding proteins involved in
the lysosomal degradation of sphingolipids
(Kolter and Sandhoff 2006). First reports on
these diseases were given more than a century
ago. Already in 1881, Warren Tay described
the clinical symptoms of a disease, which is
today called Tay-Sachs disease (Tay 1881). After
Christian de Duve discovered the lysosome in
1955 (de Duve 2005), Henri-Géry Hers estab-
lished the first correlation between an enzyme
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deficiency and a lysosomal storage disorder
(Pompe’s disease) in 1963 (Hers 1963). In the
following decades, the enzymes and cofactors
deficient in the sphingolipidoses have been
identified. Though lysosomal lipid storage dis-
eases have been known for a long time, treat-
ment is only available for a few mild forms of
the diseases, such as the adult forms of Gaucher
disease (Barton et al. 1991). For several lyso-
somal storage diseases, therapies like enzyme
replacement or bone marrow transplantation
are in the clinical trial stage (Platt and Lach-
mann 2009). For a long time, lysosomal diseases
have been considered a problem of superabun-
dance (storage) in which the storage material
can slowly spread to other cellular membranes,
impairing their function. More recently, it
came into focus that massive storage prevents
lysosomal functions such as nutrition delivery
through the endolysosomal system, leading to
a state of cellular starvation. In mouse models
of both GM1 and GM2 gangliosidoses iron is
progressively depleted in brain tissue. Ad-
ministration of iron prolonged survival in the
diseased mice by up to 38% (Jeyakumar et al.
2009).

LYSOSOMES AS STOMACHS OF THE CELL
PROVIDE CELLS WITH NUTRIENTS

Lysosomes provide cells with nutritients, and
should be thought of as stomachs of the cell
(Kolter and Sandhoff 2010). Export of metab-
olites from the lysosome is mediated by trans-
port proteins within the lysosomal perimeter
membrane (Sagné and Gasnier 2008). Defective
transport across the lysosomal membrane can
lead to intralysosomal storage and starvation
of the cell, as in Salla disease, where sialic acid
is accumulated (Ruivo et al. 2009). Cobalamin
uptake takes place via endocytosis and release
from the lysosomes. Defects in the presumed
lysosomal membrane exporter for cobalamin,
LMBD1, lead to the accumulation of the vita-
min in the lysosomes, reducing its conversion
to enzyme cofactors (Rutsch et al. 2009). Fur-
thermore, lysosomes play an important role in
iron metabolism (Kurz et al. 2008), supplying
the cytosol with Fe2þ either by autophagy or

by release from endocytosed transferrin. Many
autophagocytosed proteins such as ferritin,
and proteins from the electron transport chain,
contain iron. Nondividing cells, (i.e., neurons),
might fulfill their need in iron ions largely by
reuse of catabolites of autophagocytosed iron-
containing proteins.

Mutations in the human TRPML1 gene,
coding for a predicted late endosomal and lyso-
somal iron channel protein, cause mucolipido-
sis type IV disease. Impaired iron transport may
contribute to hematological and degenerative
symptoms of mucolipidosis type IV patients
(Dong et al. 2008).

Besides the degradation of defective pro-
teins, the supply with nutrients such as iron
ions even under nonstarving conditions is an
essential function of autophagy. Mice lacking
Atg7, a gene essential for autophagy, show mas-
sive neurodegeneration (Komatsu et al. 2006).
Uptake of exogenous iron by dividing cells
is mediated through endocytosed transferrin
(and the transferrin receptor). The iron is re-
leased in the endosomes at decreased pH-values
and can leave the compartment to the cytosol by
the divalent metal transporter-1 and may reach
the outer mitochondrial membrane by tempo-
rary close contact of the organelles (Zhang
et al. 2005). However, Fe2þ ions should always
be protein bound because free Fe2þ ions can pro-
mote the formation of very reactive hydroxyl-
radicals via the Fenton reaction (1. Fe2þ þ O2

! Fe3þ þ O2
†-; 2. 2Hþ þ 2 O2

†- ! H2O2 þ
O2; 3. Fe2þ þ H2O2 ! Fe3þ þ OH2 þOH†).

SPHINGOLIPIDS

Sphingolipids and glycosphingolipids are ubiq-
uitous components of mammalian cell mem-
branes. They are characterized by the presence
of a hydrophobic membrane anchor, ceramide,
and a sphingoid base linked via the amino
group to a fatty acid. Its terminal hydroxyl
group is bound to a hydrophilic headgroup,
phosphorylcholine in the case of sphingomyelin
or a carbohydrate headgroup in the case of gly-
cosphingolipids (GSL) (Fig. 1). Biosynthesis of
glycosphingolipids starts with the formation
of ceramide at the cytoplasmic face of the
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endoplasmatic reticulum (ER) membrane
(Merrill 2002; Kolter and Sandhoff 1999). De
novo biosynthesis competes with sphingolipid
formation by salvage pathways using building
blocks (e.g., sphingoid bases) released from
the lysosomal compartments. Depending on
the cell type, 50%–90% of glycosphingolipids
are derived from the salvage pathways (Gillard
et al. 1998; Tettamanti et al. 2003). During

biosynthesis, ceramides are transferred to the
cytosolic leaflet of the Golgi membrane by
secretory vesicular flow and by the lipid transfer
protein CERT (Hanada et al. 2003), where glu-
cosylceramide is formed and translocated to the
luminal face. Subsequent glycosylation reac-
tions give rise to the complex carbohydrate pat-
tern of gangliosides. After their biosynthesis,
complex glycosphingolipids reach the outer
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Figure 1. Structures of ganglioside GM2, sphingomyelin, ceramide, and BMP.
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surface of plasma membranes by vesicular
exocytotic membrane flow. Sphingomyelin is
formed from ceramide and phosphatidylcho-
line at the luminal side of the trans-Golgi net-
work and at the plasma membrane (Tafesse
et al. 2007).

To date, only very few diseases associated
with impaired sphingolipid biosynthesis are
known. Partial deficiency of the biosynthetic
enzyme lactosylceramide a2, 3 sialyltransferase
(GM3 synthase) causes an autosomal recessive
infantile-onset symptomatic epilepsy syndrome
(Simpson et al. 2004). Mutations in the SPTLC1
gene coding for a subunit of the serine palmi-
toyltransferase, lead to enhanced neuronal
apoptosis because of elevated levels of deoxy-
ceramides (Dawinks et al. 2001; Bejaoui et al.
2002). They cause an adult-onset, hereditary
sensory, and autonomic neuropathy type I
(HSAN1). The mutations alter amino acid
selectivity of the serine palmitoyltransferase
enzyme, leading to condensation of palmitate
with alanine and glycine, in addition to serine,
and resulting in the accumulation of two atyp-
ical neurotoxic deoxysphingoid bases (Penno
et al. 2010).

SPHINGOLIPIDOSES

The sphingolipidoses are inherited lipid storage
diseases caused by defects in genes encoding
proteins of the lysosomal catabolism. All sphin-
golipidoses are inherited in an autosomal reces-
sive mode, with the exception of Fabry disease,
which follows an X-linked recessive mode of
inheritance (Desnick et al. 2001). GSLs are
degraded along a strictly sequential pathway in
humans (Fig. 2). For almost every degradation
step, a disease has been described in which the
correlated enzyme or activator protein is defec-
tive. Lactosylceramide can be degraded by two
enzyme/activator systems (Zschoche et al.
1994). Therefore, no single enzyme defect is
known that leads to isolated lactosylceramide
storage. However, lactosylceramide accumu-
lates, together with other sphingolipids, when
several cofactors are absent simultaneously, as
it is the case in prosaposin deficiency (Bradova
et al. 1993).

LIPID SORTING AND FORMATION OF
INTRAENDOLYSOSOMAL VESICLES

Water-soluble macromolecules such as proteins
and oligosaccharides can easily be reached by
soluble enzymes and be degraded in the endoly-
sosomal system. However, degrading mem-
brane-lipids in an organelle without destroying
the integrity of its perimeter membrane requires
more complex sorting and disintegration sys-
tems. This led to the assumption that two dis-
tinct pools of membranes exist in the late
endolysosomal compartment, which differ in
lipid and protein composition (Fürst and
Sandhoff 1992; Kolter and Sandhoff 2010). Lip-
ids reach the lysosomal compartment either as
part of the limiting membrane, or as part of
intraendosomal membranes, the main site of
sphingolipid degradation. The lysosomal pe-
rimeter membrane is protected from degrada-
tion by a glycocalyx facing the lumen of the
organelle and composed of glycoproteins heav-
ily glycosylated with lactosamine units (Eskeli-
nen et al. 2003). Intralysosomal membranes
have initially been observed in cells of patients
with sphingolipid storage diseases such as GM1
gangliosidosis (Suzuki and Chen 1968) or com-
bined sphingolipid activator protein deficiency
(Harzer et al. 1989), where nondegradable lipids
accumulate in multivesicular storage bodies.
Multivesicular bodies are formed by inward
budding of the limiting endosomal membrane,
mediated by the sequential action of three endo-
somal sorting complexes required for transport,
ESCRT-I, -II, -III (Saksena et al. 2007; Wollert
and Hurley 2010). During endocytosis and
maturation of endosomes, the luminal pH value
decreases, and lipid composition of the internal
membranes is adjusted for degradation (Fig. 3).
Membrane-stabilizing cholesterol is sorted out
and a main activator of enzymatic sphingolipid
degradation, bis-(monoacylglycero)-phosphate
(BMP), is formed (Möbius et al. 2003). BMP is
a characteristic anionic lipid on the surface of
intralysosomal membranes, which is negatively
charged even at lysosomal pH values. The
perimeter membrane does not contain BMP
(Möbius et al. 2003). Because of its unusual
sn1, sn10-configuration, BMP is only slowly
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degraded by lysosomal phospholipases (Matsu-
zawa and Hostetler 1979). BMP derives from
phosphatidylglycerol generated in the ER and
from cardiolipin, which reaches the lysosomes
presumably as part of mitochondria by mac-
roautophagy (Brotherus and Renkonen 1977;
Amidon et al. 1996). Together with smaller
amounts of phosphatidylinositol (Kobayashi
et al. 1998) and dolichol phosphate (Chojnacki
and Dallner 1988), BMP causes a negative charge
of intralysosomal membranes. Because of their
isoelectric points, most activator proteins and
hydrolytic enzymes, such as acid sphingomyeli-
nase, are positively charged at the acidic pH

values of the lysosomes. As polycations, they
should adhere to the surfaces of intralysosmal
vesicles. Binding of the cationic lysosomal pro-
teins to the negatively charged surface of the
inner vesicles allows degradation of lipids at
the membrane-water interphase. Some cationic
amphiphilic drugs, such as the antidepressant
desipramine, can interfere with the negatively
charged surface, leading to release and subse-
quent proteolysis of the hydrolytic enzyme. In
the case of acid sphingomyelinase, this leads to
a drug induced lipidosis (Kölzer et al. 2004).
Based on in vitro experiments we assume that
acid sphingomyelinase is already quite active in
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Figure 2. Degradation of selected sphingolipids in the lysosomes of the cells. The eponyms of individual inher-
ited diseases are given. Activator proteins required for the respective degradation step in vivo are indicated. Var-
iant AB, AB variant of GM2 gangliosidosis (deficiency of GM2-activator protein); Sap, saposin (adapted from
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late endosomes and converts sphingomyelins of
the intraendosomal vesicles and lipid aggregates
into ceramides (Abdul-Hammed et al. 2010).
This would stimulate the cholesterol transfer
mediated by the NPC-2 protein. This transfer
is stimulated by BMP and ceramide in the vesic-
ular membranes and inhibited by sphingomye-
lin (Abdul-Hammed et al. 2010).

LYSOSOMAL LIPID BINDING PROTEINS

In addition to hydrolyzing enzymes and anionic
lipids, especially BMP, lysosomal degradation of
glycosphingolipids requires auxiliary proteins,
the lysosomal lipid binding proteins (LLBP).
Other membrane compounds such as phospho-
lipids can apparently be degraded without their
help. GSLs with short carbohydrate chains of
four or less sugars bound to intralysosomal
membranes are not sufficiently accessible to
the water-soluble enzymes present in the

lysosomal lumen. LLBP bind, solubilize, and
present membrane-lipids to their respective
hydrolases for degradation (Fürst and Sandhoff
1992). They encompass five sphingolipid acti-
vator proteins, the saposins A-D (Sap-A-D),
and the GM2 activator protein (Conzelmann
and Sandhoff 1979; Sandhoff et al. 2001). Sap-
A-D derives from one common precursor pro-
tein, the prosaposin (p-Sap).

MOLECULAR AND CELLULAR
PATHOGENESIS OF SPHINGOLIPID
STORAGE DISEASES

Organ and Cell Specificity of Sphingolipid
Storage

Sphingolipid storage diseases are caused by
defective catabolic activities in the endolysoso-
mal system of the cells. Lysosomal accumulation
occurs predominantly in cells and organs that
have the highest rates of biosynthesis or uptake
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Figure 3. Model of endocytosis and lysosomal digestion of membranes. Glycosphingolipids (GSL) are high-
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organelles and lipids in the intraendolysosomal vesicles; cholesterol (Chol), BMP, sphingomyelin (SM; hypo-
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here with permission from Annual Review of Cell and Developmental Biology#2005). EGFR epidermal growth
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of the undegradeable sphingolipids and their
precursors. For example, blocks in ganglioside
catabolism result predominantly in neuronal
degeneration, whereas blocks in sulfatide and
galactosylceramide (GalCer) degradation lead
to myelin diseases. Blocks in glucosylceramide
(GlcCer) catabolism primary lead to GlcCer
and glucosylsphingosine storage in macro-
phages (in blood, spleen, and in Kupffer cells
of the liver), thus generating Gaucher cells,
because they have the highest load of GSLs to
degrade, their own synthesized GSLs and all
the GSL material they ingest, (e.g., from red
blood cells) (Kolter and Sandhoff 2010).

Threshold Theory

Genetic mutations may well result in a complete
functional loss of the encoded lysosomal hydro-
lase or LLBP, leading to severe clinical forms,
usually infantile (Tay-Sachs disease, Niemann-
Pick disease type A) or even prenatal fatal dis-
ease (“Collodian Babies,” p-Sap deficiency),
whereas the generation of variant lysosomal pro-
teins may well cause protracted forms of the
disease (juvenile, adult, chronic forms). The
level of residual catabolic activity is one out of
several factors contributing to the molecular
pathogenesis and clinical form of the disease.
In the threshold theory, a correlation between
functional residual catabolic activity and the
progression of the lipid storage disease has
been formulated (Conzelmann and Sandhoff
1983–1984), which was basically confirmed
for different clinical forms of diseases such as
metachromatic leukodystrophy (Leinekugel et
al. 1992; Tan et al. 2010), GM2-gangliosidosis
(Leinekugel et al. 1992), Gaucher (Gieselmann
2005), and Niemann-Pick type A and B diseases
(Ferlinz et al. 1995).

FORMATION OF TOXIC COMPOUNDS
AND CELLULAR PATHOGENESIS
(LYSOSPHINGOLIPIDS AS CATIONIC
AMPHIPHILES)

Cationic lysocompounds (galactosylsphingosine
(GalSo), glucosylsphingosine (GlcSo), sphingo-
sine (So), sphinganine (Sa), but also lysoGM2

and lysosulfatides) are toxic. They are micelle-
forming inhibitors of catabolic enzymes, and
presumably also compensate negative charge of
inner membranes in lysosomes.

GalSo is specifically formed in oligoden-
drocytes. Its accumulation kills these myelin-
forming cells in Krabbe disease, leading to an
impaired myelination (Suzuki 2003).

GlcSo is toxic. It inhibits glucosylceramide-
b-glucosidase (Sarmientos et al. 1986) and
accumulates in severe forms of Gaucher disease.
“Collodian babies” with no residual glucosyl-
ceramide-b-glucosidase activity have a severe
skin phenotype with no functional water barrier
because of a block of ceramide formation in
the extracellular space of the epidermis. These
babies loose dramatic amounts of water through
the skin and die within two hours after birth.

A moderate accumulation of sphingosine
and sphinganine also contributes to the molec-
ular pathology of Niemann-Pick type C disease
(Rodrigez-Lafrasse et al. 1994; Lloyd-Evans and
Platt 2010).

Complex lysoglycolipids (lysosulfatide, lyso
GM2, etc.) are minor storage compounds and
their contribution to the pathogenesis of their
respective disease is presumed to be small (Neu-
enhofer et al. 1986; Rosengren et al. 1989).

ACCUMULATION OF SPHINGOLIPIDS IN
CELLULAR MEMBRANES OUTSIDE THE
ENDOLYSOSOMAL SYSTEM

Storage of GlcCer (in Gaucher disease) (Jmou-
diak and Futermann 2005), Globotriaosylcera-
mide (Gbose3) (in Fabry disease), GM2, and
GM1 (Tessitore et al. 2004) has also been iden-
tified in other cellular membranes besides the
endolysosomal system. During months and
years of disease progress, storage compounds
spill over from endolysosomal membranes to
other cellular membranes by membrane-flow,
membrane contact, or propably also by protein
transport.

Accumulation of these storage compounds
in ER membranes affects several functions of
the organelle, (e.g., Ca2þ homeostasis) (La-
Plante et al. 2002; Pelled et al. 2003) and signal-
ing cascades (Takamura et al. 2008).
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LABILIZATION OF LYSOSOMAL PERIMETER
MEMBRANES

The integrity of the limiting lysosomal mem-
brane is essential for cell survival. It has been
shown that Hsp70 can bind to BMP and stabi-
lize lysosomes and ASM activity (Kirkegaard
et al. 2010). Cationic amphiphilic drugs (CADs)
are lysosomotropic agents. They increase the
permeability of lysosomal perimeter mem-
branes, and cause a “traffic jam” by secondary
accumulation of further lipid compounds. As
neutral amphiphiles, they penetrate mem-
branes, and accumulate as protonated, mem-
brane impermeable compounds in the acidic
lysosomal compartment. This traffic jam
attenuates autophagy and could also impair
uptake of nutritients and removal of damaged
organelles and proteins, as has been observed
in GM1 gangliosidosis, Niemann-Pick disease
type C, and Sandhoff disease. Sphingosine stor-
age in Niemann-Pick type C disease reduces
lysosomal Ca2þ ion content and impairs mem-
brane trafficking (Lloyd-Evans and Platt 2010).

Defective processing of transferrin bound
Fe2þ could also cause oxidative stress in lyso-
somes. Generation of free, not protein bound
Fe2þ ions could trigger the formation of radical
oxygen species (ROS) by the Fenton reaction
and may give rise to the formation of lipofuscin
or “age pigment.” Accumulation of lipofuscin
seems to hinder normal autophagy and may
be an important factor behind aging and
age-related pathologies (Kurz et al. 2008).
Enhanced oxidative stress causes lysosomal
membrane permeabilization (Kurz et al. 2008).

NPC1 knockout mice show increased levels
of many potentially atherogenic cholesterol
auto-oxidation products (e.g., with hydroxyl
groups in positions 5, 6, or 7) (Tint et al.
1998). However, levels of enzymatically formed
27-hydroxycholesterol are decreased (Zhang
et al. 2008).

GM1 GANGLIOSIDOSIS (AND MORQUIO
TYPE B DISEASE)

GM1-gangliosidosis is caused by an inherited
deficiency of the lysosomal enzyme GM1-b-ga-
lactosidase (Suzuki et al. 2001; Sano et al. 2005).

In the presence of either the GM2-activator pro-
tein or Sap-B, GM1-b-galactosidase catalyzes
the cleavage of terminal b-D-galactose from
ganglioside GM1 resulting in GM2. The reac-
tion is stimulated by anionic phospholipids
such as BMP (Wilkening et al. 2000).

Similarly, to other sphingolipidoses, three
clinical forms of GM1-gangliosidosis can be
distinguished: In infantile (type 1) GM1-gan-
gliosidosis, developmental arrest and progres-
sive deterioration of the nervous system occur
in early infancy. The late infantile/juvenile
form (type 2) is characterized by progressive
neurologic symptoms in children, and the
adult/chronic form (type 3) occurs in young
adults. Besides spontaneous animal models of
the disease (Suzuki et al. 2001), an engineered
mouse model resembling the neurological phe-
notype of human GM1 gangliosidosis has been
analyzed (Hahn et al. 1997).

Because of its changed substrate specificity,
defective GM1-b-galactosidase can also lead
to Morquio type B disease. Morquio type B dis-
ease clinically resembles a mild phenotype of
Morquio A disease, where keratan sulfate accu-
mulates because of N-acetylgalactosamine-6-
sulfatase deficiency.

GM2 GANGLIOSIDOSES

The GM2 gangliosidoses are a group of three
sphingolipidoses that result from defects in deg-
radation of ganglioside GM2 and related glyco-
lipids (Sandhoff 1969; Sandhoff et al. 1971;
Gravel et al. 2001). In vivo, the degradation of
GM2 requires the presence of the GM2- activa-
tor protein. Three lysosomal b-hexosamini-
dases, which differ in the combination of their
two subunits (a and b) and their substrate
specificity have been described.b 2 Hexosami-
nidase A (consisting of the a and b subunits)
cleaves terminal b-glycosidically linked N-
acetylglucosamine- and N-acetylgalactosamine
residues from negatively charged and un-
charged glycoconjugates. b-Hexosaminidase B
(bb) cleaves uncharged substrates such as gly-
colipid GA2 and oligosaccharides with terminal
N-acetylhexosamine residues. b-Hexosamini-
dase S (aa) contributes to the degradation of
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glycosaminoglycans and sulfated glycolipids.
The inborn deficiency of the GM2-activator as
well as the deficiency of the a- or b-chain of
the b-hexosaminidase isoenzymes leads to one
of the three different variants of this disease
that are named according to the isoenzyme
remaining intact. Mouse models for Tay-Sachs
and Sandhoff disease surprisingly differ severely
in their phenotypes. The Sandhoff mouse, lack-
ing hexosaminidases A and B, shows a severe
neurological phenotype, corresponding to the
human infantile onset variant. However, the
Tay-Sachs mouse model, lacking hexosamini-
dases A and S, showed no significant neurolog-
ical phenotype. The reason for the difference is
the specificity of the sialidase, which is dif-
ferent in mouse and human (Sango et al.
1995). Mouse sialidase, in contrast to the
human enzyme, accepts GM2 as a substrate
and converts it slowly to GA2, which is further
degraded by the still intact b-hexosaminidase
B in the Tay-Sachs mice.

Tay-Sachs Disease (B-Variant)

The B-variant of the GM2 gangliosidoses is
because of ana-chain deficiency, and the subse-
quent deficiency of hexosaminidases A and S,
but with normal hexosaminidase B. In B1 var-
iant, the patient hexosaminidase A lost its cata-
bolic activity against ganglioside GM2 but not
against neutral substrates (Kytzia and Sandhoff
1985; Tanaka et al. 1990). Clinically, the B-var-
iant of GM2 gangliosidoses can be subclassi-
fied into infantile, juvenile, chronic, and adult
forms, corresponding to increasing residual
enzyme activity (Leinekugel et al. 1992).

The infantile form, known as Tay–Sachs
disease (Filho and Shapiro 2004), has a higher
prevalence among Ashkenazi Jews with a heter-
ozygote frequency of 1:27.

Sandhoff Disease

The 0-variant of GM2-gangliosidosis was the
first gangliosidosis for which the underlying
enzymatic defect, a functional loss of both hex-
osaminidases A and B, was identified. It is char-
acterized by storage of negatively charged
glycolipids characteristic for Tay–Sachs disease,

but also by elevated levels of uncharged glyco-
lipids such as glycolipid GA2 in the brain and
globoside in visceral organs (Sandhoff 1969;
Sandhoff et al. 1971).

AB-Variant of GM2-Gangliosidosis

The AB-variant is characterized by normal
b-hexosaminidase A, B, and S activities, but a
deficient lipid binding protein, the GM2-acti-
vator protein. The clinical picture resembles
that of Tay–Sachs disease.

FABRY DISEASE

Fabry disease is an X-chromosomal-linked lyso-
somal storage disorder with a recessive mode of
inheritance. The disease is caused by a deficient
a-galactosidase A enzyme that results in intra-
cellular accumulation of neutral glycosphingo-
lipids (predominantly Gbose3). The disease
manifests itself primarily in affected hemizy-
gous males and to some extent in heterozygous
females (“carrier”) and is characterized by pro-
gressive clinical manifestations and premature
death from renal failure, stroke, and cardiac
disease (Linhart and Elliott 2007; Zarate
and Hopkin 2008). Gbose3 accumulates in
cardiomyocytes, conduction system cells, val-
vular fibroblasts, endothelial cells, and vascular
smooth muscle cells.

GAUCHER DISEASE

Gaucher disease is the most common form of
the sphingolipidoses (Beutler et al. 2001). It is
caused by the deficiency of glucosylceramide-
b-glucosidase (also called glucocerebrosidase)
leading to accumulation of glucosylceramide.
Three different types of Gaucher disease are dis-
tinguished: The attenuated form, Gaucher dis-
ease type I, has a nonneuropathic course and
is the most frequent form of this disease. It
has a frequency of 1: 50,000–200,000 births,
but is higher amongst the Ashkenazi Jewish
population (1:1000). The life expectancy of
these patients ranges between 6 and 80 years.
Brady developed an enzyme replacement ther-
apy for this type of Gaucher disease (Barton
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et al. 1990; Brady 2006). Gaucher disease type II,
the acute form, is a very rare panethnic disease
characterized by an additional storage of the
toxic glucosylsphingosine and the involvement
of the nervous system with early onset and a
life expectancy of less than two years. The sub-
acute or juvenile form, Gaucher disease type
III, is an intermediate variant of the other two
types. In all variants, patients may show hepa-
tosplenomegaly, anemia, thrombocytopenia,
and bone damage. The severity of these symp-
toms differs widely, but is inversely correlated
to the residual enzyme activity determined in
skin fibroblasts of Gaucher patients (Meivar-
Levy et al. 1994). Complete glucosylceramide-
b-glucosidase deficiency leads to a perinatal
fatal form, the “collodion baby” phenotype
with a severe impairment of skin function
(Liu et al. 1988).

NIEMANN-PICK DISEASE TYPES A AND B

Accumulation of sphingomyelin in Niemann–
Pick disease type A and B (NPD A and B) is
caused by mutations in the sphingomyelin
phosphodiesterase 1 gene (SMPD1) encoding
for acid sphingomyelinase (ASM) (Ferlinz et al.
1991). Niemann-Pick disease type C shows a
similar clinical appearance and sphingomye-
lin accumulation, but is caused by impaired
cholesterol transport. The modular structure
of acid sphingomyelinase includes a Sap-like
domain and a catalytic domain (Schuchman
and Desnick 2001; Lansmann et al. 2003).
Type A NPD is a fatal disorder of infancy caused
by an almost complete ASM deficiency and
results in a life expectancy of 2 to 3 years. Type
B NPD is a phenotypically variable disorder
with residual ASM activities of up to 4% of
normal and with little or no involvement of
the nervous system.

KRABBE DISEASE

Krabbe disease or globoid cell leukodystrophy is
caused by an inherited deficiency of galactosyl-
ceramide-b-galactosidase (Suzuki and Suzuki
1970; Pastores 2009). This membrane-associated
enzyme hydrolyzes galactosylceramide, which

occurs predominantly in oligodendrocytes and
kidney cells, to ceramide and galactose. This
enzyme is stimulated in vivo by Sap-A and
Sap-C it also cleaves the toxic galactosylsphingo-
sine to galactose and sphingosine. Although
there is some storage, especially in oligodendro-
cytes of the (globoid cells), the enzyme defi-
ciency does not lead to substantial substrate
accumulation, because of the rapid loss of oligo-
dendrocytes producing and accumulating the
toxic galactosylsphingosine (Suzuki 2003).

METACHROMATIC LEUKODYSTROPHY

Metachromatic leukodystrophy (MLD) is a
lysosomal storage disease caused by the defi-
ciency of arylsulphatase A (ASA) (Mehl and
Jatzkewitz 1965; Gieselmann 2008) resulting in
the accumulation of sulfatides in several tissues.
Arylsulfatase A is essential for the conversion of
sulfatides into galactosylceramides and sulfate
in the presence of Sap-B (Mehl and Jatzkewitz
1964). Sulfated glycolipids occur mainly in the
myelin sheaths in the white matter of the brain,
in the peripheral nervous system, and in the
kidney tissue. MLD can be classified into a
late infantile, a juvenile, and an adult form, cor-
relating with increasing residual catabolic activ-
ities (Leinekugel et al. 1992). The clinical and
histopathologic manifestations of MLD are fun-
damentally caused by a demyelination process.
This phenomenon appears to be secondary to
sulfatide-induced changes in oligodendrocytes
and Schwann cells. Deficiency of Sap-B, the
cofactor required for sulfatide cleavage by ASA
in vivo, leads to a clinical picture similar to
MLD although ASA activity is normal (Schlote
et al. 1991). In contrast to the human disease,
the mouse model of MLD shows no demyelina-
tion (Hess et al. 1996). Enzyme replacement
therapy has been successfully evaluated in the
animal model: In ASA knockout mice, intra-
venous ASA injection restored sulfatide me-
tabolism in peripheral tissues and the central
nervous system (Matzner et al. 2005). The
related disease multiple sulfatase deficiency is
caused by a defective formation of a formylgly-
cine residue in the active sites of all sulfatases
(Dierks et al. 2005).
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FARBER DISEASE

Farber disease is a rare ceramide storage disease
caused by the inherited deficiency of lysosomal
acid ceramidase (AC). AC is a heterodimeric
enzyme composed of two subunits (Bernardo
et al. 1995), which are derived from a common
precursor that is processed within late endo-
somes and lysosomes (Koch et al. 1996; Shtrai-
zent et al. 2008). AC catalyses the degradation of
ceramide to sphingosine and a fatty acid in the
lysosomes, the reaction requires the presence
of Sap-D (Klein et al. 1994). The enzyme is
also able to catalyze the reverse reaction (Okino
et al. 2003). The most characteristic clinical
manifestation is the development of painful
and progressive joint deformations, subcutane-
ous nodules (lipogranulomas), and progressive
hoarseness. AC is an essential factor required for
embryonic survival. AC knockout mice do not
survive beyond the 2-cell stage and undergo
apoptotic death (Eliyahu et al. 2007). Recent
findings show that AC improves the quality of
oocytes and embryos and the outcome of in
vitro fertilization (Eliyahu et al. 2010).

SPHINGOLIPID AND MEMBRANE STORAGE
CAUSED BY DEFECTIVE LLBP

Prosaposin-Deficiency

The prosaposin deficiency is a fatal perinatal
sphingolipid and membrane storage disorder
characterized by hepatosplenomegaly and se-
vere neurological symptoms. Prosaposin, a
70 kDa glycoprotein, is proteolytically proc-
essed to four lipid-binding proteins, the mature
activator proteins Sap-A-D in the late endo-
somes and lysosomes (Fürst et al. 1988; Kolter
and Sandhoff 2005). Prosaposin is intracellu-
larly targeted to the lysosomes via mannose-
6-phosphate receptors and sortilin. Rare muta-
tions in the start codon of the prosaposin gene
lead to a complete deficiency of the protein
and of all four mature saposins (Schnabel et al.
1992; Bradova et al. 1993). Prosaposin defi-
ciency in human patients and mice causes
simultaneous storage of many sphingolipids,
including ceramide, glucosylceramide, lactosyl-
ceramide, ganglioside GM3, galactosylceramide,

sulfatides, digalactosylceramide, and globotria-
osylceramide, accompanied by a massive accu-
mulation of intralysosomal membranes (Fujita
et al. 1996). In cultured fibroblasts, the lipid
storage can be completely reversed by treatment
with human prosaposin, as demonstrated in
prosaposin deficient fibroblasts (Burkhardt
et al. 1997).

Sap-A

Sap-A is required for the degradation of galacto-
sylceramide by galactosylceramide-b-galactosi-
dase. Genetically engineered mice and patients
that carry a mutation in the saposin A-domain
of the saposin precursor accumulate galactosyl-
ceramide and suffer from a late-onset variant of
Krabbe disease (Matsuda et al. 2001).

Sap-B

Sap-B was the first activator protein identified,
and was called the sulfatide-activator (Mehl
and Jatzkewitz 1964). It mediates the degrada-
tion of sulfatide by arylsulfatase A, globotriao-
sylceramide and digalactosylceramide by a-
galactosidase A, as well as other glycolipids,
(e.g., ganglioside GM2 together with the GM2-
activator protein) (Wilkening et al. 2000). Gly-
cosylated saposins bind to lipid bilayers in vitro
at acidic pH and are able to extract lipids.

Sap-C

Sap-C was initially isolated from the spleen of
patients with Gaucher disease (Ho and O’Brien
1971). It is required for the lysosomal degrada-
tion of glucosylceramide by glucosylceramide-
b-glucosidase (Alattia et al. 2007). Sap-C defi-
ciency leads to an abnormal juvenile form of
Gaucher disease with an accumulation of gluco-
sylceramide (Schnabel et al. 1991).

Sap-D

Sap-D stimulates lysosomal ceramide degrada-
tion by acid ceramidase. It is able to bind to
vesicles containing negatively charged lipids
and to solubilize them at an appropriate pH
(Ciaffoni et al. 2001). Saposin D-deficient
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mice accumulate ceramides with hydroxylated
fatty acids mainly in the brain and in the kidney
(Matsuda et al. 2004).

NIEMANN-PICK DISEASE TYPE C

Niemann-Pick disease type C (NPC) is a com-
plex neurodegenerative lipid storage disease
characterized by the accumulation of unesteri-
fied cholesterol and a broad range of other lipids
in the late endolysosomal compartment (Pat-
terson et al. 2001). The disease is caused by
mutations in either of the genes of the NPC1
or the NPC2 protein, which leads to impaired
cholesterol transport out of the late endosomes.
Cells can take up cholesterol via receptor medi-
ated endocytosis, (e.g., of low-density lipiopro-
tein (LDL) rich in cholesteryl ester). In the
endosomal compartments, cholesteryl esters
are hydrolyzed by cholesterol esterase to fatty
acid and cholesterol (Brown and Goldstein
1986). The cholesterol is not degraded in the
lysosome, but is rapidly transported out of
the late endosome to induce homeostatic re-
sponses by downward regulation of the de
novo synthesis of the LDL-receptor, thus regu-
lating the cellular cholesterol uptake and de
novo synthesis of cholesterol (Ikonen 2008).
Transport of cholesterol from the endosomal

system requires two cholesterol-binding pro-
teins, Niemann-Pick C1 (NPC1) and Nie-
mann-Pick C2 (NPC2) (Infante et al. 2008).
NPC1 is a late endolysosomal glycoprotein
with 13 transmembrane domains (Carstea
et al. 1997). NPC2 is a glycosylated, soluble pro-
tein (Naureckine et al. 2000). In a proposed
model (Abdul-Hammed et al. 2010; Gallala
et al. 2010), soluble NPC2 removes cholesterol
from inner endosomal/lysosomal vesicles and
delivers it to NPC1 in the limiting membrane
of endosomes/lysosomes for cholesterol egress
from the late endocytic compartments (Karten
et al. 2009; Storch and Xu 2009) (Fig. 4). Liver
and brain of NPC patients show accumulation
of cholesterol in the late endosomes and lyso-
somes. Additionally, sphingomyelin, neutral
glycolipids (e.g., glucosylceramide, lactosylcera-
mide), gangliosides GM3 and GM2 (Zervas
et al. 2001a; teVruchte et al. 2004), BMP (Koba-
yashi et al. 1999), and sphingosine (Rodriguez-
Lafrasse et al. 1994) also accumulate. This
secondary storage can be explained by a type
of traffic jam that occurs in the late endosomal
compartments when lipids such as cholesterol
accumulate and might contribute to the clinical
features associated with each lysosomal storage
disorder (Simons and Gruenberg 2000) as
increasing cholesterol levels have an inhibitory

Glycocalix

ASM

Intraendosomal
vesicle

Cholesterol

Late
endosome NPC-2

NPC-1

?

Sphingomyelin

Ceramide

Figure 4. Proposed model for lipid sorting at the stage of late endosomes. At the surface of intraendosomal
vesicles acid sphingomyelinase degrades sphingomyelin to ceramide. The resulting decrease of sphingomyelin
and the increase of ceramide levels stimulate the removal of cholesterol from BMP containing inner endosomal
vesicles and its transfers to NPC1 in the limiting membrane of the late endosome (Infante et al. 2008). NPC1
mediates cholesterol egress through the glycocalyx (adapted from Abdul-Hammed et al. [2010] and reprinted
with permission from the American Society for Biochemisty and Molecular Biology #2010).
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effect on the activity of some lysosomal lipid
binding and transfer proteins such as Sap-A
and -B (Locatelli-Hoops et al. 2006; Remmel
et al. 2007). NPC1-mutant cells show a substan-
tial reduction of the calcium levels in the acidic
compartment (Lloyd-Evans et al. 2008). Fur-
thermore, cholesterol levels are increased in the
cell bodies of cultured murine neurons lacking
functional NPC1 and are decreased in their distal
axons. This altered cholesterol distribution sug-
gests that transport of endogenously synthesized
cholesterol, from cell bodies to distal axons is
impaired in NPC1-deficient neurons (Karten
et al. 2002, 2003).

WOLMAN DISEASE AND CHOLESTERYL
ESTER STORAGE DISEASE

Deficiency of lysosomal acid lipase (LAL, also
called acid cholesteryl ester hydrolase) leads
either to Wolman disease or to the less severe
cholesteryl ester storage disease (CESD) (Ass-
mann and Seedorf 2001). Wolman disease is
nearly always fatal in infancy, whereas CESD
may go undetected until adulthood. In contrast
to CESD, the more severe course of Wolman
disease is caused by genetic defects of LAL
that leave no residual enzyme activity (Aslanidis
1996). These diseases follow an autosomal
recessive mode of inheritence. LAL hydrolyzes
a variety of substrates such as cholesteryl esters
and triglycerides, which are the main lipid stor-
age material. There is no specific treatment
available. Bone marrow transplantation might
preserve the hepatic and cognitive functions of
Wolman disease patients (Krivit et al. 2000;
Tolar et al. 2009), although success seems to
be inconsistent (Gramatges et al. 2009). En-
zyme replacement and gene therapy have been
applied to LAL deficient mice (Tietge et al.
2001; Du et al. 2008).

THERAPEUTIC APPROACHES

In addition to symptomatic treatment, thera-
pies addressing the underlying metabolic defect
of LLSD have been in development over the
last three decades. Therapies include enzyme
replacement therapy (ERT), bone marrow

transplantation (BMT), hematopoietic stem
cell transplantation, gene therapy, enzyme sta-
bilization, and substrate reduction therapy
(Platt and Lachmann 2009). Enzyme replace-
ment was first developed for the adult nonneu-
ronopathic form of Gaucher disease (Barton
et al. 1990). Glucosylceramide-b-glucosidase
(glucocerebrosidase), purified from human
placenta, was modified in the carbohydrate
part to contain targeting information for the
mannose receptor on macrophages such as
Kupffer cells (Barton et al. 1990). Today, ERT
with recombinant enzymes is available for
Gaucher and Fabry disease. ERT is restricted
to the nonneuronopathic forms of the dis-
eases, because the proteins cannot pass the
blood-brain barrier. However, ERT alleviated
CNS storage in an arylsulfatase A knockout
mouse model of metachromatic leukodystro-
phy (Matzner et al. 2005). Allogenic BMT has
been used in a multiplicity of lysosomal sphin-
golipid storage diseases. Early BMT can even
halt neurodegeneration in some cases as de-
scribed for Wolman disease (Krivit et al.
1999). Microglial cells producing the deficient
enzyme in the brain derive from stem cells
from the donor bone marrow.

Gene therapy to target the central nervous
system has been evaluated in the animal models
of some lysosomal storage diseases such as
Gaucher disease (Enquist et al. 2006), meta-
chromatic leukodystrophy (Biffi et al. 2006),
and Tay-Sachs disease (Cachón-González et al.
2006).

Enzyme stabilization, or pharmacological
chaperone therapy, is based on the application
of small molecules that enhance folding or
prevent premature degradation of the defective
enzyme. Lysosomal storage diseases are suitable
candidates for enzyme stabilization treatment,
as the levels of enzyme activity needed to pre-
vent substrate storage are often relatively low
(Fan 2008).

In substrate reduction therapy, the glucosyl-
ceramide synthase inhibitor N-butyldeoxyno-
jirimycin is used to reduce GSL biosynthesis,
thus lowering the amount of accumulated GSL
in the lysosome (Platt et al. 1994; Platt and But-
ters 2004). Possible residual activity might then
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be able to cope with the smaller GSL load. In
clinical trials, substrate reduction therapy for
type 1 Gaucher patients was effective (Elstein
et al. 2004) and studies on mouse models of
Tay-Sachs (Platt et al. 1997), Sandhoff (Jeyaku-
mar et al. 1999), Fabry (Heare et al. 2007), GM1
gangliosidosis (Elliot-Smith et al. 2008), and
NPC (Zervas et al. 2001b) demonstrated the
usefulness of this approach in a wide range of
lysosomal lipid storage diseases (Lachmann
and Platt 2001).
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mann V. 2005. Enzyme replacement improves nervous
system pathology and function in a mouse model for
metachromatic leukodystrophy. Hum Mol Genet 14:
1139–1152.

Matsuda J, Kido M, Tadano-Aritomi K, Ishizuka I, Tomi-
naga K, Toida K, Takeda E, Suzuki K, Kuroda Y. 2004.
Mutation in saposin D domain of sphingolipid activator
protein gene causes urinary system defects and cerebellar
Purkinje cell degeneration with accumulation of hydroxy
fatty acid-containing ceramide in mouse. Hum Mol Genet
13: 2709–2723.

Matsuda J, Vanier MT, Saito Y, Tohyama J, Suzuki K. 2001.
A mutation in the saposin A domain of the sphingolipid
activator protein (prosaposin) gene results in a late-
onset, chronic form of globoid cell leukodystrophy in
the mouse. Hum Mol Gene 10: 1191–1199.

Matsuzawa Y, Hostetler KY. 1979. Degradation of bis(mo-
noacylglycero)phosphate by an acid phosphodiesterase
in rat liver lysosomes. J Biol Chem 254: 5997–6001.

Merrill AH Jr. 2002. De novo sphingolipid biosynthesis: A
necessary, but dangerous pathway. J Biol Chem 277:
25843–25846.

Mehl E, Jatzkewitz H. 1964. A cerebrosidesulfatase from
swine kidney. Hoppe Seylers Z Physiol Chem 339:
260–276.

Mehl E, Jatzkewitz H. 1965. Evidence for the genetic block
in metachromatic leukodystrophy (ML). Biochem biophys
Res Commun 19: 407–411.

Meivar-Levy I, Horowitz M, Futerman AH. 1994. Analysis
of glucocerebrosidase activity using N-(1-[14C]hexa-
noyl)-d-erythroglucosylsphingosine demonstrates a cor-
relation between levels of residual enzyme activity the
type of Gaucher disease. Biochem J 303: 377–382.
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