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Determining how transcriptional regulatory signals are encoded in vertebrate genomes is essential for understanding
the origins of multicellular complexity; yet the genetic code of vertebrate gene regulation remains poorly
understood. In an attempt to elucidate this code, we synergistically combined genome-wide gene-expression profiling,
vertebrate genome comparisons, and transcription factor binding-site analysis to define sequence signatures
characteristic of candidate tissue-specific enhancers in the human genome. We applied this strategy to
microarray-based gene expression profiles from 79 human tissues and identified 7187 candidate enhancers that
defined their flanking gene expression, the majority of which were located outside of known promoters. We
cross-validated this method for its ability to de novo predict tissue-specific gene expression and confirmed its
reliability in 57 of the 79 available human tissues, with an average precision in enhancer recognition ranging from
32% to 63% and a sensitivity of 47%. We used the sequence signatures identified by this approach to successfully
assign tissue-specific predictions to ∼328,000 human–mouse conserved noncoding elements in the human genome.
By overlapping these genome-wide predictions with a data set of enhancers validated in vivo, in transgenic mice, we
were able to confirm our results with a 28% sensitivity and 50% precision. These results indicate the power of
combining complementary genomic data sets as an initial computational foray into a global view of tissue-specific
gene regulation in vertebrates.

[Supplemental material is available online at www.genome.org.]

Increasing lines of evidence support the notion that the majority
of functional elements in the human genome do not code for
proteins (Waterston et al. 2002), yet our ability to systematically
categorize and predict their function remains limited. For in-
stance, most progress in elucidating transcriptional regulatory
mechanisms has stemmed from computational and experimen-
tal analyses of transcription factors (TFs) acting within promoter
regions of functionally related cohorts of genes. While informa-
tive (Bajic et al. 2004; Sharan et al. 2004; Kim et al. 2005; Xie et
al. 2005), these studies did not assess distant-acting regulatory
elements and thereby only sampled a limited portion of the ver-
tebrate gene regulatory network (Levine and Tjian 2003; Cawley
et al. 2004). Several recent studies have provided conclusive evi-
dence that the complex transcriptional expression pattern of hu-
man genes is mediated through multiple discrete sequences, of-
ten located hundreds of kilobases (kb) away from their core pro-
moters (Lettice et al. 2003; Nobrega et al. 2003). In these studies,
evolutionary sequence conservation has served as a reliable indi-
cator of biological activity, with an increasing number of distant
noncoding evolutionarily conserved regions (ECRs) validated as
tissue-specific enhancers during development (Loots et al. 2000;
Lettice et al. 2003; Nobrega et al. 2003; de la Calle-Mustienes et
al. 2005; Dermitzakis et al. 2005; Woolfe et al. 2005; Pennacchio
et al. 2006). Although genome comparisons have provided a

powerful approach for identifying noncoding ECRs that are un-
der selective pressure, we have yet to develop reliable high-
throughput computational methods for the discovery of distant
regulatory elements with predetermined functional specificity.
Here we explore a strategy for translating noncoding sequence
data into transcriptional regulatory information that ultimately
serves two vital purposes: to define the genetic vocabulary of
tissue-specific gene regulation and to use this information to pre-
dict tissue-specific enhancers in the entire human genome, de
novo. This approach combines genome-wide tissue-specific gene
expression profiling data (Su et al. 2002), vertebrate genome
comparisons, and pattern analysis of transcription factor binding
sites (TFBS). Our results support the notion of an existing under-
lying genetic code of gene regulation in mammals, and provide
an initial foundation for deciphering this code using primarily a
computational approach.

Results

Predicting candidate regulatory elements for tissue-specific
genes

As a first step toward directly relating gene expression to com-
parative sequence data, we clustered overlapping gene transcripts
in the human genome and identified 18,504 unique protein-
coding loci (the boundaries of each locus were defined by the
neighboring genes, independent of the absolute size of the locus;
see Methods). We next assigned transcriptional information ob-
tained from the GNF Atlas2 gene expression database (gnfAtlas2)
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(Su et al. 2002) to these genomic loci. This included 79 human
tissues with the majority of human loci (85%) successfully linked
to their corresponding gene-expression pattern. For each repre-
sented tissue, we defined two sets of genes: high expressors and
low expressors. Our goal was to compare the genomic loci con-
taining these two contrasting gene sets (across available tissues)
to search for shared noncoding DNA sequence features in the
vicinity of genes highly and concordantly expressed in a given
tissue, while simultaneously minimizing the presence of these
features in loci of genes with low expression within the tissue of
investigation. Thus, this approach sought to identify primary
candidate sequences responsible for tissue-specific enhancers
that control high gene expression within a given tissue. To focus
our search on a uniform cohort of highly expressed genes, we
selected the top 300 most highly expressed genes (about 2% of
the total number of genes in gnfAtlas2) for each tissue. To estab-
lish a large background data set, in which the probability of find-
ing a tissue-specific enhancer might be predicted to be the
lowest, we selected approximately one-third of all genes in
gnfAtlas2—comprising 5000 genes with the lowest level of ex-
pression in the corresponding tissue. The same number of genes
in the high and low expression groups for different tissues al-
lowed an unbiased analysis of the method’s performance across
the panel of all studied tissues.

We initially observed a strong correlation between the tissue
specificity of a gene and the size of the locus, such that loci of
highly expressed genes in the central nervous system (CNS) were,
on average, significantly larger than the global median locus
length. In contrast, loci corresponding to highly expressed genes
in the immune system or various tumor tissues were significantly
shorter (Supplemental Fig. S1). For example, the median locus
length of a human gene highly expressed in fetal brain was 245
kb, while genes highly expressed in testis were on average 3.6
times shorter (68 kb) (Supplemental Fig. S1). We also found that
10% of the brain and CNS loci coincided with vast noncoding
regions termed gene deserts (Nobrega et al. 2003) in the human
genome (a twofold increase over the expected value; P < 10�7),
consistent with the observation that most enhancers identified
within gene deserts, to date, are biased toward brain and/or CNS
expression during vertebrate development (Nobrega et al. 2003;
Uchikawa et al. 2004; de la Calle-Mustienes et al. 2005; Penna-
cchio et al. 2006). Finally, we observed a linear correlation be-
tween locus length and the number of human/mouse noncoding
ECRs, regardless of the tissue under investigation (Supplemental
Fig. S1E).

Recent studies suggest that the most highly conserved non-
coding ECRs within a locus commonly possess gene regulatory
function (Nobrega et al. 2003; Ovcharenko et al. 2004b; Prab-
hakar et al. 2006). Therefore, we selected the three most con-
served human/mouse noncoding ECRs for each of the 18,504
human genes in our study, as well as noncoding ECRs overlap-
ping with the gene’s promoter region (see Methods for selection
procedure details). This selection generated a data set of 60 thou-
sand (k) candidate regulatory elements in the human genome,
averaging 4.2 candidate regulatory elements per locus. Classifi-
cation of these elements based on their genomic location anno-
tated 31% as intergenic, 28% as promoter, 20% as intronic, 13%
as 3� UTR, and 8% as 5� UTR. Approximately 24 k of these ele-
ments flanked 6059 genes with the highest gene expression in at
least one of the 79 tissues, while ∼55 k of these elements flanked
15,632 genes with the lowest gene expression (serving as a nega-
tive control data set).

To explore the sequence motifs of these noncoding ECRs
linked to genes displaying high versus low expression in the same
tissue, we used a previously described motif-identification strat-
egy (Loots and Ovcharenko 2004) and identified 1.8 million (M)
evolutionarily conserved putative TFBS within this data set (see
Methods). We found that several individual motifs were signifi-
cantly enriched in 43 human tissues (Supplemental Table S1). For
example, we observed a strong association among NRF1,
POU2F1, MEF2A, and CREB1, transcription factors known to
play key roles in brain and neural development (Ilia et al. 2003;
Okuda et al. 2004; Chang et al. 2005; Shalizi and Bonni 2005;
Riccio et al. 2006) in candidate regulatory elements from loci
highly expressed in human fetal brain (Supplemental Table S1A).
However, as described in further detail below, no single TF by
itself was sufficient to predict where a candidate enhancer will
drive gene expression.

Determining sequence signatures of candidate tissue-specific
enhancers

Based on the presumed combinatorial nature of multiple TFs to
mediate a given enhancer’s activity, we used an analysis strategy
that simultaneously scored the impact of multiple TFBS motifs in
an attempt to classify candidate enhancers based on sequence
signatures that define gene expression in a particular tissue. This
was accomplished by assigning a weight to each TF that quanti-
fies its association with a given tissue. By summing these TFBS
motif weights, we were thus able to generate a regulatory poten-
tial tissue-specificity score for each of the 24 k candidate enhanc-
ers of highly expressed genes as well as 55 k background elements
of the low expressed genes. This scoring scheme provided the
means to optimize TF weights in an effort to enrich for positively
scoring candidate enhancers in tissue-specific loci of highly ex-
pressed genes while simultaneously minimizing their presence in
loci of genes with low expression (independently performed for
each tissue; see Methods). We named this approach Enhancer
Identification (or EI) and its application allowed us to select can-
didate tissue-specific enhancers from the pool of conserved non-
coding elements in loci of genes highly expressed in a given
tissue (Fig. 1). We performed EI analysis independently on both
human and mouse gene expression data, and while we primarily
utilized human statistics in our discussion, mouse data analysis is
provided in the Supplemental materials (Supplemental Figs. S1,
S2; Tables S2, S7).

The EI scoring optimization allowed us to maximize our
resolving power to the point where 60% (�5%) of genes highly
expressed in a tissue group contain signatures that are present in
<15% of the low expressed genes for any given tissue (Fig. 2B).
For example, EI identified at least one fetal lung candidate en-
hancer for 65% of genes with high fetal lung expression, while no
such candidates were identified in the non-intergenic regions
(promoter, UTR, or intronic) of >86% of genes with low fetal lung
expression (intergenic regions were excluded from the negative
control group to prevent potential associations with neighboring
genes’ regulation [see Methods]). Of the original 24 k candidate
regulatory elements linked to genes highly expressed in one or
more of the 79 available tissues, EI optimization identified 7187
candidate enhancers with signatures that define tissue-specific
expression. The database that summarizes these candidate tissue-
specific enhancers is available at http://www.dcode.org/EI.
Through this consolidation of the data set we found that 47% of
human noncoding ECRs defined as candidate enhancers were
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predictive of expression in more than one tissue, consistent with
our finding that 66% of the human genes in this study are highly
expressed in multiple tissues. Since these candidate enhancers
were mainly assigned to different tissues that are functionally
related (e.g., CD4 and CD8 T-cells) (Supplemental Table S6), it is
possible that the transcriptional regulation of genes expressed in
similar tissues could be achieved through shared gene-regulatory
mechanisms. These findings are consistent with in vivo expres-
sion data derived from enhancer scans in transgenic mice, indi-
cating that one-third of embryonic enhancers active during a
single time-point in development drive expression in more than
one tissue type (Nobrega et al. 2003; de la Calle-Mustienes et al.
2005; Woolfe et al. 2005; Pennacchio et al. 2006). Finally, we also
found that 20% of highly expressed genes within our data set
harbor more than one distinct candidate enhancer predicted to
be active in the same tissue, supporting the hypothesis that cer-
tain genes contain multiple discrete regulatory elements that
overlap in their enhancer activity (Frazer et al. 2004; de la Calle-
Mustienes et al. 2005).

Since the EI method is based on the weighting of multiple
TFs for their association with tissue-specific expression, we
sought to further explore the nature of this combinatorial TF-
scoring scheme. We found that in no case was a single TF suffi-
cient to predict tissue-specific gene expression, supporting the
notion that tissue-specific gene regulation is a direct result of
interplay among multiple TFs. To quantify the impact of an in-
dividual ith TF on predicting gene expression in a particular tissue
t, we calculated the TF importance parameter (Ii

t) defined as the
product of the TF occurrence (percentage of tissue-specific can-
didate enhancers with a particular conserved TFBS) and its
weight in a tissue-specific group of candidate enhancers (Supple-
mental Table S2). Since TF importance compounds the effects of
TF occurrence and weight, it presents an integrative measure of
the TF’s role in generating high positive scores of tissue-specific
candidate regulatory elements. At the same time, it minimizes
the impact of TFs that are rare or have small weights and thus do
not contribute significantly to establishing either a positive or a
negative tissue-specificity score. This quantification allowed for

the identification of cohorts of TFs in candidate enhancers po-
tentially involved in tissue-specific regulatory networks, i.e.,
those TFs both with high weights and high occurrences (see
Supplemental Materials). As an example of a high TF impact on
tissue-specific regulation, the photoreceptor-specific CRX TF has
the highest importance parameter value in eye development
(Supplemental Table S2) consistent with the known function of
this regulatory protein in Cone-Rod Dystrophy (CRD), an inher-
ited progressive disease that causes deterioration of the cone and
rod photoreceptor cells and leads to blindness (Itabashi et al.
2004).

To illustrate this method’s ability to predict functional en-
hancers, we examined two well-characterized enhancers, one for
skeletal muscle and one for liver, flanking the human cardiac/
slow skeletal muscle troponin C (TNNC1) and the apolipoprotein
B (APOB) genes, respectively (Fig. 3). An EI scan of the TNNC1
locus first identified four noncoding ECRs (of 12 total) as candi-
date regulatory elements (two intergenic, one intronic, and one
promoter element). Subsequent EI optimization then correctly
predicted the noncoding ECR in intron 1 as a skeletal muscle
enhancer in precise agreement with the previously defined
TNNC1 skeletal muscle enhancer (Christensen et al. 1993; Par-
macek et al. 1994). In a second example, EI correctly identified
the APOB promoter element as a fetal liver (and adult liver) en-
hancer and predicted transcription factors HNF4 and C/EBP to be
activating APOB expression, in concordance with previous ex-
perimental studies (Novak et al. 1998).

To explore the possibility of synergistic TF linkage that may
be biologically required for directing tissue-specific gene expres-
sion, we extracted the top 10 scoring TFs for each tissue based on
their importance in predicting tissue-specific expression. As an
example, we focused on the TF characteristics of two similar tis-
sue types: heart and skeletal muscle (Fig. 4A) (a complete list of
the top TF for each tissue is provided in Supplemental Table S2).
We observed that five of the top 10 TF predictions for both these
muscle types are shared, four of which (MEF2, SRF, myogenin,
and ESRRA) are strongly linked to transcriptional regulation in
muscle tissue and associated with various human cardiac myopa-

Figure 1. Schematic of the general EI strategy for defining signatures of tissue-specific enhancers.
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thies (Sakuma et al. 2003; Huss et al. 2004; Kadi et al. 2004;
Parlakian et al. 2005). As a second example, the top 10 TF pre-
dictors of liver expression included Hepatocyte Nuclear Factor 1
(TCF1), HNF4A, PPARA, SREBF1, HNF4-DR1, NR2F2, and NR1H4
(Fig. 4A), all of which are known regulatory proteins important in
liver function (Shih et al. 2001; Zannis et al. 2001; Cheng et al.
2006). These two examples highlight the biological plausibility of
the EI method to predict tissue-specific gene expression.

To globally address the power of the predicted TF-tissue as-
sociations in addition to the support gained from the above se-
lected examples, we mapped TFs to the human genome and de-

termined the tissue gnfAtlas2 expression profile for each TF gene.
Our rationale was that if tissue-specific gene expression predic-
tiveness is based on TFBS density in candidate enhancer se-
quences, then the TF required for this function should be ex-
pressed in the tissue of activity. Thus, we attempted to correlate
positive TF importance with the level of TF gene expression in
the available 79 human tissues. This was accomplished by adjust-
ing the minimal TF importance threshold increasingly from
�0.25 to +0.25 (thus gradually increasing the ratio of TFs with
positive importance values in the group) to determine whether
TF expression and enhancer predictiveness were positively cor-

Figure 2. Precision (A) and sensitivity (B) of the EI method of recognizing human tissue-specific enhancers. Lower- and upper-bound estimates of
precision along with their average are given in red, blue, and black on precision plots (A), respectively. Standard deviation is also depicted for each lower-
and upper-bound estimate. Tissues are split into poor, good, and excellent groups based on the lower-bound estimate of the precision. See Supple-
mental Figure S2 for corresponding mouse data. Navy and red curves on sensitivity plots (B) measure the percentage of high- and low-expressed gene
loci with tissue-specific enhancers, respectively; while the middle purple curve estimates EI sensitivity for de novo enhancer recognition.
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related (Fig. 4B). Indeed, we observed that ∼60% of predicted
positive TF-tissue associations corresponding to TF importance
thresholds of �0.1 were supported by an increased level of gene
expression in the associated tissue (Fig. 4B). One possible expla-
nation for the lack of total concordance between the predicted
TF-tissue associations and tissue specificity is the ubiquitous na-
ture of TF gene expression that often leads to ambiguous defini-
tions of tissue specificity with increased and decreased level of
gene expression in gnfAtlas2. Manual curation of these interac-
tions revealed that 90% (142/158) of predicted TF-tissue associa-
tions with �0.25 TF importance threshold are supported by pub-
lished literature or alternative sources of experimental evidence
(see Supplemental materials; Table S3).

Since any parametric optimization approach could poten-
tially introduce “overfitting”—the identification of random pro-
files that separate genes with high versus low expression purely
by chance—we attempted to cross-validate our results. This was
accomplished by characterizing the ability of the EI method to
annotate tissue-specific enhancers in loci of highly expressed
genes without any a priori knowledge of tissue specificity of gene
expression (i.e., these genes were excluded from the training set;

see Methods). This approach allowed us to quantify both the
method’s precision (defined as the proportion of predicted ele-
ments that act as tissue-specific enhancers) and sensitivity for
each tissue (Fig. 2). Through this analysis, we observed a high
variability in EI precision across the 79 sampled human tissues,
and hence, these tissues were classified into three quality groups
(Fig. 2A): (1) poor (lower-bound precision, P↓ < 20%), (2) good
(lower-bound precision, P↓ between 20% and 40%), and (3) ex-
cellent (lower-bound precision, P↓ > 40%) (Fig. 2). Next, we
grouped lower- and upper-bound precision values to use their
average as an estimate for the true precision and found that 72%
(57/79) of human tissues have an average precision of 40%. These
data allowed us to conclude that overfitting did not account for
the majority of signals obtained from the EI predictive method.
In contrast, EI was suboptimal for the remaining 22 human tis-
sues, which fell into the poor category where the average preci-
sion was below 30%, indicating that overfitting likely explained
a significant fraction of the signature derived for these tissues.
Tissues comprised within this category mainly consisted of mul-
tiple gland and germ tissues, as well as structures such as the
appendix and olfactory bulb. Based on these observations, we

Figure 3. EI annotation of TNNC1 skeletal muscle (A) and APOB (B) liver enhancer. Zoomed-in view of Mulan (Ovcharenko et al. 2005) human/mouse
evolutionary conservation profiles for these loci depicts candidate enhancer elements, followed by profile of conserved TFBS present within.
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placed low significance values on the predictions derived for
these tissues, and their enhancer predictions should be treated
cautiously as they are likely to represent false-positives. In con-
trast, the average precision of the excellent group was above 50%
for 12 tissues, including heart, liver, tongue, blood, and several
immune tissues (Fig. 2) Thus, these tissue types bear the highest
confidence of EI predictions.

Assigning tissue-specific predictions to conserved noncoding
sequences in the human genome

Since the EI method can generate tissue-specific predictions for
any conserved element, we used this approach to score 364 k
previously reported candidate enhancers in the human genome
(Prabhakar et al. 2006) (see Methods). In total, EI was able to
assign a tissue specificity to 90% (328 k) of these elements, cov-
ering 4.0% of the human genome. This large data set comprises
tissue-specificity predictions for the majority (86%) of genes in
the human genome. It also represents an important resource for
prioritizing tissue-specific enhancers in loci of genes with known
functions when one is interested in sifting through multiple evo-
lutionarily conserved elements and prioritizing only those that
correspond to candidate enhancers with matching tissue speci-
ficity. We should note that we observed an overlap in tissue-
specificity predictions as a result of several related tissues having
similar EI recognition profiles (Supplemental Tables S6, S7). For
example, 24% of CD4+ T-cell-predicted elements were also clas-
sified as CD8+ T-cell, while 14% of liver-predicted elements were
simultaneously classified as fetal liver. In contrast, only 0.8% of
CD4+ T-cell-predicted elements were simultaneously classified as
fetal liver predictions. This suggests that the direct EI tissue-
specificity annotation of conserved elements may fail to distin-
guish between closely related tissues, but can possibly distinguish
between major tissue categories or different organs. However,
since tissue specificity of these 364 k predictions could not always
be supported by high expression of flanking genes, we anticipate
this data set to feature a relatively high rate of false-positive pre-
dictions, warranting further validation of our predictions in ele-
ments that had been characterized using sophisticated in vivo
approaches.

Experimental validation of tissue-specific enhancer predictions

Based on our genome-wide predictions of tissue-specific activities
for all noncoding ECRs, we sought to determine their perfor-
mance against existing enhancer data of gene expression derived
from transgenic mouse studies. As a test bed, we examined the EI
tissue-specific predictions for five previously characterized en-
hancers expressed in the brain and nervous system in the 1-Mb
region upstream of the DACH1 gene (Nobrega et al. 2003). We
found that three of these elements were predicted to have en-
hancer activity limited to brain tissues, while the two remaining
elements were not assigned to any tissue (Supplemental Table
S4). While these initial correlations were based on a small sample
set, the statistical significance of this match is supported by a
P-value of 0.004 (see Supplemental materials).

To expand these data beyond the limited published in vivo
data for distant-acting enhancer elements, we next performed
a large-scale analysis of our whole-genome predictions against
a publicly available data set of 106 elements that have been
shown to act as tissue-specific enhancers in the mouse at embry-
onic day 11.5 of development (E11.5) (data available at http://
enhancer.lbl.gov) (Pennacchio et al. 2006) (Supplemental Table

Figure 4. Importance and occurrence of individual TFs in candidate
enhancers corresponding to mouse liver, B-cells, heart, and skeletal
muscle (A). Binning of 25 k predicted TF-tissue associations by a minimal
TF importance threshold (B). The number of TF-tissue associations almost
does not change in the area of negative TF importance thresholds and
rapidly decreases in the area of positive TF importance thresholds (dark
red graph; right y-axis) indicative of a small number of TFs with large
positive importance values and an even smaller number of TFs with large
negative importance values. The percentage of TF-tissue associations that
are confirmed by an increase in TF gene expression (orange bars) in-
creases with the increase of minimal TF importance (followed by the
corresponding decrease in the number of nonconfirmed associations—
blue bars). As ∼60% of predicted TF-tissue associations with a minimal TF
importance of 0.1 are supported by an increased level of TF gene expres-
sion in the corresponding tissue, this threshold could serve as a cut-off of
reliability in TF-tissue association predictions.
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S5). In this data set, we found 71 (67%) enhancers to dictate
expression in forebrain, midbrain, hindbrain, and/or neural tube.
We thus assessed whether whole-genome EI tissue-specific pre-
dictions overlap with these in vivo characterized enhancers. In-
deed, 28% (20/71) of these elements were selectively predicted as
enhancers active in the brain and/or the nervous system. In ad-
dition, another 7% (5/71) of these validated CNS-specific en-
hancers had EI predictions with a mixed annotation of brain/
CNS and another organ/tissue, suggesting that these elements are
possibly multifunctional. We also observed 21% (15/71) of pre-
dictions provided tissue annotations inconsistent with the ex-
perimental data, while the remaining 44% (31/71) elements had
no tissue-specific prediction(s) (Supplemental Table S5). This cor-
responded to 28% sensitivity and 50% precision in recognition of
brain and CNS-specific enhancers using the EI method, de novo.
By calculating the distribution of brain/CNS predictions in a
large random data set (see Supplemental materials) we found the
overlap of this analysis with experimental data to be 2.5-fold
greater than what would be expected by chance, corresponding
to a P-value of 0.0001.

To further explore the relationship between the 20 concor-
dant EI whole-genome predictions and the existing in vivo ner-
vous system data set described above, we examined the distri-
bution of the predictions within the 18 different brain tissues
present in the gnfAtlas2 database. While we found four or less
of these, in vivo-defined CNS enhancers were predicted to be
expressed in each of the 17 adult brain tissues present in
the expression annotation, 11 of them were annotated to the
fetal brain category in the gnfAtlas2 (the probability of this
observation being random is <10�7 [see Supplemental materi-
als]). This high ratio of fetal-brain predictions is consistent with
the entire in vivo expression data set that corresponds to a single
time point of enhancer analysis during embryonic development
at E11.5. This suggests that the fetal brain-enhancer recognition
profile of EI is a specific signature of in vivo embryonic brain
enhancers, in contrast to enhancers active in specialized com-
partments of the adult brain. It is unclear, however, whether
these enhancers are exclusively active during embryonic time
points and not during adult stages. Additional in vivo data sets
based on nonembryonic time points will further aid in assessing
the ability of this approach to predict enhancer elements active
in adult tissues.

Discussion

Deciphering the genetic code of gene regulation in vertebrate
genomes remains a significant challenge that has been partially
aided by the availability of the human and other vertebrate ge-
nome sequences. However, while techniques such as compara-
tive genomics can enrich for putative enhancer sequences based
on evolutionary conservation, predicting their tissue specificity
has been difficult. Nevertheless, several proof-of-principle studies
have demonstrated that there is a vaguely defined, but compu-
tationally recognizable genetic code of gene regulatory elements
corresponding to selected biological functions (Thompson et al.
2004; Hallikas et al. 2006; Sun et al. 2006). Additional studies
have also revealed the power of microarray expression data to
correlate the distribution of evolutionarily conserved putative
TFBS in the promoters of coexpressed human (and mouse) genes
with the level and dynamics of gene expression (Sharan et al.
2003; Das et al. 2006). These early focused studies suggest that
computationally predicting enhancer function is a solvable prob-

lem. We therefore developed a multifaceted approach coupling
TF-binding specificities, comparative genomics, and microarray
expression data in an attempt to recognize sequence signatures
within putative enhancer elements in the human genome.
Through these efforts, we show that it is possible to identify
tissue-specific enhancers for 72% of human sampled tissues by
constructing sequence-recognition profiles based on the distribu-
tion of TFBS in noncoding ECRs linked to genes expressed in
similar tissues.

One of the inferences we can formulate based on the results
of the EI method introduced here is the proportion of enhancer
activity assigned to promoters versus more distant-acting se-
quences. This measurement was possible since the EI approach
utilizes the three most highly conserved human–mouse elements
neighboring the gene under investigation and thus goes be-
yond promoter only exploration of cis-regulatory features, the
dominant method currently used in regulatory genomics.
Through the comparison of the EI signal strength in promoter
versus nonpromoter conserved elements, we found that only
23% of EI candidate enhancers map to promoter regions of
corresponding genes. While a caveat to this analysis is the in-
complete status of precisely defined promoter boundaries, this
result is consistent with ChIP-chip and in vivo enhancer studies,
which also suggest that more than half of human genes po-
tentially rely on distant mechanisms of gene regulation (Lettice
et al. 2003; Levine and Tjian 2003; Nobrega et al. 2003; Cawley et
al. 2004).

Since this method can be applied to the analysis of any set
of coexpressed genes, this provides a rapid and efficient approach
for translating gene-expression data into function-specific gene
regulatory principles. Thereby, it should be straightforward to
extend this method to other tissues, developmental time-points,
or functional gene categories (such as Gene Ontology and KEGG
data sets [Kanehisa and Goto 2000; Harris et al. 2004], for ex-
ample). In addition, the elements identified in this study repre-
sent a data set of tissue-specific candidate enhancers that could
be used to guide the ongoing large-scale experimental efforts
aimed at exploring transcriptional regulatory function in hu-
man, mouse, and other vertebrate genomes. Since the backbone
of the EI optimization method is the association of TFs with
tissue-specificities, we were able to predict over 7 k such associa-
tions and retrieve experimental evidence for 90% of them in a
selected group of 158 TF-tissue associations (at a TF importance
threshold of 0.25). Furthermore, characterization of TF spacing in
predicted tissue-specific enhancers allowed us to extract ∼1 k TF
pairs significantly enriched as putative synergistic activators in a
given tissue (see Supplemental materials). While we were able to
bring forth published evidence for several predicted TF co-
occurrences, the vast majority of TF-tissue linkages and their po-
tential interactions represent novel regulatory associations that
could be used in facilitating future studies of the complexities of
gene-regulatory pathways.

It is likely that computational approaches that identify
gene-regulatory elements and assign tissue specificity to en-
hancer function will greatly improve over time. Current chal-
lenges include the varying quality and the limited number of
tissues (and primarily adult origin) uniformly profiled in humans
and mice by microarray analysis. Further difficulties arise from
the small size of available in vivo spatial and temporal enhancer
data to further serve as training sets, as well as our incomplete
knowledge of TFs and their precise sequence-based binding speci-
ficities currently available in the TRANSFAC database (Wingen-
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der et al. 2000). The current method specifically targets identifi-
cation of noncoding signatures specific to the highest tissue-
specific expression and thus leads to the identification of tissue-
specific enhancers. Therefore, studies aimed at identification of
tissue-specific repressors would need to use a modified version of
this approach with a different selection of genes in the signal and
background data sets. In addition, the comparative analysis ex-
ploited here was limited to human–mouse genome alignments
under one alignment and conservation scoring method. Never-
theless, despite these limitations, our finding of EI’s ability to
identify tissue-specific enhancers with the available data sets is
encouraging, and represents a platform for further efforts in this
area.

In summary, the data presented here provide further sup-
port for the notion that sequence-based features in vertebrate
cis-regulatory elements are computationally recognizable, similar
to previous successes in the inference of coding, intron–exon,
core promoter, and repetitive DNA sequence signatures. Even
though our study is limited by the availability and reliability of
position weight matrices (PWM) of known TFs, the methods in-
troduced here present a universal framework for the de novo
prediction of regulatory elements with shared biological func-
tion, as well as for defining novel interactions among transcrip-
tion factors that can explain tissue-specific function of enhancer
elements. Future computational efforts linked to topics such as
human disease and vertebrate phenotypic diversity are likely to
refine the predictive ability of our strategy and provide insights
into gene regulatory mechanisms of unexplained biological phe-
nomena.

Methods

Gene annotation and expression data integration
The UCSC Genome Browser (Kent et al. 2002) database was used
to extract genes and link them to their physical chromosome
location. Human and mouse “knownGene” transcripts (Karolchik
et al. 2003) were mapped to the NCBI Build 35 of the human
(hg17) and mouse (mm7) genomes and grouped into 18,504 and
17,636 nonoverlapping loci, respectively. GNF Novartis Atlas2
tissue-specific gene expression (Su et al. 2002) was extracted from
the gnfAtlas2 table and mapped to their respective genes using
the knownToGnfAtlas2 table (both tables are available in the
UCSC Genome Browser database). At least one tissue-expression
profile was available for each of 15,690 human and 14,303 mouse
genes.

Identification of noncoding ECRs and candidate regulatory
elements
Human–mouse alignments generated by the ECR Browser
(Ovcharenko et al. 2004a) were extracted for all ECRs that satisfy
the threshold of 100 bp in length and 70% identity as a basis for
the study. These ECRs were subsequently filtered out for overlap-
ping coding exons of “knownGene” genes, resulting in a data set
of 1.4 M noncoding ECRs, from which 60 k candidate regulatory
elements were selected by identifying the three most conserved
ECRs for each locus as well as ECRs overlapping the 1.5-kb pro-
moter region of each gene. The conservation level was quantified
as a product of each element’s percent identity and its length.
Lower to upper quartile distribution in the length of candidate
regulatory elements spanned from 206 to 780 bp with the me-
dian of the distribution being 420 bp. While our selection of the
three top ECRs per gene was somewhat arbitrary, two factors

weighed in on this choice. First, by performing our analysis on a
gene-by-gene basis, we selected an equal number of candidate
enhancers for each gene. For example, this generally resulted in
higher conservation thresholds for well-conserved loci of devel-
opmental genes and lower thresholds for rapidly diverging loci of
immune system genes. Second, by choosing only the three top
ECRs per gene, we limited our analysis to a tractable group of the
most highly conserved elements while still maintaining the abil-
ity to capture several discrete enhancers that may individually
direct expression to different tissues. Furthermore, the selection
of the top most conserved elements has been previously linked to
their increased likelihood of being biologically functional
(Ovcharenko et al. 2004b; Prabhakar et al. 2006).

Profiling putative TFBS in candidate gene regulatory elements
Human–mouse ECR Brower genome alignments (Ovcharenko et
al. 2004a) were processed by rVista 2.0 (Loots and Ovcharenko
2004) to identify evolutionarily conserved putative TFBS in the
human and mouse genomes. A previously described optimized
PWM threshold (Cartharius et al. 2005; Ovcharenko et al. 2005)
was used to limit the appearance of predictions to five TFBS per
10 kb of random sequence. In total, 13.4 M conserved putative
TFBS were identified using 554 TRANSFAC 9.4 PWMs (Wingen-
der et al. 2000) and three manually curated PWMs for TBX5,
NKX2.5, and GLI TFs (B. Bruneau and J. Aronowicz, pers.
comm.). These putative TFBS were then grouped into 364 sepa-
rate TF families (as several TFs have multiple overlapping defini-
tions in the TRANSFAC database). These TF families are simply
referred to as TFs in the text. The identification of evolutionarily
conserved TFBS was performed independently of the identifica-
tion of ECRs and candidate regulatory elements. Therefore, these
TFs were superimposed with the 60 k candidate regulatory ele-
ments to construct a data set of 1.8 M putative TFBS in candidate
regulatory elements as the basis for the study. On average, there
were 29.4 TFBS identified in a candidate regulatory element. The
number of TFBS in an average candidate regulatory element var-
ied across the panel of sampled tissues in concordance with the
varying length of these elements (Supplemental Table S8). Thus,
some tissues (such as CNS tissues, for example) contained a much
larger number of ECRs in their loci than average, while other loci
(such as liver or bone marrow, for example) contained a signifi-
cantly lower number of ECRs in their loci. As a result of the
positive correlation between the ECR size and the number of
putative TFBS within them (figure insert in Supplemental Table
S8), more TFBS were observed per candidate regulatory element
in genes displaying higher versus lower levels of overall DNA
conservation. Finally, 52% of candidate regulatory elements con-
tained multiple occurrences of the same TFBS in a single candi-
date regulatory element; though an individual TF was found to
cluster in only ∼0.6% of candidate regulatory elements. Tissue-
specific enrichment of putative TFBS in candidate enhancers was
calculated as the ratio of their occurrence in loci of genes with
high versus low expression in a given tissue for each TF. To cor-
rect for multiple hypothesis testing, the hypergeometric distri-
bution with Bonferroni correction was used (Supplemental Table
S1).

Assigning tissue specificity scores to candidate enhancers
The distribution of putative TFBS inside a candidate enhancer (or
noncoding ECR) was utilized to assign a tissue-specificity score to
that element. First, a tissue-specificity weight wi

t was assigned to
each ith TF as a measure of its association with the tissue t. Next,
the distribution of putative TFBS in the kth candidate enhancer
was scored to define candidate enhancer tissue specificity:
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Sk
t = �

i=1..nTF

wi
tNk

i ,

where Nk
i is the number of ith TF putative TFBS located in the kth

candidate enhancer and the summation was performed over all
nTF TFs. TF weights were allowed to vary from �1 to 10. Large
positive weights wi

t indicate a strong correlation between the ith

TF and the tth tissue-specificity, while large negative weights in-
dicate the unlikely presence of the ith TF in a candidate enhancer
that is active in the tissue t.

EI optimization to define TF tissue-specific weights
To identify tissue-specific candidate enhancers, the Brent’s
method optimization was performed on TF weights wi

t that maxi-
mizes the number of positively scoring candidate enhancers in
loci of genes with high expression in a given tissue (L+) and
simultaneously minimizes the number of positively scoring can-
didate enhancers in loci of genes with low expression in that
tissue (L�). Optimization was performed independently for each
different tissue. To ensure a reliable and specific identification of
noncoding features in loci of highly expressed tissue-specific
genes, a large background data set was included comprising 5 k
loci of genes with low expression assigned to each tissue. A scor-
ing function Ft,

Ft = �
k⊂L+

Sk
t >0

log�1 + Sk
t � − � �

NE+

NE−
� �

l⊂L−

Sl
t>0

log�1 + Sl
t�

containing summations over all positively scoring candidate en-
hancers associated with L+ (k⊂L+) and L� (l⊂L�) was maxi-
mized to perform the optimization of weights (the distribution of
positively scoring candidate enhancers in L+ and L� was allowed
to change dynamically following the change in TF weights). The
ratio of the total number of candidate enhancers in L+ (NE+) to
the total number of candidate enhancers in L� (NE�) was intro-
duced to the scoring function to account for differences in the
number of genes with high versus low gene expression and the
number of corresponding candidate enhancers. �, or the signal
enrichment coefficient served to increase the negative impact of
positively scoring noncoding ECRs in L�. � was selected as 1
during the initial optimization step and then gradually increased
to 10,000 to achieve the greatest separation between loci of
highly and lowly expressed genes. Optimization was initialized
with TF weights estimated using the density of putative TFBS in
L+ and L� as

wi
t =

�
k⊂L+

Ni
k�NE+

�
k⊂L−

Ni
k�NE−

− 1.

Initial TF weights were upper-bounded by 1 and the optimization
was performed contiguously and recursively for each ith TF. It was
interrupted after achieving an increase l < 0.1 in the scoring func-
tion during a cycle of TF weights optimizations across all TFs. An
important property of this optimization is the dynamic selection
of the positively scoring subset of tissue-specific candidate en-
hancers from the original set of candidate enhancers.

Cross-validation
For cross-validation experiments, we expanded the data set of
highly expressed genes to 400 and subdivided this set into two
groups consisting of (1) 300 genes for EI optimization, and (2)100
genes for testing the signal recognition. None of the 100 test
genes were included in the set used for the optimization of the

algorithm. Cross-validation was repeated four times to estimate
the statistical error in precision and sensitivity. The four cross-
validation replicas of 100 test genes did not overlap with each
other to ensure that four independent quantifications are carried
out. Similarly, in each case a different group of 500 genes was
removed from the background data set for each cycle of EI opti-
mization. Using this approach, four independent rounds of EI
optimization were performed with 300 signal (highly expressed)
and 4500 background (lowly expressed) genes and subsequently
applied the generated TF profiles to independently calculate the
percentage of tissue-specific candidate enhancers from the 100
test (R+) and 500 control (Rint

� ) data sets. Optimization and testing
of control genes was restricted to nonintergenic regions to avoid
potential cross-talk with tissue-specific enhancers controlling the
expression of neighboring genes. Therefore, EI precision in rec-
ognizing tissue-specific enhancers (which measures the ratio of
true positive tissue-specific enhancers in the full data set of pre-
dicted elements)

P↑ =
R+ − Rint

−

R+

represents the upper-bound estimate of the precision. By exclud-
ing the nonintergenic component of loci of test highly expressed
genes from the quantification, after that, one decreases the per-
centage of recognized test genes to Rint

+ and the corresponding
precision

P↓ =
Rint

+ − Rint
−

Rint
−

then represents the lower bound of the precision of the method.
By averaging these two values, an estimate of the real precision of
the method (P) was obtained. Also, R+ served as an estimate for
the lower-bound sensitivity of the method (Sn↓) in the de novo
recognition of tissue-specific enhancers (which measures the
probability of a tissue-specific enhancer to be detected by EI) in
cases where the corresponding gene does not belong to a specific
group of highly expressed genes.

Mapping TFs to known transcripts
TRANSFAC names of sampled TFs were used for automated (and
manually curated after that) GenBank queries to identify the
name and chromosomal location of the human gene best match-
ing each TF. For example, we were able to map the AML1 TF
matrix to the human runt-related transcription factor 1 (RUNX1)
residing at chr21 (q22.12). In total, 314 of 364 utilized TRANS-
FAC TFs were successfully mapped to human genes. In several
instances, a TF mapped to more than one gene locus (in the case
of E2F1DP2 heterodimer, the TF complex mapped to E2F1 and
TFDP2 genes; similarly, the SREBP TF mapped to both SREBF1
and SREBF2 genes); in such cases, the expression profiles were
averaged across all genes corresponding to the TF or TF complex.

Permutation analysis to identify significant tissue-specific
inter-TF interactions
The distribution of positively scoring TFBS was analyzed in tis-
sue-specific candidate enhancers independently for each tissue.
Only TFs with individual TF occurrence �5% or TF importance
�0.05 were subselected for the analysis. The number of TF–TF
pairs with the minimal and maximal inter-TF distances of five
and 100, respectively, was calculated for each pair of TFs. A total
of 10 k permutations randomizing the distribution of TF name
labels among different TFBS were performed. The total number of
TFBS for each TF as well as positions of individual TFBS was kept
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intact during the randomization. Next, a subset of TF pairs was
extracted that occur less frequently in 95% of permutation tests
than in the original distribution (corresponding to a P-value
<0.05 to observe the original distribution by chance) and that
corresponded to at least a twofold increase in their density in the
original distribution as compared with an average pair density in
permutation tests.

Assigning tissue-specific enhancer predictions to a
whole-genome data set of human–mouse noncoding ECRs
TFBS distributions were scored for 364 k previously cataloged
human/mouse conserved noncoding sequences (Prabhakar et al.
2006), and a comprehensive 1.4-M noncoding ECRs set for the
entire human genome, to identify 328 and 588 k elements, re-
spectively, that have a positive tissue-specificity score according
to EI tissue-specificity profiles. A P-value 0.05 cut-off was used for
the 364 k set that corresponds to an estimate of 0.05 false-
positive enhancer predictions per 10 kb of random sequence
(Prabhakar et al. 2006). In cases of multiple tissue associations
assigned to an element, up to three top-scoring associations were
selected with the score of at least 50% of the most top-scoring
tissue association (data available at http://www.dcode.org/EI).
The same score selection procedure was applied for the analysis
of organ specificities.
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