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We have developed a simple and efficient algorithm to identify each member of a large collection of DNA-linked
objects through the use of hybridization, and have applied it to the manufacture of randomly assembled arrays of
beads in wells. Once the algorithm has been used to determine the identity of each bead, the microarray can be used
in a wide variety of applications, including single nucleotide polymorphism genotyping and gene expression
profiling. The algorithm requires only a few labels and several sequential hybridizations to identify thousands of
different DNA sequences with great accuracy. We have decoded tens of thousands of arrays, each with 1520
sequences represented at ∼30-fold redundancy by up to ∼50,000 beads, with a median error rate of <1 × 10−4 per
bead. The approach makes use of error checking codes and provides, for the first time, a direct functional quality
control of every element of each array that is manufactured. The algorithm can be applied to any spatially fixed
collection of objects or molecules that are associated with specific DNA sequences.

Microarray technology, devised for the analysis of complex bio-
logical systems, uses the ability of a DNA strand to hybridize
specifically to its complement to extract 1000s of measurements
at a time from a single sample (Watson and Crick 1953; Southern
et al. 1992; Pease et al. 1994; Schena et al. 1995; Chee et al. 1996;
Lockhart et al. 1996; Lockhart and Winzeler 2000). Although
relatively new, this technology has enabled a variety of impor-
tant applications, for example, genome-wide quantitative analy-
sis of gene expression and large-scale single nucleotide polymor-
phism (SNP) discovery and genotyping (Chee et al. 1996; Lock-
hart et al. 1996; Wang et al. 1998; Fan et al. 2003; Hardenbol et
al. 2003; Kennedy et al. 2003; Yvert et al. 2003). Microarrays are
also beginning to play a role in the reinvention of cancer classi-
fication and drug discovery (Johnson et al. 2002; van’t Veer et al.
2002).

Conventional microarrays are manufactured by spotting or
synthesizing probes at known locations on a two-dimensional
substrate (Fodor et al. 1991; Schena et al. 1995; Holloway et al.
2002). The significance of our novel approach is that it enables
the production of randomly assembled arrays in which the loca-
tion of a probe is initially unknown (Michael et al. 1998). Ran-
dom bead loading combined with decoding avoids the need for
physical addressing of each element and thus achieves unprec-
edented levels of miniaturization and very high packing densities
by using relatively simple bulk processes (Figs. 1, 2). For example,
a typical spotted array with 100-µm center-to-center spacing has
∼400-fold lower packing density, and a photolithographically
synthesized array (Fodor et al. 1991) with 11-µm center-to-center
spacing has about fourfold lower density than that of the arrays
described here. The random assembly of 300-nm-diameter beads
in 500-nm wells has been reported, a density ∼40,000 times

higher than that of a typical spotted microarray (Michael et al.
1998).

Although randomly assembled arrays were recognized from
the outset as a potentially revolutionary approach to microarray
technology, the initial attempts to determine the location and
identity of beads could only distinguish a few codes, limiting the
usefulness of the approach (Michael et al. 1998). These initial
attempts at decoding relied on dye impregnation of beads, but
this approach suffered from variability in quantitation, lack of
stability, and other problems. A number of other schemes that
aim to encode particles directly with combinatorial codes gener-
ated by mixtures or spatial arrangements of optical signaling
molecules have similar issues (Fulton et al. 1997; Han et al. 2001;
Lockhart and Trulson 2001; Nicewarner-Pena et al. 2001; Brae-
ckmans et al. 2002; Chan et al. 2002). We sidestepped the need
for complex dye chemistries and painstaking labeling processes
by devising a novel, highly efficient decoding algorithm that uses
the specificity and reversibility of DNA hybridization.

RESULTS

Design of DNA-Based Decoding
Our algorithm uses sequential hybridizations of dye-labeled oli-
gonucleotides, or decoders, complementary to bead sequences to
create a combinatorial decoding scheme for arrays. It is distinct
from sequencing by hybridization (SBH), which has been used
successfully to characterize sequences de novo by hybridization
to all n-mers or a well-chosen subset, typically in the range of 4-
to 10-mers (Drmanac et al. 1996, 1998; Gunderson et al. 1998;
Brenner et al. 2000). Our approach uses longer sequences, each
designed to hybridize to a defined target with high specificity. It
is capable of decoding, with high accuracy, many 1000s of bead
types. Each bead type is defined by a unique DNA sequence that
is recognized by a complementary decoder.

To illustrate, we show an example of decoding eight differ-
ent bead types. We use two fluorescent labels, or states (green and
red) in combination with three sequential hybridizations, or
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stages. The sequential hybridization process is illustrated for a
single bead (bead type 2 of eight) in Figure 2A. In each of the
three stages, the bead is “colored” by hybridization to a fluores-
cently labeled decoder oligonucleotide (Fig. 2A,B). In practice, all
beads in the array are labeled simultaneously at each stage, by
exposure to a pooled set of decoders, so that the process is in-
trinsically parallel and efficient.

The combinatorial assignment of green and red within each
pool of eight decoders is shown in Figure 2C. There are three
decoder pools in total, one for each stage. The stage 1 pool has
the first four decoders colored green and the last four colored red.
The decoders in subsequent stages are labeled so that after three
stages each bead type is assigned a unique three-bit color code.
Note that the sequences of the decoders are unchanged from
stage to stage; only the fluorescent labels are varied. The bead
circled in Figure 2B has the color signature (GRG), or 010 code in
binary representation, in which G = 0 and R = 1. Its sequence can
be identified as sequence 2 by referring to the color-lookup table in
Figure 2C. Although assignment of codes to sequences is unam-
biguous after three stages, additional stages can be added for error
checking purposes (last column of Fig. 2C) to be described below.

In this simple fashion, the eight bead types are decoded with
three stages and two color labels. The approach scales exponen-
tially. If there are N bead types and k distinguishable labels, or
states, then the number of stages required is S = �logk N�. Thus, a
large number of sequences can be decoded by using only a few
labels across a few stages. For instance, four states (colors) com-
bined with eight decoding stages enables up to 65,536 (48) dif-
ferent bead types to be decoded.

There are a number of ways of creating different states. Dis-
tinct fluorescent labels can be used as described in Figure 2, or the
intensity levels of fluorescent labels can be varied to create gray-
scale states. We use a process that decodes 1520 different bead
types by using three states: two fluorescent “ON” states (FAM and
CY3 fluorescent labels) and one nonfluorescent “OFF” state. The
logarithmic relationship between the number of bead types and
the number of decode stages shows that the 1520 bead types can
be decoded in only �log3 1520� = 7 stages. In practice, we use an
additional stage to enable error checking. Without error check-
ing, a single mistake in resolving a color label in any of the
decode stages will lead to misclassification of a bead. This could
result from, for example, a weak fluorescent signal or a speck of
dust on the array.

Error Checking
The error-checking concepts that we have developed, and that
underlie the robustness of our hybridization-based approach, are
based on algorithms from digital information theory (Shannon
1948a,b; Hamming 1986). Although they are well known in
other fields, they have not, to our knowledge, previously been
applied to microarray manufacture or, indeed, more generally to
DNA hybridization. With functional testing of every element of
every array, we achieve a level of quality control that is unprec-
edented in microarray manufacture. As a result, we overcome
some of the challenges in quality control that can plague the
manufacture of ordered microarrays, which can also suffer from
random sources of error (Hubbell and Pevzner 1999; Battaglia et
al. 2000; Taylor et al. 2001; Sengupta and Tompa 2002; Shear-
stone et al. 2002; Hessner et al. 2003).

The simplest form of error checking we have used has a
parity bit and is illustrated in Figure 2C. The assigned four-bit
codes all have an even parity bit sum and are termed valid codes.
An error in a single decode stage is a one-bit error that creates an
odd parity, or invalid code. Although the parity-based approach
is effective, we have optimized error checking by designing a
more advanced scheme that assigns codes in a way that takes into
account inherent biases in error rates and enables estimation of
the misclassification rate.

In our implementation of three-state decoding, the most
common errors are transitions from an ON state, one or two, to
the OFF state, zero. Less common are transitions from OFF to ON.
Transitions from one ON state to the other ON state are ex-
tremely rare. This can be explained by the fact that such transi-
tions require two simultaneous classification errors: a mistaken
ON in one color channel and a mistaken OFF call in the other
color channel. We used these biases in error rates by designing
the decode stages so that every valid code has a fixed number of
OFF states. For example, if there are 1520 bead types and we use
three-state eight-stage decoding, then each valid code would be
designed to be OFF in exactly two stages and ON in exactly six
stages (the actual scheme used is a slight variant on this design;
see Methods). An example of a valid code would be 21110210.

With this scheme, it is theoretically impossible to misclas-
sify a code through any number of occurrences of the most com-
mon error type: a transition from an ON state to an OFF state.
The following events can lead to misclassification: a transition
from one ON state to the other, or multiple stage errors with at

Figure 1 Assembly of a random array. (A) Creation of a bead pool and assembly into ∼3-µm-diameter wells etched in optical fiber bundles. Once a
bead pool is made, it is relatively straightforward to assemble and decode large numbers of arrays. Each array contains ∼50,000 beads distributed among
1520 bead types, so that each bead type is represented at ∼30-fold redundancy. Scanning electron micrographs are shown of an unassembled and an
assembled array containing one bead per well. (B) Because individual arrays are only ∼1.4 mm in diameter, they can easily be arranged into a 96-array
matrix, designed for parallel analysis of samples in standard microtiter plates.
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least one ON-to-OFF transition and at least one OFF-to-ON tran-
sition. Both events are extremely rare. The space of all possible
color codes is divided into three categories: used valid, unused
valid, and invalid (Table 1). The unused valid codes represent
codes that could be assigned to bead types but are not currently

in use. Monitoring the number of beads
decoding to this category allows an esti-
mation of the true misclassification rate,
as described in the Methods section.
With little extra cost to the overall pro-
cess, this error checking scheme moni-
tors the rate of single state errors, mini-
mizes the number of misclassified beads,
and permits the number of misclassified
beads, one of the key determinants of
array quality, to be estimated.

Decoding of Randomly
Assembled Arrays
By using this approach, arrays of 1520
different bead types (∼50,000 total
beads) were decoded 96 at a time in the
Sentrix array matrix format. Representa-
tive examples from the decoding are
shown in Figure 3, and summary statis-
tics are presented in Table 2. Figure 3A
shows a set of hybridization images from
all eight stages of the decoding process.
High signal to noise allows the code
of the circled bead to be read by eye.
The code is 11012202, with FAM = 1,
Cy3 = 2, and OFF = 0. Furthermore, we
can identify this as a valid used code ac-
cording to the error checking scheme.
Figure 3B shows an example of decoding
data for a population of beads from a
single array imaged in the FAM channel
for one out of the eight decode stages.
The clear separation between the two
modes in the histogram indicates that
most beads can be classified unambigu-
ously as OFF or ON. Information of this
type is the input for histogram-based or
stage-by-stage decoding, which is used
for quality control of individual stages.
Actual decoding is carried out by using a
core-by-core classification algorithm,
which makes use of the fluorescence in-
tensity profile of each bead, measured in
FAM and Cy3 channels, across all eight
decode stages (Fig. 3C) to classify a bead
as ON or OFF. In the example of Figure
3C, the code is 02212110.

By using the core-by-core algo-
rithm, we have decoded many 10s of

1000s of arrays with a median random error rate of <1 � 10�4

per bead (Table 2). The rate was estimated by using the error
checking scheme summarized in Table 1. To get a more direct
measure of random error rates, we decoded a matrix of 96 arrays
twice and considered beads that were decoded to used codes in

Figure 2 Decoding process. (A) The sequential hybridization process is illustrated for a single bead,
of bead type 2. In stage 1, a complementary decoder hybridizes to the oligonucleotide probe that is
attached to the bead (for details of the procedure, see Methods). The decoder is labeled with a
fluorophore (green in stage 1, red in stage 2, and green in stage 3). The fluorescent signal is read by
imaging the entire array. The array is then dehybridized, and the process is repeated for two more
stages. (B) A scanning electron micrograph of an array of beads, artificially colored to represent three
sequential hybridization stages. The images, taken collectively, reveal a combinatorial code for each
bead. Note that the bead circled in yellow has the color signature GRG or code 010. (C) Colors, or
states, are assigned to individual decoder sequences in each stage to produce a unique combination
across stages. This signature, or code, identifies each bead type. As indicated in the parity code column,
an extra decoding stage (data not shown) can be performed to provide an error checking parity bit.
After three stages of decoding, all the beads are uniquely identified by their color.

Table 1. Distribution and Use of 6561 Codes in the Three-State, Eight-Stage System

Type Number Purpose

Used valid codes 1520 Assigned to actual beads.
Unused valid codes 272 Detect rare two-stage errors.

Estimate the number of misclassification events.
Invalid codes 4769 Detect single stage errors.

Monitor overall decode process; useful for detecting occasional catastrophic failures.
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both decoding events (average of 44,912 � 1098 beads/array).
The misclassification rate was then estimated by dividing the
number of discrepant calls by the total number of calls. This is an
upper bound on the rate, as the errors are distributed among the
two decoding events. The mean misclassification rate obtained in
this way was 3.8 � 10�5 with a 95% confidence interval of zero
to 1.8 � 10�4. The results are consistent with the estimates ob-
tained in Table 2. This analysis does not account for any system-
atic misclassification errors, but functional tests (e.g., genotyping
comparison studies with other technologies) have not identified
any systematic misclassification (data not shown).

Error Rate Impact
The error rate of <1 � 10�4 per bead has a negligible impact on
assay accuracy because of the ∼30-fold average redundancy and
fivefold minimum redundancy of each bead type (Fig. 4). The
measured decoding error rate translates to a median of fewer than
five misclassified beads per array. Therefore, the chances of more
than one random error affecting a given bead type are very low
(∼5 � 10�6). Given the fact that outlier removal is used in our
downstream processes, we estimate that a 100-fold higher aver-
age random error rate would have to occur in order to affect our
assays (the calculation assumes that the assay is affected if any
one bead type on the array has >10% of beads mis-decoded). If we
did not use an extra stage for error checking and the number of
possible codes was equal to the number of used codes, then any
single stage error would lead to misclassification of a bead. Based
on the average number of invalid codes generated by our process,
we estimate that the average misclassification rate would increase
86-fold. The average array would still perform well, but some
fraction of arrays would have unacceptably high misclassifica-
tion rates.

A fundamental difference between randomly assembled ar-
rays and conventional ordered arrays is that the number of beads
(or probes) of each type is intrinsically a random variable with a
Poisson sampling distribution for the former (Fig. 4) and is fixed
and defined for the latter. Each randomly assembled array is ef-
fectively unique, having different numbers and arrangements of
beads from array to array yet decoded by a single universal pro-
cess. This notion is accepted for “liquid arrays” (Fulton et al.
1997), but is fairly radical in the field of spatially fixed microar-
rays. Nevertheless, the advantage of having multiple beads of
each type is that the analytical assay precision is increased by
both outlier removal and averaging of replicates (using subsam-
pling of 1 to 20 beads (N) per bead type indicate that the ex-
tracted data conform to the theoretical rule of the error of the
mean decreasing as √N; P. Ng, pers. comm.). At the same time, the
random distribution of beads minimizes the chance of any local
problem affecting the overall result, increasing robustness of the
system. The only added requirement of using “unique” arrays is
that the analytical data extraction step must use a uniquely de-
fined template for each particular array. This was easy to imple-
ment as part of our data extraction software.

DISCUSSION
Our work provides a high-performance alternative to conven-
tional microarrays. It also expands the reach of microarray as-
says. For example, we have used a highly miniaturized array for-
mat to construct a 96-array matrix for processing many microar-
ray experiments cost-effectively, for ∼1500 assays at a time. This
provides much needed statistical power that is difficult and pro-
hibitively expensive to obtain by using conventional microar-
rays, and has the potential to speed the transition of microarray-
based assays to large-scale clinical application.

Figure 3 (A) Decoding images from eight sequential stages (numbered). Each image is a false-color composite of the FAM and Cy3 grayscale images
from each stage. A small region (<0.2%) of a single array is shown. The circled bead is one of up to ∼4.8 million in a single 96-array matrix. It has the
code 11012202. A total of 1728 images, each ∼5 Mb in size and containing ∼1.7 million pixels, are collected in order to decode an array matrix. (B)
Histogram of bead intensities for a single stage. The low intensity peak includes beads in the OFF state and empty wells. The higher intensity peak
includes beads in the ON state. (C) The eight-stage intensity profile of a typical individual bead (code = 02212110) in the FAM and Cy3 channels (∼100
counts of intensity are from camera DC offset).

Decoding Randomly Ordered DNA Arrays

Genome Research 873
www.genome.org

 Cold Spring Harbor Laboratory Press on May 1, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


We have used decoded arrays to create new assays for large-
scale genotyping (Fan et al. 2003) and gene expression (Yeakley
et al. 2002; Fan et al. 2004) using a universal array format. We
have also developed gene-specific probe sets for gene expression,
and demonstrated limits of detection, precision, and dynamic
range that are similar or superior to those obtained with conven-
tional microarrays (M. Chee, K. Kuhn, S. Baker, and T. McDaniel,
pers. comm.). Therefore, the technology is versatile and capable of
conducting all the types of assays that are currently read out on
conventional microarrays. For example, a wide variety of alterna-
tive genotyping assays could in principle be implemented on our
platform (Gerry et al. 1999; Pastinen et al. 2000; Hardenbol et al.
2003). As a result, this work provides the foundation for a host of
important existing applications in genomics, as well as new appli-
cations that are under development. Our technology is particularly
effective at making large numbers of arrays of a given type, and is
complementary to microarray technologies that are useful for
screening large amounts of sequence with relatively few arrays
(Chee et al. 1996; Patil et al. 2001; Nuwaysir et al. 2002).

Importantly, our technology has been proven in highly de-
manding and competitive large-scale genomics applications, in
particular SNP genotyping (Fan et al. 2003). For example, the
majority of the genotyping being carried out for the Interna-
tional HapMap Project, which aims to create a detailed map of
common genetic variation across the human genome, is being
carried out by using randomly assembled arrays manufactured by
our decoding process, in conjunction with a new highly multi-
plexed genotyping assay that we also developed (Fan et al. 2003).
The genotypes we have generated for the HapMap project are
publicly available (www.hapmap.org). We routinely achieve a
combination of call rates of >99.9% together with accuracy of
99.7% to 99.9%, with a capacity to process over a million geno-

types per day that is scalable to much higher levels (Fan et al.
2003).

Random arrays have been particularly useful for the accu-
rate, high-throughput, and cost-effective analysis of large num-
bers of samples for ∼1500 assays at a time, a need that was not
met by conventional arrays. However, if random arrays are to
realize their full potential, the capacity of the decoding scheme
must be increased to allow the analysis of 10s or 100s of 1000s of
assays per sample. Our approach to decoding is flexible and scal-
able. We have used a single decode sequence per bead, which
works well for decoding 1000s of bead types. The decoding of
100,000s of bead types by the current process would require the
synthesis of 100,000s of fluorescently labeled decoder oligos—an
expensive and time consuming task. This bottleneck can be over-
come by using multiple decoding sequences on each bead type
such that if pairs of sequences are used, up to 106 (1000 � 1000)
unique combinatoric sequences can be formed from just 2000
primary decoder sequences. By using this combinatoric ap-
proach, the decoder pools would only contain a complexity of
1000 to 2000 different sequences rather than 106 sequences.

Finally, the decoding algorithm is general and can, in prin-
ciple, be applied to any spatially fixed collection of objects or
molecules that are associated with specific DNA sequences. In
genomics, the classification and characterization of large collec-
tions of sequences is often a key step in the analysis of complex
biological systems. For example, a library of DNA clones is tradi-
tionally searched for a single gene of interest by hybridization to
a labeled DNA probe (Sambrook 1989). The approach described
here would allow a search for 1000s of genes at a time, while
distinguishing closely related members of gene families and per-
haps alternative splice forms. Similarly, electrophoretic separa-
tions of complex mixtures of nucleic acids are often probed to
characterize a gene or its mRNA (Southern 1975; Alwine et al.
1979; Liang and Pardee 1992); this can also be parallelized. Fi-

Table 2A. Quality Measures for a Random Sampling of 100
Recently Manufactured Array Matrices, Comprising a Total
of 9600 Arrays.

Average
beads

in used

Average
beads

in unused

Average
beads

in invalid

All arrays 46,576 0.14 153
Array matrix 1 48,653 0.21 202
Array matrix 2 46,872 0.29 106
Array matrix 3 48,500 0.04 70
Array matrix 4 45,367 0.09 90
Array matrix 5 44,898 0.85 252
Array matrix 6 46,549 0.77 172
Array matrix 7 46,480 0.20 106
Array matrix 8 46,596 0.17 88
Array matrix 9 46,837 0.06 84
Array matrix 10 48,260 0.04 89

The first row of the table provides averages over all arrays, and other
rows provide data on a subset of 10 randomly chosen array matrices.
The results shown are based on raw data, prior to the application of
any quality control filters.

Table 2B. Summary Statistics for the 9600 Arrays

Worst
percentile Mean

Best
percentile

Bead types decoded 1520 1520 1520
Decode efficiency 97.6% 99.6% 99.9%
Misclassification rate 1.4 � 10�4 1.2 � 10�5 0

Decode efficiency is the number of valid signatures assigned, divided
by the total number of beads in the array.

Figure 4 Bead representation histogram from a representative de-
coded array overlaid with a scaled Poisson density function. The loading
of each array is a sampling of beads from a near infinite bead pool. Almost
N ∼ 50,000 beads are sampled, and the probability, p, that a sampled
bead belongs to a particular type is approximately one divided by the
number of bead types. Because N is large, p is small, and the initial bead
pool is near infinite, the number of beads from each bead type is well
modeled by a Poisson distribution with mean Np. With 1520 bead types,
we average >30 replicate beads per bead type, and the probability that
any bead type has fewer than five replicate beads is extremely low
(∼5.5 � 10�6).
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nally, fluorescence in situ hybridization (FISH), a powerful class
of methods with many applications, could be applied to 1000s of
genes simultaneously. To illustrate, FISH with combinatorially
labeled oligonucleotide probes has been used to measure tran-
scription from 10 genes in a single cell (Levsky et al. 2002). The
decoding strategy we describe could potentially allow transcrip-
tion to be measured for all genes in a single cell.

In conclusion, we have developed a new and scalable way to
make a novel type of microarray. The highly miniaturized arrays
have performed well in a variety of applications. The decoding
approach used to make them is both accurate and robust and
can, in principle, be used to identify not only DNA sequences on
beads but also other collections of DNA sequences.

METHODS

Preparation of Oligonucleotide-Linked Beads
and Bead Pools
A set of 1536 universal capture oligonucleotide sequences was
synthesized. Each sequence was individually immobilized on
activated beads, as follows, to create 1536 bead types. Silica
beads ∼3 µm in diameter (Bangs Laboratories, Inc.) were amino
functionalized by incubation in 2.5% 3-amino-propyl-tri-
methoxysilane (Aldrich) in ethanol for 1 h at RT and then acti-
vated by reaction with 2% 2,4,6-trichloro-1,3,5-triazine (Aldrich)
in acetonitrile for 2 h at room temperature. Synthetic oligo-
nucleotides labeled at the 5� terminus with a primary amine were
covalently attached to the activated beads by overnight reaction
at 50°C in a solution of 3 M NaCl and 100 mM sodium carbonate
(pH 11). All reagents were of highest purity grade. Empirical mea-
surements indicated that, on average, each bead carried on the
order of 106 oligonucleotides. Following quality assessment, 16
of the bead types were discarded due to low signal-to-noise ratios.
The remaining bead types were combined to create a pool con-
taining 1520 functional bead types, each representing a unique
capture sequence. The sequences were designed to serve as non-
interacting decodable address sequences in addition to their
function as probes that capture assay products from solution.
They were selected to be 22 to 24 bases long with minimal cross-
complementarity, similar GC content and Tm, no runs of a single
base longer than five, and low similarity to human genomic se-
quences.

Preparation of Oligonucleotides and Pools Used
in the Decode Process
Three sets of 1520 oligonucleotides complementary to the bead
sequences were synthesized (Illumina Oligator synthesis). One
set was unlabeled (corresponding to the OFF state), another with
FAM, and a third with Cy3. The dye labels were incorporated
during oligonucleotide synthesis by using 5� phosphoramidites
(Trilink Biotechnologies). After synthesis and deprotection, each
oligonucleotide type was individually purified by using 96-well
reverse-phase cartridge purification to yield labeled products
>75% in purity. These sets of oligonucleotides were used to create
eight unique decode pools, according to the strategy described
below. Each pool contained 1520 decode sequences, each at a
concentration of 10 nM.

Design of Decoder Pools
The strategy for the design of decoder pools to enable error
checking, described in the main text, included the condition that
all valid codes have exactly two OFF states, which allows for a
maximum of 1792 codes. To enable the decoding of more bead
types, we pooled the decoders so that valid codes have either
exactly two OFF states or exactly five OFF states. The transition
events that lead to misclassification are the same as described
above, except that errors of the type (ON to OFF) or (OFF to ON)
occurring in three different stages could also lead to a misclassi-
fication event. Three errors from ON to OFF could occur if a bead

falls out of the array in the middle of decoding. To eliminate this
source of error, all codes ending in three or more OFF states were
removed from the set of valid codes. Finally, we eliminated any
codes that do not have at least one ON state in each of the color
channels that we use. The fact that each bead must show specific
signal in two color channels during the decode process provides
an additional quality check. The total number of valid color
codes in this scheme is 2012.

Assembly of Array Matrices
Array matrices were manufactured in the following way: 96 op-
tical fiber bundles were set in a rigid frame, in an 8 � 12 matrix
that matches the layout of a standard 96-well microtiter plate.
Each ∼1.4-mm-diameter hexagonally packed bundle contains
49,777 individual glass optical fibers fused together into a mono-
lithic unit. The bundles were polished at both ends to a tolerance
of ∼1 µm planarity across the entire matrix. One end served as the
imaging surface and was used for the collection of fluorescence
intensity data. The opposite end was etched in weak acid to cre-
ate a well ∼3 µm in diameter at the end of each optical fiber. The
fiber bundles were loaded by pipetting ∼0.4 µL (0.12 mg) beads in
ethanol onto the end of each bundle, allowing the ethanol to
evaporate, and removing excess beads. The assembled arrays
were quite stable. Following eight stages of decoding and an over-
night analytical hybridization (high salt at 48°C to 55°C), bead
retention was typically >97%.

Decoding
Following bead assembly, arrays were hybridized to pools of 1520
decoders, each at 10 nM in decode buffer (600 mM NaCl, 60 mM
potassium phosphate, 0.06% Tween-20, and 40% formamide at
pH 7.6), for 12 min at room temperature. Following hybridiza-
tion, three 1-min washes in wash buffer (167 mM NaCl, 16.7 mM
potassium phosphate, 0.017% Tween-20 at pH 7.6) were used to
remove unbound oligonucleotides. The arrays were then imaged
at 1.0-µm resolution by using a 12-bit, 2000 � 3000-pixel CCD
camera (Quantix 36E, Roper Scientific) and a standard achro-
matic 0.3 NA microscope imaging objective (field of view [FOV]
= 2 mm) in a custom-engineered high-throughput imaging sys-
tem (Barker et al. 2003). The imaging system uses an X, Y, Z stage
assembly and positioning and autofocus software to collect im-
ages from all 96 arrays of a Sentrix array matrix automatically.
Fluorescence excitation was performed by using a 300-W xenon
arc lamp (ILC technology) and appropriate emission/dichroic/
excitation filter sets. The FAM and Cy3 color channels were im-
aged separately. The light intensity at the sample was ∼20 to 35
mW. This imaging design minimizes spectral cross-talk between
dyes because excitation and emission are done on peak. After
imaging, the arrays were dehybridized by dipping into 0.1 N
NaOH for 1 min and were then neutralized in decode buffer. The
process of hybridization, washing, image collection, and dehy-
bridization was carried out until eight hybridization stages were
completed. The arrays were washed in water and ethanol, dried
in nitrogen, and sealed with desiccant in a foil package.

Image Processing and Data Extraction
A core corresponds to an etched well in the optical fiber bundle
and has a high probability of containing a bead. We developed
algorithms and custom image processing software to discover the
locations of cores in decode images and extract intensity data
from them (Galinsky 2003a,b). The software identified, aligned,
and indexed the cores in a process termed registration. The shift,
rotation, and scale of each image were determined relative to a
template image as part of this process. After registration, the core
indices and locations were matched across the set of decode im-
ages. Intensity information for each core was then obtained by
averaging a three-by-three-pixel region centered on the core. The
diameter of each core is approximately three microns, and each
pixel is a one micron square. Many 1000s of decoding images are
collected in a day in the production facility. Thus, an automated
image analysis pipeline was created to facilitate high-throughput
processing.
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Decoding Algorithms
We describe two algorithms used to assign decode signatures to
beads. The first is called stage-by-stage decoding. In this ap-
proach, an intensity histogram is computed for each color chan-
nel of each decode stage. The histogram is bimodal because each
stage and color channel will have beads that are in the ON state
and beads that are in the OFF state. An intensity value that sepa-
rates the ON state from the OFF state is chosen, and all cores are
assigned a zero or one, depending on whether their intensity
value is less than or greater than the separation threshold. The
values assigned for each stage and color channel are combined
into the decode signature. This algorithm is highly effective
when the OFF state population is well separated from the ON
state population. Further, the method is insensitive to shifts
caused by stage-to-stage variability in intensity.

Pseudocode for Stage-by-Stage Decoding
For each stage do

For each color channel do

1. Input the N core intensity values.
2. Compute intensity histogram using 100 bins.
3. Locate the bin with the maximum height peak within the first 25

bins, and the bin with the maximum height peak within the last 75
bins.

4. Find the bin with the minimum height peak between the two
maxima.

5. Determine C, the median intensity of the minimum height peak.
6. Label all cores with intensity lower than C with zero, and all cores

with intensity greater than C as one.

Tabulate the zero and one stage and color information into the decode
signatures.

The second algorithm is called core-by-core decoding. For
each bead and color channel, we consider the eight intensity
values across decode stages. The values are sorted, and the great-
est relative intensity increase is determined. This is the separation
between the ON and OFF states for the core. The same procedure
is repeated for all beads in both color channels. The results are
combined to give the decode signatures.

Pseudocode for Core-by-Core Decoding
For each core do

For each color channel do

1. Input the m intensity values for the core and color channel across
stages.

2. Let I1 … Im be the sorted intensity values.
3. Let Jk = (Ik+1 � Ik)/Ik, k = 1 … m � 1 be the relative intensity jump

from stage k to stage k + 1.
4. If the greatest relative jump occurs between stage K and K + 1, then

assign zero to the core in stages 1 … K, and assign one to the core
in stages K + 1 … m.

Tabulate the zero and one core and color information into the decode
signatures.

The two methods give virtually identical results. In practice,
we use the core-by-core method to decode the arrays, and obtain
quality control information from the histograms. As part of the
decoding process, quantitative metrics for array quality are out-
put automatically and can be stored in a database. All processing
and quality metric generation takes ∼20 min on a standard per-
sonal computer for a matrix of 96 arrays.

Estimation of Misclassification Rate
There are 1792 eight-stage color codes that have exactly two OFF
states. A subset of these codes, (e.g., 1520) can be randomly se-
lected and used in the design of decoder pools. The remaining
272 codes are unused. If a bead is misclassified (identified as the
wrong bead type), the error cannot be observed because the num-
ber of beads of each type is random. However, because the used

and unused color codes have the same form and are partitioned
randomly, the number of beads that decode to unused color
codes can be used to estimate the random misclassification rate.
The estimate is given by [Bunused/(Bused + Bunused)] � [(Cused � 1)/
Cunused], where Bi is the number of beads decoding to category i
and Ciis the total number of color codes in category i. In other
words, the estimate is the relative number of beads decoding to
unused codes scaled by the ratio of the number of codes in the
used and unused categories. In the current example, Cused = 1520
and Cunused = 272, but the computation is analogous for any
other decode space design.
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