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A b s t r a c t  

Class ical  c o n d i t i o n i n g  p r o c e d u r e s  ins t i l l  
k n o w l e d g e  a bou t  t h e  t e m p o r a l  r e l a t i o n s h i p s  
b e t w e e n  even ts .  The  u n c o n d i t i o n e d  s t imu lus  
(US) is t he  e v e n t  to be  t imed .  The  
c o n d i t i o n e d  r e s p o n s e  (CR) is v i e w e d  as a 
p r e d i c t i o n  o f  t he  i n l m i n e n c e  o f  t he  US. 
K n o w l e d g e  o f  t he  e l a p s e d  t i m e  b e t w e e n  
c o n d i t i o n e d  s t imu l i  (CSs) a n d  US de l i ve ry  is 
e x p r e s s e d  in  t h e  t opo l og i c a l  f ea tu res  o f  t he  
CR. The  p e a k  a m p l i t u d e  o f  t he  CR co inc ides  
w i t h  t he  t i m i n g  o f  t h e  US. A s i m p l e  
c o n n e c t i o n i s t  n e t w o r k  b a s e d  o n  Sut ton  a n d  
Bar to ' s  T ime  Der iva t ive  (TD) Model  o f  
Pav lov i an  R e i n f o r c e m e n t  p r o v i d e s  a 
m e c h a n i s m  t h a t  c a n  a c c o u n t  fo r  a n d  
s i m u l a t e  CR t i m i n g  in  a v a r i e t y  o f  p ro toco l s .  
This  a r t ic le  d e s c r i b e s  e x t e n s i o n s  o f  t he  
m o d e l  to  p r ed i c t i ve  t i m i n g  u n d e r  t e m p o r a l  
u n c e r t a i n t y .  The  m o d e l  is e x p r e s s e d  in  
t e r m s  o f  e q u a t i o n s  t ha t  o p e r a t e  in  rea l  t ime  
a c c o r d i n g  to a c o m p e t i t i v e  l e a r n i n g  rule .  
The  u n f o l d i n g  o f  t i m e  f r o m  t he  o n s e t s  a n d  
offsets  o f  even t s  s u c h  as CSs is r e p r e s e n t e d  
b y  the  p r o p a g a t i o n  o f  ac t iv i ty  a l ong  a 
s e q u e n c e  o f  t ime- t agged  e l e m e n t s .  The  
m o d e l  c a n  be  a l igned  w i t h  a n a t o m i c a l  
c i rcui t s  o f  t he  c e r e b e l l u m  a n d  b r a i n  s t e m  
t h a t  a re  e s sen t i a l  fo r  l e a r n i n g  a n d  
p e r f o r m a n c e  o f  c o n d i t i o n e d  eye -b l ink  
r e s p o n s e s .  

classically conditioned responses (CRs). Lesions or 
inactivation of components  of neural circuits in- 
volved in performance of conditioned eye-blink re- 
sponses (Fig. 1) 1 have been shown to disrupt the 
timing and amplitude of eye-blink CRs (Raymond 
et al. 1996; Thompson and Krupa 1994). There is 
growing evidence that these operations prevent  
learning when applied to either the cerebellar cor- 
tex (Gruart and Yeo 1995) or deep nuclei (Ram- 
nani and Yeo 1996). 

The lesion and inactivation evidence has been 
supported by recording studies that have demon- 
strated neuronal activity correlated with the timing 
and amplitude of eye-blink CRs. For example, a 
series of studies by Moore and his associates have 
shown neuronal firing patterns to be predictive of 
CRs in each structure of the efferent pathway, from 
the putative site of learning in the cerebellar cortex 
to motoneurons. The relevant portion of the cer- 
ebellar cortex for eye-blink conditioning in rabbit 
is Larsell's hemispheral lobule VI (HVI), which cor- 
responds to the simplex lobe in cat. Berthier and 
Moore (1986) recorded from Purkinje cells (PCs) in 
HVI; Berthier and Moore (1990) recorded from 
deep cerebellar nucleus interpositus (IP); Des- 
mond and Moore (1991a) recorded from the red 
nucleus (RN); Richards et al. (1991) recorded from 
the spinal trigeminal nucleus pars oralis (SpO). The 
results of these studies are consistent with record- 
ing studies carried out in other laboratories (for 
review, see Thompson and Krupa 1994). In sum, 
the activity of neurons within these structures mir- 

Introduction 

Accumulating evidence indicates that the cer- 
ebellum mediates learning and performance of 

1Corresponding author. 

1Figure 1 does not depict projections for the pontine nu- 
clei (PN) to deep cerebellar nucleus interpositus (IP) that some 
investigators have proposed (e.g., Raymond et al. 1996). These 
projections have been omitted because their existence has not 
been confirmed in our laboratory and because they are not 
incorporated into the cerebellar implementation presented later 
on. Figure 1 also does not depict projections to IP from the 
inferior olive (IO) and the lateral reticular nucleus, which we 
have confirmed, because they are not incorportated into the 
implementation scheme. 
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Figure 1: Cerebellar and brain stem circuits underlying 
eye-blink conditioning (after Rosenfield and Moore 
1995). (MF) mossy fibers; (PF) parallel fibers; (PC) Pur- 
kinje cell; (RN) red nucleus; (IP) interpositus nucleus; 
(SpO) spinal trigeminal nucleus pars oralis; (CF) climb- 
ing fiber; (IO) inferior olivary nucleus; (PN) pontine 
nucleus; (MN) motoneurons; (LTD) long-term depres- 
sion; (CS) conditioned stimulus; (CR) conditioned re- 
sponse; (US) unconditioned stimulus. 

ror CRs as they unfold in time, encoding their  la- 
t ency  and peak ampli tude.  How does this come 
about? 

There are several ways to approach  this ques- 
tion. The one we  have favored relies on the devel- 
opmen t  of computat ional  models  that can be ex- 
pressed as neural  networks.  This involves three 
steps: (1) Devise real-time computa t ional  models  
that descr ibe as m u c h  of the k n o w n  behavioral  and 
physiological  evidence as possible; (2) devise an 
implementa t ion  scheme that aligns features of the 
mode l  wi th  involved neural  circuits; and (3) test 
implicat ions of the model  and its implementa t ion  
in novel  exper iments .  

This article applies these steps to the Time 
Derivative (TD) Model of Pavlovian Reinforcement  
(Sutton and Barto 1990). Before present ing the TD 
model  and a plausible implementa t ion  wi th in  the 
cerebel lum,  we  review related computat ional  mod- 
els and their  limitations. Next, we  present  the TD 
model  and illustrate its predict ions in s imple and 
complex  paradigms. Simple paradigms are those 
that involve training wi th  a single condi t ioned 
st imulus (CS) presen ted  repeatedly wi th  an uncon- 
di t ioned st imulus (US) at a f ixed CS-US interval 
( interst imulus interval, or ISI). Complex  paradigms 

are those involving integration of information from 
two or more  types of training trials. Familiar ex- 
amples  of c o m p l e x  paradigms include Kamin 
blocking, condi t ioned inhibit ion,  mixed  CS-US in- 
terval training ( temporal  uncertainty),  and higher- 
order  condit ioning.  

Theoretical Background 

Contemporary  computat ional  models  of  learn- 
ing in classical condi t ioning trace their  origins to 
the Rescor la-Wagner  (RW) model  (Rescorla and 
Wagner  1972). The RW model  supplanted  earlier 
mathemat ica l  models,  such as the statistical learn- 
ing theory, because  of its ability to generate  accu- 
rate predict ions in a n u m b e r  of complex  condi- 
t ioning paradigms, including Kamin blocking and 
condi t ioned inhibit ion.  The RW model  can be ex- 
pressed by an equat ion that specifies h o w  the as- 
sociative connec t ion  (17,.) b e t w e e n  the i th CS and 
the CR is modif ied from one trial (t - 1) to the nex t  
(t) as a funct ion  of pairing wi th  a US. 

kV,.(t) = 13[h(t) - Y ( t -  1)] • aXi(t  ) (1) 

w h e r e  

Y(t)  = s Vj(t)Xj(t)  (2) 
J 

The subscript  j indexes  all CSs that are ac- 
tive on trial t. ~x and 13 are rate parameters  
(0 < ~,13 ~< 1), h(t) is the strength of  the US, and 
X;(t) denotes  the p resence  [X,(t)= 1] or the ab- 
sence [Xi(t) = 0) of CS i. 

The RW model  features a "compet i t ive"  learn- 
ing rule. This means  that connec t ion  weights  are 
adjusted so that the sum of the values of all CSs 
present  on a trial approach  the strength of the US, 
h. Kamin blocking occurs w h e n e v e r  a n e w  CS is 
combined  wi th  one that had been  previously 
trained. Blocking occurs because the previously 
trained CS fully predicts  the US, having garnered 
most  of  the associative value the US can support.  
Condi t ioned inhibi t ion occurs w h e n e v e r  a CS is 
combined  wi th  a previously trained excitatory CS 
but  not  paired wi th  the US. Both CSs lose associa- 
tive value, but  because  the added CS is never  
paired wi th  the US, its value becomes  increasingly 
negative. The net  effect of combin ing  an excitatory 
and inhibi tory CS after training in this paradigm is 
a marked  suppress ion or cancellat ion of the CR. 
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Although the RW model  and other  trial-level 
models  cont inue  to impact  learning theory in many  
domains,  their  l imitations motivated the emer- 
gence  of  real-time models  of  classical condi t ioning 
(Klopf 1988). Two limitations of trial-level models  
are their  inabili ty to generate  CS-US interval func- 
tions or higher-order condi t ioning (Sutton and 
Barto 1990). Real-time models  invoke other  pro- 
cesses to account  for these phenomena .  In real- 
t ime models,  the t iming and durat ion of CSs and 
the US de termine  h o w  learning unfolds. Real-time 
models  imply  that t ime is treated as a cont inuous 
variable and that learning can therefore be ex- 
pressed by differential equat ions in time. In prac- 
tice (and for s imulat ion purposes) ,  real-time mod- 
els segment  t ime into a series of computat ional  
epochs  wi th  a fine enough  grain to capture dy- 
namical  events on a t ime scale appropriate  for the 
preparation.  

Sutton and Barto's (SB) Time Derivative (TD) 
model  was the first real-time model  to generate 
CS-US interval funct ions  and higher-order condi- 
t ioning (Sutton and Barto 1981; Moore et al. 1986). 
The SB mode l  is a m e m b e r  of a class of models  that 
Sutton and Barto (1990) have referred to as Iktheo - 
ries of  learning. These theories adjust connec t ion  
weights  (associative values) according to the first 
t ime derivative of the learning system's  output  or 
response,  Y(t). If the output  on the current  t ime 
step is greater than that of  the preced ing  t ime step, 
active connec t ions  are s t rengthened.  If the output  
on the current  t ime step is less than that of  the 
preceding  t ime step, active connec t ions  are weak- 
ened. The US affects learning only to the extent  
that it contr ibutes  to output.  

A V i = 13 I)" x otg.X i (3) 

w h e r e  

= Y( t ) -  Y(t-1)  (4) 

Any device that wou ld  imp lemen t  I k learning must  
receive informat ion about  Y(t) and Y ( t -  1). 

The fol lowing three equations specify the SB 
model.  

m 

AVi(t) = [3[Y(t) - Y ( t -  1)] x oLX;(t) (5) 

w h e r e  

Y(t) = s  Mt) (6) 
J 

m 

Xi(t) specifies the eligibility of the i th connec t ion  
for modificaiton. A CS's eligibility decreases geo- 
metrically after offset according to the fol lowing 
equation: 

m m m 

X,(t+ 1)=X~(t)+8[Xi(t)-X~(t)] (7) 

A slowly decaying eligibility allows modifica- 
tion of connec t ion  weights  for CSs that are no 
longer  contr ibut ing to output.  

Although the SB model  provides a f ramework 
for descr ibing aspects of  eye-blink condi t ioning 
that the RW model  cannot  address, it does not  gen- 
erate realistic-appearing CRs. There are two prob- 
lems wi th  the SB model  in this regard. First, the 
model  does not  capture the fact that the onset  of  
CRs is delayed wi th  respect  to CS onset  and peaks 
at the t ime of the US. Second, the model  predicts  
that response amplitude,  Y(t), in the p resence  of 
the US is too large (equation 6). For example ,  if CS 
elicits a lO-mm eyelid closure after training, and if 
the US presented  alone elicits a l O-mm eyelid clo- 
sure, then  the combina t ion  of the CS and US 
should elicit a 20-mm response.  This does not  hap- 
pen  because eyelids can close only so far and no 
further. Moore et al. (1986) devised a variant of  the 
SB model  that a t tempted to solve these problems.  
First, it was assumed that the onset  of  a CS does not  
trigger an immedia te  response but  instead causes 
the gradual rise in ampli tude that peaks at a f ixed 
t ime and that is sustained until  the CS is with- 
drawn. Second, equat ion 6 was modif ied so that 
the contr ibut ion of the US, k, to Y(t) decreases 
progressively as V,. increases over training. 

Despite these modifications, the SB model  
does not provide an adequate model  for generat ing 
realistic CRs (Desmond 1990). For one thing, the 
SB model  cannot  describe the shifts in CR t iming 
that occur  w h e n  the CS-US interval is changed  dur- 
ing training. Nor can it describe the fact that CRs 
can be elicited by stimulus offsets as wel l  as stimu- 
lus onsets (Desmond and Moore 1991b). These 
p rob lems  wi th  the SB model  led to the develop- 
men t  of  another  model,  similar to SB, but  wi th  
additional features that overcame the former 's  limi- 
tations (Desmond and Moore 1988; 1991b; Moore 
et al. 1989; Moore 1992; Moore and Desmond  
1992). We refer to this model  as VET, for associa- 
tive values based on _expectations about timing. 
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The VET model  assumes that both  stimulus onsets 
and offsets cause cascades of spreading activation. 
This spreading activation sequential ly engages 
time-tagged " input  e lements" .  These input  ele- 
ments  can be regarded as serial componen t s  of  the 
nominal  CS (Sutton and Barto 1990). 2 Computa- 
tions on these sequential ly activated e lements  give 
rise to CRs that mirror  the CS-US intervals em- 
ployed in training. Such CRs are said to be tempo- 
rally adaptive.  The t iming structure of the VET 
model  can be appl ied to the TD model,  as illus- 

trated later on. 
Although it is an advance on the SB model,  the 

VET model  has one important  deficiency. Like the 
RW model  (but unlike the SB model),  it cannot  
generate  higher-order condit ioning.  That is, it does 
not  allow for the es tabl ishment  of  a CR w h e n  a 
novel  st imulus is paired wi th  a previously trained 
CS. The SB model  can generate  higher-order con- 
dit ioning because the strength of condi t ioning 
(i.e., the value or weight  of  the connec t ion  be- 
tween  CSs and the CR) depends  only on the 
changes  in output  from one t ime step to the next. 
Increases in output  result in increases in connec- 
tion weight;  decreases in output  result  in decreases 
in connec t ion  weight .  The US is not  essential for 
this learning. In contrast, changes  in connec t ion  
weights  in VET (and RW model)  revolve about the 
US. Weights  increase w h e n  the US is presented  and 
decrease w h e n  it is omitted, subject  to the con- 
straints of compet i t ive  learning. 

H y b r i d  L e a r n i n g :  T D  M o d e l  

Exper ience wi th  the SB and VET models  sug- 
gested the need  for a model  that combines  the best 
features of both. Sutton and Barto (1990) showed  
that the TD model  overcomes the limitations of the 
SB and VET models.  We have ex tended  the TD 
model  by incorporat ing the t iming structure of the 
VET model.  The TD learning rule is given by the 
fol lowing equation: 

m 

A V,.(t) = [3[h(t) + yY(t)  - Y ( t -  1)] x ctXi(t ) 
(8) 

2Sutton and Barto (1990) refer to this timing structure as a 
complete serial compound (CSC). The TD model with the CSC 
representation of time has been applied to predictive timing 
and error correction in the dopaminergic reward system of 
monkeys (Schultz et al. 1997). 

where  

Y(t) = Z Vj(t)Xj(t) (9) 
J 

m 

As in the SB model,  X;  refers to eligibility for modi- 

fication. 

_ _  m m 

X~(t+ 1)=X~( t )+8[X~( t ) -X~( t ) ]  (10) 

The hybr id  nature of the learning rule is evi- 
dent  in the fact that changes  in connec t ion  weights  
depend  on two re inforcement  components .  One  
c o m p o n e n t  is contr ibuted by the US, X. The other  
c o m p o n e n t  is contr ibuted by a I > component ,  ~/ 

Y(t) - Y ( t -  1). 
A key feature of the TD model  is the parameter  

~/(0 < ~/~< 1). y is referred to as the discoun t  pa- 
rameter  because  Y(t) is not  k n o w n  wi th  certainty 
until  after the fact. That is, Y(t) must  be  est imated 
by using the connec t ion  weights  compu ted  on the 
previous t ime step, Y(t) = s - 1) x Xj(t). y can 
be regarded as the penal ty  for using V(t - 1) as an 
estimate of V(t). 

The TD model  overcomes the deficiencies of 
earlier models  whi le  retaining their  ability to de- 
scribe c o m p l e x  paradigms such as Kamin blocking 
and condi t ioned inhibition. However,  for the TD 
model  to encompass  CR t iming and topography,  
Sutton and Barto (1990) proposed  that the elapsed 
t ime b e t w e e n  the onset of  a CS and the US be 
segmented  into an ordered sequence  of serial com- 
ponents .  These serial componen t s  are, for all in- 
tents and purposes,  the same as the time-tagged 
input  e lements  of the VET model.  The subscript  i 
in the equations of the TD model  refers to a single 
serial component .  

Figure 2 shows simulated CRs wi th  the TD 
model  wi th  variations of two parameters,  % and 
(k held  constant).  Both parameters  contr ibute  to 
the latency and ampli tude of CRs. These simulated 
CRs are realistic in that they resemble  goal gradi- 
ents: Ampli tude rises progressively to peak at the 
t ime of US onset. 

For the TD model  to describe CR t iming and 
topography in trace condi t ioning and in complex  
paradigms involving mult iple  CSs, we  adopt the 
t iming structure of the VET model.  Both CS onsets 
and offsets are assumed to trigger cascades of 
spreading activation. This spreading activation is 
m a p p e d  onto the serial componen t s  of  the TD 
model.  Each nominal  CS, such as a tone and a light, 
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Figure 2: Simulated CRs, Y(t), after 200 trials as a func- 
tion of 7 and 6. Time steps in this and other simulations 
are 10 msec, ~ = 0.05, [3 = 1.0, and X = 1.0. The rect- 
angle in each panel indicates the duration (50 msec) and 
intensity of the US [scales in terms of Y(t)]. Note that CR 
timing is determined primarily by the discount factor, ~. 

initiates an independen t  cascade that sequen- 
tially activates the variables X; in the model  
(i = 1,2,3 .... ). The durat ion of activation of a serial 
c o m p o n e n t  need  not  be f ixed or constant,  but  for 
s imulat ion purposes  we  have assumed a temporal  
grain of 10 msec. Hence,  this is the assumed dura- 
t ion of activation of a serial component .  W h e n  ac- 
tivated, X; = 1; w h e n  inactivated (after 10 msec),  
X; resets to a basel ine of 0 as the next  serial com- 
ponent ,  X i § 1 is activated. Although Xi is no longer 
active and therefore no longer  contr ibutes  to Y, the 
output  or response,  its connec t ion  to the output,  
V,., remains  eligible for modif icat ion over succeed- 
ing t ime steps. Eligibility decays at a rate deter- 
m ined  by 6. And, as ment ioned,  just as a nominal  
CS initiates a cascade of activation among serial 

components ,  so too does its offset. The two cas- 
cades are assumed to operate independen t ly  and in 
parallel. There are limits on h o w  long these cas- 
cades might  last, that is, on the n u m b e r  of sequen- 
tially activated e lements  in each cascade. The only 
requ i rement  is that these cascades span the CS-US 
intervals employed  in training. 

T D  M o d e l  a n d  T e m p o r a l  U n c e r t a i n t y  

Like the VET model,  the TD mode l  predicts  the 
t iming and ampli tude of CR waveforms in complex  
training paradigms. One  such paradigm involves 
training wi th  a random mixture  of two CS-US in- 
tervals. We refer to this training paradigm as con- 
dit ioning under  temporal  uncer ta inty  (Millenson et 
al. 1977). If the two CS-US intervals are sufficiently 
different (e.g., 300 vs. 700 msec),  then  rabbits 
learn to generate bimodal  CRs wi th  ampl i tude 
peaks at the temporal  loci of the two t imes of US 
occurrence.  

Figure 3 shows simulated bimodal  CRs follow- 
ing temporal  tmcertainty training wi th  CS-US in- 
tervals of 300 and 700 msec. In Figure 3A, the CS 
durat ion is 300 msec. The simulated bimodal  CR to 
a CS-alone probe  trial has two ampl i tude peaks. 
The one at 700 msec is larger than the one at 300 
msec  because CS offset contr ibutes  to the 700- 
msec peak but  not  the 300-msec peak. In Figure 
3B, the CS duration is 800 msec. Because CS offset 
occurs after the longest CS-US interval, its cascade 
does not  contr ibute  to the second peak. Conse- 
quently, the two peaks have the same ampli tude.  

U n c e r t a i n t y  T r a i n i n g  a n d  t h e  
C e r e b e l l u m  

How is exper ience  wi th  temporal  uncer ta inty  
represented  in the cerebel lum? Do firing pat terns 
of single neurons  express  the t iming and ampli tude 
eye-blink CRs in a manne r  predic ted  by the TD 
model? We have begun  to address this quest ion in 
exper iments  wi th  rabbits, employing  the temporal  
uncer ta inty  protocol  shown  in Figure 4A (J.-S. Choi 
and J.W. Moore unpubl.) .  The CS is a 300-msec 
tone. The US is a mild electric current  appl ied to 
the per iocular  tissue of the right eye. Training con- 
sists of  a random mixture  of two trial types. On 
trial-type 1, the CS-US interval is 300 msec. On 
trial-type 2, the CS-US interval is 700 msec. After 
20 daily sessions (80 tr ials/session wi th  an average 
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Figure 3: Simulated bimodal CRs fol lowing training 
with a random mix of two CS-US intervals. (A) Two 
types of training trials and a simulated bimodal CR 
waveform. The CS is 300 msec in duration. The CS-US 
interval is 300 msec on trial type 1 and 700 msec on trial 
type 2. Notice that the second CR peak is larger than the 
first CR peak. (B) Two types of training trials and a simu- 
lated CR waveform. The CS is 800 msec in duration. The 
CS-US intervals are the same as in A. Note that the two 
CR peaks have the same amplitude. 

intertrial interval of 25 sec), rabbits are surgically 
prepared  for microelect rode recording (Berthier 
and Moore 1990). Training resumes follow recov- 
ery to ensure that b imodal  CRs are well-estab- 
lished. A microelect rode is then  advanced through 
the cerebel lar  cor tex and into deep nucleus  IP. 
During recording, the two trial types employed  in 
training cont inue to be presented,  but  there are 
also CS-alone probe  trials. 

Figure 4B shows a single CS-alone probe  trial 

(CS onset  occurs at t i m e -  350 msec).  The top 
trace is a record of eyelid posi t ion as a funct ion of 
time. Notice that there are two ampli tude peaks 
and that these are located at the loci of the US. The 
second peak is larger than the first, in agreement  
wi th  the TD model  as shown  in Figure 3A. The 

second trace shows the firing of an IP neuron  on 
this trial. Note that the rate and durat ion of firing 
are highly related to the two CR peaks. Figure 4C 
shows the averaged CR topography (top trace) and 
spike his togram for all probe  trials wi th  this neu- 

ron. 
Figure 4, D and E, shows averaged CR topog- 

raphies  and spike histograms for this neuron  on 
reinforced trials (upward  arrows mark the US). Fig- 
ure 4D is interest ing because it shows that the oc- 
currence  of the US cancels  the second ampli tude 
peak and terminates  the CS-triggered spiking. This 
is an impor tant  observation because  it suggests 
(but does not  prove) that the US acts as a condi- 
t ioned inhibitor.  3 In terms of the model,  the US 
initiates a cascade of activation of serial compo- 
nents  that is never  paired wi th  the US. In training 
trials on w h i c h  the US occurs at 300 msec (trial 
type 1), the US-triggered cascade exists alongside 
two CS-triggered cascades, an onset  cascade and an 
offset cascade. The CS-triggered cascades are 
paired wi th  the US on trial type 2 (700-msec CS-US 
interval), so they are excitatory. In contrast, be- 
cause there is only one US per  trial, the US-trig- 
gered cascade is never  paired wi th  the US. Accord- 
ing to compet i t ive  learning rules, serial compo- 
nents  of the cascade triggered by the US b e c o m e  
condi t ioned inhibitors and therefore they have the 
capacity to suppress  CRs. 

If this scenario is correct, it indicates that con- 
di t ioned inhibi t ion is expressed  at the level of 
single cerebel lar  neurons.  The express ion of both  
exci tat ion and inhibi t ion wi th in  the same cerebel- 
lar neuron  would  be an important  discovery about 
the locus of action of condi t ioned inhibi t ion (Blazis 
and Moore 1991). Such an observation wou ld  be 
consistent  wi th  evidence that the cerebe l lum is the 
locus of extinction,  the gradual decl ine of the CR 
through repeated presentat ions of a CS wi thout  
re inforcement:  (1) Ramnani  and Yeo (1996) 
showed  that reversible inactivation of nucleus  IP 
protects  against extinction; (2) Perrett and Mauk 
(1995) showed  that vermal  cerebellar  lesions inter- 
fere wi th  extinction,  just as lesions of HVI interfere 
wi th  CR acquisit ion and performance.  

Several investigators have suggested that cer- 
ebellar  PCs mediate  the CR-related activity ob- 

3It is unlikely that the US simply terminates all timing 
cascades, thereby accounting for the absence of the second 
amplitude peak on 300-msec probe trials. Instead, this capacity 
develops progressively with training; the US does not terminate 
the second peak until training is well advanced. 
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Figure 4: Firing patterns of an IP neuron related to bimodal CRs. (A) Two types of training trials: CS duration = 300 msec. 
CS-US intervals are 300 msec (trial type 1) and 700 msec (trial type 2). (B) A single CS-alone trial: Top trace shows CR 
waveform; second trace shows neuronal response. Vertical dotted lines mark CS onset and offset. (C) Average CR 
waveforms and spike histogram on probe trials (n = 6). (D) Average response waveform and spike histogram on type 1 
reinforced trials (n = 11 ). Arrows mark the US. (E) Average response waveform and spike histogram on type 2 reinforced 
trials (n = 8). 

served in nucleus IP (Berthier and Moore 1986; 
Thompson 1986). 4 Because PCs are inhibitory (Fig. 
1), they can generate the CR-related increases in 
firing in IP neurons only by decreasing their rate of 
firing. Figure 5, which summarizes results from a 
PC in a different animal than the one in Figure 4, 
indicates that this may be the case. Figure 5A 
shows a single probe trial following temporal un- 
certainty training in the protocol of Figure 4. The 
top trace shows two CR peaks, with the second 
peak larger than the first. The second trace shows 
pauses in simple spike rates related to each CR 
peak. Figure 5, shows the averaged CR waveforms 
and spike histogram for this cell on probe trials. 
Figure 5, C and D, shows averaged CR waveforms 
and spike histograms for this cell on the two rein- 
forced trial types. The histograms show that the 
rate of simple spiking decreased in anticipation of 
each of the two amplitude peaks. The US caused a 
brief burst of activity that was followed by a post- 
US pause on the order of 100 msec. There is some 
indication of conditioned inhibition by the US in 

Figure 5C, because of the transitory increase in 
spiking 100 msec after the US.5 

Cerebellar Implementat ion of  the TD 
Model 

Our recording studies indicate that the full 
complexity of conditioned eye blinks in a temporal 
uncertainty paradigm can be represented in the 
firing of single IP neurons. Furthermore, it is pos- 
sible that this complexity is also captured in the 
activity of individual PCs (Fig. 5), as suggested by 
theorists (e.g., Moore et al. 1989; Fiala et al. 1996). 
From this perspective, IP neurons execute motor 
programs by inverting signals generated by PCs. 
We turn next to a consideration of how the TD 
model's learning rule might be implemented in the 
cerebellar cortex. 

TD learning can be implemented in the cer- 
ebellum by aligning known anatomical ingredients 
with elements of the learning rule. In TD learning, 

4The activity of a PC expressing long-term depression 
(LTD) would not to be as highly correlated with eye-blink CRs 
as would the activity of an IP neuron, because of the many-to- 
one convergence of PCs onto IP neurons (Ito 1984). 
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SConditioned inhibition would be implemented by paral- 
lel fiber (PF)/PC synapses expressing long-term potentiation 
(LTP). It is not presently known whether LTP and LTD synapses 
can coexist on the same PC, as suggested by Fig. 5. 
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Figure 5: Firing patterns of a PC related to bimodal CRs. (A) A single CS-alone probe trial: Top trace shows CR waveform; 
second trace shows neuronal response. Vertical dotted lines mark CS onset and offset. (B) Average CR waveforms and spike 
histogram on probe trials (n = 13). (C) Average response waveform and spike histogram on type I reinforced trials (n = 11 ). 
(D) Average response waveform and spike histogram on type 2 reinforced trials (n = 14). 

we assume that each computational time step after 
the onset or offset of a CS is represented by ana- 
tomically distinct inputs to the cerebellum. The 
onset or offset of a CS initiates a spreading pattern 
of activation among neurons tied to whatever 
sense modality is involved. This spreading of acti- 
vation, possibly under entrainment from oscilla- 
tors, engages pontine nuclear (PN) cells, the pri- 
mary source of cerebellar mossy fibers (MFs), and 
their associated granule cells. Therefore, timing el- 
ements should be regarded as ensembles that in- 
clude PN cells, MFs, granule cells, parallel fibers 
and influences from intrinsic cerebellar neurons 
such as Golgi cells. This may be why CR timing is 
disrupted by lesions of the cerebellar cortex (Per- 
rett et al. 1993). Entrainment by oscillators might 
occur at the level of the PN, as these are the nexus 
of neural influences from the lemniscal systems, 
midbrain, and forebrain (Wells et al. 1989). Fine- 
grain temporal segmentation might occur locally 
within the cerebellum, as proposed by Bullock et 
al. (1994). Coarse-grain temporal segmentation and 
coherence might occur globally with the participa- 
tion of the hippocampus, as suggested by Gross- 
berg and Merrill (1996). 

The implementation relies on evidence from 
rabbit eye-blink conditioning that CR topography is 
formed in the cerebellar cortex through converg- 
ing contiguous action of parallel fiber (PF) and 
climbing fiber (CF) input to PCs. This action pro- 
duces synaptic long-term depression (LTD). Chen 
and Thompson (1995) and Schreurs et al. (1996) 
have demonstrated pairing-specific LTD of PCs in 
cerebellar slice preparations from rabbits, using pa- 

rameters that support conditioning in intact ani- 
mals. Consistent with the LTD hypothesis, Hesslow 
(1994) showed that stimulation of the cerebellar 
cortex (HVI) inhibits eye-blink CRs in decerebrate 
cats. Mechanisms of LTD in the cerebellum have 
been spelled out in recent articles (Kano et al. 
1992; Konnerth et al. 1992; Schreurs and Alkon 
1993; Eilers et al. 1995; Ghosh and Greenberg 
1995; Hartell 1996; Schreurs et al. 1996, 1997; Kim 
and Thompson 1997). 

Figure 1 incorporates recent anatomical find- 
ings by Rosenfield and Moore (1995) indicating the 
existence of projections to HVI from the RN and 
SpO. CS information ascends to granule cells in the 
cerebellar cortex (Larsell's lobule HVI) via MFs 
originating in the PN. Information about the US 
ascends to the cerebellar cortex by two routes, MF 
projections from the sensory SpO in Figure 1, and 
CF projections from the inferior olive (IO). A CR is 
generated within deep cerebellar nucleus IP, 
where the CR is formed by modulation from PCs. A 
full-blown CR is expressed as an increased rate of 
firing among IP neurons (e.g., Berthier and Moore 
1990; Berthier et al. 1991). This activity is pro- 
jected to the contralateral RN. From RN, activity is 
projected to motoneurons (MNs) that innervate 
the peripheral musculature controlling the posi- 
tion and movements of the eyelids and eyeball 
(Desmond and Moore 1991a). The RN also projects 
to SpO, giving rise to CR-related activity among 
these neurons (Richards et al. 1991). 

Figure 1 depicts an inhibitory projection from 
IP to IO. The consequence of this arrangement is 
that olivary signals to PCs are suppressed when the 
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CR representation within IP is robust. This ana- 
tomical feature suggests that CFs are excited only 
when  the US occurs and the CR is weak or absent. 
This scenario has been supported by Sears and 
Steinmetz (1991), who showed that neural activity 
recording within IO diminishes during CR acquisi- 
tion. In the TD model, the CR is regarded as a 
prediction of US onset. Therefore, a CR should not 
occupy the same time step as the US. If it does, 
because its timing is somehow delayed or because 
its momentum extends beyond US onset, CF inputs 
to the cerebellar cortex would be inhibited by the 
projection from IP to IO. Trials on which  this oc- 
curs would be tantamount to extinction trials, 
thereby countering the down-regulated state of PF/ 
PC synapses that mediate CRs. PF/PC synapses ex- 
pressing LTD would gradually lose this capacity 
until US-triggered CF inputs are no longer blocked 
by overly robust CRs. This feedback mechanism 
could be a vital aspect of CR timing, in that it 
would ensure that CRs do not become so robust 
that they lose precision in predicting US onsets. 

The TD learning rule is not a simple competi- 
tive rule because of the ~lY(t) term in equation 8. 
As noted previously, the TD learning rule is imple- 
mented by a combination of two reinforcement 
components.  The first is donated by the US and 
represented by h in equation 8. The implementa- 
tion assumes that h can be aligned with CF activa- 
tion of PCs, which  functions to produce LTD 
among coactive PF synapses, as depicted in Fig- 
ure 1. The second reinforcement component  is do- 
nated by the Y(t) terms in the learning rule, 
~lY(t)- Y ( t -  1). This information is conveyed to 
HVI by the projection from RN and SpO shown in 
Figure 1. 

Figure 6 shows circuit elements, not shown in 
Figure 1, for implementing the Y(t) component  of 
the learning rule. These components  include the 
projections to the cerebellar cortex from the RN 
and SpO indicated in Figure 1. We hypothesize that 
the RN projection carries information (feedback) 
about Y(t) to the cerebellar cortex as efference 
copy. PFs project this information to PCs that have 
collaterals to a set of Golgi cells. Because these 
projections are inhibitory (Ito 1984), these PCs in- 
vert the efference signal from the RN. In addition, 
the interpositioning of the PCs between the RN 
and Golgi cells attenuates the signal and imple- 
ments the TD model 's  discount factor % 

Because Golgi cells are inhibitory on granule 
cells, the effect of their inhibition by PCs receiving 
efference from the RN would be to disinhibit ac- 
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Figure 6: Neural circuits of the cerebellum implement- 
ing "yY(t) and other variables of the TD learning rule. 
(Go) Golgi cells. 

tivity of granule cells. Because granule cells relay 
CS information from the PN to PCs involved in LTD 
and CR generation, disinhibition of granule cells by 
Golgi cells enhances the information flow from ac- 
tive CS components.  Mathematically, the imple- 
mentation assumes that the variables Xj in equation 
9 engage granule cells. PFs arising from these gran- 
ule cells trigger output, and they affect connection 
weights residing at PF/PC synapses in proportion 
to Y(t) x Xj. 

PCs driven by projections from the RN would 
increase their firing rate so as to mimic the repre- 
sentation of the CR as it passes through the RN 
enroute to MNs and SpO. Berthier and Moore 
(1986) recorded from several HVI PCs with CR- 
related increases in firing. Because increases in fir- 
ing during a CS is inconsistent with the LTD hy- 
pothesis of CR generation, these PCs serve some 
other function. One possibility is that they inhibit 
motor programs incompatible with CR generation. 
Here, we are suggesting an additional function of 
these PCs, that of projecting inverted and dis- 
counted CR efference from the RN to Golgi cells. 

The implementation assumes that the Golgi 
cells that receive the inverted efference from the 
RN also receive a direct, noninverted, excitatory 
projection from SpO. This projection carries infor- 
mation about the CR at time t -  At. Therefore, the 
Golgi cell in Figure 6 fires at a rate determined by 
the differential between two inputs: ~Y(t) donated 
by the RN and Y( t -  At) donated by SpO. 6 Hence, 

~ PC that donates ~/does not impose a significant delay 
in transmitting feedback from RN to Golgi cells. Conduction 
distances within the cerebellar cortex are on the order of tens of 
microns. Projections to the cerebellum from the brain stem, and 
from the RN to the SpO, are on the order of tens of millimeters. 
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Golgi cells act as I~(t) detectors. In terms of equa- 
tion 8, Y(t) is transmitted to cerebellar granule cells 
by the RN, and Y ( t -  1) is transmitted to granule 
cells from SpO. The RN input engages PCs that 
inhibit Golgi cells responsible for gating inputs 
from CSs to PCs. Efference from SpO engages the 
same Golgi cells directly. Because Golgi cells are 
inhibitory on granule cells, the bigger the RN input 
relative to SpO input is, the bigger the signal from 
serial component CSs active at that time, be they 
from onset or offset cascades. 

In this way, the Golgi cells that implement Y(t) 
reinforce and maintain the down-regulated state of 
active PF/PC synapses. PF/PC synapses that are 
activated by a CS element are down-regulated by 
the contiguous US-triggered activation of CF input 
from the IO. As CS elements earlier in the timing 
sequence become capable of evoking an output 
that anticipates the US, inhibition is relayed to the 
olive and the US loses its capacity to trigger a CF 
volley (see Fig. 1). However, the down-regulation 
of these synapses is maintained, and still earlier CS 
elements are recruited, by PFs carrying I? x Xj to 
LTD-PCs, as indicated in Figure 6. 7 

In their recording study, Desmond and Moore 
(1991a) observed an average lead time of 36 msec 
between the initiation of CR-related firing in RN 
neurons and the peripherally observed CR. Rich- 
ards et al. (1991) observed an average lead time of 
20 msec in SpO neurons. Therefore, the time dif- 
ference in CR-related efference arising from the 
two structures is on the order of 15-20 msec. This 
difference spans one 10-msec time step used in our 
simulations with the TD model. This temporal dif- 
ference is consistent with a conduction velocity of 
2 m/see for the lO-mm trajectory of unmyelinated 
axons from the RN to rostral portions of the SpO. 
The 10-msec grain also ensures good resolution of 
fast transients. The fastest transients in eye-blink 
conditioning occur during unconditioned re- 
sponses. At its fastest, the eyelids require 80 msec 
to close completely, with a peak velocity of 4-5 
mm/20 msec. 

ZHartell (1996) showed that strong PF activity can induce 
LTD at PF/PC synapses and that this depression extends to 
other, spatially separated synapses. Hartell (1996) also reported 
that LTD induced by strong PF stimulation occludes the form of 
LTD mediated by CFs. Schreurs et al. (1997) report a similar 
occlusion of CF-mediated LTD among PCs that express LTP. 
Hartell (1996) did not address the question of whether strong PF 
stimulation maintains and reinforces previously established CF- 
induced LTD, which is a core assumption of the implementa- 
tion. 
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Figure 7: The complete TD implementation scheme 
showing three sequentially activated CS components, 
representing onset and offset cascades in the manner of 
the VET model of Desmond and Moore (1988). (Go) 
Golgi cells. 

Efference from SpO neurons recorded among 
HVI PCs would tend to lag behind the peripherally 
observed CR, especially if it arises from more cau- 
dal portions of the structure. Berthier and Moore 
(1986) observed a continuum of lead and lag times 
among PCs that increased their firing to the CS. 
PCs that receive projections from the SpO (not 
shown in Fig. 6) would be expected to increase 
their firing but with a lag relative to those receiving 
projections from the RN. The proportion of CR- 
leading PCs observed by Berthier and Moore 
(1986) matched the number of CR-lagging PCs, 
which makes sense if the two populations reflect 
CR efference from two spatially separated sources, 
RN and SpO. 

Figure 7 is an expanded version of Figure 6 
showing three sets of granule cells associated with 
three serial component CSs. These components 
might arise from CS onset or offset. The degree to 
which information from any of these serial CS com- 
ponents reaches the PCs to which they project is 
determined by Golgi cells firing in proportion to 
I~(t), as just described. Figure 2 shows that TD- 
simulated CRs tend to be positively accelerating 
(contingent upon ~r up to the occurrence of the 
US, so Y(t) increases progressively over the CS-US 
interval. Therefore, those PF/PC synapses acti- 
vated nearest the time of the CF signal from the US 
have the greatest impact in establishing and main- 
taining LTD. This mechanism ensures the appro- 
priate form and timing of CRs. 
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Interpretations of  Y.- Efference or 
Afference 

Equation 8 emphasizes interpretations of I~ as 
efference, but it is equally correct to interpret 
changes in associative values in terms of afference, 
substituting equation 9 into equation 8. Recent 
studies by Ramnani and Yeo (1996) and Hardiman 
et al. (1996) suggest that the efference interpreta- 
tion of Y is correct. These studies show that tem- 
porary inactivation of IP by muscimol prevents ex- 
tinction of the CR. That is, CS-alone trials that 
would normally lead to a gradual elimination of the 
CR instead had no effect whatsoever. When tested 
after the muscimol blockade had been removed, 
the previously established CR was at full strength 
but extinguished normally with continuing presen- 
tation of CS-alone trials. This finding is consistent 
with the efference interpretation of the TD imple- 
mentation because inactivation of IP eliminates the 
CR and therefore prevents efference from the RN 
and SpO from reaching the putative site of learning 
in HVI. In terms of equation 8, connection weights 
cannot decrease if Y(t) and Y( t  - 1) are both equal 
to O. If the afference interpretation were correct 
and efference plays no role in extinction, then in- 
activation of IP would not prevent extinction be- 
cause afference arises from PN and bypasses IP 
enroute to HVI. 

Implications of  the Implementat ion 

The implementation has several testable impli- 
cations. 

1. One implication is that some PCs decrease their 
firing rate in anticipation of CR peaks. These 
PCs express LTD. However, there are other PCs, 
perhaps the majority, that increase their rate of 
firing in relation to CR peaks, as reported by 
Berthier and Moore (1986). Some of these PCs 
express efference from the RN and SpO. Their 
function is to activate Golgi cells that modulate 
information flow through the granule cells. An- 
other function would be to inhibit motor pro- 
grams such as eye opening and saccadic move- 
ments that could interfere with eyelid closure. 

2. The implementation specifies that Golgi cells 
that modulate the flow of CS information in 
granule cells fire in relation to c h a n g e s  in.eyelid 
position, that is, they fire in relation to Y. This 
property of Golgi cell-firing patterns has been 
reported by van Kan et al. (1993), in a study of 

monkey limb movements, and Edgley and Lidi- 
erth (1987), in a study of cat locomotion. 
The implementation implies that reversible in- 
activation of the RN would prevent second-or- 
der conditioning. However, although inactiva- 
tion of the RN would cause a temporary inter- 
ruption of information flow that results in a CR, 
it would not prevent learning of the primary 
association between components of the CS and 
the US. This association proceeds with little dis- 
ruption because the PN and the IO can still con- 
vey CS and US information to the cerebellar cor- 
tex. Evidence for this proposition comes from a 
study of rabbit eye-blink conditioning by Clark 
and Lavond (1993). They demonstrated that in- 
activation of the RN by cooling did not prevent 
learning, as CR magnitude recovered upon re- 
activation of the RN. However, inactivation of 
the RN would interrupt efference about the po- 
sition of the eyelid at times t and t - At from the 
RN and SpO. Thus, /~ would not be available to 
the cerebellar cortex. According to the TD 
model, Y allows for increments of predictive 
associations in the absence of the US, as would 
occur in second-order conditioning. This being 
the case, inactivation of the RN would interfere 
with second-order conditioning. With the RN 
inactivated, animals trained with a mixture of 
first- and second-order (Kehoe et al. 1981) 
would be expected to show first-order learning, 
as in the Clark and Lavond (1993) study, but 
little or no second-order learning. Figure 8 
shows a simulation of the failure of second-or- 
der conditioning by blocking the Y(t)  efference 
projection to HVI from the RN. 8 

Summary 

We have described how the TD model of clas- 
sical conditioning can generate appropriate CR 
waveforms in simple protocols and complex para- 
digms involving temporal uncertainty. We also sug- 
gest an implementation scheme for TD learning 
within the cerebellum. The implementation draws 
on neurobiological evidence regarding how LTD is 

8Mechanisms for establishing second-order conditioning 
within the cerebellum are unknown. A TD implementation 
based on LTD assumes that PF inputs arising from second-order 
serial components express LTD even though the US is withheld. 
Hartell (1996) provides evidence favorable for such a mecha- 
nism. 
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Figure 8: Simulated first- and second-order condit ion- 
ing after Kehoe et al. (1981 ). (A) The training protocol. 
Trial-type 1: CSA is 300 msec in duration, and the CS- 
US interval is 290 msec. Trial type 2: CSB is 550 msec in 
duration, and the CSB-CSA interval is 300 msec. The 
two trial types are randomly mixed, and each occurs 
500 times. (B) Simulated peak CR ampli tude [Y(t)] to 
CSA and CSB as a function of trials. Note that Y(t) to CSB 
increases with training, reflecting second-order condi- 
tioning. (C; With ~, = 0 (equivalent to inactivation of the 
RN), second-order condit ioning does not occur. 

established, reinforced, and main ta ined  among PCs 
that de te rmine  the t iming and topography of CRs. 
The implementa t ion  incorporates  recent  anatomi- 
cal findings, reviewed by Rosenfield and Moore 
(1995), that al low these PCs to receive the two 
componen t s  of  the TD model ' s  re inforcement  op- 
erator, one c o m p o n e n t  donated by the US and an- 
other  c o m p o n e n t  donated by I~(t) = Y ( t ) -  
Y( t -  At) as feedback efference. The implementa-  
tion lays the foundat ion for ne twork  simulations at 
the cellular level. 
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