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Abstract Private and public breeding programs, as well as companies and uni-
versities, have developed different genomics technologies which have resulted in
the generation of unprecedented amounts of sequence data, which bring new chal-
lenges in terms of data management, query, and analysis. The magnitude and
complexity of these datasets bring new challenges but also an opportunity to use
the data available as a whole. Detailed phenotype data, combined with increasing
amounts of genomic data, have an enormous potential to accelerate the identifi-
cation of key traits to improve our understanding of quantitative genetics. Data
harmonization enables cross-national and international comparative research, fa-
cilitating the extraction of new scientific knowledge. In this paper, we address the
complex issue of combining high dimensional and unbalanced omics data. More
specifically, we propose a covariance-based method for combining partial datasets
in the genotype to phenotype spectrum. This method can be used to combine
partially overlapping relationship/covariance matrices. Here, we show with appli-
cations that our approach might be advantageous to feature imputation based
approaches; we demonstrate how this method can be used in genomic prediction
using heterogenous marker data and also how to combine the data from multiple
phenotypic experiments to make inferences about previously unobserved trait re-
lationships. Our results demonstrate that it is possible to harmonize datasets to
improve available information across gene-banks, data repositories or other data
resources.

Keywords Multi-Omics · Phenomics · Breeding · Complex traits · Genomic
selection · · Genome-wide markers · Kernel-regression · Multiple kernel learning ·
Mixed models · Imputation · Covariance Estimation · Expectation-Maximization

Key message: Several covariance matrices obtained from independent experi-
ments can be combined as long as these matrices are partially overlapping. We
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demonstrate the usefulness of this methodology with applications in combining
data from several partially linked genotypic and phenotypic experiments.
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1 Introduction

The rapid scientific progress in these genomic approaches is due to the decrease
in genotyping costs by the development of next generation sequencing platforms
since 2007 [Mardis, 2008a,b]. High-throughput instruments are routinely used in
laboratories in basic science applications, which has led to the democratization of
genome-scale technologies, such as genomic predictions and genome-wide associat-
ing mapping studies. Genomic prediction, i.e. predicting an organism´s phenotype
using genetic information [Meuwissen et al., 2001], it is currently used by many
breeding companies, because it improves three out of the four factors affecting
the breeder equation [Hill and Mackay, 2004]. It reduces generation number, im-
proves accuracy of selection, and increases selection intensity for a fixed budget
when comparing with marker-assisted selection or phenotypic selection [Desta and
Ortiz, 2014, Heffner et al., 2011, 2010, Juliana et al., 2018, de los Campos et al.,
2013]. Genomic prediction and selection (GS) are a continuously progressing tool
that promises to help meet the human food challenges in the next decades [Crossa
et al., 2017]. Genome-wide associating mapping studies, which originated in hu-
man genetics [Bodmer, 1986, Risch and Merikangas, 1996, Visscher et al., 2017],
have also become a routine in plant breeding [Gondro et al., 2013].

The biological data generated in the last few years from this genomic progress
have grown exponentially which have led to a high dimensional and unbalanced
nature of the ’omics’ data. Data normally comes in various forms of marker and
sequence data: expression, metabolomics, microbiome, classical phenotype, image-
based phenotype [Bersanelli et al., 2016]. Private and public breeding programs, as
well as companies and universities, have developed different genomics technologies
which have resulted in the generation of unprecedented levels of sequence data,
which bring new challenges in terms of data management, query, and analysis.

It is clear that detailed phenotype data, combined with increasing amounts
of genomic data, have an enormous potential to accelerate the identification of
key traits to improve our understanding of quantitative genetics [Crossa et al.,
2017]. Nevertheless, one of the challenges that still needs to be addressed is the
incompleteness inherent in these data, i.e., several types of genomic/phenotypic
information covering only a few of the genotypes under study [Berger et al., 2013].
Data harmonization enables cross-national and international comparative research,
as well allows the investigation of whether or not datasets have similarities. In this
paper, we address the complex issue of utilizing the high dimensional and unbal-
anced omics data by combining the relationship information from multiple data
sources, and how we can facilitate data integration from interdisciplinary research.
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The increase of sample size and the improvement of generalizability and validity
of research results constitute the most significant benefits of the harmonization
process. The ability to effectively harmonize data from different studies and ex-
periments facilitates the rapid extraction of new scientific knowledge.

One way to approach the incompleteness and the disconnection among datasets
is to combine the relationship information learned from these datasets. The statis-
tical problem addressed in this paper is the calculation of a combined covariance
matrix from incomplete and partially overlapping pieces of covariance matrices
that were obtained from independent experiments. We assume that the data is a
random sample of partial covariance matrices from a Wishart distribution, then
we derive the expectation-maximization algorithm for estimating the parameters
of this distribution. According to our best knowledge no such statistical method-
ology exists, although the proposed method has been inspired by similar methods
such as (conditional) iterative proportional fitting for the Gaussian distribution
[Cramer, 1998, 2000] and a method for combining a pedigree relationship matrix
and a genotypic matrix relationship matrix which includes a subset of genotypes
from the pedigree-based matrix [Legarra et al., 2009] (namely, the H-matrix). The
applications in this paper are chosen in the area of plant breeding and genetics.
However, the statistical method is applicable much beyond the described applica-
tions in this article.

Integration of heterogeneous and large omics data constitutes a challenge and
an increasing number of scientific studies address this issue. A brief review and
classification of some promising statistical approaches are described in Bersanelli
et al. [2016]. According to this article, our covariance based method falls in the
network based data integration category (as opposed to non-network based meth-
ods such as feature imputation) which include popular methods such as similarity
network fusion Wang et al. [2014], weighted multiplex networks Menichetti et al.
[2014] both of which can be used to combine several complete networks by suit-
able weighting. The main breakthrough here is that the proposed method in this
article can be used to combine several incomplete but partially overlapping net-
works and that the proposed approach is supported theoretically by the maximum
likelihood formalization.

2 Methods and Materials

2.1 Statistical methods for combining incomplete data

2.1.1 Imputation

The standard method of dealing with heterogeneous data involves the imputation
of features [Shrive et al., 2006]. If the datasets to be combined overlap over a
substantial number of features then the unobserved features in these datasets can
be accurately imputed based on some imputation method [Bertsimas et al., 2017].

Imputation step can be done using many different methods: Several popular ap-
proaches include Beagle [Browning and Browning, 2016], random forest [Breiman,
2001] imputation, expectation maximization based imputation [Endelman, 2011],
low-rank matrix factorization methods that are implemented in the R package
[Hastie and Mazumder, 2015]. In addition, parental information can be used to
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improve imputation accuracies [Nicolazzi et al., 2013, Gonen et al., 2018, Van-
Raden et al., 2015, Browning and Browning, 2009]. In this study, we used the
low-rank matrix factorization method in all of the applications which included an
imputation step. The selection of this method was due to computational burden
of the other alternatives.

2.1.2 Combining genomic relationship matrices

In this section, we describe the Wishart EM-Algorithm for combining partial ge-
netic relationship matrices1.
Wishart EM-Algorithm for Estimation of a Combined Relationship Matrix

from Partial Samples

Let A = {a1, a2, . . . , am} be the set of not necessarily disjoint subsets of
genotypes covering a set of K (i.e., K = ∪mi=1ai) with total n genotypes. Let
Ga1 , Ga2 , . . . , Gam be the corresponding sample of genetic relationship matrices
(kernels).

Starting from an initial estimate of the genetic relationship matrix Σ(0) =
νΨ (0), the Wishart EM-Algorithm repeats updating the estimate of the genetic
relationship matrix until convergence:

Ψ (t+1) =
1

νm

∑
a∈A

Pa

[
Gaa Gaa(B

(t)
b|a)′

B
(t)
b|aGaa νΨ

(t)
bb|a +B

(t)
b|aGaa(B

(t)
b|a)′

]
P ′a (1)

where B
(t)
b|a = Ψ

(t)
ab (Ψ

(t)
aa )−1, Ψ

(t)
bb|a = Ψ

(t)
bb −Ψ

(t)
ab (Ψ

(t)
aa )−1Ψ

(t)
ba , a is the set of genotypes

in the given partial genomic relationship matrix and b is the set difference of K
and a. The matrices Pa are permutation matrices that put each matrix in the sum
in the same order. The initial value, Σ(0) is usually assumed to be an identity
matrix of dimesion n. The superscripts in parenthesis ’(t)’ denote the iteration
number. The estimate Ψ (T ) at the last iteration converts to the estimated genomic
relationship with Σ(T ) = νΨ (T ).

A weighted version of this algorithm can be obtained replacing Gaa in Equa-

tion 1 with G
(wa)
aa = waGaa+(1−wa)νΨ (T ) for a vector of weights (w1, w2, . . . , wm)′.

Derivation of the Wishart-EM algorithm and and its asymptotic errors are
given in Supplementary.

2.2 Materials: datasets and experiments.

In this section, we describe the datasets and the experiments we have designed to
explore and exploit the Wishart EM-Algorithm.

Note that the applications in the main text involve real datasets and valida-
tion with such data can only be as good as the ground truth known about the

1 In what follows, we will refer to genetic relationship matrices that measure how genotypes
are related (See Supplementary Section 5.3 for a description of how to calculate a genetic rela-
tionship matrix from genome-wide markers (genomic relationship matrix)). However, a theme
in this article is that a genetic relationship matrix is a special kind of covariance matrix. There-
fore, the same arguments below apply to covariance matrices that measure the relationship
between traits or features.
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underlying system. We also included several simulation studies in the Supplemen-
tary (Supplementary Applications 1 and 2) using simulated data to show that the
algorithm performs as expected (maximizes the likelihood and provides a ’good’
estimate of the parameter values) when the ground truth is known.
Application 1- Potato dataset; when imputation is not an option. Anchoring

independent pedigree-based relationship matrices using a genotypic relation

matrix

The Wishart EM-Algorithm can be used when the imputation of the original
genomic features is not feasible. For instance, it can be used to combine partial
pedigree-based relationship matrices with marker-based genomic relationship ma-
trices. In this application, we demonstrate that genomic relationship matrices can
be used to connect several pedigree-based relationship matrices.

The dataset is cited in [Endelman et al., 2018] and is available in the R Pack-
age AGHmatrix [Rampazo Amadeu et al., 2016]. It consists of the pedigree of
1138 potato genotypes, 571 of these genotypes also have data for 3895 tetraploid
markers. The pedigree-based relationship matrix A was calculated with R package
AGHmatrix [Rampazo Amadeu et al., 2016] using pedigree records, there were 185
founders (clones with no parent).

At each instance of the experiment, two non-overlapping pedigree-based rela-
tionship matrices each with the sample size Nped ∈ {100, 150, 250} genotypes se-
lected at random from the were 571 genotypes were generated. In addition, a geno-
typic relationship matrix was obtained for a random sample of Ngeno ∈ {20, 40, 80}
genotypes selected at random half from the genotypes in the first pedigree and a
half from the genotypes from the second pedigree. These genetic relationship ma-
trices were combined to get a combined genetic relationship matrix (See Figure 1).
This combined relationship matrix was compared to the pedigree-based relation-
ship matrix of the corresponding genotypes using mean squared errors and Pear-
son’s correlations. This experiment was repeated 30 times for each Ngeno,Nped

pair.
Application 2 - Rice dataset. Combining independent low density marker

datasets

Rice dataset was downloaded from www.ricediversity.org. After curation, the
marker dataset consisted of 1127 genotypes observed for 387161 markers. We treat
the totality of information as the ground truth, i.e., we assume that the true ge-
nomic relationship for the 1127 genotypes is characterized by the 387161 markers.
The purpose of this application is demonstrate that we can make inferences about
the assumed true genomic relationship matrix by observing several smaller het-
erogeneous subsets of the available. This involves inferring a common estimate
for the relationships that are already observed and producing estimates for rela-
tionships that haven’t been observed. Supplementary Figure S5 demonstrate this
experiment pictorially.

In each instance of the experiment, NKernel ∈ {3, 5, 10, 20, 40, 80} marker
datasets with 200 genotypes and 2000 markers were created by randomly sampling
the genotypes and markers in each genotype file. These datasets were combined
using the Wishart EM-Algorithm and also by imputation to give two genomic rela-
tionship matrices. For the totality of genotypes in these combined datasets, we also
randomly sampled 2000, 5000 or 10000 markers and calculated the genomic rela-
tionships based on these marker subsets. All of these genomic relationship matrices
were compared with the corresponding elements of the relationship matrix based
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Fig. 1 Application 1: At each replication of the experiment, in pink two non-overlapping
pedigree-based relationship matrices are selected at random (20 individuals each) from the
571 genotypes. In green, a genomic relationship matrix obtained from a random sample of
genotypes, half from the genotypes in the first pedigree (10) and half from the genotypes from
the second pedigree (10). These three relationship matrices were combined to get a combined
relationship matrix (in blue).

on the entire genomic data by calculating the mean squared error between the
upper diagonal elements including the diagonals. This experiment was replicated
20 times. Application results are showed in Figure 7.

Application 3 - Wheat Data at Triticeae Toolbox. Combining genomic

datasets to use in genomic prediction.

This application involves estimating breeding values for seven economically
important traits for 9102 wheat lines obtained by combining 16 publicly available
genotypic datasets. The genotypic and phenotypic data were downloaded from the
Triticeae toolbox database. Each of the marker datasets were pre-processed to pro-
duce the corresponding genomic relationship matrices. Table 1 and Supplementary
Figure S7 describes the phenotypic records and number of distinct genotypes for
each trait.

Using the combined relationship matrix we can build genomic prediction mod-
els. To test the performance of predictions based on the combined relationship ma-
trix, we formulated two cross-validation scenarios. The intersection of genotypes
among the 16 genotypic experiments is shown in Figure 2 and the intersection of
common markers among genotypic experiments in Figure 3.

– Cross-validation scenario 1

The first scenario involved a 10 fold cross-validation based on a random split
of the data. For each trait, the available genotypes were split into 10 random
folds. The GEBVs for each fold were estimated from a mixed model (see Sup-
plementary Section 5.4 for a description of this model) that was trained on the
phenotypes available for the remaining genotypes. The accuracy of the predic-
tions was evaluated by calculating the correlations between the GEBVs and
the observed trait values.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2020. ; https://doi.org/10.1101/857425doi: bioRxiv preprint 

https://doi.org/10.1101/857425
http://creativecommons.org/licenses/by-nc-nd/4.0/


Combining multi-omics data 7

Table 1 Marker datasets from Triticeae Toolbox: Labels and names for the datasets, number
of genotypes and markers in each of the selected 16 genotypic datasets.

Label Data # Genotypes # Markers
d1 2012 SRWW ElitePanel 276 90782
d2 2014 HAPMAP 53 180198
d3 2014 SRWW YNVP 307 109073
d4 2014 TCAPABBSRWMID 365 100340
d5 CornellMaster 2013 1128 18846
d6 Dart NebDuplicates 2010 278 1970
d7 HWWAMP 2013 288 32288
d8 HWWAMP 2014 311 265551
d9 NSGC9k spring 2196 5303

d10 NSGC9k winter 1674 5010
d11 TCAP90k HWWAMP SPRN 20 16842
d12 TCAP90k LeafRust 339 24610
d13 TCAP90k NAMparents 60 25851
d14 TCAP90k SpringAm 248 24343
d15 TCAP90k SWW 317 24978
d16 WWDP9k 2258 6232

– Cross-validation scenario 2 Here, we performed a leave one dataset out cross-
validation. i.e. we leave out the phenotypic records of the associated genotypes
in one of the 16 genomic datasets and then estimate the trait values of those
genotypes based on the basis of a mixed trained model. The training population
was built on the remaining genotypes and phenotypic information after leaving
the phenotypic records out. This scenario was used for each trait, and the
accuracies were evaluated by calculating the correlations between the estimated
and the observed trait values within each dataset.
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Fig. 2 Intersection of genotypes among 16 genotypic experiments. The number of common
genotypes among the 16 genotypic datasets are given on the lower diagonal, no intersection
is marked by ’X’. Upper diagonal of the figure gives a graphical representation of the same,
larger circles represent higher number of intersections.

Application 4 - Wheat Data at Triticeae Toolbox. Combining Phenotypic

Experiments

The Wishart EM-Algorithm can also be used to combine correlation matrices2

obtained from independent phenotypic experiments. One-hundred forty four phe-
notypic experiments involving 95 traits in total were selected from 2084 trials and
216 traits available at the Triticeae Toolbox. In this filtered set of trials, each trial
and trait combination had at least 100 observations and two traits. Furthermore,
the percentage of missingness in these datasets was at most 70%. The mean and
the median of the number of traits in these trials were 5.9 and 4 correspondingly
(See Figure 5 and Supplementary Figure S6).

The correlation matrix for the traits in each trial was calculated and then
combined using the Wishart EM-Algorithm. The resulting covariance matrix was
used in learning a directed acyclic graph (DAG) using the qgraph R Package
[Epskamp et al., 2012].

A more advanced application that involved combining the phenotypic correla-
tion matrices from oat (78 correlation matrices), barley (143 correlation matrices)
and wheat (144 correlation matrices) datasets downloaded and selected in a sim-

2 We used correlations instead of covariances because the phenotypic experiments were very
heterogeneous in terms of the variances of the different traits.
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ilar way as above were combined to obtain the DAG involving 196 traits in the
Supplementary (Supplementary Application 6.1).

3 Results

Application 1- When imputation is not an option: Anchoring independent

pedigree-based relationship matrices using a genotypic relation matrix -

Potato Data

Figure 6 shows the correlation correlation and mean squared error (MSE) re-
sults as either of the sizes of the pedigree matrices and the number of genotypes
in the genomic relationship matrices increases. The MSE results for these experi-
ments ranged from 0.004 to 0.017 with a mean of 0.009, and the correlation values
ranged from 0.52 to 0.94 with a mean of 0.78.
Application 2 - Rice dataset. Combining independent low density marker

datasets

The MSE and correlation results for this experiment are given in Figure 7. In
general, as the number of independent datasets increases the accuracy of the all of
the methods/scenarios increases (decreasing MSEs and increasing correlations). In
general, the accuracy of the Wishart EM-algorithm in terms of MSEs ranged from
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Fig. 4 Availability of phenotypic data for the genotypes in 16 genotypic datasets for 10 traits.
Here we indicated the traits with most phenotypic records for the genotypes in the 16 genotypic
datasets.Plant height, grain yield, and heading time are the most measured trait across all the
environments. Some trials have few measures. This graph shows the unbalanced and the need
for harmonization of datasets.

0.0003 to 0.028 with a mean value of 0.0007. The accuracies measured in correlation
ranged from 0.989 to 0.998 with a mean value of 0.995. For the imputation based
method MSEs ranged from 0.014 to 0.028 (mean 0.019) and the correlations ranged
from 0.805 to 0.970 (mean 0.920).

Figure 8 displays the scatter plot of full genomic relationship matrix (obtained
using all 387161 markers) against the one obtained by combining a sample of par-
tial relationship matrices (200 randomly selected genotypes and 2000 randomly
selected markers each) over varying numbers of samples (3, 5, 10, 20, 40, and
80 partial relationship matrices). Observed parts (observed-diaginal and observed
non-diagonal) of the genomic relationship matrix can be predicted with high accu-
racy and no bias. As the sample size increase, the estimates get closer to the one
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Fig. 5 Application 4: Availability of data in 144 phenotypic trials and 95 traits at Triticeae
Toolbox for wheat. Yellow shows available data, blue shows unavailable data. The traits and
trials are sorted based on availability. Plant height was the most commonly observed trait
followed by grain yield.

obtained using all of the data. We observe that the estimates of the unobserved
parts of the relationship are biased towards zero but his bias quickly decreases as
the sample size increases.

Application 3 - Wheat Data at Triticeae Toolbox. Combining genomic

datasets to use in genomic prediction

The results summarized by Figure 9 indicate that when a random sample
of genotypes are selected for the test population, the accuracy of the genomic
predictions using the combined genomic relationship matrix can be high (Cross-
validation scenario 1). Average accuracy for estimating plant height was about
0.68, and for yield 0.58. Lowest accuracy values were for test weight with a mean
value of 0.48.. The performance decreases significantly across population predic-
tions (Cross-validation scenario 2). Certain populations were harder to predict, for
example, d5, d6, d9. On the other hand, some populations were easier to predict,
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Figure 6b

Fig. 6 Application 1: For the purpose of this application, the pedigree was split into two
pieces although there is only one pedigree. The number of top of the figure is the number of
genotypes in each pedigree. Here, we do not know the relationship between one of the pedigree
to the another. To learn the relationship between the two , we take 10, 20, 30 and 40 individuals
from each group and genotype them by next generation sequencing. The mean square errors
and correlation values are the comparison between the two non-overlapping pedigree-based
relationship matrices from each sample size, i.e 100 individuals from 50 pedigree based one,
and the combined relationship matrix that had 10, 20, 30 and 40 genotypes in each of the
pedigrees.

for instance, from d12 to d16. Average accuracy for estimating plant height was
about 0.30, for yield 0.28.
Application 4 - Wheat Data at Triticeae Toolbox- Combining Phenotypic

Experiments In this application, we combined correlation matrices obtained from
independent phenotypic experiments. Figures 10 and S3 displayed the correlation
matrix for the traits in a directed acyclic graph (DAG) and in a heatmap, re-
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Fig. 7 Application 2: Here, we compare marker imputation with our combining relationships
matrices approach. Mean square errors and correlations values between the estimated and full
genomic relationship matrices are displayed in the boxplots above. The combined relationship
matrix (CK) predicts the structure of the population more accurately than the relationship
matrix obtained by imputing the genomic features. In addition, when we compare the combined
relationship matrix obtained from partially overlapping marker data sets to the relationship
matrices obtained from data with a fixed number of markers (2000, 5000, 10000) observed on
all individuals we see that combined kernel can be more accurate when the number of partially
overlapping marker data sets is large.

spectively. In Figure 10 each node represents a trait and each edge represents a
correlation between two traits. One of the strength on this representation, is that
you can elucidate the correlation between traits that you did not measured in
your experiment. For example, among all the traits, grain width (GW) and above
ground biomass (Above bm) are positive correlated (blue arrows) with grain yield.
In turn, GW is highly positive correlated with biomass at maturity (Biomass M)
but negative correlated with harvest index (HI). Negative correlations (red) can
also be observed among traits. Traditional inverse correlations such as protein
(WGP) and GW can be also observed.

Combining datasets by correlation matrices also help to group traits. Figure S3
shows two groups of positively traits. The traits in these two groups are positively
correlated within the group but negatively correlated with traits in other groups.
For instance, we see that yield related traits such as grain yield, grain weight
or harvest index, are positively correlated. On the other hand these traits are
negatively correlated with disease related traits such as bacterial leaf streak, stripe
rust traits and also with quality traits such as protein and nutrient content.
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Fig. 8 Application 2: Scatter plot of the lower triangular elements of the combined kernel
against the kernel calculated from all available markers (Observed). As the number of in-
complete datasets increases, both observed and unobserved parts of the relationship can be
estimated more precisely. Yellow dots: Genotype relationships that are inferred (not observed
in any of the partial relationship matrices that are being combined). Red dots: Diagonal el-
ements of the genotypic relationship matrix. Green dots: Genotype relationships that were
observed in one or more of the partial relationship matrices.
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Fig. 9 Application 3: Cross-validation scenario 1 is showed in a. For each trait, the available
genotypes were split into 10 random folds. The GEBVs for each fold were estimated from a
mixed model (See Supplementary Section 5.4 for a description of this model) that was trained
on the phenotypes available for the remaining genotypes. Cross-validation scenario 2 is showed
in b. Genotypes in each genotypic data are the test and the remaining genotypes are training.
In this case, each data that was predicted was also marked on the boxplots. For instance, for
plant height, we can predict the phenotypes for the genotypes in d16 with high accuracy when
we use the phenotypes of the remaining genotypes as training dataset; on the other hand,
we have about zero accuracy when we try to estimate the phenotypes for the genotypes in
d10. The accuracy of the predictions under both scenarios were evaluated by calculating the
correlations between the GEBVs and the observed trait values.

4 Discussion and conclusions

Genomic data are now relatively inexpensive to collect and phenotypes remain to
be the primary way to define organisms [Lehner, 2013]. Many genotyping technolo-
gies exist and these technologies evolve which leads to heterogeneity of genomic
data across independent experiments [Masseroli et al., 2016, Townend, 2018, Lüth
et al., 2018]. Similarly, phenotypic experiments, due to the high relative cost of
phenotyping, usually can focus only on a set of key traits of interest. Therefore,
when looking over several phenotypic datasets, the usual case is that these datasets
are extremely heterogeneous and incomplete, and the data from these experiments
accumulate in databases [Maiella et al., 2018, Alaux et al., 2018].

This presents a challenge but also an opportunity to make the most of ge-
nomic/phenotypic data in the future. In the long term, such databases of geno-
typic and phenotypic information will be invaluable to scientists as they seek to
understand complex biological organisms. Issues and opportunities are beginning
to emerge, like the promise of gathering phenotypical knowledge from totally in-
dependent datasets for meta-analyses.

To address the challenges of genomic and phenotypic data integration [Surava-
jhala et al., 2016, Stark et al., 2019], we developed a simple and efficient approach
for integrating data from multiple sources. This method can be used to combine
information from multiple experiments across all levels of the biological hierar-
chy such as microarray, gene expression, microfluidics, and proteomics will help
scientists to discover new information and to develop new approaches.
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Fig. 10 Application 4: Combining the phenotypic correlation matrices from 144 wheat
datasets covering 95 traits and illustrating the relationships between traits using the directed
acyclic graph as a tool to explore the underlying relationships. Each node represents a trait and
each edge represents a correlation between two traits. Blue edges indicate positive correlations,
red edges indicate negative correlations, and the width and color of the edges correspond to the
absolute value of the correlations: the higher the correlation, the thicker and more saturated
is the edge.
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For example, Figure 7 shows that we can estimate the full genomic relationship
matrix more precisely from 10 independent partially overlapping datasets of 200
genotypes and 2000 markers each than estimating from a dataset (for the com-
bined set of genotypes) that has 2000 fixed markers. Twenty independent genomic
datasets of 200 genotypes and 2000 markers is as good as one genomic dataset
with 5000 markers. When we compare it to the rest of the entries, imputation is
the least effective for estimating the unobserved parts of the genomic relationship
matrix. This suggests that accounting for incomplete genetic relationships would
be a more promising approach than estimating the genomic features by imputation
and then calculating the genomic relationship matrix.

Figure 6 shows we can accurately estimate the unobserved relationships among
the genotypes in two independent pedigree based relationship matrices by geno-
typing a small proportion of the genotypes in these datasets. For instance, the
mean correlation for the worst case setting (50 genotypes in each pedigree and 10
from each of the pedigree genotyped) was 0.72. This value increased all the way
up to 0.94 for the best case (250 genotypes in each pedigree and 40 from each of
the pedigree genotyped).

The selection in GS is based on GEBVs and a common approach to obtaining
them involves the use of a linear mixed model with a marker-based additive rela-
tionship matrix. If the phenotypic information corresponding to the genotypes in
one or more of the component matrices are missing then the genotypic value esti-
mates can be obtained using the available phenotypic information. In this sense,
the combined genomic information links all the genotypes and the experiments.

Imputation has been the preferred method when dealing with incomplete and
datasets [Browning, 2008, Browning and Browning, 2009, Howie et al., 2011, Druet
et al., 2014, Erbe et al., 2016]. However, imputation can be inaccurate if the data
is very heterogeneous [Van Buuren et al., 2011]. In these cases, as seen in appli-
cations above, the proposed approach which uses the relationships instead of the
actual features seems to outperform imputation for inferring genomic relationships.
Besides, the methods introduced in this article are useful even when imputation
is not feasible. For example, two partially overlapping relationship matrices, one
pedigree-based and the other can be combined to make inferences about the ge-
netic similarities of genotypes in both of these datasets ( Figure 6).

There are also limitations to our approach. In particular, when we combine
data using relationship matrices original features (markers) are not imputed. Our
method may not be the best option when inferences about genomic features are
needed, such as in GWAS. We can address this issue by imputing the missing
features using the combined relationship matrix, for instance, using a k-nearest
neighbor imputation [Hastie et al., 2001] or by kernel smoothing. Moreover, if the
marker data in the independent genomic studies can be mapped to local genomic
regions, then the combined relationship matrices can be obtained for these ge-
nomic regions separately. Then a kernel based model such as the ones in Yang
et al. [2008], Akdemir and Jannink [2015] can be used for association testing. The
nature of missingness in data will affect our algorithms performance. Inference
based on approaches that ignore the missing data mechanisms are valid for miss-
ing completely at random, missing at random but probably not for not missing at
random [Little and Rubin, 2002, Rubin, 1976].
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4.1 Software and data availability

The software was written using C++ and R and an R (R Core Team [2019] ) pack-
age CovCombR [Akdemir et al., 2020] is made available publicly. The code and
data for replicating some of the analysis can be requested from the corresponding
author.
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Supplementary Materials: Adventures in Multi-Omics I:
Combining heterogeneous datasets via relationships

5 Supplementary Methods

5.1 Wishart EM-Algorithm

The Wishart EM-Algorithm maximizes the likelihood function for a random sam-
ple of incomplete observations from a Wishart distribution with fixed degrees of
freedom since it is an EM-Algorithm [Dempster et al., 1977, 1981]. To the best
of our knowledge, this is the first study that derives the EM-Algorithm for the
following case. Let Ga1 , Ga2 , . . . , Gam be independent and partial realizations from
a Wishart distribution with a known degrees of freedom ν > n and covariance
parameter Ψ = Σ/ν. Expectation of each Ga is therefore equal to Σa.

The likelihood function for the observed data can be written as

L(Ψ |ν,Ga1 , Ga2 , . . . , Gam) =
m∏
i=1

W (Gai |ν,Σai)

=
m∏
i=1

|Gai |(ν−ki−1)/2 exp(−1
2 tr(Ψ

−1Gai))(
2νki/2πki(ki−1)/4

∏ki
j=1 Γ (ν+1−j

2 )
)
|Ψai |ν/2

The log-likelihood function with the constant terms combined in c is given by

l(Ψ |ν,Ga1a1 , Ga2a2 , . . . , Gamam) = c− 1

2

m∑
i=1

[
tr(Ψ−1

ai Gai)) + νlog|Ψai |
]
.

Complementing each of the observed data with the missing data components GB =
(Gab, Gb), we can write the log-likelihood for the complete data up to a constant
term as follows:

`c(Ψ |ν,Ga1 , Ga2 , . . . , Gam , GB1
, GB2

, . . . , GBm
)

=
v − n− 1

2
(
m∑
i=1

log|Gai |

+
m∑
i=1

|Gbi −G
′
abiG

−1
ai Gabi |)

−v
2

(
m∑
i=1

log|Ψai |

+
m∑
i=1

log|Ψbi − Ψ
′
abiΨ

−1
ai Ψabi |)

−1

2
tr(Ψ−1

m∑
i=1

Gi)
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The expectation step of the EM-Algorithm involves calculating the expectation
of the complete data log-likelihood conditional on observed data and the value of
Ψ at iteration t which we denote by Ψ (t).

E
[
`c(Ψ |ν,Ga1 , Ga2 , . . . , Gam , GB1

, GB2
, . . . , GBm

)|Ga1 , Ga2 , . . . , Gam , Ψ
(t)
]

=
v − n− 1

2
(
m∑
i=1

log|Gai |

+
m∑
i=1

|Ψ (t)
bi
− Ψ (t)′

abiΨ
(t)−1

ai Ψ
(t)
abi
|)

−vm
2
log|Ψ |

−1

2
tr(Ψ−1

m∑
i=1

E
[
Gi|Gai , Ψ

(t)
]
)

The maximization step of the EM algorithm which updates Ψ (t) to Ψ (t+1) by find-
ing Ψ that maximizes the expected complete data log-likelihood. (Using [Anderson,
1984b, Lemma 3.3.2]) The solution is given by:

Ψ (t+1) =

∑m
i=1E

[
Gi|Gai , Ψ (t)

]
vm

.

We need to calculate E
[
Gi|Gai , Ψ (t)

]
for each i. G is partitioned as[

Ga Gab
G′ab Gb

]
.

We assume a similar partitioning for Ψ.

Firstly, E
[
Ga|Gai , Ψ (t)

]
is Ga. Secondly, Gab|Gai , Ψ (t) has a matrix-variate

normal distribution with mean GaΨ
(t)
a
−1
Ψ

(t)
ab (the covariance of the vectorized

form is given by Ga ⊗ (Ψ
(t)
b − Ψ (t)′

abΨ
(t)−1
a Ψ

(t)
ab ).).

To calculate the expectation of Gb, note that we can write this term as
Gb = (Gb − G′abG

−1
a Gab) + G′abG

−1
a Gab The distribution of the first term is in-

dependent of Ga and Gab and is a Wishart distribution with degrees of freedom

ν−na and covariance parameter Ψ
(t)
b −Ψ

(t)′
abΨ

(t)−1
a Ψ

(t)
ab . The second term is an in-

ner product (G
− 1

2
a Gab)

′(G
− 1

2
a Gab). The distribution of G

− 1
2

a Gab is a matrix-variate

normal distribution with mean G
1
2
a Ψ

(t)
a
−1
Ψ

(t)
ab and covariance is given by Ψ

(t)
b −

Ψ (t)′
abΨ

(t)−1
a Ψ

(t)
ab , Ina for the columns and rows correspondingly. The expectation

of this inner-product is Ψ (t)′
abΨ

(t)−1
a Ga + na(Ψ

(t)
b − Ψ (t)′

abΨ
(t)−1
a Ψ

(t)
ab ). Therefore,

the expected value of Gb given Ga, Ψ
(t) is Ψ (t)′

abΨ
(t)−1
a GaΨ

(t)−1
a Ψ (t)

ab + na(Ψ
(t)
b −

Ψ (t)′
abΨ

(t)−1
a Ψ

(t)
ab )+(ν−na)(Ψ

(t)
b −Ψ

(t)′
abΨ

(t)−1
a Ψ

(t)
ab ) = ν(Ψ

(t)
b −Ψ

(t)′
abΨ

(t)−1
a Ψ

(t)
ab )+

Ψ (t)′
abΨ

(t)−1
a GaΨ

(t)−1
a Ψ (t)

ab. This leads to the update equation:

Ψ (t+1) =
1

νm

∑
a∈A

Pa

[
Gaa Gaa(B

(t)
b|a)′

B
(t)
b|aGaa νΨ

(t)
bb|a +B

(t)
b|aGaa(B

(t)
b|a)′

]
P ′a (S1)
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where B
(t)
b|a = Ψ

(t)
ab (Ψ

(t)
aa )−1, Ψ

(t)
bb|a = Ψ

(t)
bb −Ψ

(t)
ab (Ψ

(t)
aa )−1Ψ

(t)
ba , a is the set of genotypes

in the given partial genomic relationship matrix and b is the set difference of K
and a. The matrices Pa are permutation matrices that put each matrix in the sum
in the same order. The initial value, Σ(0) is usually assumed to be an identity
matrix of dimension n.

During the steps of the Wishart EM-Algorithm we might encounter a matrix
Ψ which is not positive definite. There are two strategies to deal with this case:
1) allow Ψ to be non definite but replace it with a near positive definite matrix
after last iteration, 2) force Ψ to be positive definite at each iteration by replacing
it with a near positive definite matrix. We have used the second approach in our
implementations.

Asymptotic standard errors

Once the maximizer of l(Ψ), Ψ̂ , has been found, the asymptotic standard errors
can be calculated from the information matrix of Ψ evaluated at Ψ̂ . The log-
likelihood is given by:

l(Ψ) = c− 1

2

m∑
i=1

[
tr(Ψ−1

ai Gai)) + νlog|Ψai |
]
.

First derivative with respect to the jkth element of Ψ is given by

∂l(Ψ)

∂ψjk
=

1

2

m∑
i=1

[
tr(Ψ−1

ai
∂Ψai
∂ψjk

Ψ−1
ai Gai)− νtr(Ψ

−1
ai

∂Ψai
∂ψjk

)

]

The derivative of the above with respect to the lhth element of Ψ is given by

∂2l(Ψ)

∂ψjk∂ψlh
=

1

2

m∑
i=1

[
(−2tr(Ψ−1

ai
∂Ψai
∂ψjk

Ψ−1
ai

∂Ψai
∂ψlh

Ψ−1
ai Gai) + νtr(Ψ−1

ai
∂Ψai
∂ψjk

Ψ−1
ai

∂Ψai
∂ψlh

)

]

Expected value of the second derivative is given by

E(
∂2l(Ψ)

∂ψjk∂ψlh
|Ψ = Ψ̂)

=
1

2

m∑
i=1

[
(−2tr(Ψ̂−1

ai
∂Ψai
∂ψjk

Ψ̂−1
ai

∂Ψai
∂ψlh

Ψ̂−1
ai E(Gai |Ψ = Ψ̂)) + νtr(Ψ̂−1

ai
∂Ψai
∂ψjk

Ψ̂−1
ai

∂Ψai
∂ψlh

)

]

= −v
2

m∑
i=1

[
tr(Ψ̂−1

ai
∂Ψai
∂ψjk

Ψ̂−1
ai

∂Ψai
∂ψlh

)

]

Therefore, the information matrix is given by

{I(Ψ)}jk,lh = {−E(
∂2l(Ψ)

∂ψjk∂ψlh
|Ψ = Ψ̂)}jk,lh =

v

2

m∑
i=1

[
tr(Ψ̂−1

ai
∂Ψai
∂ψjk

Ψ̂−1
ai

∂Ψai
∂ψlh

)

]
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5.2 Some Properties of Matrix Normal and Wishart Distribution

The following results and their derivations are given in classic multivariate statis-
tics textbooks such as [Anderson, 1984a] and [Gupta and Nagar, 2000, Kollo and
von Rosen, 2006] and are used in the derivation of the Wishart EM-Algorithm.

– [Kollo and von Rosen, 2006, Theorem 2.2.9] Let X ∼ Np,n(M,Σ, Ψ). Then,
E[XAX ′] = tr(ΨA)Σ +MAM ′.

– [Kollo and von Rosen, 2006, Theorem 2.4.12.]Let G ∼ Wn(ν, Ψ) with Ψ and
ν > n.

– Density

p(G) =Wν(G|Ψ) =
|G|(ν−k−1)/2 exp(−1

2 tr(Ψ
−1G))

2νk/2πk(k−1)/4
∏k
i=1 Γ (ν+1−i

2 ))|Ψ |nu/2

– E(G) = νΨ

– G1|2 is independent of (G12, G22);
– G22 ∼Wq(ν, Ψ22);
– The conditional distribution of G12 given G22 is multivariate Gaussian

N(n−q)×q(Ψ12Ψ
−1
22 G22, Λ) where Λij,kl = Cov(Gij , Gkl|G22) = Ψ

1|2
ik Gjl.

5.3 Genomic features, distances and kernel matrices

Let M be the n × m matrix of biallelic marker allele dosages for n genotypes
and m markers, and let n < m. The vector of estimates of allele probabilities is
given by p′m = (1′nM)/(2n). Let Xm = (M − 21np

′
m)/
√
cm be the feature matrix

where cm = 2
∑m
i=1 pmi(1− pmi). An additive relationship matrix can be written

as = XmX
′
m [VanRaden, 2008]. This matrix is singular.

A similar relationship matrix that is nonsingular can be obtained by changing
the centering and scaling of the allele dosages matrix. Let pn = (1′mM

′)/(2m).
Let X = (M − 2pn1′m)/

√
c = M(In − 1n1′n/n)/

√
c be the feature matrix where

c = 1
n

∑n
i=1

∑m
j=1X

2
ij . X is the row centered feature matrix scaled by the mean

square root of total average heterozygosity for the genotypes. We also use the
notation GA(X) = XX ′ and note that GA(X) can be calculated from by covariance
matrix for the genotypes of the marker allele dosages matrix M by dividing it by
the mean of its diagonal elements (abusing notation, this can be expressed as
GA(X) = cov(M ′)/mean(diag(cov(M ′))).). This matrix is non-singular whenever
the number of independent features in the data are larger than the sample size.
The mean of the diagonals of this relationship matrix is one. More importantly,
the same formulation applies to all types of genomic features. For instance, we can
use the same formulation for marker data with higher ploidy levels, or with other
forms of genomic data such as the expression data.

For each pair of genotypes ((i, j) : i, j ∈ (1, 2, . . . , n)) in M, the squared Eu-
clidean distance using the corresponding a feature matrix X = (x1,x2, . . . ,xn)′

can be written as

dij = (xi − xj)′(xi − xj) = x′ixi + x′jxj − 2x′ixj = (GA)ii + (GA)jj − 2(GA)ij .
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The squared distance matrix is defined by D(X) = (dij) and can be calculated
from the additive relationship matrix GA(X) = XX ′ as

D(X) = 1ndiag(XX
′)′ + diag(XX ′)1′n − 2XX ′

= 1ndiag(GA)′ + diag(GA)1′n − 2GA

Moreover, since 1′X = 0 and (I − 11′

n )1 = 1− 11′1
n = 1− 1nn = 0, we have

(I − 11′

n
)D(X)(I − 11′

n
)

= (I − 11′

n
)
(
1ndiag(GA)′ + diag(GA)1′n − 2GA

)
(I − 11′

n
)

= −2XX ′ = 2GA.

Therefore, given D(X) and letting P = (I − 11′

n ) the additive relationship matrix
can also be calculated by

GA = −1

2
PDP.

The genomic relationship matrices need not be additive. RKHS regression ex-
tends additive relationship based SPMMs by allowing a wide variety of kernel ma-
trices, not necessarily additive in the input variables, calculated using a variety of
kernel functions. A kernel function, k(., .) maps a pair of input points x and x′ into
real numbers. It is by definition symmetric (k(x,x′) = k(x′,x)) and non-negative.
Given the inputs for the n genotypes we can compute a kernel matrix G whose
entries are Gij = k(xi,xj). The linear kernel function is given by k(x;y) = x′y.

The polynomial kernel function is given by k(x;y) = (x′y + c)d for c and d ∈ R.
Finally, the Gaussian kernel function is given by k(x;y) = exp(−h(x′−y)′(x′−y))
where h > 0. The common choices for kernel functions are the linear, polynomial,
Gaussian kernel functions, though many other options are available [Schölkopf and
Smola, 2005, Endelman, 2011].

The relationship between the Euclidean distance matrix and the corresponding
Gaussian kernel is given by

GhG(X) = exp(−h ∗D(X))

and

D(X) = − log(GhG(X))

h
.

An important advantage of using similarity or distance matrices over the original
features is that similarity of distance matrices can be calculated for variables of
different type (categorical, rank, or interval-scale data). The relationship of the
feature matrix, and the additive kernel and Euclidean distance allows us to gen-
eralize the additive relationship matrix to general genomic data (not necessarily
marker allele dosages).
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5.4 Mixed models and genomic relationship matrices

Let’s start by describing how we can use a single combined genomic data. The
discussion below will be biased towards a discussion variance components / mixed
modeling approach since this has a special place in quantitative genetics. Mixed
models have been used as a formal way of partitioning the variability observed
in traits into heritable and environmental components, it is also useful in control-
ling for population structure and relatedness for genome-wide association studies
(GWAS). However, some of the methods that are proposed can be used in other
forms of statistical analysis, for instance, for descriptive purposes or in general
statistical learning.

In a mixed model, genetic information in the form of a pedigree or marker
allele frequencies can be used in the form of an additive genetic similarity matrix
that describes the similarity based on additive genetic effects (GBLUP). For the
n× 1 response vector y, the GBLUP model can be expressed as

y = Xβ + Zu+ e (S2)

where X is the n × p design matrix for the fixed effects, β is a p × 1 vector of
fixed effect coefficients, Z is the n × q design matrix for the random effects; the
vector random effects (u′, e′)′ is assumed to follow a multivariate normal (MVN)
distribution with mean 0 and covariance(

σ2gG 0

0 σ2eIn

)
(S3)

where G is the q× q additive genetic similarity matrix. In this model, the labels of
the genotypes (that are listed in the rows and columns of the relationship matrix
G) define a factor variable with levels equal to the labels. The matrix Z is the
design matrix that links the observed response in the experiment to these levels.
The model (S2) is equivalent to a MM in which the additive marker effects are
estimated via the following model (rr-BLUP):

y = Xβ + ZMu+ e (S4)

where X is the n × p design matrix for the fixed effects, β is a p × 1 vector of
fixed effect coefficients, Z is the n × q design matrix for the random effects M is
q ×m marker allele frequency centered incidence matrix; (u′, e′)′ follows a MVN
distribution with mean 0 and covariance(

σ2uIm 0

0 σ2eIn

)
.

Note that the scale of the genomic relationship matrix is irrelevant for genomic
prediction or for family structure correction in mixed model-based association
studies. However, this quantity is important for the calculation of narrow-sense
heritability. In this case, setting the average of the diagonals of the relationship
makes it, in a way, compatible with the broad sense heritability calculations based
on an identity relationship matrix for genotypes that already has a mean of its
diagonal elements equal to one. In addition, the standard formulations of the
marker-based additive matrix models used in the literature can be generalized to
incorporate more complex genetic and environmental covariates.
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6 Supplementary Applications

6.1 Experiments with simulated data

Supplemenatry Application 1- Simulation study: Inferring the combined

covariance matrix from its parts

To establish that a combined relationship can be inferred from realizations
of its parts, we have conducted the following simulation study: In each round
of the simulation, the true parameter value of the genomic relationship matrix
was generated as Σ = diag(r1, r2, . . . , rNTotal

) + .3 ∗ 1NTotal×NTotal
where ri were

independently generated as 1 + .7 ∗ ui with ui a realization from the uniform
distribution over (0, 1). Σ was then adjusted by dividing it with the mean value of
its diagonal elements. This parameter was taken as the covariance parameter of a
Wishart distribution with degrees of freedom 300 and Nkernel samples from this
distribution are generated. After that, each of the realized relationship matrices
was made partial by leaving a random sample of 10 to 40 (this number was also
selected from the discrete uniform distribution for integers 10 to 40) genotypes in
it. These partial kernel matrices were combined using the Wishart EM-Algorithm
iterated for 50 rounds (each round cycles through the partial relationship matrices
in random order). The resultant combined relationship matrix Σ̂ was compared
with the corresponding parts of the parameter Σ3 by calculating the mean squared
error between the upper diagonal elements of these matrices. This experiment was
replicated 10 times for each value of NTotal ∈ {40, 80, 150, 300} and Nkernel ∈
{40, 80, 150, 300}.

The results of this simulation study are summarized in Figure S1. For each
covariance size, the MSE’s decreased as the number of incomplete samples in-
creased. On the other hand, as the size of the covariance matrix increased the
MSEs increased.

Supplementary Application 2- Simulation study: Likelihood Convergence

The Wishart EM-Algorithm maximizes the likelihood function for a random
sample of incomplete observations from a Wishart distribution. The derivation
of this feature is given in the Supplementary. In this application, we explore the
convergence of the algorithm for several instances starting from several different
initial estimates.

The application is composed of 10 experiments each of which starts with a
slightly different assumed Wishart covariance parameter4. For each true assumed
covariance matrix, we have generated 10 partial samples including between nmin
and nmax genotypes (random at discrete uniform from nmin to nmax) each using
the Wishart distribution. n, the total number of genotypes in the assumed rela-
tionship matrix was taken to be 100 or 1000. Corresponding to this two matrix
sizes the nmin and nmax are taken as 10 and 25 or 100 and 250. These 10 matrices
are combined using the Wishart EM-Algorithm 10 different times each times using

3 In certain instances, the union of the genotypes in the parts did not recover all of the
NTotal genotypes, therefore this calculation was based on the recovered part of the full genomic
relationship matrix

4 Σ = diag(b + 1) + .21n×n where bi for i = 1, 2, . . . , n are i.i.d. uniform between 0 and 1.
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Fig. S1 Application 1 - MSE’s for estimating correlation parameters based on partial sam-
ples for NTotal ∈ {40, 80, 150, 300} (number of variables in the covariance matrix) and
Nkernel ∈ {40, 80, 150, 300} (number of incomplete covariance matrix samples). Each incom-
plete covariance matrix was had a random size between 10 to 40. The MSE’s are calculated
over 10 replications of the experiment.

a slightly different initial estimate of the covariance parameter5 . We record the
path of the log-likelihood function for all these applications.

At each instance of the parameter and a particular sample, the likelihood
functions converged to the same point (See Figure S2). We have not observed any
abnormalities in convergence according to these graphs.
Heatmap for 95 wheat traits

Phenotypic network for 186 traits based on phenotypic correlations (Wheat,

Barley, and Oat Phenotypic Trials from Triticeae Toolbox)

6.2 Supplementary Figures

5 Σ0 = diag(.5b + 1) + .3 ∗ b01n×n where bi for i = 0, 2, . . . , n are i.i.d. uniform between 0
and 1.
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Fig. S2 Application 2 - Convergence of log-likelihood function: Each color represents a dif-
ferent experiment. In each experiment, a sample of incomplete covariance matrices from a
Wishart distribution were combined using the Wishart EM-Algorithm starting from 10 differ-
ent slightly different random initial estimates. n, the total number of genotypes in the assumed
relationship matrix was taken to be 100 (A) or 1000 (B).
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Fig. S3 Triticeae dataset: Combining the phenotypic correlation matrices from 144 wheat
datasets covering 95 traits. Clustered heatmap of Pearson correlation coefficients provides a
global overview of phenotypic correlation across wheat traits. Yellow denotes high correlation,
dark green high anti-correlation.
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aboveground biomass Above B fertile spikelets per head FS harvest index HI seeds per head SPH
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bacterial leaf streak BLS flag leaf angle T1 FLAT1 K K spike length Slength
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Ca Ca flag leaf chlorophyll content T2 FLCCT2 leaf rust response LRR stem rust coefficient of infection SRCI
canopy senescence score T1 CST1 flag leaf length FL length leaf rust severity LRS stem rust infection response SRIR
canopy senescence score T2 CST2 flag leaf stay-green period Stay green Li Li stem rust severity SRV
canopy senescence score T3 CST3 flag leaf width FL width lodging degree L d stem solidness Stem solidness
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days to heading DTH grain width GW plot shattering PS whole grain protein WGP
days to heading (fall planting) DTH2 grain yield G.Yield powdery mildew reaction type PM WSBMV reaction type WSBMV RT
Fe Fe grain yield (main tillers) GYMT S S Zn Zn

Fig. S4 Triticeae datasets: Combining the phenotypic correlation matrices from oat (78 cor-
relation matrices), barley (143 correlation matrices) and wheat (144 matrices) datasets down-
loaded and selected in a similar way as in Application 4 were combined to obtain the DAG
involving 196 traits.
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Fig. S5 Pictorial representation for some of the different scenarios in Application 2 with re-
duced number of markers, genotypes and number of independent marker datasets. a) Assumed
truth, b) All genotpes using 10 markers, c) Imputation of 2 independent marker datasets, d)
Combining the relationship matrices from 2 independent marker datasets.
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Fig. S6 Triticeae dataset: The distribution of the numbers of traits in 144 phenotypic trials
at Triticeae Toolbox for wheat. The mean and the median of the number of traits in these
trials were 5.9 and 4 correspondingly.
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Fig. S7 Triticeae dataset: Number of phenotypic observations (left) and the number of geno-
types available in Triticeae Toolbox for a set of 7 selected traits for the 9102 genotyes in the
combined relationship matrix.
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