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DNA methylation and histone modifications have essential roles in remodeling chromatin
structure of genes necessary for multi-lineage differentiation of mammary stem/progenitor
cells. The role of this well-defined epigenetic programming is to heritably maintain trans-
criptional plasticity of these loci over multiple cell divisions in the differentiated progeny.
Epigenetic events can be deregulated in progenitorcells chronicallyexposed to xenoestrogen
or inflammatory microenvironment. In addition, epigenetically mediated silencing of
genes associated with tumor suppression can take place, resulting in clonal proliferation
of undifferentiated or semidifferentiated cells. Alternatively, microRNAs that negatively regu-
late the expression of their protein-coding targets may become epigenetically repressed,
leading to oncogenic expression of these genes. Here we further discuss interactions
between DNA methylation and histone modifications that have significant contributions
to the differentiation of mammary stem/progenitor cells and to tumor initiation and
progression.

In the breast, a subpopulation of cells located
in the basal layer of terminal end ducts have

been implicated as stem cells (Dontu et al.
2003). A study using serial transplantation of
this cell population in mice unequivocally
showed their stem/progenitor functions (Stingl
et al. 2006). These slowly dividing cells have the
capacity of self-renewal and, in response to hor-
monal stimuli, give rise to transient populations
that may undergo terminal differentiation into
different epithelial lineages (Péchoux et al.
1999; Gudjonsson et al. 2002; Dontu et al.
2004, 2005; Villadsen et al. 2007). Differential

transcriptional programs are used to maintain
lineage specification and homeostasis of dif-
ferentiated cells. Estrogen receptor a (ERa)-
negative progenitors usually differentiate into
myoepithelial cells, which form the basal layer
of mammary ducts whereas other progenitors
give rise to luminal epithelial cells, some of
which appear to be ERa-positive (Dontu et al.
2004, 2005).

The maintenance of stem/progenitor cells
and their differentiation fate follows a well-
defined epigenetic program. Without altering
nucleotide sequences or DNA copy-number,
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the event heritably transmits transcriptional
information from progenitors to their differen-
tiated progeny. This epigenetic program is coor-
dinately regulated by DNA methylation, histone
modifications, and noncoding RNAs (Jaenisch
and Bird 2003; Jones and Baylin 2007; Feinberg
2008; Suzuki and Bird 2008; Cedar and Berg-
man 2009; Davalos and Esteller 2009; Guil and
Esteller 2009). Increasing evidence has indi-
cated that spatiotemporal interactions among
different epigenetic components play essential
roles in modulating transcriptional activation
or deactivation. In a permissive environment,
the chromatin structure of a target locus exists
in an open conformation that allows transcrip-
tion factors and coregulators to bind to their
cognate sequences and initiate transcription
(Cairns 2009). In a nonpermissive environ-
ment, these loci are inaccessible to these tran-
scription factors, resulting in transcriptional
silencing. DNA methylation and histone modi-
fications are known to regulate this transcrip-
tional plasticity, which is necessary for normal
development and maintenance of mammary
epithelial lineages (Dontu et al. 2005; Bloush-
tain-Qimron et al. 2009). Deregulation of these
epigenetic programs may result in clonal prolif-
eration of transformed progenitor cells, also
called cancer-initiating cells. Subtypes of these
aberrant cells may develop into diverse groups
of epithelial tumors, including luminal A and B
(ERa-positive), basal (ERa-negative), ERBB2-
overexpressing, and normal-like phenotypes
(Sorlie et al. 2001).

In this article, we discuss the importance of
DNA methylation and histone modifications in
modulating chromatin structure for gene tran-
scription. The emerging role of noncoding
RNA in cell differentiation and neoplasm is dis-
cussed in a preceding article. Potential uses of
DNA methyltransferases and histone deacety-
lase inhibitors in epigenetic therapies are exten-
sively reviewed elsewhere (Balch et al. 2005;
Lo and Sukumar 2008; Batty et al. 2009). Here
we focus on describing the contributions
made by DNA methylation and histone modifi-
cations to mammary epithelial differentiation.
We also highlight the significance of epigenetic
deregulation in breast tumorigenesis.

DNA METHYLATION

Methylation Variations in Normal Tissues and
Mammary Epithelial Subtypes

The human genome contains 28 million CpG
dinucleotides (Table 1). Approximately 10%
(2 million) of these dinucleotides are primarily
distributed in GC-rich repetitive sequences
(e.g., ribosomal DNA and a satellites) and
single-copy CpG islands (Antequera and Bird
1993, 1999). These CpG islands (1 to 2-kb) are
usually associated with protein-coding genes or
noncoding RNAs, with the majority located in
the promoter regions (70%) and less within
intergenic regions (10%) (Jaenisch and Bird
2003; Jones and Baylin 2007). These GC-rich
sequences are targets for enzymatic modifica-
tions by DNA methyltransferases (DNMTs),
which add a methyl group to the fifth position
of cytosine of a CpG dinucleotide and convert
it into methylcytosine. De novo DNA methyla-
tion is usually carried out by DNMT3A and
DNMT3B whereas maintenance of methylation
is mediated by DNMT1 (Bestor 2000). Recent
evidence suggests that DNMT3A and DNMT3B
also cooperate with DNMT1 for the mainte-
nance function, which serves to transmit meth-
ylated DNA patterns from parental to daughter
cells (Jones and Liang 2009).

Table 1. Information of CpG dinucleotides in the
human genomea

Total number of CpG dinucleotides 28,340,937
CpG dinucleotides within CpG islands 2,107,414
CpG dinucleotides outside of CpG

islands
26,233,523

Total number of CpG islands 27,934
CpG islands within +1 kb TSS 14,909
Gene-associated CpG island outside

of +1 kb TSS
7,093

CpG islands not associated with
known genes

5,932

Total bp covered by promoter CpG
islands

13,992,078

Total bp covered by gene-body CpG
islands

3,700,617

Total bp covered by intergenic CpG
islands

3,663,451

aBased on the UCSC Human Genome Assembly hg18.
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Repetitive sequences, such as Alu, LINE, and
a satellites, are usually methylated in the nor-
mal genome (Jaenisch and Bird 2003; Jones
and Baylin 2007). This acquisition of DNA
methylation may act to repress the transcription
or retrotransposition of repetitive sequences.
However, CpG islands near the promoters of
genes, with the exception of imprinted and
inactive X-chromosome loci, are thought to
remain unmethylated in the genome (Jaenisch
and Bird 2003; Jones and Baylin 2007). This
prevailing notion that CpG islands are normally
“protected” from DNA methylation has been
challenged by detailed studies on candidate
loci or global screening of the genome (see
examples in Table 2 for different technologies
used for methylation analysis). Together, the
findings indicate that normal methylation
could occur in 5%–15% of human CpG islands
not associated with imprinting or X-inactiva-
tion (Weber et al. 2005; Shen et al. 2007; Weber
et al. 2007). In this regard, tissue-specific DNA

methylated regions are present in the genome
and have been proposed to repress transcripts
during cell differentiation and organogenesis
(Futscher et al. 2002; Ohgane et al. 2005; Brena
et al. 2006b). This differential methylation may
contribute to phenotypic variations of individ-
uals, most dramatically shown in studies of
monozygotic twins (Fraga et al. 2005). DNA
methylation also changes subtly in normal
aging cells, with a progressive loss of methyla-
tion content in repetitive sequences, but a pro-
gressive increase of density in selected CpG
islands (Issa et al. 1994; Issa 2003).

Cell type-specific methylation patterns are
similarly found in the mammary gland. Polyak
and colleagues (Bloushtain-Qimron et al. 2008,
2009) used the methylation-specific digital kar-
yotyping (MSDK) method to determine DNA
methylation profiles in subtypes of mammary
epithelial cells. Based on the characteristics
of cell surface markers, four different types—
myoepithelial (CD10þ), luminal epithelial

Table 2. Summary of candidate gene and genome-wide techniques for DNA methylation analysisa

Categories Techniques

Candidate gene, cloning,
and gel-based approaches

Bisulfite sequencing; MSP (methylation-specific PCR); COBRA (combined
bisulfite restriction analysis); MethyLight; Pyrosequencing; MassARRAY;
MS-AP PCR (methylation-sensitive arbitrarily primed PCR) MSRF
(methylation-sensitive restriction fingerprinting); MS-RDA
(methylation-sensitive representational analysis); and RLGS (restriction
landscape genome scanning)

Microarray-based
approaches

DMH (differential methylation hybridization): MTA (methylation tissue
array); MSO (methylation-specific oligonucleotide); HELP (HpaII tiny
fragment enrichment by ligation-mediated PCR); AIMS (amplification of
intermethylated sites); MSNP (methylation single nucleotide
polymorphism chip-based method); MMASS (microarray-based
methylation assessment of single sample); PMAD (promoter-associated
methylated DNA amplification); MSDK (methylation-specific digital
karyotyping) MIAMI (microarray-based integrated analysis of
methylation); MCAM (methylated CpG island amplification and
microarray); MeDIP-chip (methylated DNA immunoprecipitation on
microarray); MIRA-chip (methylated-CpG island recovery assay on
microarray); McrBC; MethylScope; Pharmacologic unmasking analysis;
and Infinium BeadArray

Next generation sequencing RRBS (Reduced representation bisulfite sequencing); BS-seq; MethylC-seq;
Padlock probes coupled with whole-genome bisulfite sequencing;
MRE-seq; HELP- seq; MeDIP-seq; and MIRA-seq

aDescriptions of these techniques are provided in review articles (Balch et al. 2008; Brena et al. 2006b; Chang et al. 2008;

Zuo et al. 2009).
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(CD24þ and MUC1þ), and progenitor
(CD44þ) were isolated for methylation profil-
ing (Bloushtain-Qimron et al. 2008). CD44þ
cells display stem/progenitor characteristics
and, on signaling activation, undergo lineage-
specific differentiation. Genes important for
pluripotency and self-renewal were hypomethy-
lated and highly expressed in CD44þ cells com-
pared with the other three differentiated cells
(Bloushtain-Qimron et al. 2008). Examples
are SUZ12 gene targets in which promoter
methylation was found in CD24þ cells, but
not in CD44þ cells. SUZ12, a member of
polycomb-repressor complex 2, is known to
regulate the transcription of genes essential for
maintaining the pluripotency and self-renewal
of stem/progenitor cells (Lee et al. 2006; Pasini
et al. 2007). Acquired DNA methylation may
result in permanent silencing of SUZ12 targets

during mammary epithelial differentiation
(see Fig. 1). Epigenetic control of gene silencing,
marked by promoter methylation, therefore
is an essential step of mammary epithelial dif-
ferentiation.

DNA Methylation Alterations in Transformed
Breast Epithelial Cells

It has been hypothesized that mammary stem/
progenitor cells are primary targets for cellu-
lar transformation. Compared to terminally
differentiated cells that have a high turnover
rate, these cells have a long life span and are
slowly dividing within the stem/progenitor
compartment (Dontu et al. 2003; Cheng et al.
2008). These primitive cells are therefore sus-
ceptible to molecular injuries because of per-
sistent exposures to different environmental or

Stem cell

Self-renewal Self-renewal?

Stem/progenitor compartment

Myoepithelial
progenitor

CD10+
Myoepithelial cell

CD24+ or MUC1+
luminal cell

Transformed
clone

Luminal
progenitor

CD44+
progenitor

Figure 1. Model of mammary gland differentiation and differential accumulation of DNA methylation in
normal and transformed epithelial cells. A hierarchy of stem/progenitor cells, analogous to that in the
hematopoietic system, may exist in mammary gland. Stem cells undergo self-renewal and differentiation
within their compartment. The primitive progenitor cells give rise to myoepithelial and luminal progenitors,
which then differentiate into different epithelial subtypes (Note: other cell types, such as alveolar epithelial
cells, are omitted in this model). Acquired DNA methylation in promoter CpG islands occurs in genes
required for differentiation of progenitor cells. The resulting epigenetic repression (marked in “green” and
“yellow” lollipops for myoepithelial and luminal epithelial cells, respectively) is also essential for maintaining
the homeostasis of mature epithelial cells. Deregulation of differentiation signaling may disrupt this
epigenetic programming (e.g., aberrant acquisition of promoter methylation marked in “red” lollipops),
leading to neoplastic transformation and clonal proliferation.
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inflammatory stimulants (Fenton 2006; Yager
and Davidson 2006; Cheng et al. 2008). Envi-
ronmental chemicals, such as xenoestrogens,
can mimic estrogenic actions that aberrantly
influence epithelial differentiation in mammary
glands (Cheng et al. 2008; Hsu et al. 2009). The
action is mediated in part through nuclear hor-
mone receptors (e.g., ERa) that activate or deac-
tivate the transcription of target genes (Cheng
et al. 2008; Hsu et al. 2009). Alternatively, xen-
oestrogens may stimulate phosphorylation of
membrane-bound proteins, which subsequently
activate different kinase signal transduction
pathways that are required for transcriptional
regulation (Jensen and Jordan 2003).

Persistent exposure to these environmental
chemicals therefore increases breast cancer
risk. Animal and epidemiologic studies suggest
an imprinting phenomenon in which early
exposure to xenoestrogens may promote a carci-
nogenic process observed later in adult life
(Fenton 2006; Maffini et al. 2006). Specifically,
long-term exposure to low-dose xenoestrogens
may alter epigenetic reprogramming of stem/
progenitor cells during epithelial differentiation
(Ho et al. 2006; Cheng et al. 2008). This molec-
ular alteration may deregulate transcriptional
programs important for epithelial differentia-
tion. Repressive chromatin is subsequently
established and sets the stage for heritable
silencing of target genes (Cheng et al. 2008;
Hsu et al. 2009). De novo DNA methylation
occurs and gradually spreads from pre-existing
methylated CpG sites to neighboring areas in
the genome (Cheng et al. 2008; Hsu et al.
2009). These methylated sites may serve as seeds
to propagate the repressive information to the
core regions of targeted CpG islands. A ChIP-
chip analysis in breast cancer cells using anti-
bodies against methyl-CpG binding domain
proteins, which bind like “magnets” to methy-
lated cytosines, identified a large number of
hypermethylated CpG islands (Ballestar et al.
2003). More recently, using the methylation-
dependent immunoprecipitation on microar-
ray (MeDIP-chip, see Table 2) approach, our
study found that �0.5% of human CpG
islands become hypermethylated in epithelial
cells derived from estrogen-exposed mammary

progenitors compared with the nonestrogen
control cells in an in vitro model (Cheng et al.
2008). Ontological analysis revealed significant
methylation enrichment in CpG islands of
polycomb protein-regulated targets, which are
known to regulate pluripotency and self-re-
newal of stem/progenitor cells (Bracken et al.
2006).

This methylation alteration may precede
morphologic transformation of normal breast
epithelia and is an early event of tumorigenesis.
As a result, a large field defect of premalignant
cells is generated in an affected breast area
(Fig. 2). Additional accumulation of genetic
and epigenetic damages is needed in the affected
area to generate invasive carcinomas. Methyla-
tion alterations have frequently been found in
histologically normal breast tissues adjacent to
primary tumor sites (Yan et al. 2003, 2006).
Overall methylation levels of two candidate
loci, RASSF1A and RUNX3, are significantly
higher in these adjacent tissues compared to
control samples obtained from individuals
undergoing reduction mammoplasties (Yan
et al. 2006; Cheng et al. 2008). These methyla-
tion levels, however, are lower than those of pri-
mary tumor sites, and there is a gradient pattern

Methylation gradient

Figure 2. Model of epigenetic field cancerization
occurring in the human breast. Depicted here is a
large affected area of methylation gradient in the
upper-left side of the breast. Chronic exposures to
xenoestrogens may alter epigenetic programs of
normal differentiation. Methylation accumulation
of promoter CpG islands takes place in silenced
genes associated with neoplastic development. A
tumor site may sever as the epicenter (depicted in
red) from which the highest number of methylated
CpG islands and the highest density of methylation
within an island are observed in the breast.
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in which higher degrees of methylation are seen
in normal tissues closest to the tumor site com-
pared to those which are 2–4 cm away (Yan et al.
2006; Cheng et al. 2008).

DNA Hypermethylation in Epithelial
Breast Tumors

Increased methylation of promoter CpG islands
and increased numbers of methylated islands
are associated with tumor progression (Nephew
and Huang 2003; Novak et al. 2009). From a
geographic perspective, a tumor site can serve
as the “epicenter center” from which a maxi-
mum accumulation of promoter methylation
can take place in the human breast (see Fig. 2)
(Yan et al. 2006; Cheng et al. 2008). These meth-
ylation accumulations are known to contribute
to different stages of neoplastic development,
including initiation, invasion, metastasis, and
endocrine resistance. As of today, candidate
gene and global screening approaches have
now identified .150 loci frequently hyperme-
thylated in breast cancer, including genes en-
coding for cell cycle regulation (e.g., p16INK4a,
p15, and p14ARF), DNA repair (e.g., MLH1
and GST3), tumor suppression (e.g., BRCA1
and VHL), tissue remodeling (e.g., TIMP3 and
E-cadherin), and hormone receptor (e.g., ESR1
and ESR2) (Tables 3 and 4). In addition to
protein-coding genes, microRNAs with tumor
and metastasis suppressor functions also
undergo CpG island methylation-associated
silencing in transformed cells (Saito et al. 2006;
Lujambio et al. 2007, 2008; Hsu et al. 2009).

Methylation-mediated silencing of these
loci may contribute, in part, to the development
of malignant phenotypes. For example, hyper-
methylation of CpG islands in the p16INK4a, or
CDKN2A, gene is known to be associated with
cell cycle deregulation in breast cancer cells
(Herman et al. 1995). This gene normally enco-
des a cyclin-dependent kinase which is respon-
sible for the maintenance of the retinoblastoma
protein in an active state for transcriptional reg-
ulation of downstream targets (Kamb et al.
1994). Lack of the p16INK4a expression pro-
motes aberrant proliferation of primary mam-
mary epithelial cells that normally undergo

senescence in vitro (Huschtscha et al. 1998;
Hinshelwood and Clark 2008; Hinshelwood
et al. 2009). This epigenetic silencing may
acquire additional genetic and epigenetic
changes in cancer cells (Romanov et al. 2001;
Tlsty et al. 2001). Specifically, the p16INK4a

silencing results in the up-regulation of poly-
comb repressors, EZH2 and SUZ12, which are
known to recruit DNA methyltransferases to
target genes leading to de novo methylation of
their promoters (Reynolds et al. 2006).

Another gene that undergoes methylation-
mediated gene silencing is BRCA1 and this
event disrupts cellular functions which are
required for DNA repair, protein ubiquitina-
tion, and chromatin remodeling (Narod and
Foulkes 2004). Inactivation of one BRCA1 allele,
i.e., the first hit of Knudsen’s hypothesis, is
attributed to genetic mutations or loss of heter-
ozygosity in breast neoplasm (Meric-Bernstam
2007). Hypermethylation of BRCA1 may be a
second hit during breast tumorigenesis (Birgis-
dottir et al. 2006) and in invasive carcinomas
it is frequently associated with shorter patient
survival (Xu et al. 2009).

In addition to single-copy genes, hyperme-
thylation occurs in 18S and 28S ribosomal
genes in breast cancer (Yan et al. 2000). Approx-
imately 400 copies of ribosomal loci, arranged
in “head-to-tail” arrays, are located on the short
arms of human acrocentric chromosomes.
The transcription domain of these loci dis-
plays sequence characteristics of a CpG island.
Increased methylation in these repetitive GC-
rich sequences may result in down-regulation
of ribosomal gene expression in breast cancer
cells (Yan et al. 2000; Chan et al. 2005). Because
this aberrant event is preferentially found
in undifferentiated and ERa-negative tumors,
hypermethylation of ribosomal DNA can be
an additional prognostic biomarker for breast
cancer (Yan et al. 2000).

DNA Hypomethylation in Epithelial Tumors

Global hypomethylation is frequently observed
in cancer cells because of a deficiency in the pro-
duction of S-adenosylmethionine (SAM) (Ehr-
lich 2002, 2006). SAM is the principal methyl
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donor for DNA methylation reactions in nor-
mal cells. As a result of this deficiency in cancer
cells, hypomethylation of repeat elements (e.g.,
Alu, LINE, anda satellites) occurs, contributing
to reactivation of transposable elements, and
the promotion of chromosomal translocation,

deletion, and duplication, as well as genomic
instability (Ehrlich 2002, 2006). This aberrant
epigenetic event has been known to correlate
with advanced clinical stage, tumor size, and
histological grade in breast cancer (Soares
et al. 1999). Several lines of investigation also

Table 3. Summary of genes commonly hypermethylated or hypomethylated in breast cancera

Functions Genes

Angiogenesis CXCR4, HIF1A, IL2, IL10, NOS3, and VEGF
Apoptosis APAF1, BAK1, BAX, BIM, BMF, BCL2, BCL2L1, BCL2L2, CASP8, DR4, DR5,

FADD, MCL1, SFRP1, PYCARD, TRAIL, and XIAP
Binding protein CEBPD, FABP3 (MDGI), GATA3, GNAL, HRAS, IGFBP3, IGFBP7,

LDLRAP1, LRP2, PRKCDBP, and SOCS1
Cell cycle regulation CCNA1, CCNA2, CCND1, CCND2, CDKN1A, CDKN1B, CDKN1C,

CDKN2A, CTPS, DBC1, DNAJC15, GADD45, EPB41L3, GREM1, IGF2,
RAD9A, SFN, RNR1, SCGB3A1, and TYMS

Proteases, transcripatses,
and enzymes

KLK6, KLK10, hTERT, ABL1, AK5, AKT1, DAPK, FLT3, RAF1, TEK, PTGS2,
CYP1B1, HS3ST2, HSD17B4, GSTP1, NAT1, SAT2, SULT1A1, SYK, TDH,
and WRN

DNA repair/detoxify
carcinogen

MGMT, MLH1, PRKDC, RPA2, TYMS, XRCC5, and XRCC6

Enhancers and transcription
factors

F0XA2, H0XA5, H0XD11, IRF7, ID4, MY0D1, PAX5, PAX6, P0U3F1,
RUNX3, SIM1, SIM2, TWIST1, and WT1

Hormone receptors and
kinases

AR, CALCA, EPHA3, EPO, EGFR, ERBB2, ESR1, ESR2, GALR2, LTB4R,
PGR, RARB, STK11, TGFB1, TGFBR2, TNFRSF12, and UPA

Immune responses CsADMI (TSLC1), CD40, CD44, CD80, CD86, and ICAM1
Invasion/metastasis

suppressors
COL9A1, MMP2, MMP9, MT1A, PLS3, RECK, R0B01, S100A4, SLIT2,

THBS1, TIMP1, TIMP2, TIMP3, TJP2, TPM1, and VCAN
Transporters, glycoproteins,

and membrane-
associated proteins

ABCB1, AMN, CDCP1, CDH1, CDH3, CDH13, CFTR, DSC3, EDNRB,
GJB2, GPC3, LAMA3, LAMB3, LAMC2, MUC2, NEFL, PCDH10,
RARRES1, RBP1 TMEFF2, TSPAN2, SLC5A5, and SLC6A20

Tumor suppressors APC, BRCA1, CAV1, CST6, DAB2, DCC, DLC1, FHIT, GSN, H19, HIC1,
LATS1/LATS2, PLAGL1, PTEN, RASSF1A, RB1, RBL1, PRDM2, SNCG,
SERPINB5, TP53, TSC1, TSC2, TUSC3, VHL, and WIIF1

Tumor antigens ABO, MAGEA1, and MME
aSee also www.pubmeth.org

Table 4. Analysis of histone modifications and nucleosome positioning using candidate gene and global
approachesa

Category Examples

Histone modifications ChIP-qPCR or -cloning (chromatin immunoprecipitation followed by
quantitative PCR of candidate genes or cloning); ChIP-PET
(ChIP-paired-end-tagging); ChAP (ChIP coupled to arbitrarily primed
PCR); SACO (serial analysis of chromatin occupancy); ChIP-seq (ChIP
coupled to massively parallel sequencing); and Mass spectrometry

Nucleosome positioning Nuclease protection assay; DNse-chip or -seq (mapping of DNase I
hypersensitive sites on microarray or with massively parallel sequencing);
and Micrococcal nuclease array

aDescriptions of these techniques are provided in review articles (Lo and Sukumar 2008; Balch et al. 2008; Wu et al. 2006).
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indicate hypomethylation of CpG islands may
contribute to loss of imprinting and reactiva-
tion of testis-antigen related genes (Cho et al.
2003; De Smet et al. 2004; Kaneda and Feinberg
2005). Promoter hypomethylation may be lin-
ked to reactivation of proto-oncogenes (e.g.,
synuclein g, ID4, and annexin A4) that are asso-
ciated with tumor metastasis and endocrine
resistance (Gupta et al. 2003; Pakneshan et al.
2004; Fan et al. 2006). In some cases, hypo-
and hyper-methylation of the same CpG island
co-exist in advanced tumors. This heterogeneity
has been found in the E-cadherin promoter,
suggesting that, in breast cancer cells, DNA
methylation is a dynamic and plastic event
which accompanies progression to a metastatic
state (Graff et al. 2000).

Hypomethylation of promoter CpG islands
may require a functional DNA demethylase yet
to be characterized in cancer cells. In this case,
a demethylation event is supposed to occur in
an inactive, methylated promoter, leading to
transcriptional reactivation of an oncogene.
However, experimental proof for genuine pro-
moter hypomethylation is frequently incon-
clusive and difficult to obtain because the
outgrowth of a subpopulation of cancer cells
may confound this epigenetic observation. For
example, the oncogene of interest may have
never been silent in a minor population of
cancer-initiating cells while the majority of
other cells display promoter hypermethylation
of the gene. The increased expression of this
oncogene may simply result from rapid expan-
sion of these few cells that eventually take over
the whole population during tumor progres-
sion. If this scenario indeed occurs, it cannot
be a bona fide demethylating event for oncogene
activation. Alternatively, active demethylation
may be mediated by the 5-methyl-CpG binding
domain protein 4 (MBD4) (Zhu 2009). Though
MBD4 functions as a T-G mismatch glycosy-
lase, it has recently been found to induce active
demethylation of methylated CpG sites (Kim
et al. 2009; Zhu 2009). MBD4 mutant with a
deletion in the glycosylase catalytic domain
abrogates this demethylating ability (Kim et al.
2009). Clearly, elucidating the functions of
MBD4 in promoter hypomethylation during

mammary gland differentiation and breast
tumorigenesis is an important area in need of
further investigation.

HISTONE MODIFICATIONS

Combinatorial Variations Associated with
Gene Transcription

Histone modification is another epigenetic
mechanism important for chromatin remodel-
ing during stem/progenitor differentiation. The
basic subunit of chromatin is the nucleosome, a
complex consisting of 146 bp of genomic DNA
wrapped around a core histone octomer com-
posed of one histone H3-H4 tetramer and two
histone H2A-H2B dimers (Kouzarides 2007).
The histone amino-terminal “tails” extending
from a nucleosome octamer are frequently
subject to posttranslational modifications, in-
cluding acetylation, phosphorylation, ubiquiti-
nation, and methylation. Among these various
modifications, histone methylation and acetyla-
tion are shown to be relatively stable and there-
fore considered potential marks for carrying
epigenetic information through cell divisions
(Barski et al. 2007; Wang et al. 2008). The sum
total of these covalent alterations is referred
to as the histone code that can be “written”
by histone modifying enzymes (e.g., acetyl-
transferases, deacetylases, methyltransferases,
or demethylases) and read by various binding
proteins that act to further modify chromatin
structure (Wang et al. 2009). Among these pro-
teins, EZH2, a known component of polycomb
repressor complex, can cooperatively work with
histone deacetylases and methyltransferases to
modify histone tails for initiating transcrip-
tional repression. EZH2 also works with DNA
methyltransferases for subsequent maintenance
of gene silencing (Sparmann and van Lohuizen
2006). Table 4 lists techniques for analysis of his-
tone modifications and chromatin structure of
active and inactive genes.

Both packaging of DNA into chromatin and
nucleosome positioning influence gene tran-
scription by either enhancing or inhibiting the
accessibility of general and site-specific tran-
scription factors to target loci. In general,

T.H.-M. Huang and M. Esteller

8 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a004515

 on May 1, 2024 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


acetylation of histone lysine residues is associated
with open chromatin structure and active tran-
scription whereas the methylation of these resi-
dues can be associated with either an active or
repressive chromatin structural conformation
(Fig. 3) (see examples in Table 5). For example,
active transcription of a promoter can be marked
by acetylation at specific lysine residues of histone
H3 (e.g., lysine 5, 8, and 12), histone H4 lysine
16, and dimethylation of histone H3 lysine 4.
In contrast, when genes are silenced, these active
marks are replaced by repressive marks, including

mono-, di-, and tri-methylation of H3K9,
H3K27, and H4K20. Combinatorial epigenetic
alterations likely mark differential degrees of
gene silencing, starting from a transient to a
more rigid state of repression.

When binding target sequences in the chro-
matin, transcription factors may act as docking
molecules for recruitment of other DNA- and
histone-modifying proteins to target genes for
transcriptional regulation (Jenuwein and Allis
2001). For example, Wang and coworkers
(Ko et al. 2008) showed that YY1 physically
interacts with SUZ12 and acts as a mediator in
the recruitment of polycomb group proteins

Table 5. Representative examples of histone tail
methylation and its associated genomic functionsa

Histone

methylation

mark Function

Genomic

location

H3K4me1 Active TSS,
enhancer

H3K4me2 Active TSS
H3K4me3 Bivalent TSS,

enhancer
H3K9me1 Active TSS
H3K9me2 Repressive 10-kb of TSS
H3K9me3 Repressive 10-kb of TSS
H3K27me1 Active Downstream

of TSS
H3K27me2 Repressive —
H3K27me3 Bivalent Promoter,

gene-body
H3K36me1 Active TSS
H3K36me3 Active (?) Downstream

of TSS
H3K79me1 No preference —
H3K79me2 No preference —
H3K79me3 Repressive Promoter,

gene-body
H3R2me1 Modestly active —
H3R2me2 Modestly active —
H4K20me1 Active Downstream

of TSS
H4K20me3 No preference —
H2AþH4R3me2 No preference —
H2BK5me1 Active Downstream

of TSS
aSee a publication by Zha and colleagues (Barski et al.

2007). K: lysine; R: arginine; TSS: transcription start site.

Histone methylation
(active)

Histone methylation
(repressive)

Histone acetylationActivator complex

Repressor complex

Figure 3. Models of open or closed chromatin
configurations associated with gene transcription
status. Binding of regulatory factors and their co-
factors to a target locus results in the formation of
either an activator or repressor complex. This complex
may act as docking molecules for recruitment of
acetyltransferases, deacetylases, methyltransferases, or
demethylases that post-translationally modify the
amino-terminal tail of histone. Modified histone
marks are associated with specific transcription
status of a target gene. Active transcription is
usually associated with histone acetylation of H3K9
or methylation of H3K4 residues, whereas gene
repression is linked to methylation of H3K9,
H3K27 and H4K20 residues.
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and DNA methyltransferases that promote
transcriptional repression. Several studies have
found that open chromatin regions are usually
correlated with gene-dense regions and that
closed chromatin regions exist in both euchro-
matic G-bands and heterochromatic C-bands
(Gilbert et al. 2004; Weil et al. 2004; Crawford
et al. 2006). These studies also show active genes
can exist within closed chromatin domains.

Histone Modifications in Normal Epithelial
Differentiation and Breast Tumorigenesis

The fact that somatic cells possess an identical
genome, yet display diverse phenotypes, can
partly be attributed to combinatorial variations
of histone modifications that are functionally
associated with gene transcription (Balch et al.
2007). Recent advances in technologies have
allowed for the examination of global histone
modifications within a cell, and this accom-
plishment has provided insight into the organ-
ization of the genome (Balch et al. 2008). In
human tumors, modifications of histone H4
generally result in a loss of monoacetylated
K16 and trimethylated K20 forms (Fraga et al.
2005). These histone changes are associated
with DNA hypomethylation in various tumor
types, including breast cancer (Fraga et al.
2005; Tryndyak et al. 2006). More recently,
Zhao and colleagues (Barski et al. 2007) have
comprehensively examined 20 histone marks,
RNA polymerase II, and other binding proteins
across the human T-cell genome. This study
found that combinatorial histone variations
contribute to the maintenance of transcrip-
tional plasticity and to the fate of specific cell
lineages during differentiation. In a separate
study, Bernstein and co-workers (Mikkelsen
et al. 2007) constructed global chromatin
maps for mouse embryonic stem cells (ESCs)
and their differentiated cells. A large number
of genes important for differentiation were
found to possess a “bivalent” feature, consisting
of post-translational histone modifications
commonly found in transcriptionally active
(H3K4me2) and a repressive (H3K27me3)
chromatin. Coexistence of these histone marks
is likely to maintain progenitor cells in a “ready

state” for lineage-specific gene activation or
repression. For example, the Sox2 gene possesses
these bivalent modifications in ESCs, but only
has the H3K27me3 modification in differenti-
ated cells, indicating that this locus is poised
for repression during terminal differentiation
(Mikkelsen et al. 2007).

At present, chromatin-state maps have not
been systematically generated for breast progen-
itor cells and their differentiated progeny. It is
likely that bivalent genes are present to maintain
pluripotency of the progenitor genome. During
epithelial differentiation, these bivalent loci
may acquire activating or repressive chromatin
marks that specify specific cell lineages (Balch
et al. 2007). Terminally differentiated cells may
therefore display unique chromatin signatures
distinctly associated with their developmental
fates. In an initial study, Polyak and coworkers
(Bloushtain-Qimron et al. 2008) have further
shown that bivalent loci identified in ESCs
might also be present in CD44þ breast progen-
itor cells, as genes highly expressed in CD44þ
compared to CD24þ cells were enriched in
Suz12 targets in ESCs. As discussed earlier,
CpG islands of these genes were found to be
hypomethylated in CD44þ cells compared to
those of differentiated CD24þ cells. Although
the aforementioned bivalent marks play an
important role in maintaining transcriptional
plasticity in CD44þ cells, it remains to be deter-
mined whether other histone modifications also
contribute to this ready state for activation and
deactivation of genes during mammary epithe-
lial differentiation.

As indicated earlier, propagation of neo-
plastic lesions can be initiated by CD44þ pro-
genitor cells, which have been exposed to
aberrant microenvironments. In this regard,
deregulation of TGF-b (Hinshelwood et al.
2007) and AKT1 (Lin et al. 2008) signaling
has been implicated in abnormal differentiation
of mammary epithelial cells. In vitro studies
have found that cultured mammary epithelial
cells routinely enter a phase of growth arrest,
but a subpopulation of progenitor cells may
continue to proliferate into preneoplastic clones
(Hinshelwood and Clark 2008). It has been
hypothesized also that aberrant progenitor cells
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retain bivalent features of differentiation-
control genes, but many of these genes encod-
ing tumor suppressor functions may undergo
epigenetic silencing during neoplastic deve-
lopment. In addition to H3K27me3, two
additional repressive marks, H3K9me2 and
H3K9me3, may be present in these genes, lead-
ing to permanent silencing of tumor-suppres-
sor genes and subsequent propagation of
transformed phenotypes (Bloushtain-Qimron
et al. 2008; Cheng et al. 2008; Hsu et al. 2009).
Transition from bivalent to fully repressive
histone modifications therefore contributes to
the development of breast cancer. A systematic
cataloging of different histone marks for nor-
mal progenitors and cancer-initiating cells is
an important task for future research of mam-
mary gland development and tumorigenesis.

Connecting Histone Modifications and DNA
Methylation for Gene Silencing

The interplay between histone modifications
and DNA methylation has a critical role in
nucleosome remodeling and subsequent regu-
lation of gene transcription (Ballestar and Estel-
ler 2005; Esteller 2006). The aforementioned
polycomb target genes, known to be associated
with stem/progenitor differentiation, provide
the best example of how these two epigenetic
components cooperate to initiate and maintain
gene silencing (Cheng et al. 2008). These genes
are generally associated with promoter CpG
islands and are usually protected from de novo
DNA methylation in stem/progenitor cells
(Meissner et al. 2008). During epithelial differ-
entiation, EZH2, as part of the polycomb
repressor complex 2, catalyzes trimethylation
of H3K27 on target nucleosomes (Sparmann
and van Lohuizen 2006). This modification
may serve as a dock site for the recruitment
of a second repressor complex, PRC1, which
additionally modifies target loci into compact
chromatin configuration. These polycomb
complexes may be constitutively present and
can readily reattach to target sequences follow-
ing DNA replication of daughter cells. Further
recruitment of DNA methyltransferases and
methyl-CpG binding protein may occur in

promoter CpG islands for de novo DNA meth-
ylation (Leu et al. 2004; Hinshelwood et al.
2009). This epigenetic repression occurs in a
subset of PRC2-mediated target genes essential
for tumor suppression (Cheng et al. 2008) and
can be heritably maintained over multiple divi-
sions in the differentiated progeny.

This epigenetic reprogramming can be dis-
rupted in mammary progenitor cells as a result
of chronic exposure to xenoestrogens or inflam-
matory microenvironment. Deregulated signal-
ing related to epithelial differentiation may
aberrantly up-regulate the expression of EZH2
and other polycomb repressor proteins, such
as SUZ12, BMI1, G9a, and SUV39H (Dimri
et al. 2002; Schultz et al. 2002; Kleer et al.
2003; Lehnertz et al. 2003). As a result, poly-
comb-mediated silencing of genes associated
with tumor suppressor functions takes place,
resulting in clonal proliferation of undifferenti-
ated or semi-differentiated cells. Further accu-
mulation of DNA methylation likely causes
the permanent silencing of these genes in prolif-
erating cells. In addition to tumor-suppressor
genes, epigenetic silencing may lead to up-regu-
lation of oncogenes. In this regard, microRNAs
that negatively regulate the expression of their
target loci may become transcriptionally silent,
leading to aberrant de-repression of these onco-
genes in cancer cells (Huang et al. 2009).

The cooperation between histone meth-
ylation and DNA methylation is highly dy-
namic in different cancer cell types. In some
cancer types, epigenetically silent loci are
highly enriched for trimethylation of H3K27
(H3K27me3), but show low levels of DNA
methylation (Kondo et al. 2008). In other cases,
this trimethylation mark can be lost while DNA
methylation is accumulated in silent loci (Gal-
Yam et al. 2008). It is possible that these two
repressive marks become more independent of
each other in terms of maintenance silencing
during cancer development, because genetic
knockdown of EZH2 does not change profiles
of de novo DNA methylation in a transfec-
tion study (McGarvey et al. 2007). Therefore,
H3K27me3 can be replaced by DNA meth-
ylation for long-term repression. This reprog-
ramming may be more widespread in cancer
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cells that show high degrees of genomic in-
stability.

Concluding Remarks

Epigenetic disruption is a characteristic of
human cancer. The reduction of the total
amounts of DNA methylation compared with
their normal counterparts has been the first epi-
genetic alteration described in human tumors.
Global DNA hypomethylation contributes to
the origin of cancer cells by generation of chro-
mosomal instability, reactivation of transpos-
able elements, and loss of imprinting. Most
importantly, CpG methylation can be acquired
in promoter regions of tumor-suppressor
genes, such as BRCA1 and p16INK4a, leading
to the inactivation of these cancer-protecting
proteins. Furthermore, methylation mediated-
silencing was observed in microRNA loci
with tumor-suppressive functions. Human
tumors also show a distorted histone code.
Breast tumors undergo massive and adaptive
changes in their natural history, i.e., these can-
cer cells can metastasize to distant sites where
they create new blood and lymph vessels to
feed on and eliminate metabolites. They can
also phenotypically alter their response to treat-
ment with drugs, hormones, or radiation. In
this regard, these cancer cells may have a limited
ability to undergo fast genetic changes to adapt
to hostile microenvironments. However, the
expansion of a subset of breast cancer cells can
occur through rapidly occurring epigenetic
changes. For example, the cell adherence
E-cadherin gene becomes methylated and
silenced in breast cancer cells once they have
metastasized to other organs or tissues. One of
the essential differences between genetic and
epigenetic alterations in cancer cells is that,
unlike the former, DNA methylation and his-
tone modifications are reversible under the
right circumstances. Thus, epigenetic changes
can be one of weak points in self-defense mech-
anisms of cancer cells, because those hyperme-
thylated tumor-suppressor genes in their long
“sleep” can be awakened and reactivated with
the right drug regimen and exert their normal
growth-inhibitory functions. Two families of

epigenetic drugs-DNA demethylating agents
and histone deacetylase inhibitors hold great
promise for future cancer treatments.
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