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Properly regulated intercellular adhesion is critical for normal development of all metazoan
organisms. Adherens junctions play an especially prominent role in development because
they link the adhesive function of cadherin–catenin protein complexes to the dynamic
forces of the actin cytoskeleton, which helps to orchestrate a spatially confined and very
dynamic assembly of intercellular connections. Intriguingly, in addition to maintaining
intercellular adhesion, cadherin–catenin proteins are linked to several major developmental
signaling pathways crucial for normal morphogenesis. In this article we will highlight the
key genetic studies that uncovered the role of cadherin–catenin proteins in vertebrate
development and discuss the potential role of these proteins as molecular biosensors of exter-
nal cellular microenvironment that may spatially confine signaling molecules and polarity
cues to orchestrate cellular behavior throughout the complex process of normal
morphogenesis.

Development of any multicellular organism
is impossible without a dynamic and

properly regulated intercellular adhesion.
Adhesive contacts between cells provide a phys-
ical anchoring system that is necessary to form
highly organized tissues, and these contacts
are essential for effective intercellular com-
munication that ensures the homeostasis and
survival of the entire organism. A number of
unique developmental processes, including
such early events as embryonic compaction
and first cell fate specification, as well as later

tissue morphogenesis and organogenesis, rely
on a dynamic balance between cellular adhe-
sion and migration. Cadherin–catenin protein
complexes, which constitute the core of a
specialized subtype of cellular adhesion struc-
tures termed adherens junctions (AJs), play a
particularly important role during these pro-
cesses. Apart from maintaining adhesive con-
tacts at the cell–cell junctions, they are actively
involved in epithelial-to-mesenchymal and
mesenchymal-to-epithelial transitions, which
are crucial to sustain the tissue plasticity
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during development. Most importantly, the
components of cadherin–catenin complexes
are tightly linked to several major signaling
networks controlling cell division, differentia-
tion, and apoptosis and this feature is crucial
for the broad roles of the AJs throughout
the vertebrate development (see Cavey and
Lecuit 2009).

This article will focus on the role of
cadherin–catenin proteins in regulating the
signaling events critical for vertebrate devel-
opment. Altering the expression pattern of
particular cadherin–catenin complex com-
ponents in the developing embryo often
leads to major developmental defects, which
reflect their role in both signaling and mecha-
nical adhesion. In this article, we will highlight
crucial findings suggesting that cadherin–
catenin complexes provide not only the struc-
tural integrity of the tissue, but may also serve
as biosensors of the external cellular micro-
environment that modulate cellular behavior
and make individual cells work together to
ensure the fitness of the entire organism.

STRUCTURAL AND FUNCTIONAL
FEATURES OF CADHERIN–CATENIN
COMPLEXES

Core Components and their Functional
Connection to the Actin Cytoskeleton

AJs are a specialized type of cellular adhesion
structures formed by complex and highly
dynamic interactions between two families
of proteins: cadherins and catenins. The main
building blocks of AJs involve classical cadher-
ins, with E(epithelial)-cadherin being a pro-
totypic member of this family, and several
closely related members of the armadillo
repeat protein superfamily: p120-, b- and
g-catenin (plakoglobin), as well as structurally
unrelated and lacking armadillo domains
a-catenin (Niessen 2007; Hartsock and Nelson
2008) (see also Meng and Takeichi 2009).
Other well-known members of the classical cad-
herin family include N(neural)-, P(placental)-,
VE-(vascular-endothelial), R(retinal)-, and
K(kidney)-cadherins (Hulpiau and van Roy

2009). Similarly, depending on the tissue type,
three a-catenin genes may be involved in for-
mation of AJs: aE(epithelial)-, aN(neural)-,
and aT(testis)-catenins (Nagafuchi et al.
1991; Hirano et al. 1992; Claverie et al. 1993;
Janssens et al. 2001). The assembly of AJs
is triggered by homophilic binding of the
extracellular parts of cadherin molecules on
the neighboring cells and a binding of their
cytoplasmic tails to p120-catenin and either
of two closely related proteins,b-catenin or pla-
koglobin (Fig. 1). While p120-catenin acts
to stabilize cadherins at the cell surface
(Reynolds and Carnahan 2004), b-catenin pro-
vides a link to a-catenin (Aberle et al. 1994),
which in turn has the ability to provide a
functional link to the actin cytoskeleton, thus
promoting AJ protein clustering and stabiliz-
ation of cellular adhesion (Hirano et al. 1992).
Because binding of a-catenin to actin filaments
and b-catenin is mutually exclusive, it is unli-
kely that it can directly bridge AJs with the
actin cytoskeleton (Drees et al. 2005; Yamada
et al. 2005). Instead, it can link them indirectly,
through interaction with another actin-
binding protein, eplin (Abe and Takeichi
2008). Moreover, through interaction with
formins, a-catenin can regulate junctional
actin polymerization (Vasioukhin et al. 2000;
Kobielak et al. 2004). Besides a-catenin,
p120-catenin has also a pivotal role in the
actin cytoskeleton dynamics at the AJs by
regulation of Rho-family small GTPases
(Reynolds 2007). The ability of AJs’ core com-
ponents to reorganize the actin cytoskeleton
makes the assembly of cadherin–catenin
adhesion complexes a highly dynamic process,
which allows spatial reorganization of cells
during normal development.

A Crosstalk between the Cadherin–Catenin
Complexes and Major Developmental
Signaling Pathways

Besides their structural role in stabilizing adhe-
sive contacts between the neighboring cells
and directing actin cytoskeleton reorganiza-
tion, components of the cadherin–catenin
complex are tightly linked to several key signal
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transduction networks (Fig. 1). For example,
b-catenin is a central player in the canonical
Wnt signaling pathway, where it translocates
to the nucleus and functions as a trans-
criptional cofactor (Clevers 2006; Grigoryan
et al. 2008). One potential determinant of
b-catenin’s availability to participate in either
the adhesion or transcriptional complexes
may lay in its phosphorylation status. Indeed,
b-catenin can be phosphorylated by a variety of
serine/threonine and tyrosine kinases and this
can profoundly change the ability of b-catenin
to interact with cadherin and a-catenin,
as well as its signaling function (Piedra
et al. 2003; Brembeck et al. 2004; van Buul et al.
2005; Brembeck et al. 2006; Coluccia et al.
2006; Zinser et al. 2006; Coluccia et al. 2007;

Daugherty and Gottardi 2007; Kajiguchi et al.
2007; Rhee et al. 2007). Overall, it appears
that phosphorylation-mediated destabilization
of cadherin–catenin complexes often results
in activation of b-catenin signaling.

In addition to b-catenin, other members
of the cadherin–catenin adhesion complex
also play important roles in regulation of devel-
opmental cellular signaling networks. For
example, receptor-type tyrosine kinase (RTK)
pathways play a critical role in metazoan devel-
opment. Cadherin–catenin complexes bind
to and regulate the activity of a variety of
RTKs (Erez et al. 2005). Interestingly, this inter-
action is often functionally complex. Although
at steady state levels E-cadherin inhibits RTK
signaling (Qian et al. 2004), formation of AJs
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Figure 1. Cadherin–catenin proteins and their connections to developmental cell signaling pathways. Diagram
showing major proteins involved in formation of cadherin,a-,b-,g-, and p120-catenin complexes at the plasma
membranes of two juxtaposed cells. Although cadherins are implicated in regulation of receptor-type tyrosine
kinases (RTKs) and protection from apoptosis, catenins have multiple overlapping and distinct functions. Both
p120-catenin and a-catenin regulate NFkB and MAPK signaling pathways, cytokinesis, and cell proliferation.
However, p120-catenin has a unique function in the control of RhoA signaling and microtubule cytoskeleton
organization, whereas a-catenin is implicated in regulation of RTKs, Hedgehog signaling, microtubule-
mediated traffic, and functional coupling between the junctions and the actin cytoskeleton. b-catenin is a
principal player in the canonical Wnt signaling pathway. Because RTKs, Hedgehog, and Wnt signaling
mechanisms are heavily implicated in regulation of normal development, intriguing connections between
cadherin–catenin receptors and these pathways provides potential tools for integrating the efforts of
individual cells into a smoothly orchestrated developmental process.
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can induce transient activation of RTKs (Pece
and Gutkind 2000). Moreover, the outcome
of functional interaction also depends on the
type of involved cadherin and RTK molecules.
For example, N-cadherin is generally a positive
regulator of FGF receptor signaling (Suyama
et al. 2002).

Both, p120- and a-catenins have been
recently implicated in the control of NFkB
(nuclear factor kB) signaling pathway, which
is involved in cell stress and survival and often
hyperactivated in cancer (Kobielak and Fuchs
2006; Perez-Moreno et al. 2006). Although
exact mechanisms responsible for the connec-
tion between catenins and NFkB signaling
are not well understood, p120-catenin’s role
in this context has been linked to the control
of RhoA-dependent signaling (Perez-Moreno
et al. 2006; Perez-Moreno et al. 2008).
Likewise, studies on the role ofa-catenin in epi-
dermal development revealed an interesting
link between this protein and Ras-MAPK
pathway (Vasioukhin et al. 2001). Further
studies using mice lacking a-catenin in devel-
oping neural progenitors uncovered the role
of this protein in the negative regulation of
the Hedgehog signaling pathway, one of the
major developmental pathways in vertebrates
(Lien et al. 2006b).

Overall, a significant amount of informa-
tion has been accumulated, which indicates
that cadherin–catenin complexes are not only
responsible for mechanical intercellular adhes-
ion, but they also provide a dynamic link to
major developmental signaling networks. These
features may explain why cadherin–catenin pro-
teins are among the key regulators of principal
vertebrate developmental events, which will be
discussed in detail in the following section.

CADHERINS AND CATENINS IN
VERTEBRATE DEVELOPMENT

Loss-of-function experiments have been very
informative in uncovering the role and signi-
ficance of specific members of cadherin–
catenin complexes in vertebrate development.
This is usually accomplished by the analyses of
the mutant embryos, which are generated by

targeted gene mutations, transgenic expression
of dominant-negative constructs or injection
of morpholino antisense oligos, interfering
with translation of specific mRNAs. These
experiments revealed that many core compo-
nents of the AJs are essential for embryonic
development (Table 1). Thus, conditional and
tissue-specific gene knockout experiments
were used to analyze the function of essential
cadherin–catenin proteins at the later develop-
mental time points. Altogether, these exper-
iments revealed a highly complex picture
concerning the function of these proteins in
the developing embryo (Fig. 2).

Early Embryogenesis

During early embryonic development, signifi-
cant amounts of E-cadherin and aE-catenin
are provided maternally and mediate blasto-
mere adhesion during embryonic compaction
(Ohsugi et al. 1996; De Vries et al. 2004).
Later, E-cadherin produced by the embryo
becomes necessary for normal development,
as zygotic E-cadherin-null embryos fail to
form a trophectodermal epithelium and are
unable to generate blastocyst cavity (Larue
et al. 1994; Ohsugi et al. 1997). A unique role
of E-cadherin in trophectoderm development
was recently shown by gene replacement
experiments (Kan et al. 2007). In this approach,
N-cadherin expressed from the E-cadherin
locus was unable to rescue the lethality of
E-cadherin-null embryos, as it was insufficient
to drive the formation of functional trophecto-
derm (Kan et al. 2007). Remarkably, ES cells
generated from these mutants were able to
form an epithelium, indicating that despite
the fact that N-cadherin is capable of support-
ing epithelial morphogenesis, E-cadherin has
a very unique function in trophectoderm for-
mation. Interestingly, the phenotype of zygotic
aE-catenin-null embryos has striking simi-
larities to embryos missing E-cadherin. The
gene-trap mutants missing the actin-binding
domain of aE-catenin show disruption of tro-
phoblast epithelium and the development
is consequently blocked at the blastocyst stage
(Torres et al. 1997). This striking similarity
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Table 1. Phenotypes of zygotic and conditional mutations of cadherin–catenin genes in mice

Gene Tissue/Time Crea Phenotype Ref.

E-cadherin (CDH1) Maternal contribution to
oocyte

ZP3-Cre Normal development via zygotic expression (De Vries et al. 2004)

Zygote Lethal at E4; defects in trophectoderm (Larue et al. 1994;
Riethmacher et al. 1995)

Zygote (gene replacement,
N-cadherin into
E-cadherin locus)

Lethal; insufficient to rescue trophectoderm
defects

(Kan et al. 2007)

Epidermis/E11.5 K14-Cre Hair follicle degeneration, progressive hyperplasia (Tinkle et al. 2004)
Epidermis/E11.5 K14-Cre Lethal at P0; failure of tight junctions formation (Tunggal et al. 2005)
Epidermis/P15 Krox20-Cre Loss of hair follicles; abnormal differentiation (Young et al. 2003)
Liver/E15 Alfp-Cre No phenotype (Battle et al. 2006)
Mammary gland MMTV-Cre Impaired differentiation and apoptosis of alveolar

epithelial cells
(Boussadia et al. 2002)

N-cadherin (CDH2) Zygote Lethal at E10; loss of cardiomyocyte adhesion (Radice et al. 1997b)
Zygoteþtransgene rescue Lethal at E12; rescue of heart defects by both

N-cadherin or E-cadherin expression
(Luo et al. 2001)

Chimeric embryos/N-cad
null ES cells

Exclusion and segregation of mutant cells from
wild-type cells

(Kostetskii et al. 2001)

Endothelial cells/E9.5-E11.5 Tie2-Cre Lethal at mid-gestation; vascular morphogenesis
defects

(Luo and Radice 2005)

Cerebral cortex/E10.5 D6-Cre Complete disorganization of cerebral cortex (Kadowaki et al. 2007)
Neural Crest Wnt1-Cre Lethal; aberrant remodeling of cardiac outflow

tract
(Luo et al. 2006)

Epicardium Wnt1-Cre Lethal; disruption of epicardial–myocardial cell
interactions thinning of the myocardial wall

(Luo et al. 2006)

P-cadherin (CDH3) Zygote Precocious differentiation of the mammary gland (Radice et al. 1997a)
R-cadherin (CDH4) Zygote Live and fertile; dilated kidney proximal tubules (Dahl et al. 2002)
VE-cadherin (CDH5) Zygote Lethal at E9.5; severe vascular defects (Carmeliet et al. 1999;

Gory-Faure et al. 1999)
K-cadherin (CDH6) Zygote Live and fertile; delayed mesenchymal to epithelial

conversion during kidney development
(Mah et al. 2000)
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Table 1. Continued

Gene Tissue/Time Crea Phenotype Ref.

Cadherin-8 (CDH8) Zygote Live and fertile; defective coupling between
cold-sensitive sensory neurons and their target
spinal cord neurons

(Suzuki et al. 2007)

OB-cadherin (CDH11) Zygote Live and fertile; increased long term neuronal
potentiation, reduced fear- and anxiety-related
responses, reduced bone density, hypoplastic
synovial lining and resistance to arthritis

(Horikawa et al. 1999;
Manabe et al. 2000;
Kawaguchi et al. 2001; Lee
et al. 2007)

M-cadherin (CDH15) Zygote Live and fertile; no developmental defects (Hollnagel et al. 2002)
BILL-cadherin (CDH17) Zygote Abnormal immune B cell development (Ohnishi et al. 2005)
Otocadherin (CDH23) Zygote Deafness and vestibular defects because of

degeneration of the organ of Corti and other
inner ear structures

(Wilson et al. 2001;
Noben-Trauth et al. 2003)

E-cadherinþP-cadherin
knockdown

Epidermis/E11.5 K14-Cre Lethal; severe epidermal adhesion defects,
apoptosis

(Tinkle et al. 2008)

aE-catenin Zygote Lethal at E4; defects in trophectoderm (Torres et al. 1997)
Epidermis/E11.5 K14-Cre Lethal at P0; loss of adhesion, hyperproliferation (Vasioukhin et al. 2001)
CNS/E10.5 Nestin-Cre Lethal at P14-21; brain dysplasia,

hyperproliferation
(Lien et al. 2006b)

Mammary epithelium/adult MMTV-Cre Abnormal differentiation, increased apoptosis (Nemade et al. 2004)
Myocardium/E9 MLC2v-Cre Defects in intercalated discs, cardiomyopathy (Sheikh et al. 2006)

aN-catenin Zygote Cerebellar and hippocampal lamination defects,
axonal migration abnormalities

(Park et al. 2002a; Uemura
and Takeichi 2006)

b-catenin Zygote Lethal at E8; failure of primitive streak formation (Haegel et al. 1995)
Primitive streak; presomitic

mesoderm/E7.5
T-Cre

(Brachyury-Cre)
Mesoderm formation defects and abnormal

segmentation
(Aulehla et al. 2008; Dunty

et al. 2008)
CNS/E8.5 Nes8-Cre Dorsal-ventral fate shift before neurogenesis (Backman et al. 2005)
CNS, neural crest

progenitors/E9
Wnt1-Cre Loss of cerebellum, failure of craniofacial

development, cardiac outflow tract defects
(Brault et al. 2001) (Kioussi

et al. 2002)
Wnt1-Cre Impaired migration of neural crest cells, loss of

melanocytes and dorsal root ganglia
(Hari et al. 2002)

CNS/E9.5 FoxG1-Cre Lack of the entire forebrain and anterior facial
structure

(Junghans et al. 2005)
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CNS/E10 Brn4-Cre Premature cell cycle withdrawal of neural
progenitors

(Zechner et al. 2003)

Apical ectodermal ridge/E10 Brn4-Cre Limb malformation (Soshnikova et al. 2003)
CNS/E10.5 D6-Cre Impaired radial migration, decreased proliferation (Machon et al. 2003)
Embryonic endoderm/E6.25 K19-Cre Failure of node formation & multiple hearts (Lickert et al. 2002)
Head and limb mesenchyme/

E9 E10.5
Prx1-Cre Limb truncation, overall failure to develop bone (Hill et al. 2005; Hill et al.

2006)
Limb ectoderm/E9.5 Msx2-Cre Loss of apical ectodermal ridge (Barrow et al. 2003)
Epidermis/E11.5 K14-Cre Failure of follicle morphogenesis (Huelsken et al. 2001)
Vascular endothelium/ E8.5 Tie2-Cre Lethal E11.5-13; vascular fragility, impaired

development of the heart septum; impaired
endocardial cushion formation

(Cattelino et al. 2003; Liebner
et al. 2004)

Lung epithelium/E13.5 SP-C-Cre Impaired development of peripheral lung (Mucenski et al. 2003)
mesenchymal lineages/

E12.5-13.5
Dermo1-Cre Synovial joint fusions; abnormal differentiation of

osteoblasts and chondrocytes; increased
chondrogenesis and ectopic cartilage formation

(Day et al. 2005)

Impaired lung growth and loss of lung muscle
progenitors

(De Langhe et al. 2008; Yin
et al. 2008)

Kidney epithelium (Wolffian
ducts)/E11.5

Hoxb7-Cre Premature differentiation, kidney aplasia or
hypoplasia

(Bridgewater et al. 2008;
Marose et al. 2008)

Kidney (renal vesicle
progenitor cells)/E12.5

Six2-GFP-Cre Reduced nephron formation; reduced kidney size
and branching

(Park et al. 2007)

Heart (myocardial
precursors)/E8.5

Nkx2.5-Cre Lethal at E12.5, impaired cardiac development,
smaller right ventricles

(Kwon et al. 2007)

Heart (myocardial
progenitors and early
pharyngeal endoderm)/E8

Islet1-Cre Lethal E13; dilated outflow tract; smaller right
ventricles; pharyngeal arch defects

(Lin et al. 2007)

Hear (proepicardum)/ E9.5 GATA5-Cre Lethal around E15.5; impaired cardiac growth and
coronary artery formation

(Zamora et al. 2007)

Heart (myocardial
precursors)/E9.5

SM22-Cre Lethal E10.5-11.5; loss of right heart (Cohen et al. 2007)

Heart (second heart field
cells) /E-8 -E9.5

MesP1-Cre Disrupted cardiac looping; shortened heart
outflow tract

(Klaus et al. 2007)

Mef2c-Cre Heart outflow tract defects; right ventricle defects (Ai et al. 2007)
Pancreatic epithelium/E8.5 Pdx1-Cre Acute edematous pancreatitis (Dessimoz et al. 2005)
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Table 1. Continued

Gene Tissue/Time Crea Phenotype Ref.

g-catenin/plakoglobin Zygote Lethal at E12-E17; cardiac rupture, skin blistering,
absence of desmosomes in heart, but not in
epithelial tissues

(Bierkamp et al. 1996; Ruiz
et al. 1996)

p120-catenin Epidermis/E11.5 K14-Cre Epidermal hyperplasia and neoplasia and chronic
inflammation

(Perez-Moreno et al. 2006;
Perez-Moreno et al. 2008)

Salivary gland epithelium/
E14

MMTV-Cre High grade intraepithelial neoplasia (Davis and Reynolds 2006)

Dorsal forebrain/E9 Emx1-Cre Reduced spine and synapse densities along
dendrites

(Elia et al. 2006)

Note, detailed information on gain-of-function and loss-of-function b-catenin mutant mice can be found in (Grigoryan et al. 2008).

E, embryonic day.
aCre is a site-specific recombinase used for gene deletion.
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Figure 2. Cadherin–catenin complexes and major developmental events. (A) Functional cadherin–catenin
adhesion is required for embryonic compaction during early preimplantation development, as well as
multiple later morphogenetic events involving mesenchymal-to-epithelial transition. (B) Cadherin–catenin
system and p120-catenin-mediated planar cell polarity signaling are required for embryonic gastrulation and
“convergent extension,” which results in lengthening of the embryonic body axis. (C) Cadherin–catenin
adhesion is involved in tissue segregation and neural tube formation (neurulation), as well as formation of
somites. (D) Down-regulation of cadherin–catenin adhesion (epithelial-to-mesenchymal transition) is
necessary for emigration of neural crest cells from the neural tube and their subsequent migration. A reverse
process of mesenchymal-to-epithelial transition is required for neural crest cell-derived structure formation,
when neural crest cells reach their target locations. (E) Cadherin–catenin complexes are necessary to orient
mitotic spindles of dividing cells to maintain proper tissue morphology.

Adhesive and Signaling Functions of Cadherins and Catenins

Cite this article as Cold Spring Harb Perspect Biol 2009;1:a002949 9

 on May 7, 2024 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


indicates that aE-catenin is an indispensable
component of the AJ complex. Although early
embryonic phenotypes of E-cadherin- and
aE-catenin-deficient mutants are adhesion-
dependent, they clearly contrast with the phe-
notypes of b-catenin-null embryos, which
seem to be adhesion-independent and rather
result from b-catenin’s signaling roles at later
stages of development during embryonic gas-
trulation (Haegel et al. 1995; Huelsken et al.
2000). This is likely because of a compensatory
effect of plakoglobin, and this hypothesis is
supported by increased localization of plako-
globin to the lateral membrane of trophecto-
dermal epithelial cells in b-catenin2/2

embryos (Haegel et al. 1995).

Gastrulation, Embryo Patterning, and
Somitogenesis

During gastrulation, the morphology of the
newly formed embryo is dramatically restruc-
tured to form three embryonic germ layers
(endoderm, ectoderm, and mesoderm) that
will give rise to all tissues and organs in the
developing organism. At the onset of gastru-
lation, cells of the epiblast migrate through
the primitive streak to position the embryo-
nic germ layers, and these morphogenetic
movements are facilitated by the process of
epithelial–mesenchymal transition (EMT),
in which AJs play a fundamental role.
During murine gastrulation, E-cadherin is
down-regulated in the primitive streak as cells
undergo embryonic EMT and this down-
regulation is necessary for proper gastrulation
and mesoderm cell fate specification in the
mouse embryo (Burdsal et al. 1993; Ciruna
and Rossant 2001).

Down-regulation of E-cadherin function
is accomplished by multiple mechanisms
including transcriptional repression via fibro-
blast growth factor/fibroblast growth factor
receptor 1 (FGF/FGFR1)-dependent induction
of Snail (Ciruna and Rossant 2001), down-
regulation of E-cadherin protein levels by p38
mitogen-activated protein kinase (MAPK)
(Zohn et al. 2006), and disruption of cadherin–
catenin complexes by EPB41L5, a band 4.1

superfamily protein that interacts with
p120-catenin and prevents its association with
cadherin (Hirano et al. 2008). An additional
pathway involving controlled internalization
of cadherin was recently discovered in Xenopus
(Ogata et al. 2007). TGF-b signaling, which is
critical for gastrulation, induces the expression
of transmembrane protein fibronectin leucine-
rich repeat transmembrane 3 (FLRT3) and a
small GTPase Rnd1. FLRT3 and Rnd1 interact
physically and modulate cell adhesion during
gastrulation by controlling dynamin-dependent
endocytosis of epithelial cadherin (Ogata et al.
2007). Interestingly, mesodermal cells formed
during gastrulation down-regulate E-cadherin
and increase expression of N-cadherin, which
is maintained by platelet-derived growth factor
(PDGF) signaling and is required for normal
mesodermal cell migration (Yang et al. 2008).
Thus, gastrulation is a remarkable example
of a naturally occurring cadherin-switch
phenomenon, in which expression of one
cadherin (E-cadherin) is replaced by another
(N-cadherin), and both of them are required
for normal developmental process, although
they regulate different aspects of gastrulation.

In addition to EMT, the gastrulating
embryo undergoes a significant extension of
the body axis through the process known as
convergent extension. Convergent extension
involves highly organized and coordinated cell
movements toward the midline, resulting in
cell intercalation and rearrangement of their
original positions (Fig. 2B). Morpholino-
mediated knock down of p120-catenin or
ARVCF in Xenopus revealed a critical role of
these proteins in the regulation of convergent
extension (Paulson et al. 1999; Fang et al.
2004). Subsequent mechanistic analyses indi-
cated that signaling involving activation of
Rac, inhibition of RhoA, and modulation of a
repressive activity of transcription factor Kaiso
on Wnt11 expression were responsible for the
phenotypes (Fang et al. 2004; Kim et al. 2004).
Intriguingly, Wnt11 is a critical upstream regu-
lator and RhoA is an important downstream
target of the planar cell polarity pathway (see
McNeill et al. 2009), which is known to be
necessary for convergent extension. Thus,
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these experiments identified p120-catenin as
an essential regulator of planar cell polarity
and revealed at least two independent mechan-
isms responsible for this function.

Loss-of-function and gain-of-function
experiments showed the requirement for b-
catenin in proper patterning of various embryo-
nic structures, tissues, and organs throughout
embryonic development (Grigoryan et al.
2008). Although loss of zygotic b-catenin
allows normal blastocyst development, the
mutant embryos die shortly thereafter because
of major defects in gastrulation, which is
characterized by defects in the anterior–
posterior axis formation and complete failure
of mesoderm and head structure development
(Haegel et al. 1995; Huelsken et al. 2000).
Remarkably, these defects are not caused by
the loss of cell–cell adhesion, which is main-
tained by plakoglobin, but because of deficiency
in canonical Wnt signaling, which plays a
critical role in regulation of gastrulation, and
many other aspects of early embryonic develop-
ment (see Cadigan and Peifer 2009; Heuberger
and Birchmeier 2009).

In addition to major defects in gastrulation,
loss of b-catenin also severely impairs somi-
togenesis. Conditional ablation of b-catenin
in the visceral endoderm results in embryos
that gastrulate, but are unable to form the
node and display the failure of posterior
axis elongation, somite formation, and endo-
dermal cell fate specification (Lickert et al.
2002). Remarkably, these mutants show
ectopic expression of Bmp2 in precardiac
mesoderm and form multiple hearts. Here, as
in many other early embryonic b-catenin
loss-of-function studies, the authors found
no defects in intercellular adhesion because
of compensatory role of plakoglobin (Lickert
et al. 2002). Furthermore, deletion of b-catenin
in mesoderm precursors in the primitive streak
blocks paraxial mesoderm formation and
results in embryonic axis truncation (Aulehla
et al. 2008; Dunty et al. 2008). Interestingly,
b-catenin-mediated signaling is used again
during embryonic dorsal–ventral axis specifi-
cation. In Xenopus, canonical Wnt signaling
is activated in dorsal part of the embryo to

establish the dorsal axis (Tao et al. 2005).
Because of the ancient genome duplication,
Zebrafish genome containstwob-catenin genes.
Although b-catenin-2 is essential for dorsal
axis specification early in development, both
b-catenin-1 and -2 are required for posteriori-
zing signaling required for normal embryonic
patterning (Bellipanni et al. 2006). In addition
to body patterning, Wnt/b-catenin signaling
is also critical for the normal limb morphogen-
esis. Apical ectodermal ridge (AER) is an ecto-
dermal structure overlying and inducing the
development of the limb bud during vertebrate
morphogenesis. b-catenin-mediated Wnt sig-
naling lies upstream of the Bmp pathway in
establishment of the AER and dorso-ventral
limb patterning (Barrow et al. 2003; Soshni-
kova et al. 2003; Hill et al. 2006).

In summary, loss-of-function and gain-of-
function experiments revealed critical roles for
E-cadherin, N-cadherin, p120, and b-catenins
in gastrulation and early embryonic patterning.
Although most of the evidence so far points
toward adhesive roles for cadherins, these
experiments revealed very exciting signaling
roles for p120-catenin in planar cell polarity-
mediated convergent extension and for
b-catenin in a variety of critical developmental
decisions during early embryogenesis.

Early Heart and Vascular System
Development

The primitive heart tube undergoes a series
of morphological changes including looping
into an S-shaped structure that is critical for
proper alignment of the cardiac outflow tract.
N-cadherin plays a critical role in multiple
cardiac cell lineages and at different times
during cardiac morphogenesis. Germline del-
etion of N-cadherin results in mid-gestation
lethality associated with multiple developmen-
tal abnormalities including severe cardiovas-
cular defects (Radice et al. 1997b). A dramatic
cell adhesion defect was observed in the devel-
oping myocardium of N-cadherin mutant
embryos resulting in a severely deformed
heart tube. Interestingly, expression of either
N-cadherin or E-cadherin under the control
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of a muscle-specific promoter was able to rescue
the cardiac phenotype, demonstrating that
these cadherins are interchangeable during
cardiac looping morphogenesis (Luo et al.
2001). Chimeric mouse embryos generated
from N-cadherin-null embryonic stem cells
showed that N-cadherin-mediated adhesion is
critical for maintaining cell–cell interactions
in tissues undergoing active cellular rearrange-
ments and increased mechanical stress (e.g.,
primitive heart) (Kostetskii et al. 2001).
N-cadherin-deficient and wild-type cardio-
myocytes initially intermix in the chimeras;
however, the adhesion is short lived as the
mutant cells are excluded from the myocardial
wall during the transition from a cuboidal
cell morphology to a flattened, tightly associ-
ated myocardial cell layer (Kostetskii et al.
2001). In addition to mediating cell adhesion,
N-cadherin was shown to be involved in the
migration of cardiomyocytes toward the endo-
cardium in a process called trabeculation, which
results in expansion of the cardiac chambers
(Ong et al. 1998). N-cadherin is also involved
in heterotypic cell interactions in the developing
heart as loss of N-cadherin from the epicardium
disrupts epicardial–myocardial cell–cell inter-
actions resulting in a thinned ventricular myo-
cardium (Luo et al. 2006).

Conditional deletion of N-cadherin in
endothelial cells revealed an unexpected role
for this protein in the developing vascular
system (Luo and Radice 2005). Interestingly,
the mid-gestation embryonic phenotype of
the endothelial-specific N-cadherin knockout
embryo bears similarities to the VE-cadherin-
null phenotype. Both N-cadherin- and
VE-cadherin-deficient endothelial cells are
unable to form a normal vascular plexus
leading to impaired vasculogenesis. VE-
cadherin expression was perturbed in the
endothelial-specific N-cadherin knockout
embryo. In contrast, N-cadherin expression
was not affected in VE-cadherin-deficient
endothelial cells (Carmeliet et al. 1999). This
is the only known example in which one
cadherin subtype controls the expression of
another, which may reflect complex and
dynamic cell–cell rearrangements involved

in vascular permeability. In addition to the
similarities of endothelial phenotypes in
N-cadherin and VE-cadherin mutant embryos,
both knockouts show a myocardial cell adhe-
sion defect indicating cadherin-mediated
signaling between the endocardium and
myocardium (Carmeliet et al. 1999; Luo and
Radice 2005).

VE-cadherin itself is critical for a developing
vascular system, where it has both mechanical
and signaling functions (Carmeliet et al.
1999). Endothelial cells missing VE-cadherin
fail to support remodeling and maturation
of developing vasculature. In addition to
the adhesion defect, these cells also display a
prominent decrease in vascular endothelial
growth factor receptor-2-phosphatidylinositol
3 kinase (VEGFR-2-PI3K) signaling and sub-
sequent apoptosis (Carmeliet et al. 1999).
VE-cadherin also uses a similar PI3K-Akt
pathway to up-regulate the expression of
claudin-5, which is required for the formation
of tight junctions between endothelial cells to
prevent vascular permeability (Taddei et al.
2008). Remarkably, although VE-cadherin is
necessary for positive regulation of VEGFR-
2-PI3K signaling and cell survival, it has an
opposite effect on VEGFR-2-MAPK signaling
and cell proliferation (Grazia Lampugnani
et al. 2003). Subsequent analysis revealed a crit-
ical role of VE-cadherin in preventing the
internalization of activated VEGFR-2 and
stimulation of VEGFR-2-MAPK signaling from
the endosomal compartment (Lampugnani
et al. 2006). In addition to regulation of
VEGFR-2, VE-cadherin also binds to all the
components of the TGF-b receptor complex
and promotes TGF-b signaling (Rudini et al.
2008). Because TGF-b is a major developmental
signaling pathway, it is likely that a functional
connection between VE-cadherin and TGF-b
signaling plays an important role in vertebrate
morphogenesis.

Plakoglobin is a close relative of b-catenin,
but in contrast to the signaling function
of b-catenin, plakoglobin loss-of-function
experiments revealed primarily a structural
role for this protein. Plakoglobin is unique
in its ability to interact with both classical

E. Stepniak, G.L. Radice, and V. Vasioukhin

12 Cite this article as Cold Spring Harb Perspect Biol 2009;1:a002949

 on May 7, 2024 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


cadherins in AJs and desmosomal cadherins
in desmosomes, which are distinct cell–cell
adhesion structures linked to the intermediate
cytoskeleton. Mice with zygotic disruption
of plakoglobin die in utero showing defects in
cardiac structural integrity and skin blistering
(Bierkamp et al. 1996; Ruiz et al. 1996;
Bierkamp et al. 1999). Interestingly, both heart
and skin defects were caused by abnormal des-
mosome function, indicating that b-catenin
cannot functionally substitute for plakoglobin
in desmosomes. Therefore, the primary role of
plakoglobin is in desmosome function and it
is not essential for the function of AJs.

Neural Crest Development

Both adhesion and signaling activities of
cadherin and catenin proteins play a pivotal
role in neural crest development. Neural crest
cells undergo EMT and migrate from the devel-
oping dorsal neural tube ultimately differen-
tiating and forming a wide variety of adult
structures such as parts of peripheral nervous
system, melanocytes and some craniofacial
structures (Fig. 2D). Initial EMT and emigra-
tion of neural crest cells from the neural
tube requires down-regulation of N-cadherin
(Nakagawa and Takeichi 1998), which is
achieved by BMP4-induced cleavage of
N-cadherin via ADAM10 (a disintegrin and
metalloproteinase) (Shoval et al. 2007).
Interestingly, this cleavage is not only required
to down-regulate the adhesive function of
N-cadherin, but it also generates cytoplasmic
N-cadherin fragment that translocates to the
nucleus and stimulates b-catenin-mediated
transcription. Both adhesive and signaling
activities are likely to participate in neural
crest emigration. Deletion of N-cadherin from
murine neural crest cells using Wnt1-Cre
results in aberrant remodeling of the cardiac
outflow tract and embryonic lethality (Luo
et al. 2006). Cardiac neural crest cells normally
elongate and align with their neighbors even-
tually aggregating at the midline to divide the
outflow tract into aortic and pulmonary
channels. In Wnt1-Cre-driven N-cadherin
mutants, outflow tract cells are rounded and

less condensed compared with wild-type cells
(Luo et al. 2006). An adhesive function of
N-cadherin at the neural crest cell migration
target site was also shown for sympathetic
ganglia (Kasemeier-Kulesa et al. 2006).

b-catenin plays a pivotal role in neural
crest specification. Ablation of b-catenin in
mouse embryos using Wnt1-Cre results in the
failure of craniofacial development and loss of
melanocyte and sensory neural cell lineages
(Brault et al. 2001; Hari et al. 2002). This is
reminiscent of the phenotype observed in con-
ventional Wnt1 knockout mice (McMahon
and Bradley 1990), indicating that b-catenin
signaling function is required for these develop-
mental processes.

P120-catenin has a major impact on mig-
ration of neural crest cells. Knockdown of
p120-catenin in developing Xenopus embryos
affects the migration of neural crest cells into
the branchial arches, and causes defects in
eye formation as well as several craniofacial
cartilage structures (Ciesiolka et al. 2004).
Importantly, defects induced by p120 deple-
tion can be rescued by expression of either
dominant-negative Rac or LIM kinase, indi-
cating the involvement of p120-catenin in
Rho GTPases signaling during development
(Ciesiolka et al. 2004). Therefore, similar to
its role in gastrulation, p120-catenin impacts
neural crest morphogenesis by regulating
Rho-family GTPases and the actin cytoskeleton.

Central Nervous System (CNS)
Development

During formation of the neural plate, the pre-
cursor of the vertebrate neural system, E-
cadherin expression is replaced by N-cadherin,
which continues to be expressed at high levels
in all neural tissues throughout the devel-
opment (Fig. 2C). Knockout of N-cadherin
in the developing mouse embryo results in
severe malformation of the neural tube
(Radice et al. 1997b). Concurrent heart defects
and early embryonic death complicated the
analysis of N-cadherin-null mice; however,
loss-of-function N-cadherin experiments in
zebrafish revealed impaired neuroectodermal
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cell adhesion and severely compromised cell
movements during neurulation, which ulti-
mately affected neuronal positioning and axon
pathfinding (Lele et al. 2002). Interestingly,
loss of N-cadherin in zebra fish destabilized
membrane-associated b-catenin and caused
increased mitoses in the dorsal midbrain and
hindbrain, suggesting an additional signaling
role for N-cadherin in this context (Lele et al.
2002). ACNS-specific role of mouse N-cadherin
has been analyzed recently using a conditional
gene knockout approach (Kadowaki et al.
2007). Deletion of N-cadherin in the develop-
ing cerebral cortex results in a massive cortical
disorganization and scattering of mitotic cells
throughout the cortex (Fig. 3) (Kadowaki
et al. 2007). Future studies will likely analyze
the potential changes in cell proliferation and
cell death in these mutant animals.

Both aE- and aN-catenins are expressed
in the developing mammalian brain; however,
their expression patterns are different.

aE-catenin is predominantly expressed in
neural progenitors and aN-catenin in diffe-
rentiated neurons. Conditional deletion of
aE-catenin in neural progenitors resulted in
loss of cell adhesion and polarity, which
caused severe brain disorganization (Fig. 3)
(Lien et al. 2006b). In addition to these mech-
anical defects, mutant brains also displayed
shortening of the cell cycle and decreased
apoptosis, which caused an abnormal increase
of total brain cell number. Analyses of potential
mechanisms identified abnormal activation
of Hedgehog (Hh) signaling in hyperplastic
dorsal brain structures of aE-catenin-null
brains (Lien et al. 2006b). Because Hh signaling
and cell proliferation were impacted only in
dorsal, but not in the ventral part of
aE-catenin-null brains, it is likely that this intri-
guing connection between aE-catenin and
Hh signaling is modulated by other pathways,
whose identity and mechanism of action will
have to be discovered in future research.

Rostral 

N
-c

ad
 c

K
O

C
on

tr
ol

 

Caudal Rostral 

aE
-c

at
en

in
 c

K
O

 
C

on
tr

ol
 

Caudal 

A B C D 

A′ B′ C′ D′ 

Figure 3. Cadherin–catenin complexes in embryonic brain development. (A–B0) Cortical disorganization in
mice with embryonic brain-specific knockout of N-cadherin (N-cad cKO). Hematoxylin and eosin staining
of coronal brain sections from one-day-old control (A, B) and D6-Cre N-cadherin cKO pups (A0, B0).
(Reprinted with permission from Kadowaki et al. 2007, copyright 2007 Elsevier.) (C–D0) Brain
disorganization and hyperplasia in mice with embryonic brain-specific knockout of aE-catenin.
Hematoxylin and eosin staining of coronal brain sections from new-born control (C, D) and Nestin-Cre
aE-catenin cKO pups (C0, D0). (Reprinted, with permission, from Lien et al. 2006b, copyright 2006
American Association for the Advancement in Science.)
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Although aE-catenin is essential for early
embryonic development, zygotic aN-catenin-
null mice survive into adulthood; however,
they display a prominent neurological pheno-
type. These animals show ataxia and their
brains display underdevelopment and disor-
ganization of the cerebellum (Park et al.
2002a,b).

Both adhesive and signaling activities of
b-catenin play critical roles in the developing
CNS. Conditional ablation of b-catenin in
the murine forebrain early in development
results in cell fate changes and ventralization
of telencephalon (Backman et al. 2005).
b-catenin is critical for normal cell–cell
adhesion in neuroepithelial cells and con-
ditional deletion of b-catenin in developing
forebrain results in breakdown of neuroepi-
thelial structures, an increase in apoptosis and
loss of the entire forebrain and anterior facial
structures (Junghans et al. 2005). Later in
brain development, b-catenin is necessary for
self-renewal and maintenance of neuronal
progenitors (Machon et al. 2003; Zechner
et al. 2003).

Epidermal Development

Functions of epithelial cadherin–catenin pro-
teins were extensively studied in developing
mouse epidermis. Loss-of-function mutants
of cadherins, p120-, b-, and aE-catenins in
skin epidermis offer an unprecedented oppor-
tunity for side-by-side comparison of the role
of different members of cadherin–catenin com-
plexes in the same tissue. These murine models
taught us that cadherin–catenin proteins are
required not only for cell–cell adhesion, but
also for cellular proliferation and differen-
tiation. Although cadherins seem to be mainly
involved in the maintenance of the overall
mechanical epidermal integrity and protection
from apoptosis, catenins play a dual role; on
the one hand they act as cadherin stabilizers
during AJs formation, on the other hand they
function as regulators of cellular signaling
pathways (Fig. 4).

The principal cadherin responsible for AJ
formation in epithelial cells is E-cadherin.

Intriguingly, however, deletion of E-cadherin
in embryonic skin epidermis did not result in
a significant impairment of AJs, most likely
because of compensatory up-regulation of
P-cadherin (Young et al. 2003; Tinkle et al.
2004; Tunggal et al. 2005). The potential
compensatory mechanism between E- and
P-cadherin in the developing skin has recently
been addressed by a study in which the con-
ditional knockout approach was elegantly com-
bined with transgenic shRNA technology to
simultaneously ablate E-cadherin and knock-
down P-cadherin (E-cad2/2/P-cadKD mice)
in the epidermal compartment (Tinkle et al.
2008). This resulted in the generation of
mutant mice missing all major cadherins in
skin epidermis and provided a first look at the
epithelial tissue without classical cadherins.
E-cad2/2/P-cadKD epidermis displays loss of
AJs, prominent disruption of intercellular
adhesion and increase in apoptotic cell death
(Tinkle et al. 2008). The cell–cell adhesion
defects in E-cad2/2/P-cadKD epidermis were
similar to the defects in aE-catenin-deficient
epidermis (Vasioukhin et al. 2001). Remark-
ably, however, in addition to the mechanical
defects, the aE-catenin-deficient epidermis
also showed an increase in cell proliferation
and abnormal activation of Ras-MAPK and
NFkB signaling pathways (Vasioukhin et al.
2001; Kobielak and Fuchs 2006). The increase
in cell proliferation and activation of
MAPK and NFkB pathways were also
observed in p120-catenin-deficient epidermis
(Perez-Moreno et al. 2006; Perez-Moreno et al.
2008). Moreover, when wild-type keratinocytes
are transplanted to the backs of nude mice,
they form normal skin epidermis. In contrast,
transplanted aE- and p120-catenin-deficient
keratinocytes display disorganization, inflam-
mation and grow in a pattern resembling
squamous cell carcinoma. Interestingly, inhi-
bition of NFkB signaling in these transplants
resulted in loss of aE-catenin-null cells and a
decrease in proliferation of p120-catenin-null
cells, indicating an important role of inflam-
matory pathways in the growth of these
mutant cells in vivo (Kobielak and Fuchs
2006; Perez-Moreno et al. 2006).
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Figure 4. Overlapping and distinct functions of cadherin–catenin proteins in embryonic skin development. (A)
Disruption of epidermal integrity, but normal proliferation, MAPK and NFkB signaling pathways in mice with
embryonic epidermis-specific deficiency for E-cadherin (E-cad cKO), or both E- and P-cadherins (cKO/Tg).
Proliferation was measured by BrdU incorporation (red). P-cadherin staining is shown in green channel.
MAPK activity was measured by immunoblotting of total protein extracts with indicated antibodies. NFkB
activity was revealed by staining with anti-phospho-NFkB antibodies. (Reprinted with permission from
Tinkle et al. 2008, copyright 2008 National Academy of Sciences.) (B) Increase in proliferation, MAPK
and NFkB signaling in mice with embryonic epidermis-specific deletion of aE-catenin (aE-cat cKO).
Proliferation was measured by staining with anti-Ki67 antibodies (red). E-cadherin staining is shown in
green channel. MAPK activity was measured by staining with anti-phospho-Erk1/2 antibodies. NFkB
activity was revealed as described in (A). (Proliferation and MAPK panels reprinted from Vasioukhin et al.
2001, copyright 2001 Elsevier.) (NFkB panel reprinted with permission from Kobielak and Fuchs 2006,
copyright 2006 National Academy of Sciences.) (C) Increase in proliferation, MAPK and NFkB signaling in
mice with embryonic epidermis-specific deficiency for p120-catenin (p120-cat cKO). Proliferation was
measured by staining with anti-Ki67 antibodies (green). b4-integrin staining is shown in red channel.
MAPK and NFkB activities were revealed as described in (B). (Reprinted with permission from
Perez-Moreno et al. 2006, copyright 2006 Elsevier.)
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Because b-catenin is a prominent member
of cadherin–catenin complexes, it would be
logical to hypothesize that b-catenin becomes
hyperactivated in aE- and p120-catenin-
deficient cells and this may be responsible for
hyperplasia in aE- and p120-catenin-null skin
epidermis. However, loss of aE-catenin in skin
epidermis did not affect b-catenin-dependent
signaling (Vasioukhin et al. 2001), and this
is in agreement with a recent study on the
role of aE-catenin in the developing mam-
malian brain, which also found no changes
in b-catenin transcriptional activity in
aE-catenin-null neural progenitors (Lien et al.
2008). Therefore, functions of aE-catenin in
regulation of cell proliferation is likely to be
b-catenin-independent.

In contrast to p120- and aE-catenin, loss of
b-catenin in the developing skin did not affect
the integrity of the AJs, because of potential
compensation by plakoglobin, but it resulted
in the failure of proper hair follicle stem cell
differentiation and loss of hair follicles
(Huelsken et al. 2001). Although changes in
cell proliferation, NFkB, and MAPK signaling
in b-catenin-null epidermis have not been
reported, b-catenin was required for mainten-
ance of skin cancer stem cells, indicating that
certain level of b-catenin activity is probably
necessary for skin tumorigenesis (Malanchi
et al. 2008). Moreover, epidermis-specific over-
expression of stabilized, degradation resistant
b-catenin is tumorigenic and results in
hair follicle tumor formation (Gat et al. 1998).
Therefore, it appears that aE-catenin, p120-
catenin, and b-catenin have opposite func-
tions in the regulation of epidermal cell
proliferation. Although aE- and p120-catenins
suppress in vivo cell proliferation, b-catenin
promotes uncontrolled cell accumulation and
causes cancer.

CONCLUSION AND PERSPECTIVES

Owing to extensive loss- and gain-of-function
genetic analyses, it is now very clear that cad-
herin–catenin complexes play pivotal roles in
multiple aspects of vertebrate development.
These genetic studies accumulated significant

evidence that besides their essential role in
mechanical adhesion, cadherin–catenin pro-
teins regulate signaling pathways important
for such fundamental processes as cell divi-
sion, migration, differentiation, and apoptosis.
Intriguing connections between cadherin–
catenin proteins and major developmental
signaling networks led to a hypothesis that
cells may use cadherin–catenin complexes as
biosensors, which may provide them with
information about the immediate external cel-
lular microenvironment (Lien et al. 2006a).
Indeed, from the individual cell point of view,
neighbor-mediated clustering of cadherin–
catenin complexes at a specific position of
the plasma membrane provides information
about the spatial localization of its immediate
neighbors. This information may then be used
to orient intracellular structures and main-
tain cellular polarity (Fig. 5). Thus, AJs may
provide a vital link between cell polarity and
three-dimensional polarity of the tissue, and
help cells to exchange information and coor-
dinate their activities as they build organs
and tissues during development. Although
this hypothesis is very attractive and we now
know the major signaling networks affected
by cadherin–catenin proteins, there are major
gaps in our understanding of how cadherin–
catenin complexes can transmit information
from outside to inside the cell. Some of the
possible scenarios include competition for
protein availability between the junctional and
cytoplasmic or nuclear pools; for example,
competition between AJs and nucleus for
b-catenin (Sehgal et al. 1997; Simcha et al.
1998; Gottardi et al. 2001; Onder et al. 2008).
An alternative mechanism may involve a direct
interaction and regulation of multiple growth
factor receptors by cadherin–catenin com-
plexes (Takahashi and Suzuki 1996; Qian et al.
2004; Perrais et al. 2007). Many questions
remain unanswered. Is the function of the
cadherin–catenin complex in adhesion really
connected to its function in cell signaling, or
do these proteins have multiple independent
functions? How exactly is adhesion information
converted into signaling information? How
are connections between AJs and signaling
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pathways modulated by embryonic tissue-
and region-specific microenvironment? Future
research should help to answer these important
questions.
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