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Ramp-to-threshold dynamics in a hindbrain
population controls the timing of spontaneous
saccades
Alexandro D. Ramirez 1✉ & Emre R. F. Aksay1

Organisms have the capacity to make decisions based solely on internal drives. However, it is

unclear how neural circuits form decisions in the absence of sensory stimuli. Here we provide

a comprehensive map of the activity patterns underlying the generation of saccades made in

the absence of visual stimuli. We perform calcium imaging in the larval zebrafish to discover

a range of responses surrounding spontaneous saccades, from cells that display tonic

discharge only during fixations to neurons whose activity rises in advance of saccades by

multiple seconds. When we lesion cells in these populations we find that ablation of neurons

with pre-saccadic rise delays saccade initiation. We analyze spontaneous saccade initiation

using a ramp-to-threshold model and are able to predict the times of upcoming saccades

using pre-saccadic activity. These findings suggest that ramping of neuronal activity to a

bound is a critical component of self-initiated saccadic movements.
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While much is known about the manner in which motor
systems execute behaviors, relatively little is under-
stood about the neural systems that help us decide

upon and plan for particular actions, especially those actions that
are spontaneous and self-initiated. Classical work in humans
identified the presence of premovement signals in EEG recordings
that slowly built-up for over a second in advance of a self-initiated
action1. Work in animal models suggests that this macroscopic
activity is reflective of neuronal firing patterns where rates
increase ahead of spontaneous movement in a ramp-like
manner2–4. Furthermore, such studies have shown trial-to-trial
variation in the timing of the movement is associated with
variation in the ramp rate, with a slower rise coupled to longer
rise time, suggesting that action is initiated when neural
activity ramps to a cell-specific threshold3,5. More generally, such
ramp-to-threshold dynamics have also been found ahead of goal-
directed movements6,7 and in decision-making tasks7–12, where
the animal is responding expressly to some externally provided
stimulus, leading to the proposal that there may be common
principles underlying the generation of ramp-to-threshold activ-
ity associated with motor planning for both spontaneous and
externally driven actions13,14. However, there are many basic
questions unanswered about this ramp-to-threshold dynamic,
especially in the spontaneous setting, not only regarding how it
is generated, but whether it is preparatory, possibly facilitatory
(but not essential), or perhaps suppressive15–18.

The potential role of ramp-to-threshold dynamics in action
initiation has been of particular interest in the visuo-motor sys-
tem. In this setting, such dynamics have been most often inves-
tigated in the context of a goal-directed action, the performance
of a saccade after a cue is provided to a visual target. Of note,
neurons in the lateral intraparietal cortex, frontal eye fields,
superior colliculus (or optic tectum), and the pons show, in
addition to a burst of action potential at the time of goal-directed
saccade, a buildup in firing characteristic of ramp-to-threshold
dynamics19,20. Lesions in midbrain and forebrain regions lead
to delays in goal-directed saccade initiation, consistent with a
role for pre-saccadic activity in planning and preparation
for saccades21,22. However, it is unclear what the role of
these dynamics might be in the generation of spontaneous,
self-initiated saccades. Although ramping activity is present on
cortical, collicular, and tectal neurons ahead of spontaneous
saccades, removal of these regions does not alter spontaneous
saccade performance and apparently timing in the dark23–25. This
suggests that structures in the hindbrain could be involved in the
initiation of spontaneous saccades, an obvious choice being the
pons, but potentially as well the cerebellum, where recently
neurons associated with self-timing of saccades to visual targets
have been found26.

To better understand the neural systems underlying the
initiation of spontaneous saccades, we turned to a model ver-
tebrate, the zebrafish. Even in the larval state, this animal makes
robust spontaneous saccades in the dark without training or
priming27. In the larval and juvenile stages, the entire brain of
the intact animal is optically accessible, enabling tracking of
neuronal activity at cellular resolution and enabling perturba-
tive strategies, such as targeted ablations28,29 that examine
causality. These advantages are particularly relevant given the
commonalities in visuo-motor anatomy and physiology
between zebrafish and other vertebrates30–33. Early calcium
imaging studies in the larval zebrafish during saccadic behavior
have reported single-cell activities ranging from burst-like to
fixation-like in rhombomeres 7 and 832,33. A more recent
imaging study looking at regional activity showed that such
signals extend into rhombomeres 1–6, and found preliminary
evidence for ramp-like activity ahead of saccades in a dorsal

region of rhombomere 734. However, only one of these studies
was focused on spontaneous saccades in the absence of visual
inputs32, inputs that could be a source of confounding signals.
Furthermore, none of these studies could unambiguously report
on the activity of individual neurons since calcium sensors
were distributed throughout the cell, potentially introducing
neuropil contamination.

We combined two-photon calcium imaging and single-cell
perturbations to identify a population of neurons controlling the
timing of upcoming saccades. Our combined imaging and per-
turbation study provides three notable findings. First, we gener-
ated a comprehensive map of neuronal activity patterns
underlying spontaneous saccades and subsequent fixations—these
maps are generated while animals are in the dark, ensuring that
the signals are internally generated, and with a nuclear-localized
calcium sensor, thus eliminating neuropil contamination. Second,
we found neurons in the hindbrain whose activity rises above
baseline in a direction-selective manner multiple seconds before
the decision to saccade. Furthermore, the time and rate of rise of
these cells is consistent with a ramp-to-threshold model, which
can be used to predict saccade timing. Third, we found, through
targeted, single-cell ablations, evidence implicating these cells
in controlling the proper patterning of spontaneous saccades.
These findings not only provide insights into the mechanisms
controlling the choice of when to shift gaze, but also establish a
new model system for understanding the neuronal processes
underlying spontaneous, self-initiated actions.

Results
In the first part of the results, we present an analysis of sponta-
neous eye movements in the dark in larval zebrafish (Fig. 1) and a
map of the temporal dynamics of neurons that were active during
this behavior (Figs. 2 and 3). We then analyze the temporal
properties and spatial distribution of a special class of neurons
found in this map whose activity suggests they play a role in eye
movement initiation (Figs. 4–6). We end by systematically
mapping how eye movement patterning is affected by ablations of
these neurons (Fig. 7).

Larval zebrafish generate spontaneous eye movements with a
range of fixation durations. Larval zebrafish reliably generated
spontaneous eye movements consisting largely of a back-and-
forth alternation of rapid eye movements known as saccades
followed by longer periods of relatively constant eye position
known as fixations (Fig. 1a, b). Spontaneous eye movements in
the horizontal plane were measured in agar-mounted larval
zebrafish (n= 20 fish; 7–8 days post fertilization) after releasing
the eyes from the agarose (Fig. 1a). Experiments were performed
in the dark to ensure that movements were self-initiated and not
occurring in response to a visual target. The time between sac-
cades, known as the fixation duration (see Fig. 1b), was variable;
fixations lasted between 2 and 50 s (1st and 99th percentiles) with
a median duration of 11.4 s (n= 16,033 fixations; Fig. 1c). While
there was a clear alternating cycle of leftward then rightward
directed saccades (Fig. 1b), we found that it was not uncommon
for eye movements to deviate from this simple pattern, as nearly a
quarter of the time zebrafish made successive saccades in the
same direction (22.9 ± 0.1%, average ± SEM across fish). To fur-
ther examine the rhythmicity of these movements, we performed
a Fourier analysis of the changes in eye position with time and
found that power was distributed over a range of frequencies,
with 95% of total power between 0 and 0.35 Hz, and peak power
(excluding 0 Hz) at 0.03 Hz (Fig. 1d). The total range of eye
position angles was 20 ± 1° (average ± SEM across fish of the 1st
and 99th position percentiles averaged across both eyes). The size
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of saccades, known as the saccade amplitude (see Fig. 1b), varied
between 2° and 28° (1st and 99th percentiles, median
amplitude= 12°) and depended on the direction of the previous
saccade (Fig. 1e; median amplitude of saccade in the same
direction as previous saccade equaled 8°; median amplitude of
saccade in the opposite direction equaled 13°). These results show
that larval zebrafish can self-initiate a simple yet varying pattern
of horizontal eye movements.

Mapping activity using two-photon microscopy. To create a
comprehensive map of the functional cell types involved in self-
initiated eye movements, we imaged calcium dynamics
throughout the larval zebrafish hindbrain (Fig. 2a) during spon-
taneously generated saccades and fixations in the dark. The
seconds-long fixation durations between eye movements (Fig. 1b,
c) facilitated the use of calcium imaging to analyze changes in
single-cell activity during fixations. Activity from single neurons
expressing nuclear-localized GCaMP6f under the control of the
HuC pan-neuronal promoter was measured with raster-scanning
two-photon microscopy (Fig. 2b). In each fish, we imaged a
portion of the hindbrain using a stack of 5–68 horizontal planes.
Stacks from individual fish were then registered to a reference
brain (Supplementary Fig. 1a and see “Methods”). The planes
were centered at different rostral–caudal locations across fish
(imaging 20 fish in total) so that when combined via registration

we effectively sampled responses from the entire hindbrain
(Supplementary Fig. 1b), with each voxel sampled from at least 3
fish (Supplementary Fig. 1c)

We found that approximately a quarter of the neurons in the
hindbrain showed some activity under these conditions. We used
standard computer vision algorithms that detected cell locations
based on local maxima in time-averaged fluorescence intensity
images (see “Methods”) to count the total number of cells
sampled (Fig. 2b and Supplementary Fig. 1d show cells detected
via this method). We measured 238,191 hindbrain cells from all
planes and fish in our dataset. This number is larger than the
120,000 neurons expected from sampling three complete
hindbrains because some regions were sampled more than three
times (Supplementary Fig. 1c). To infer how many of the total
cells were active, we performed a separate analysis using the
CaImAn algorithm which relies on nonnegative matrix factoriza-
tion to identify the locations of responsive neurons35. We found
that cells marked as background by the CaImAn algorithm
generally had smaller peak fluorescence responses than non-
background cells (Supplementary Fig. 1d, e). Considering these
background neurons as inactive, we determined that approxi-
mately a quarter (62,896 hindbrain cells) of hindbrain neurons in
our dataset were spontaneously active. In the rest of the
manuscript, we ignore inactive cells and analyze cells identified
by the CaImAn algorithm (see Supplementary Fig. 1f for a
workflow of the analyses in the manuscript).
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Fig. 1 Spontaneous eye movements in larval zebrafish. a Changes in horizontal eye position, e, were recorded from agarose-restrained larval zebrafish
while they made spontaneous eye movements in the dark. b Example changes in horizontal eye position with time for both eyes. Eye movements were
quantified by examining saccade amplitude and fixation duration. The arrows labeled L/R indicate the direction of leftward/rightward movements.
c Histogram of fixation durations measured across multiple animals (1 s bins; n= 16,033 fixations from 20 fish). d Power spectral density of eye
position as a function of frequency. Data presented as mean (blue line) ± SEM (gray shading; n= 422 samples from 20 fish). e Saccade amplitude
distribution measured in degrees (1° bins). We have separated saccades made in the same direction as the previous saccade (blue) from those
made in the opposite direction (beige). Both histograms were normalized by the total number of saccades (n= 16,033 saccades from 20 fish). Source
data are provided in a Source data file.
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Neuronal activity dynamics associated with spontaneous sac-
cades and fixations. Approximately 19% of the spontaneously
active hindbrain neurons had average activity related to eye
movements. We aligned fluorescence and deconvolved fluores-
cence responses from active cells to the times of spontaneous
saccades and determined which neurons had significant saccade-
triggered average (STA) activity. We treated individual fixations

surrounding a saccade as single trials (Fig. 2c–e and “Methods”)
and performed a one-way ANOVA to compare the STA of
fluorescence activity at different time bins to search for cells, with
significant deviations from baseline. Significant STAs had clear
changes in fluorescence (dF/F) and deconvolved fluorescence
around or at the time of saccade (Fig. 2c–e). We will refer to cells
with significant STAs as eye-movement responsive.
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Eye-movement responsive cells had activity patterns that
ranged from tonic activity during the post-saccadic epoch
(Fig. 2c), to burst activity only at the time of saccade (Fig. 2d),
to activity that gradually climbed during the pre-saccadic epoch
(Fig. 2e). We used principal component analysis (PCA) to help
represent how these activity patterns were distributed across the
population. We found that 69% of the variance in normalized
STAs of deconvolved fluorescence could be explained by
three components (Fig. 3a, b). Therefore, we examined the
distribution of coefficients along these components (Fig. 3c–e).
The coefficients for the population were broadly, and mostly
continuously, distributed (Fig. 3d, e).

A clustering analysis of the coefficients found that these data
were best segregated into two clusters corresponding to left and
right selectivity. The peaks in the density of coefficients (blue bars in
Fig. 3e) corresponded to two distinctive STAs; one STA increased
following saccades while the other STA decreased (Fig. 3f, blue
traces). To measure how these patterns in STAs related to patterns
in single-cell responses, we performed a K-means analysis on the
combined coefficients for the two STAs, those around saccades to
the left and right, that characterize single-cell responses. We found
evidence that the coefficients for single cells were best segregated by
two clusters (Supplementary Fig. 2a, b). The cluster means revealed
that a typical cell has an STA that increases around saccades in one
direction (left or right) and decreases around saccades in the other
direction (Supplementary Fig. 2c). This direction-selective response
captured the responses seen in most cells (see the cluster separation
in Supplementary Fig. 2c and quantified in Supplementary Fig. 2b),
indicating that the peaks in the density of coefficients (Fig. 3e) result
from neurons that selectively respond to saccade direction.

We next generated population averages of STAs of decon-
volved fluorescence grouped according to their coefficients along
components 1 and 2 (see angle φ in Fig. 3c and “Methods” section
“Principal component analysis of saccade-triggered averages”) to
ease visualization of both the dynamics across the population and
the spatial distribution of the different activity profiles. STAs
around saccades to the left were ordered by their value of φ,
grouped into bins that are 15° in width, and then averaged
together and plotted in Fig. 3g. The equivalent plot for saccades to
the right is shown in Supplementary Fig. 3a. We registered the
cell locations to a zebrafish brain atlas36 to map cell dynamics to
neuronal locations (“Methods”).

We found stereotyped patterns of eye-movement-related
activity at specific spatial locations. Many cells had pre-saccadic
activity that remained constant at baseline levels, increased within
a second of the saccade, and then displayed tonic firing after the
saccade. Some of these neurons displayed primarily tonic firing
after the saccade (e.g., φ=−45 in Fig. 3g and Supplementary
Fig. 3a); others had more burst-tonic characteristics (e.g., φ= 0).

Both cell types were broadly distributed in the hindbrain (Fig. 3h
and Supplementary Fig. 3b). Prominent pockets of tonic and
burst-tonic neurons with ipsilateral sensitivity were found in
rhombomeres 7 and 8 in regions previously associated with the
velocity-to-position neural integrator (VPNI in Fig. 3h), ventral
portions of rhombomeres 5 and 6 associated with the abducens
complex (ABD in Fig. 3h), dorsal regions of rhombomeres 5 and
6, and dorsal regions of rhombomeres 2 and 3; tonic and burst-
tonic neurons with contraversive sensitivity were located in
rhombomere 1 below the cerebellum. Other neurons had purely
burst activity associated with ipsiversive saccades as expected for
saccade generator cells (φ= 60 in Fig. 3g and Supplementary
Fig. 3a); these were most prominently clustered in ventral
portions of rhombomeres 2 and 3. With increasing φ, we
observed a pre-saccadic rise in activity that becomes longer in
duration and more prominent relative to the burst event (φ= 105
in Fig. 3g and Supplementary Fig. 3a). This pre-saccadic rise is
suggestive of activity that is involved in the timing of upcoming
saccades, a role which we will explore further in the remainder of
this paper.

In summary, we found that ~5% of hindbrain neurons in
larval zebrafish had responses associated with spontaneous
saccades and fixations, these responses were direction-selective,
and the response profile of this population was diverse. The
diversity included cells with step-like profiles expected for ABD
neurons and integrator neurons, and cells with burst-like
responses expected for saccade generator neurons. The
distribution also contained neurons whose activity is better
described as anticipating upcoming movements, consistent with
a role in saccade initiation, a role which we explore below.

Single-trial analysis of cells with pre-saccadic rise activity.
Within the continuum described above were cells whose
population average activity steadily rose ahead of the upcoming
saccade. Because this form of dynamics appears to anticipate a
future movement, it is reasonable to speculate that neurons
with such activity play an important role in saccadic prepara-
tion or timing. We now turn our attention to a closer exam-
ination of such neurons, with a focus on single-trial and single-
cell level analyses that can capture variations missed with
averaging.

We found that 6% (n= 401) of eye-movement responsive
hindbrain neurons had fluorescent activity with clear ramp-like
activity ahead of saccades (Fig. 4a). To systematically select these
cells, we reanalyzed eye-movement responsive neurons (see
workflow in Supplementary Fig. 1f) and determined which of
these neurons had a Spearmen correlation coefficient between
fluorescence activity and time to upcoming saccade significantly
greater than zero (p < 0.01 using the Holm–Bonferroni method to

Fig. 2 Two-photon calcium imaging during spontaneous eye movements. a Brightfield image of a 7-day-old larval zebrafish along with a time-averaged
calcium image showing all neurons within a single plane of the hindbrain. A, P, L, and R denote anterior, posterior, left, and right respectively. b Zoomed-in
image of time-averaged nuclear-localized GCaMP6f expression. Red dots show the center-of-mass for automatically detected nuclei from time-averaged
fluorescence intensity images (see “Methods”). Similar results were seen across 422 planes collected from 20 fish. Scale bar length= 5 µm. c–e Examples
of simultaneously recorded eye movements and calcium activity along with saccade-triggered responses and averages. (Top panel) simultaneously
recorded left and right eye position (gray and black), single-cell fluorescence (blue), and deconvolved fluorescence (black) traces versus time.
Deconvolved fluorescence is scaled to fluorescence traces and units are arbitrary. The arrows labeled L/R indicate the direction of leftward/rightward
movements. (Middle panel) heatmaps of saccade-triggered responses around leftward (top map) and rightward (bottom map) directed saccades. Each
row displays fluorescence versus time before and after each saccade. Dashed vertical line shows time of saccade. Source data are provided in a Source data
file. (Bottom panel) saccade-triggered averages around leftward (red) and rightward (purple) directed saccades. Data are shown as average fluorescence
(solid line) along with 95% confidence intervals (shaded region) and average deconvolved fluorescence (dashed line). c Example of a cell with tonic post-
saccadic activity (n= 16 (15) samples for leftward (rightward) saccades). d Example of a cell that displays a burst of activity triggered during the saccade
(n= 7 (9) samples for leftward (rightward) saccades). e Example of a cell that displays pre-saccadic activity (n= 9 (9) samples for leftward (rightward)
saccades).
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correct for multiple comparisons). Here, we note some of the key
qualitative features of these neurons before providing detailed
quantification. These cells showed clear increases in activity
before individual saccades either to the left (Fig. 4a, neurons in
third and fourth row from top) or right (Fig. 4a, neurons in first
and second row from top). For each cell, pre-saccadic rise events
occurred ahead of saccades in one direction, although there were

occasions where cell activity also rose before saccades in the
opposite direction or failed to rise. dF/F for a small number of
cells (n= 5) was significantly correlated with upcoming saccades
in both directions. Given the small number of these cells we did
not consider them in further analyses. Rise events generally lasted
multiple seconds, and there was variability in the duration and
rate of the rise both within and across cells. Further, for a given
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cell, activity tended to rise to consistent values at the time of
saccade, even though duration of rise varied by 50% or more. We
will refer to these cells as pre-saccadic rise (SR) neurons.

To quantitatively characterize the dynamics of SR cells, we
assessed several features of their activity before and at the time
of saccade that could elucidate their role in initiating
the upcoming spontaneous saccade (Fig. 4b and “Methods”).
To examine how the initiation of activity related to saccade
occurrence, we measured the time when activity rose above
baseline, and compared that to the time of upcoming and
previous saccades. We also measured whether the time of
activity rise scaled with fixation duration. To determine
whether neuronal activity consistently rose to similar values,
we measured activity at the time of saccade.

The initiation of the rise event was more tightly coupled to the
timing of the upcoming saccade rather than the timing of the
previous saccade. Across cells and fixations, activity rose over a
range of times relative to the upcoming saccade (10th and 90th
percentiles are 2 and 10 s respectively; median time= 5 s, n= 3,979
fixations across 16 fish; distribution shown in Fig. 4c). The timing of
activity initiation when measured relative to the occurrence of the
previous saccade was generally more variable, with a range of 1–13 s
and with a variance (41 s2) that was nearly three times larger than
the variance (14 s2) in timing when measured with respect to
upcoming saccade (Fig. 4d). Furthermore, we rejected the null
hypothesis that these two measurements in the time of rise come
from the same distribution (Fig. 4e, p < 0.001; two-sample KS test).
A similar trend was observed when data was analyzed on a per
cell basis: 71% of cells had activity whose time of rise was
more variable when measured relative to the previous saccade than
when measured relative to upcoming saccade (ratios greater
than one in Supplementary Fig. 4a). Therefore, the activity of SR
neurons is more informative of upcoming saccades than previous
saccades.

We found that cell activity did not rise at a fixed time relative
to saccades. Given that there was notable variation in the fixation
duration (Fig. 1c), we also tested for relationships between the
time of rise and the duration of the fixation. To see if there was a
constant scaling relationship between fixation duration and the
time of SR activity rise, we examined whether the distribution of
times of rise normalized by fixation duration was peaked (Fig. 4f).
We found that, across cells and fixations, normalized rise times
were not peaked at a single value, but rather distributed across the
full range of possible values. The variability in normalized time of
rise was related to fixation duration (Fig. 4g): there was a slight
trend for activity to rise shortly after the previous saccade
(normalized times near −1) during short fixation durations
and for activity to rise later in the interval during longer durations
(Fig. 4g best-fit line slope= 0.010 ± 0.001(1/s) and offset=

−0.622 ± 0.007, estimate ± SEM). On a per cell basis, time of
normalized rise and fixation duration appeared monotonically
related for some cells but not others (see Supplementary Fig. 4b;
21% of cells had a Spearman correlation coefficient >0.5, see
Supplementary Fig. 4c). While the distribution of correlation
coefficients across cells was significantly different than shuffled
controls (Supplementary Fig. 4c), within-cell variability made it
difficult to discern significant linear trends (linear regression
found 23% of cells had slopes with a t test p value <0.05,
Supplementary Fig. 4d). In summary, we found that SR cell
activity can rise within any fraction of the fixation time, with a
propensity, at the population level, to begin rising later in the
fixation for longer fixation durations.

Pre-saccadic rise dynamics are predictive of upcoming sac-
cades. If SR cell activity determines when a spontaneous saccade
should occur, we should be able to predict whether a saccade is
about to happen based on the output of SR populations. In this
section, we show that SR pre-saccadic dynamics can be used to
predict saccade direction and time. As part of this analysis, we
also detail the relationships between the time at which an SR cell
begins rising ahead of a saccade and the speed at which
activity rises.

We first quantified how well SR cell activity can predict the
direction of upcoming saccade. As an initial assessment of the
information SR populations contain regarding upcoming
saccade direction (left or right), we quantified population
fluorescence using the choice probability (CP)37,38. The CP
predicts saccade direction by comparing SR population average
activity before saccades in the preferred direction with
population activity before saccades in the non-preferred
direction (see “Methods”). We found that CP, averaged across
fixations, increased monotonically with time when aligned to
saccade onset (Fig. 5a). Near the saccade, the CP was well above
chance levels of 50% (Fig. 5a; mean CP= 77%, 87%, and 94%
using single-cell activity or population averages consisting of 4
or 16 cells, respectively). For comparison, an ideal observer who
has knowledge of the saccade transition probabilities would
guess that an upcoming saccade is directed towards the
opposite direction of the previous saccade and be correct 77%
of the time (given that successive saccades occur in the same
direction 23% of the time, see section Larval zebrafish generate
spontaneous eye movements with a range of inter-saccade
times). Therefore, the CP performance is better than the
performance of an ideal observer. These results indicate that
spontaneous SR population activity contain information
regarding the upcoming saccade direction.

We next examined the relationship between the time at which
an SR cell began ramping and its rate of rise, finding that these

Fig. 3 Functional and spatial distribution of neuronal responses. a Cumulative percent variance explained by each component found via principal
component analysis on normalized saccade-triggered deconvolved fluorescence averages (STAs). b First three components sorted by percent variance
explained (shown in the upper right). c Scatter plot of coefficient elements that scale components one (c1), two (c2), and three (c3). After unit
normalization, we transform coefficients to spherical coordinates (φ and θ). d Eckert IV projection of coefficient probability density. e Probability density of
φ (shaded blue show peak locations). f Population average of STAs with φ equal to peak locations in e (φ ¼−26 ± 7.5 and −172 ± 7.5). Data shown as
mean ± SEM (n= 1,553[932] cells examined over 16[16] fish at φ ¼−26[−172]). g Series of population-averaged STAs triggered to saccades to the left
with φ equal to the value in the top row, (within 15°). Data shown as mean (solid line) ± SEM (shaded region). Varying number of cells: φ ¼−90 (n=
41 cells, 14 fish), −75 (n= 51, 13), −60 (n= 171, 16), −45 (n= 426, 18), −30 (n= 488, 16), −15 (n= 407, 17), 0 (n= 291, 17), 15 (n= 297, 15), 30 (n=
278, 16), 45 (n= 269, 16), 60 (n= 246, 17), 75 (n= 266, 18), 90 (n= 134, 15), 105 (n= 91, 16), 120 (n= 122, 15), 135 (n= 135, 16), 150 (n= 212, 15), 165
(n= 402, 16), 180 (n= 292, 15), −165 (n= 864, 16), −150 (n= 373, 18), −135 (n= 53, 14), −120 (n= 49, 13), −105 (n= 351, 18). h Horizontal, sagittal,
and caudal projections of a sample of cells used to construct (g) (n= 3,012 total cells examined over 18 fish). Color indicates most probable value of φ for
cells within 5 µm bins (using the same color scheme as g). Circle size indicates number of cells within bin (largest is �5 cells). Coronal projections are
made within 30 µm of the dashed lines marked C1, C2, and C3 in the horizontal map. r rhombomere, OT optic tectum, Cb cerebellum, M Mauthner cell,
VPNI velocity-to-position neural integrator, ABD abducens complex, L–R left–right, A–P anterior–posterior. Source data are provided in a Source data file.
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dynamics generally fit under a ramp-to-threshold framework. For
each cell and fixation, we measured the rate of rise of pre-saccadic
activity (Fig. 5b and “Methods”). Across cells and fixations, the
rate of rise of deconvolved fluorescence varied between −41 and
1,890 (arbitrary units, 1st and 99th percentiles, mean= 365, n=
2,715 events from 380 cells across 16 fish; distribution shown in
Fig. 5c). This variability was positively correlated with the
duration of ramping activity: slowly rising activity began to
increase above baseline on average earlier than faster rising

activity (Fig. 5d, e; at the individual cell level, this positive
correlation was apparent for 24% of SR cells, Supplementary
Figs. 4e and 5f). We also examined SR activity conditioned on
whether two consecutive saccades occurred in the same or
opposite direction (Supplementary Fig. 5a) and found similar
trends in the distribution of the rate of rise (Supplementary
Fig. 5b) and the correlation between rate of rise and duration of
ramping activity (Supplementary Fig. 5c). Furthermore, the
average activity reached similar levels at the time of saccade
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(Fig. 5e, f). These data suggest a picture where spontaneous
saccades are triggered when the entire population of SR activity
reaches a threshold, with rapid rates of rise associated with a
shorter time to saccade initiation (Fig. 5g).

We next used the ramp-to-threshold framework to quantify
how well SR neurons predict upcoming saccade times. We
predicted saccade times by calculating when a ramp-to-threshold
model, in which population activity growth is approximated as

linearly increasing before saccade, passes a constant threshold
level associated with saccade initiation (see “Methods”). We
found good agreement between population activity and the ramp-
to-threshold model when we trained the model using the entire
period when SR activity increases (cc between model and data=
0.72, see Supplementary Fig. 6; 40% of cells were held-out for
testing; 60% of cells were used to train the ramp rate). We next
trained the model using a running estimate of the ramp rate, as
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one would do to predict saccade times in real time. We found that
the predicted times to saccades and the actual times to saccade
were well correlated (Fig. 5h, cc= 0.65 (p < 0.001)), even when we
restricted our training window to the first 2 s after ramp initiation
(cc= 0.53 (p < 0.001)). The timing error reached a peak
performance near 20% and grew the farther back in time we
attempted to predict saccades (Fig. 5i). By contrast, an ideal
observer who has knowledge of the time of previous saccade and
knowledge of the fixation duration probability distribution
predicted saccade times with a timing error of 51%, and could
not produce predictions that are correlated to the actual saccade
times (cc= 0.00; see “Methods”). Thus, the pre-saccadic
dynamics of SR population activity can be used to predict when
saccades will occur.

Spatial distribution of neurons with pre-saccadic rise dynam-
ics. We next examined the spatial distribution of hindbrain cells
with pre-saccadic rise dynamics. These neurons were broadly
distributed across the rostral–caudal axis, with a small group in
the cerebellum and rhombomere 1 (13%), the majority between
rhombomeres 2 and 6 (77%), and a small group in rhombomeres
7–8 (10%; Fig. 6a). SR neurons were more likely to be near the
midline than near the edge of the brain (Fig. 6b). Along the
dorsal–ventral axis, SR cells largely resided in a region that is
10–70 µm dorsal of the Mauthner cell (Fig. 6c). None of the SR
cells were found in the ABD complex (Fig. 6d), consistent with
previous literature on ABD firing rate properties39. Directional
preference of pre-saccadic neurons was largely (58%) contra-
versive (Supplementary Fig. 7), but we did observe clusters of
ipsiversive preferring cells. The rostral–caudal distribution of SR
neurons depended on the cell’s position along the dorsal–ventral
axis; nearly all the pre-saccadic neurons located in the caudal
portion of the hindbrain (rhombomeres 7–8) were contained near
the Mauthner cell level or below (Fig. 6d).

Focal laser ablations identify SR cells as indispensable for
setting spontaneous fixation durations. It is unknown where the
signals to initiate spontaneous saccade arise. The activity of the SR
neurons we identified suggest that they initiate saccades when their
population level activity reaches a threshold value. In the simplest
instantiation of this model, activity is summed across cells and
compared with a threshold value. If true, losses in the number of SR
cells would lead to a longer time until saccades occur.

To test this possibility, we performed bilateral two-photon
laser ablations at different locations in the hindbrain, where SR
neurons are found and monitored changes in saccade
and fixation metrics. We performed two sets of ablation
experiments. In the first, we ablated cells that were clustered

together in a volume that was approximately cylindrical in shape
with a diameter of 30 µm along the rostral–caudal and
medial–lateral axis and a side length of 60 µm along the
dorsal–ventral axis (Fig. 7a). Within a single animal, two
clusters (one on the left and one on the right hemisphere) were
ablated at approximately the same rostro–caudal position
(~1,200 cells, or 3% of the hindbrain, ablated per experiment).
The rostro–caudal position of the cluster ablations was varied
across animals. In the second set of experiments, we targeted
single cells and removed 7–25 individual neurons based on their
relationship to eye movements (Fig. 7b). In both sets of
experiments, we measured changes in fixation duration follow-
ing ablations (Fig. 7c).

We found that the fixation duration generally increased
following cluster ablations in the hindbrain. Since it was not
clear if hindbrain ablations would affect fixation duration, we first
examined changes in fixation duration following ablations
regardless of where in the hindbrain the ablation was performed.
In a separate set of control animals, we performed similar size
ablations in the spinal cord as a control for position-independent
effects of ablation damage, such as heating or vascular injury. We
rejected the null hypothesis that mean fixation durations were
equal before or after ablations in the hindbrain or spinal cord
(one-way ANOVA, F= 185.99, p < 0.01; distribution of durations
shown in Supplementary Fig. 8a, mean fixation duration before
and after ablations in the hindbrain equaled 11.9 and 17.9 s,
respectively (n= 8,375 fixations before and 3,839 after from 26
fish); the mean fixation duration before and after ablations in the
spinal cord equaled 13.2 and 12.9 s (n= 876 fixations before and
1,072 fixations after from 9 fish)), and we rejected the null
hypothesis that the mean fixation duration before hindbrain
ablations was equal to the mean after hindbrain ablations
(difference in means and 95% confidence intervals equaled 6.0
[5.2, 6.8] s; p < 0.01, two-sample, two-sided t test using a
Bonferroni correction for multiple comparisons). We also tested
the effect of cluster ablations on saccade velocity and on the
ability of animals to maintain fixation. We found a significant
decrease in fixation stability following ablations in rhombomeres
7–8, consistent with previous literature40, but did not see a
significant decrease in fixation stability after ablations in regions
rostral of rhombomeres 7–8 (Supplementary Fig. 8b). We found
no change in saccade velocity following hindbrain ablations
(Supplementary Fig. 8c). These results provide evidence for a
hindbrain role in spontaneous saccade initiation.

We found that the increase in fixation duration was correlated
with the density of ablated SR neurons. We estimated the fraction
of SR cells removed, for a given ablation, based on our map of
their locations (Fig. 6) and plotted this fraction against change in
fixation duration (Fig. 7d). The average Pearson correlation

Fig. 5 The rate and time of pre-saccadic rise vary in a manner consistent with ramp-to-threshold models. a Saccade direction choice probabilities. Data
presented as mean (blue) ± SEM (gray) averaged over fixation duration (n= 19 samples examined over 16 fish). Each sample computed using 100
randomly selected fixations of constant duration. Dotted black line shows choice probability from random guessing. b Visualization of the slope statistic
(gold, arbitrary units) used in c and d to quantify rate of pre-saccadic rise in deconvolved fluorescence before each saccade. Deconvolved fluorescence
(black, scaled to fluorescence shown in blue) is plotted with simultaneously recorded eye movements. The arrows labeled L/R indicate the direction of
leftward/rightward movements. c Histogram of slopes. Bin size= 50 (arbitrary units). d Slope versus time of pre-saccadic rise with respect to upcoming
saccade (bin size= 500ms; n= 2,715 fixations from 380 cells examined over 16 fish). e Example traces of population average, pre-saccadic deconvolved
fluorescence as a function of time until upcoming saccade. Fixation duration was fixed (within 0.5 s) at either 5 s (n= 235 fixations from 107 cells
examined over 10 fish) or 12 s (n= 168 fixations from 141 cells examined over 13 fish). f Deconvolved fluorescence (blue) at the time of saccade versus
fixation duration (n= 2,375 fixations from 388 cells examined over 16 fish). Gray trace is from the same cells after selecting random saccade times.
g Hypothetical mechanism for how a pre-saccadic signal could initiate saccades. h Predicted time until saccade versus actual time (gray dots). Blue line
shows median ± SEM (500ms bins; n= 405 samples from 388 cells examined over 16 fish). i Prediction error versus actual time until saccade. Data
presented as median ± SEM (500ms bins; n= 405 samples from 388 cells examined over 16 fish). Data in d–f are presented as mean ± SEM. Source data
are provided in a Source data file.
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coefficient between the change in median fixation duration and
fraction of SR cells equaled 0.26 (averaged across bootstrap
samples from n= 10–29 fish, see “Methods”) and was signifi-
cantly larger than randomly shuffled controls (p < 0.001, one-
sided, two-sample KS test, n= 100 bootstrap samples using the
Holm–Bonferroni method to correct for multiple comparisons).

In a related analysis, we found that the fractional increase in
fixation duration was largest for ablations in rhombomeres 3–4
(Supplementary Fig. 8d), where SR cells are prominently located
(Fig. 6a, d). In conclusion, we found a weak, but significant
correlation between increase in fixation duration and estimated
fraction of ablated SR cells. To examine this issue more carefully,
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Fig. 6 Spatial distribution of SR cells. Histograms showing fraction of SR neurons as a function of their registered location onto a common reference brain
for the rostral–caudal (a), left–right (b), and dorsal–ventral (c) directions. Fractions are weighted to account for unequal numbers of fish used to sample
different hindbrain regions. Bin size is 10 µm for a–c. Source data are provided in a Source data file. d Horizontal and sagittal projections showing the
number of SR cells (n= 156 cells examined over 15 fish) and the number of eye-movement responsive cells that are not classified as SR (black-white color
scheme, n= 2,945 cells examined over 18 fish). The number of cells displayed in each nonoverlapping, 5 µm bin was determined after subsampling to
account for variations in the number of fish sampled per region (see “Methods”). r1–8 indicates approximate rhombomere location within the reference
brain. OT optic tectum, Cb cerebellum, M Mauthner cell, VPNI velocity-to-position neural integrator, ABD abducens complex, L–R left–right, A–P
anterior–posterior. e Coronal projections made within 30 µm of the dashed lines in d marked C1, C2, and C3.
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we measured the effect on fixation duration after ablating single
SR neurons.

We performed single-cell targeted ablations and found a
significant increase in fixation duration after ablating SR neurons.
In each fish, we targeted 4–7 SR cells serially, resulting in the
ablation of 7–25 cells in total since 1–4 cells nearby the targeted
neuron were occasionally also ablated (see “Methods”). To
examine nonspecific effects resulting from ablating a small
number of cells, we targeted (in a separate control group of
animals) four to seven neurons that were not eye-movement
responsive, but were in the same region where SR cells were
found. We then measured the percent increase in median fixation
duration following ablation for each animal (Fig. 7e). We found
SR-targeted ablations resulted in larger increases in fixation
duration (45–66% [min–max], median= 56%, n= 100 bootstrap
computations using repeated measurements from 10 fish, see
“Methods”) than control-targeted ablations (22–39% [min–max],
median= 29%) and found little evidence supporting the null
hypothesis that the median effect size was equal between SR and

control-targeted ablations (p values ranged from 0.0004 to 0.111,
median= 0.007 from 100 one-sided Wilcoxon rank-sum tests
with alternative hypothesis that the median effect size in SR
ablations was larger than controls, see “Methods”). The relative
increase in effect size in SR-ablated fish compared to control
could not be explained by SR ablations affecting nearby (non-SR)
eye-movement responsive cells because ablated SR cells were not
closer than ablated control cells to (non-SR) eye-movement
responsive cells (Supplementary Fig. 9). In summary, we observed
an increase in fixation duration after ablating a small number of
hindbrain neurons. The magnitude of the increase was largest
when we specifically targeted SR cells. Both cluster and single-cell
ablation experiments suggest that SR neurons play a significant
role in the preparation for spontaneous saccades.

Discussion
We combined focal laser ablations and calcium imaging to
comprehensively map neuronal function and activity during a
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Fig. 7 Focal laser ablations of SR neurons result in increased fixation durations. a Time-averaged images from an individual fish following bilateral laser
ablations of clusters of cells. Ablated regions in each plane appear as bright, multi-spectrum fluorescent regions (outlined in yellow). Similar results were
seen in 32 independent cluster ablation experiments. Scale bar is 30 µm. b Time-averaged images taken from an individual fish following a single-neuron
ablation attempt (targeted cell outlined in red, off-target ablated cell outlined in yellow). Similar results were seen in 20 independent single-cell ablation
experiments. c Example left eye position versus time recorded before (gray) and after (red) a bilateral cluster ablation was performed in the rostral
hindbrain (r: rhombomere). The arrows labeled L/R indicate the direction of leftward/rightward movements. d Each gray point shows the percent change in
median fixation duration following cluster ablation from a single animal (best-fit line shown in black). Blue line shows mean ± SEM of points (bin size= 2%
fraction ablated; n= 82 points sampled from 29 fish; each point constructed with n= 57 samples, see “Methods”). Pearson correlation coefficient for the
points shown here equals 0.19. e Percent change in median fixation duration following single-cell targeted ablations (individual samples shown in orange).
For comparison, the boxplot labeled sham ablation shows percent changes in median fixation duration from non-ablated animals, using randomly selected
fixations to form the sham before and after groups. Two-sample, two-sided, t test p values are displayed above boxplots. All p values displayed are
significant at level 0.05 (using Bonferroni correction to control for family-wise error rate). Mean ± SEM percent change in median fixation duration equals
54 ± 8% (n= 44 from ten animals), 28 ± 7% (n= 40 from ten animals), −2 ± 3% (n= 40 samples from 40 animals) following SR, control, and sham
ablations. Central line shows the median, box limits show the 25th and 75th percentiles, whiskers show 1.5 × interquartile range about upper and lower
quartiles. Source data are provided in a Source data file.
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self-initiated behavior. We simultaneously measured eye move-
ments and neuronal activity throughout the hindbrain of larval
zebrafish, while they made spontaneous saccades in the dark. We
discovered neurons in the hindbrain whose activity rises above
baseline in a direction-selective manner multiple seconds before
the occurrence of a saccade. We also implicated, through targeted
ablations, a causal role for these cells in the decision to perform a
spontaneous saccade. These data thus help elucidate the
mechanism of a simple self-initiated behavior.

Our discovery of SR neurons in the hindbrain depended upon
a comprehensive, single-cell resolution map of activity during
spontaneous eye movements in the dark. Comprehensive spatial
coverage was obtained by two-photon calcium imaging, which
allowed us to image activity even at the deepest regions of the
hindbrain where one-photon approaches suffer from poor reso-
lution and signal-to-noise. Single-cell resolution of activity was
ensured by coupling two-photon microscopy with nuclear-
localization of the calcium sensor, allowing us to distinguish the
activity profiles of even closely packed neurons. We maintained a
focus on internally generated dynamics by monitoring activity
while animals made spontaneous saccades in the absence of any
visual cues. This effort allowed us to identify both a broad spatial
distribution of the various signal types and strong regional
characteristics, including a pronounced switch in the directional
sensitivity of eye-position-related signals as one crosses from
rhombomere 1 to 2, a clustering of burst neurons in the ventral
portions of rhombomeres 2 and 3, and a high density of SR
neurons in dorsal portions of rhombomeres 2 and 3.

These mapping results complement previous work in several
ways. First, in relation to a mapping effort of spontaneous activity
in the dark restricted to the caudal hindbrain40, the current map
greatly extends spatial coverage but identified a somewhat sparser
distributions of neurons with eye position signals in the caudal
hindbrain. This greater sparsity could be related to differences in
cooperativity of the calcium sensor employed. Second, in com-
parison to mapping work involving optokinetic behavior41,42, the
results in this paper provide information on activity associated
with the preparation for and initiation of spontaneous saccadic
movements. Third, in relation to a mapping effort involving
phototactic behavior and light-sheet microscopy34, we observed
some similarities in the distribution of position signals (e.g., the
pronounced reversal in sensitivity from rhombomere 1 to
rhombomere 2), but several differences like a significant cluster-
ing of neurons with pre-saccadic ramp signals in dorsal portions
of rhombomeres 2 and 3 (Wolf et al. presented preliminary
findings of a region in dorsal rhombomere 7 where spatially
averaged activity rises a few seconds before exhibiting burst).
These differences might have arisen because of how the calcium
sensor was distributed (nuclear versus cytoplasmic), strategies for
signal detection (ANOVA STA-based versus position/velocity
regression-based), and the challenging conditions for light-sheet
microscopy in the hindbrain. Fourth, in comparison to work
using locomotor behaviors to map hindbrain activity43,44, the
current work suggests that regions in dorsal rhombomeres 2 and
3 that have been associated with the choice of which direction the
body will turn are also associated with the choice of which
direction the eye will turn. Given the tendency for eye movements
to precede head movements in gaze control45, it will be of interest
in the future to determine what role SR neurons play in orien-
tation behaviors more broadly. Thus, our work, together with
prior mapping studies, build a solid foundation for exploring and
understanding how visual and volitional signals are combined
and transformed into motor commands for oculomotor behavior
and potentially other orientation tasks.

Are there common underlying causes and dynamics that trigger
self-initiated actions? A great number of animal movements are

initiated without external cues but their causes are unknown. There
is tantalizing evidence, from crayfish to humans, that a buildup in
neural activity is related to self-initiated movement3,5,46–48, but
there has been no clear evidence that such neural activity is required
for this type of behavior. Indeed, some experiments have suggested
that buildup activity is only facilitatory, and other experiments have
provided evidence that buildup activity is actually suppressive16–18.
Our comprehensive mapping of this buildup activity enabled us to
show a titration between the degree of disruption to the readiness
signal and delays in the initiation of saccades. Moreover, single-cell
ablations of SR neurons led to significant delay in saccade initiation
that was two-fold greater than any delays following ablation of
nearby non-SR cells. These results suggest that the spontaneous
decision to move the eyes requires the buildup of activity in SR cells.
Our work thus builds upon prior studies of signaling during
voluntary movements by drawing a direct link between readiness
signals and self-initiated movement.

The activity of SR neurons is consistent with that expected by
ramp-to-threshold models for triggering behavior. In these
models, a signal external to the ramp network is accumulated in
value until a threshold is reached, at which point a command is
given to trigger movement. While typically applied to psycho-
physics experiments, where the signal being accumulated repre-
sents evidence for a task-relevant decision49–51, the general
features of such models, namely ramp rates that vary inversely
with ramp times and consistent thresholds at which movement is
initiated, are also applicable here. At the population level, we
found that the rate of rise in SR neuron activity varied in a
characteristic fashion (Fig. 5d), with longer ramp times closely
tied to slower ramp rates so that, regardless of the fixation
duration, population-wide pre-saccadic activity rose to a fairly
constant value at the time of saccade (Fig. 5f). Furthermore, we
were able to obtain reasonable predictions as to when an
upcoming saccade would occur simply by extrapolation of the
ramp trend established a few seconds after SR population activity
was initiated (Fig. 5h). Our finding that ramp-to-threshold
dynamics play a key role in the preparation for spontaneous
saccades is consistent with the idea that, similar to decision-
making tasks driven by accumulation of a signal representing
external evidence52,53, spontaneous decisions like the one studied
here involve a process where some internally generated signal that
is external to the ramp network is accumulated13,14.

We assumed a linear transformation between calcium dynamics
and firing rate. This assumption, over a limited range, is supported
by previous work on the neural integrator40 and by the fact that a
very strong nonlinearity would cause fluorescence signals to tran-
sition from off to on states, which would preclude us from seeing
certain dynamical properties, such as approximate linear ramping
activity of SR cells. However, weaker nonlinearities not accounted
for in our analysis can cause discrepancies in our estimates of firing
rate, particularly at low values and high values following saccades in
burst and burst-tonic neurons. These discrepancies can also cause
the slope and time of rise of SR cells to be artificially shortened from
the actual times. However, the systematic nature of such non-
linearities would still allow us to observe the coarse dynamical
profiles of cell responses and properties, such as the dependence of
slope on time of rise.

The above arguments lead to three interesting questions. First,
what might the internally generated signal(s) driving the ramp
network be? Second, what is the mechanism that allows SR
neurons to accumulate the signals they receive over time? Third,
what might be the role of SR neurons in other saccadic behaviors,
such as targeted saccades and fast phase eye movements?
Although these questions will require much future work to
answer, several hypotheses may be attractive to investigate.
Regarding the first question, one interesting possibility arises
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from the observation that even though neurons with fixation-
related activity were widely distributed, only ablations in the
caudal hindbrain led to a leaky fixation deficit characterizing loss
of functionality in the VPNI. This raises the possibility that the
ongoing fixation-related activity in the rostral hindbrain could
provide a kind of evidence signal that SR neurons accumulate.
Regarding the second question, since the accumulation process is
mathematically equivalent to temporal integration of a constant
input signal, it is interesting to consider the possibility that SR
neurons use a similar mechanism of recurrent excitation to
promote integration as has been evidenced in the nearby VPNI
for integrating saccadic inputs54–57. Regarding the third question,
given that SR neurons are active much earlier than midbrain and
cortical cells with pre-saccadic activity11,51,58 and given the
widespread projections from the reticular formation to mid and
forebrain areas59–61, it is possible that the SR signal in the
hindbrain provides the initial kernel of activity needed to prepare
movement during cued behaviors.

Answering these questions and understanding the circuit and
cellular mechanisms underlying the seemingly universal ramping
signal will require a combination of anatomy, perturbation
experiments, electrophysiology, and mathematical modeling. One
key advantage of discovering the SR signal in larval zebrafish is
that in this animal one has the ability to image and manipulate
single cells across the entire brain62,63, and perform whole-circuit
connectomics analysis in functionally specified populations54.
The mechanistic insights that one can obtain on readiness in
larval zebrafish will hopefully allow us to understand a broad set
of decision-making processes.

Methods
Calcium imaging and eye tracking. All experimental procedures were approved
by Weill Cornell Medicine’s Institutional Animal Care and Use Committee.
Transgenic larvae (7–8 days post fertilization) expressing nuclear-localized
GCaMP6f, Tg(HuC:GCaMP6f-H2B; strain cy73–431), were kindly provided by
Misha Ahrens’ lab. Fish were embedded in 1.5% low-temperature agarose and
subsequently imaged using a custom-built two-photon laser scanning microscope
(Daie, Goldman, and Aksay, 2015). We performed two-photon imaging using
excitation light (930 nm) from a tunable laser (Spectra-Physics Mai Tai) sent
through a 40× (0.8 NA) water-immersion objective lens (Olympus
LUMPLFL40XW/IR2) to the hindbrain. The laser power was controlled using an
electro-optical modulator (Conoptics 350-50UV) and amplifier (Conoptics
302RM). Laser power used for imaging ranged from 15–25 mW at the sample.
Neurons within square horizontal planes (185 µm in length; 5–68 planes per fish
spaced apart by 5 µm) were imaged simultaneously at 0.98 Hz (512 lines at 2 ms per
line) by raster scanning implemented using ScanImage v3.5. Recordings lasted 4–5
min per plane. Images were saved as uncompressed grayscale TIFF stacks. Hor-
izontal eye position (e in Fig. 1a) was extracted from camera images in real time at
a variable sampling rate of ~13 Hz (refs. 40,64), using a substage CMOS camera
(Allied Vision Technologies, Guppy FireWire camera) illuminated with infrared
light (850 nm, Thorlabs 851 L). The strong contrast in intensity between the zeb-
rafish eyes and the surrounding, transparent, area on the head (Fig. 2a) was used to
determine pixels covering the eyes. At the beginning of each experiment, the
experimenter manually selected (using roipoly in MATLAB) a region-of-interest
about which the eyes were free to move. Pixels within the region-of-interest whose
intensity values were below a manually selected threshold were classified as
belonging to the eyes. The threshold was chosen during the experiment by
manually trying various values and selecting the one that achieved the best seg-
mentation quality. After threshold, two ellipses were fit to the resulting binary
image using the MATLAB regionprops function. Eye position equaled the orien-
tation of the fitted ellipse about its time-averaged value.

Registration of individual planes to the Z-Brain atlas. Each imaging plane was
first registered to a corresponding plane in a reference bridge brain constructed
from a single Tg(HuC:H2B-GCaMP6f) fish (8 d.p.f.) using two-photon micro-
scopy. Single planes in the bridge brain was constructed by stitching together six
overlapping 512 × 512 (185 × 185 µm2 area) images through an optimized trans-
lation procedure using the FIJI Grid/Collection Stitching Plugin65,66. Each image
used in the stitching procedure was formed by averaging calcium activity over a
20 s interval. The six images used were sufficient to completely tile any horizontal
plane in the hindbrain. Bridge brain images were taken from across the entire
extent of the hindbrain at a dorsal–ventral spacing of 3 µm. For each animal, we
computed an affine transformation to linearly transform three-dimensional (3D)

points from that animal to 3D points in the bridge brain. We used the BigWarp
tool67 in FIJI to select k corresponding locations between the brain being registered
and the bridge brain. Correspondence was determined by visual inspection based
on features, such as fiber bundles, the midline, and ventricles (Supplementary
Fig. 1a). We used the MATLAB “\” operator to solve the affine transformation
y ¼ TxþT01 for the 3 × 3 matrix, T, and the 3 × 1 translation vector T0 , where y
and x are the 3 × k matrices of points chosen from the bridge brain and brain being
registered respectively, 1 is a k × 1 vector of all ones and denotes the outer product.
We repeated this procedure to find corresponding points and an associated
transformation matrix between the bridge brain and the Elavl3-H2B brain
(Elavl3 is another name for the HuC gene) available on the Z-Brain website.

Image pre-processing to correct for movement artifacts. We were able to
correct for small drifts that occurred during imaging using a motion-correction
procedure based on cross-correlation. We first calculated the median fluorescence
intensity across time for each pixel in the movie and used the resulting image as a
reference. Any frame in the movie that deviated from the reference image was
considered to have a movement artifact which required correction. To register each
movie frame to the reference, we used the MATLAB function dftregistration.m68,
which implements image registration via cross-correlation. The dftregistration
algorithm estimates the peak in the two-dimensional cross-correlation between the
reference image and movie frame being registered. Each movie frame is then
translated by an amount determined from the peak location. For computational
efficiency, the dftregistration algorithm works in Fourier space to calculate cross-
correlations. We used MATLAB’s built-in fast Fourier transform software (fft2) to
compute each frame’s two-dimensional discrete Fourier transform (DFT) and to
compute the two-dimensional DFT of the reference frame.

Detecting samples corrupted by animal movement. The motion-correction
algorithm described above returned a scalar metric for each movie frame that
indicated how well the frame matched the reference after correction. If this value
was too low, the frame was considered too aberrant to be useful and the fluores-
cence of all pixels in this frame were replaced by NaNs. Specifically, for each frame,
the dftregistration algorithm returned an error value related to the square root of
one minus peak, normalized cross-correlation between a given frame and the
reference. For each imaging plane, we computed the median error across all frames
and the median absolute deviation (MAD) of the error across all frames. If a given
frame’s error value was greater than five times the MAD plus the median that
frame’s pixels were replaced by NaNs.

Automated identification of active cells. We determined the locations of active
cells by running the freely available CalmAn-MATLAB toolbox provided by the
Flatiron Institute (https://github.com/flatironinstitute/CaImAn-MATLAB)35 on
motion-corrected fluorescence movies. The algorithm models a calcium fluores-
cence movie as the product of two nonnegative matrices, one containing spatial
locations and the other containing calcium time series for each active cell, plus a
background and noise component. To determine the nonnegative matrices that
best-fit the data, we implemented a procedure based on the demo_script.m file
provided with the code. After initializing the spatial and temporal components, we
ran one iteration of spatial and temporal updates, followed by a post-processing
step, where components correlated with each other were merged and components
that were poorly correlated with the data were removed, followed by a final spatial
and temporal update.

We first found initial estimates for the spatial, temporal, and background
components, using the initialize_components function. This function ran several
steps: (1) it spatially filtered the fluorescence movies (Gaussian kernel with
standard deviation set to 5, which corresponds to 1.8 µm). (2) It greedily selected
locations where the spatial estimates explained the largest amount of spatio-
temporal variance. (3) It used rank 1, nonnegative matrix factorization to produce
spatial, temporal, and background estimates. (4) It refined these estimates using a
hierarchical, alternating, nonnegative matrix factorization method. (5) It ran a rank
1 nonnegative matrix factorization on the spatio-temporal residual to initialize the
background spatial and temporal components.

We updated the initial estimates of the spatial footprints and the background
component, using the constrained nonnegative Lasso algorithm implemented in
the update_spatial_components function. We used the dilate option which
restricted the search of possible nonzero component values to a dilated version of
that component’s nonzero values found in the previous iteration (dilation was
performed using a 4-pixel radius (1.4 µm) disk-shaped structuring element). The
new components are then post-processed by the following operations: (i) two-
dimensional median filtering with a default size of 3 × 3 pixels, (ii) morphological
closing with a square-shaped structuring element (3 pixels long), and (iii) “energy”
thresholding with threshold set to 0.99. We then updated the estimates of the
temporal components using the update_temporal_components function with an
auto-regressive parameter, p, equal to zero. This function updated components
using a block-coordinate descent algorithm (we used two iterations) which, with
p equal to zero, ran a thresholding operation (at a threshold of 0) on the activity of
each component after removing the effect of all the other components. After one
spatial and temporal update, we removed spatial or temporal components that
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were poorly correlated with the raw data (space and time r values returned by
classify_comp_corr function were <0.05) or whose spatial footprint areas were
smaller than a value of 16 pixels squared which equaled 2.1 µm2. We then
merged spatially overlapping components with highly correlated temporal activity
(cc > 0.95), using the merge_components function.

Using the new component estimates, we then ran one more iteration of the
spatial component update followed by one more iteration of
update_temporal_components, however p was now set to one instead of zero. When
p > 0, the temporal update deconvolves the activity of each component after
removing the effect of all the other components. We used the default
constrained_foopsi method along with the CVX toolbox for deconvolution, which
solved a noise-constrained optimization problem to produce estimates of denoised
fluorescence activity and nonnegative spike estimates. We estimated the noise level
for each neuron by averaging the power spectral density of component fluorescence
activity over high frequencies (one half the Nyquist frequency to the Nyquist
frequency which equaled 0.24–0.49 Hz for our data). We set the auto-regressive
parameter to a fixed value, equal to 1.3 s in the equivalent continuous time model,
which we chose by measuring the rate of decay of putative VPNI cells when they
transition from spiking to quiescence. Simultaneous electrophysiological and
calcium recordings of VPNI cells from previously performed experiments have
shown that such a procedure can be used to accurately estimate the auto-regressive
parameter40. VPNI cells were selected as cells in rhombomeres 5–8 whose Pearson
correlation coefficient between fluorescence and eye position was reasonably high
(>0.5). As an initial approximation of the effects of calcium buffering on the
relationship between firing rate and eye position, we convolved the eye position
using an exponential decay kernel with a 1-s decay time before measuring the
correlation. We then fit a decaying exponential function (Ae�t=τ þ b) to the average
fluorescence triggered around nasally directed saccades made by the eye ipsilateral
to the cell. b was chosen as the average value of the ipsiversive STA 1–2 s prior to
saccade. A and τ were found by minimizing the squared error between the model
and data using an interior-point algorithm (MATLAB fmincon) with τ constrained
to be positive and A constrained to be larger than b. We used the median value of τ
from cells that were well fit by the exponential decay model (r2 > 0.8), as the
parameter for the auto-regressive model (we converted the value from seconds to
the equivalent discrete-time model). We used the nonnegative, sparse deconvolved
output from this temporal update as our estimate of deconvolved neural activity.
We estimated each component’s noisy fluorescence activity as the trace that
resulted after spatially averaging the fluorescence video using that component’s
spatial values as weights.

We investigated different initial values of the number of neurons parameter, K,
in function initialize_components, and chose a value (250) that produced
reasonable looking spatial footprint estimates based on visual inspection of a
handful of sample fluorescence movies. Footprints in our final dataset had a size of
14.9 ± 0.1 µm2 (mean ± SEM; n= 62,896 cells examined over 20 fish), which
aligned closely with the typical area of the nucleus visualized by H2B-GCaMP
(Fig. 2a). We registered each cell to a reference brain (see “Methods” section
“Registration of individual planes to the Z-Brain atlas”) and excluded cells that
were registered to the midbrain.

Cell detection based on time-averaged intensity images. In the “Results” sec-
tion (“Mapping activity using two-photon microscopy”), we give estimates of the
total number of cells in our dataset, and in Supplementary Fig. 1d, e we refer to
non-active cells that were not selected by the CalmAn algorithm. For these sections
only, we analyzed time-averaged images to infer cell locations since the CaImAn
algorithm cannot find non-active cells (non-active cells are included as part of a
single background term).

For each motion-corrected fluorescence movie, we calculated the median
intensity across time for each pixel and analyzed the resulting time-averaged image
to find individual cell nuclei locations. We performed a morphological opening on
the time-averaged image (MATLAB function imopen) with a disk-shaped
structuring element that had a radius equal to 4 pixels (1.4 µm). The opening
operation with this structuring element tended to make it easier to segregate the
disk-shaped nuclei in the image. We then found local intensity maxima of the
opened image by looking for connected pixels with equal intensity that were greater
than the intensity of external boundary pixels (MATLAB function imregionalmax).
We measured the locations of individual cell nuclei measuring the regions of
connected pixels that corresponded to local intensity maxima. To control for false
positives, we excluded any regions-of-interest that had an area greater than most
cell nuclei areas, which we determined by manual measurements (18.7 µm2 which
translated to 144 pixels squared).

Automated determination of saccade times. We determined the times of sac-
cade occurrence by calculating the crossing times of eye velocity past a threshold.
To calculate eye velocity, we first filtered out fluctuations in eye position using a
median filter (medfilt1 in MATLAB). The exact value of the filter order depended
on the eye position sampling rate, but was chosen to correspond to 500 milli-
seconds. We then approximated eye velocity as the difference in filtered eye
position at consecutive time points divided by the time difference between these
points. The threshold was set to three standard deviations above the mean-absolute
velocity or 10° s−1, whichever was larger. A single saccadic event typically consisted

of several consecutive points whose velocity was above the threshold. We took the
initial point as the time when the saccade occurs. During head/body movements
the eye position traces become corrupted. One signature we used to determine
when head/body movements occur is the time between threshold-crossing events
(this signature was used in combination with the criteria listed in “Methods”
section “Detecting samples corrupted by animal movement”). Separate experi-
ments with video recordings of the entire body suggested that unusually short
intervals between events typically indicate that the events occur during sudden
head/body movements. For this reason, we did not consider threshold-crossing
events that were spaced apart in time 1.4 s or less to be saccades.

Saccade-triggered average calculation. We averaged saccade-triggered signals
across fixations after linearly interpolating them to a grid of time points equally
spaced apart by 1/3 s. Activity before and after each saccade was extracted, inter-
polated (using interp1 in MATLAB with the linear method), grouped across sac-
cades and then averaged according to the direction of saccade (left or right;
Fig. 2c–e). We performed this procedure using deconvolved fluorescence and dF/F,
where dF/F was computed as raw fluorescence, F, subtracted and divided by its
mean across the entire recording period, F0, dF=F ¼ F�F0

F0
. We chose a window that

extended 5 s before and after saccade because at this value we retained a reasonable
amount of data, while still finding patterns with time across the STAs (Fig. 3g). We
excluded any cells that were recorded during an experiment that contained less
than five saccades to the left and five saccades to the right (ten saccade-triggered
responses total). Each of the saccades were required to be preceded and followed by
a fixation that lasted at least 5 s. Of the 62,896 cells in the hindbrain that were
identified as active by CaImAn, 36,527 cells had at least five left and right saccade-
triggered responses that lasted 5 s or longer. Based on visual inspection of activity,
we removed cells whose fluorescence activity near saccade was in the lowest 1%
(375 total) of peak absolute STA values (peak absolute levels <14% dF/F) leaving
36,152 cells for eye-movement analysis. A 95% confidence intervals about the
average (Fig. 2c–e) were found by resampling the saccade-triggered dF/F responses
with replacement and calculating the STA for each resample (number of resamples
= 100). We measured the lower and upper bounds of the confidence intervals as
the 0.025 and 0.975 quantiles across the bootstrapped samples.

Selection of eye-movement responsive cells. We ran a one-way ANOVA
(MATLAB function anova1, Statistics and Machine Learning Toolbox) on saccade-
triggered responses to test the null hypothesis that STA activity was equal at all
time points versus the alternative that at least one time point had average activity
that differed from the others. We considered a neuron as being eye-movement
responsive if we rejected the null hypothesis for either one of that neuron’s two
STAs (the STA triggered around saccades to the left or right). We used the
Holm–Bonferroni method69 to correct for multiple comparisons. This procedure
varied the significance level for each comparison by the formula α

N�jþ1, where j was

the index of the comparison after sorting p values from low to high, α was the
desired family-wise error rate, and N was the total number of comparisons. We set
α to 0.01 and set the number of comparisons to 72,304 (36,152 active cells with
STAs available for analysis times two to account for both saccade directions, see
“Methods” section “Saccade-triggered average calculation”). We rejected the null
hypothesis for 6,712 cells (19% of 36,152 active cells). The probability that a
hindbrain cell is eye-movement responsive is therefore 0.05 (the probability that a
given active hindbrain cell is eye-movement responsive, 0.19, times the probability
that a hindbrain cell is active, 62,896/238,191).

Principal component analysis of saccade-triggered averages. We ran a PCA to
search for lower-dimensional representations of STAs across the population of eye-
movement responsive cells. We combined STAs of deconvolved fluorescence from
all eye-movement responsive cells (across all planes and fish recorded) and from
both directions (around saccades to the left and right) resulting in a matrix, f , that
had N ¼ 13;424 rows (6,712 cells times two directions) and T ¼ 31 columns (time
around the saccade is evaluated at 31 discrete-time bins of size 1/3 s). To focus our
analysis on the variations in dynamics across cells, we divided each STA by its L2
norm before performing PCA,

f 0 it ¼
f itffiffiffiffiffiffiffiffiffiffiffiffi
∑
31

a¼1
f 2ia

r ; ð1Þ

for i ¼ 1; ¼ ;N , t ¼ 1; ¼ ;T: PCA (computed using MATLAB’s Statistics and
Machine Learning Toolbox function pca) applied to f 0 resulted in a matrix, u, of 31
orthonormal basis vectors (each T elements long) which we refer to as components
(Fig. 3b) and a matrix of coefficients, c (N × T elements; Fig. 3c), that scale u such
that,

f 0 it �
1
N

∑
N

j¼1
f 0 jt ¼ ∑

31

k¼1
cikukt ; ð2Þ

for i ¼ 1; ¼ ;N , t ¼ 1; ¼ ;T:
To illustrate the main features of variation across the population of neurons

recorded, we focused on the coefficients corresponding to the first three
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components after determining that these components explained the majority of the
variance (Fig. 3a). In Fig. 3c, the coordinates ci1, ci2, and ci3 are plotted on the
c1-axis, c2-axis, and c3-axis, respectively, for i ¼ 1; ¼ ;N . We normalized these
coefficients to have unit norm,

c0 ij ¼
cijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑3
a¼1 c

2
ia

q ; ð3Þ

for i ¼ 1; ¼ ;N , j ¼ 1; 2; 3. We then transformed c0 into spherical coordinates
(see Fig. 3c).

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02i1 þ c02i2 þ c02i3

q
¼ 1; ð4Þ

Θi ¼ arcsin c0 i3
� � ð5Þ

Φi ¼ arctan
c0i2
c0i1

� �
; ð6Þ

for i ¼ 1; ¼ ;N . The elements Φi and Θi contain the ith STA’s values of the
angles ϕ and θ shown in Fig. 3c and are used to construct Fig. 3c–h, and
Supplementary Figs. 2 and 3. Note that we are working with latitude, which we
have defined to be 0 at the equator in Fig. 3c, d, instead of the azimuthal angle
(90� θ) typically used when working in spherical coordinates. The principal
advantage of working in spherical coordinates is that we can examine two-
dimensional plots without sacrificing the temporal information stored in the first
three principal components. The phases of Φ and Θ were chosen so that the ith
STA whose temporal profile is equal to components one, two, or three would have
coefficients, Φi;Θi

� �
, equal to (0°, 0°),(90°, 0°), (0°, 90°), respectively, as shown in

Fig. 3c. The two-dimensional probability density function over Φ and Θ shown in
Fig. 3d was measured using a normal Gaussian kernel smoothing function
(MATLAB, Statistics and Machine Learning Toolbox function ksdensity with
bandwidth parameter equal to 10° for Φ and 3° for Θ).

Each population average shown in Fig. 3g is constructed by averaging together
all non-normalized STAs triggered to saccades to the left with a specific value of ϕ.
For example, the average under the column ϕ= 105 was constructed by first
finding the STAs triggered to saccades to the left with ϕ within 15° of 105 and then
averaging these together. Letting f i;: denote the ith STA and S105 denote the set of
integers that index leftward STAs with ϕ = 105, S105 ¼

�
ij97:5≤Φi < 112:5; and

f i; : is an average of responses triggered to leftward saccades
�
, the population

average under the column ϕ= 105 is computed as

1
jS105j

∑
k2S105

fk;:; ð7Þ

where jS105j denotes the number of STAs indexed by the set S105. The population
averages shown in Supplementary Fig. 3a are constructed in the same way except
with the condition that STAs are triggered to saccades to the right. The population
averages shown in blue in Fig. 3f are constructed in the same way except without
the restriction on saccade direction. Note that the population averages shown in
Fig. 3f, g and Supplementary Fig. 3a do not use the L2-normed responses, are
constructed using all principal components and only use the angles in Φ to group
STAs. Therefore, the population averages that are displayed can reflect variations
not captured by the first three components.

K-means clustering of saccade-triggered averages. K-means was used to cluster
the normalized coefficients (defined in Eq. (3) and associated text) found by PCA
on STAs from eye-movement responsive cells (Supplementary Fig. 2). For each cell,
we focused on the normalized coefficients that scale the first three principal
components. We created a six-dimensional vector by combining the normalized
coefficients that correspond to the STA triggered to saccades to the left and right.
To choose the number of clusters, we ran nine K-means analyses, using a different
number of clusters on each run (between 2 and 10) to group the combined coef-
ficients, and we used the silhouette value to measure cluster quality. The silhouette
value for an individual vector measures how close that vector is to other vectors in
its own cluster relative to its distance with vectors in other clusters. The value for
the ith vector is defined as the minimum average distance from the ith vector to all
vectors in different clusters than the ith vector, bi, minus the average distance from
the ith vector to other vectors in the same cluster, ai. The silhouette value is
normalized by max(ai , bi) in order for it to range from +1 to −1 with vectors that
are well matched to their cluster having values near +1, and with vectors that are
randomly clustered having values near 0.

Anatomical projections. We created maps of SR cell locations (Fig. 6d, e) and of
the angle φ shown in Fig. 3c (computed as described in Eq. (6) and related text)
from STAs triggered to saccades to the left (Fig. 3h)/right (Supplementary Fig. 3b)
for each fish and imaging plane. Since some regions were imaged with more fish
than others (Supplementary Fig. 1c), these maps were created using a randomly
selected subset of the eye-movement responsive cells. To adjust for variation in the
number of fish sampled across brain regions (all regions were sampled by at least
three fish), we assigned each cell a probability of being included in the map equal to
three divided by the number of fish sampled at that cell’s location. Each projection

was made by first registering cell locations to the Z-Brain (see “Methods” section
“Registration of individual planes to the Z-Brain atlas”) and then binning cells into
2D square bins (5 µm in length) appropriate for the given projection. The modes
shown in Fig. 3h and Supplementary Fig. 3b were computed by first constructing a
histogram (15° bins) of the values of φ from STAs triggered to the left/right from
cells registered to a given square in the projection. The color displayed was
determined by the value where the histogram peaked or, in cases where the his-
togram had multiple modes, was determined by the value at a randomly
chosen peak.

Selection of SR cells. An eye-movement responsive cell was classified as an SR cell
if its dF/F response before upcoming saccades was significantly correlated with
time before saccade. We measured two Spearman correlations for each eye-
movement responsive cell. One correlation was computed (MATLAB, Statistics
and Machine Learning Toolbox function corr with option type set to Spearman) on
values of dF/F and time before saccade concatenated from all fixations before
saccades to the left. The other correlation was computed on values of dF/F and time
before saccade concatenated from all fixations before saccades to the right. The
Spearman correlation can be used to measure monotonic (not only linear) rela-
tionships between two variables X and Y . It is calculated as the standard Pearson
correlation coefficient applied to the ranks of X and Y . We did not interpolate
fluorescence activity before computing the correlation coefficients. Since we were
interested in cells whose activity is related to upcoming saccade, we did not include
activity that was within 2 s of the previous saccade, where eye-movement
responsive cells might have post-saccadic fluorescence decays. We computed a p
value for each correlation by testing the hypothesis that rho= 0 against the
alternative that the correlation was greater than 0 (tail option set to right). A
neuron was considered to have significant pre-saccadic activity if we rejected the
null hypothesis for any of the cell’s two correlation coefficients at a significance
level of 0.01. To correct for multiple comparisons, we used the Holm–Bonferroni
method (as described in “Methods” section “Selection of eye-movement responsive
cells”) with the number of comparisons set to 13,424 (the number of eye-
movement responsive cells times two directions).

Measuring SR cell activity rise time. We measured the time when an SR cell’s
activity rose above baseline by determining when its deconvolved fluorescence crossed
a threshold near zero (0.1). Based on the visual inspection of deconvolved SR traces,
we found that the nonnegativity constraint used to compute deconvolved fluorescence
facilitated the distinction between times when the cell was responsive from times
when it was not (Fig. 4a). Epochs of time where the deconvolved estimate was equal
to, or nearly equal to, zero were interpreted as epochs where the cell was not
responsive. Therefore, we measured SR cell activity rise time for each fixation
(Fig. 4b), as the time point before its deconvolved fluorescence increased >0.1.

Measuring rate of pre-saccadic rise in single SR cells. We estimated the rate of
pre-saccadic rise in SR cells by finding the slope of the best-fit line of pre-saccadic
deconvolved fluorescence with time. To construct the best-fit line we used time
from pre-saccadic rise to the time of upcoming saccade as a regressor to a linear
regression that fit deconvolved fluorescence values. The linear approximation was
reasonable for 72% of the fixations (correlation between regression fit and data was
>0.4). We excluded fixations where we were unable to measure the slope with linear
regression.

Predicting saccade direction using choice probability. We predicted saccade
direction using interpolated SR activity before saccadic events. Throughout this
section, the phrase “interpolated SR activity” refers to linear interpolation of
deconvolved fluorescence activity to a grid of equally spaced time points (using 1/3
s bins) starting from the previous saccade to the upcoming saccade.

The CP is a commonly used metric in neurophysiology and psychophysics
experiments that quantifies how well an ideal observer can predict animal
behavior37. In a typical neurophysiology application, the CP measures relationships
between neuronal discharges and binary behavioral choices. We adapted this
metric by using the spontaneous decision to saccade to the left or the right as our
binary behavioral variable, and population average deconvolved fluorescence at a
given time before saccade as our neural read-out. At discrete time points before
upcoming saccades, we made two histograms of interpolated SR activity. One
distribution, referred to as the noise distribution, was comprised of values of
interpolated SR activity before saccades to the right (left) from SR cells significantly
correlated with upcoming saccades to the left (right). The other distribution,
referred to as the signal distribution, was comprised of interpolated SR activity
before saccades to the left (right) from SR cells significantly correlated with
upcoming saccades to the left (right). Saccade direction was predicted using a
threshold on population activity. We plotted the fraction of interpolated SR activity
from the signal distribution that was above threshold (the true positive rate) versus
the fraction of interpolated SR activity from the noise distribution that was above
threshold (the false positive rate) across multiple threshold values. The CP was
calculated as the area under the resulting curve, which would equal 0.5 if activity
and upcoming saccade direction were not related. To estimate the variability in CP,
we computed multiple CPs each conditioned on a different fixation duration (fixing
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durations to values 2–20 s) and then computed the CP SEM across fixation
durations.

Predicting saccade times using a ramp-to-threshold model. We predicted when
a saccade would occur by calculating a running estimate of population activity slope
and then plugging this estimate into a ramp-to-threshold model to predict when
population activity will cross a threshold, κ. We first measured κ by averaging
deconvolved fluorescence reached at the time of saccade across all SR cells in our
dataset. For each fixation duration, we then calculated population average activity
before upcoming saccade by combining (across all cells and fish) interpolated SR
activity (Fig. 5e; we used eighteen nonoverlapping values of fixation duration from 3.5
± 0.5 to 20.5 ± 0.5 s). We modeled the population average dynamics, yðtÞ, at values of
time t after population activity begins to rise, with the following linear ramp equation

y ¼ Dt; ð8Þ
where D is the population activity slope. After a time, tr , a saccade will occur and y
should equal κ if the ramp-to-threshold model is accurate, e.g.,

y tr
� � ¼ κ ¼ Dtr : ð9Þ

We constructed a running estimate of D by first measuring when the actual
population activity, ey tð Þ; began to rise. Note that we are distinguishing the
population activity measured from data, ey tð Þ, from the model of population
activity, yðtÞ, specified by Eq. (8). We measured when ey tð Þ began to rise as the time
when the derivative in ey tð Þ crossed a threshold of 35 (arbitrary units). Note that
under our convention we set this event to occur at time 0. The derivative was
approximated as the difference between population activity at each time point
divided by the interpolated time bin interval, 4t, of 1/3 s. We created a running
estimate of D using the median value of the derivative from time 0 until time, t,

gDðtÞ ¼ median
ey t0 þ 4tð Þ � eyðt0Þ

4t

	 
t0¼t

0

 !
: ð10Þ

We substituted our running estimate of the slope into Eq. (9) to yield a running
estimate of tr gtrðtÞ ¼ κgDðtÞ ; ð11Þ

where we have used the ~ symbol to denote estimates of model parameters. Using our

estimate gtrðtÞ, we could predict the amount of time until upcoming saccade for any

given value of t, as gtrðtÞ � t. Figure 5h shows predictions of the time until upcoming
saccade made by varying the value of t from one time point after population activity
begins to rise to one time point before saccade for each fixation duration.

In the text and in Supplementary Fig. 6, we also present results showing how
well the population average activity is approximated by a ramp-to-threshold model.
In these cases, we did not create a running estimate of the slope, but instead only
created one slope estimate by setting t ¼ tr in Eq. (10). We used all cells to estimategD tð Þ when we forecasted saccade times for Fig. 5h, i; however, using all cells would
have led to overfitting in Supplementary Fig. 6. To prevent overfitting in this case,
we only used a random subset of all cells (60%) to measure ey tð Þ. We used this
measurement to compute eD (via Eq. (10) with t ¼ tr) and then plugged eD into Eq.
(8) to predict population activity. We then tested this prediction against a new
measurement of population activity constructed from the remaining 40% of cells.
To determine model accuracy, we repeated this procedure on 10,000 randomly
selected subsets from randomly chosen fixation durations.

Saccade time predictions by an ideal observer. As a control, we determined the
fraction of saccades that could be accurately predicted given knowledge of the
elapsed time since last saccade and the distribution of fixation durations. Given this
information, an ideal observer could predict upcoming saccade times by guessing a
time that minimizes some cost function that measures error between the actual
saccade time and the guessed time. We tried three cost functions (mean-squared
error, mean-absolute deviation, and all-or-none error) and report results in the text
from the one that performed the best (all-or-none error).

Cluster laser ablations. We targeted regions along the dorsal–ventral axis that
were 30 µm dorsal of the medial longitudinal fasciculus since this is where we found
most eye-movement responsive cells. Ablations were performed with the same
microscope used for imaging. Cluster ablations40 were created by focusing the laser
to an area smaller than a single cell and then increasing the average laser power to
values between 130 and 150mW for 1–5 s. We repeated this procedure until we saw
a lesion, which we determined by looking for a multi-spectrum spot that was much
brighter than the fluorescence of surrounding tissue. Lesion sizes with this proce-
dure were generally ~5 µm in diameter. To increase the size of the lesion we lowered
the average laser power to values of 30–50mW and scanned the ablated region at
these lower powers, which caused the lesion size to grow. We stopped scanning the
ablated region once it grew to ~30 µm in diameter. We waited between 30 and 120
min after ablation before recording post-lesion eye movements.

To estimate the fraction of SR cells lesioned in a given fish during cluster
ablations (Fig. 7d and text), we registered the ablated animals and SR cell locations

to the bridge brain (see “Methods” section “Registration of individual planes to the
Z-Brain atlas”) and then calculated the number, nc, of SR cells (locations shown in
Fig. 6) that fell within a cylinder (30 µm radius, 60 µm side length along
dorsal–ventral axis) centered about the location of peak ablation damage. To
determine the cylinder center, we manually inspected time-averaged images of each
the ablated region (Fig. 7a) to find planes containing a bright, multi-spectrum
fluorescence characterizing ablation damage. We found the plane with the maximal
damage, selected similar points between this plane and the bridge brain (as
demonstrated in Supplementary Fig. 1a) and then created a 2D affine matrix to
transform the center of the registered lesion to the bridge brain. The fraction ablated
was equal to nc divided by the total number of SR cells used to construct the map.

Single-cell laser ablations. In a separate set of experiments, we targeted individual
SR neurons for ablation. We imaged neuronal activity in several planes (185 µm2 in
size) centered on regions most densely populated with SR cells (dorsal of the
Mauthner cell between rhombomeres 2 and 6, see Fig. 6). During the experiment,
we analyzed saccade-triggered activity of all cells in the imaging planes to identify
the locations of eye-movement responsive cells (using the ANOVA based proce-
dure described in “Methods” section “Selection of eye-movement responsive cells”)
and then identified which of these cells were SR cells (using the procedure
described in “Methods” section “Selection of SR cells”). The total time spent
imaging and processing activity before ablation varied between 10 min and 2 h.
After processing, we targeted four to seven randomly chosen SR cells for ablation.
Before each ablation, we manually corrected for any changes in cell-center location
that might have arisen during SR cell identification. Manual correction was per-
formed by zooming into a region containing a cell of interest, taking a new time-
averaged image, and reidentifying the SR neuron location by comparing the new
with the original time-averaged image where the SR cell was identified. We did not
attempt an ablation if the experimenter could not reidentify the cell of interest after
processing. We ablated individual neurons by focusing a high-powered, pulsed
femtosecond laser (810 nm, 400–500 mW after the objective) on the center of SR
cells for a brief (2–5 ms) period of time28,29,70. This procedure resulted in the loss
of one to three cells per ablation attempt (Fig. 7b) at the depths where SR cells were
targeted (40–70 µm below the surfaced). In some cases, ablations did not occur
even after three to five attempts, most likely due to laser power absorption from
pigmentation. We did not try to ablate a cell after attempts. In one experiment, we
repeated three cycles of finding cells of interest in a single plane, ablating these
cells, then searching for more cells of interest in subsequent planes. In all other
experiments we imaged, identified cells of interest, and then ablated these cells.
At the end of the experiment, we took time-averaged images of the entire hindbrain
dorsal of the Mauthner cell and used this stack to register ablated cells to the
Z-Brain Atlas. For control cell ablations, we performed the same procedure but
targeted cells that failed to pass our criteria for being considered eye-movement
responsive.

Analysis of behavior following laser ablations. For each fish, we measured
fractional changes in median fixation duration after ablation. Since we were con-
cerned with a spontaneous behavior, we could not control the number of fixations
that were recorded during the timeframe of each experiment. As a result, our
measurements would have had different accuracies per animal (Supplementary
Table 1), if we calculated fractional changes without accounting for the different
number of samples per fish. To control for this difference in accuracy, while using
all our data, we made repeated measurements of the fractional change per fish with
each repeated measurement computed using the same number of fixations before
and after ablation. For each repeated measurement, we randomly sampled without
replacement Nmin fixations before and after ablation. The exact value of Nmin was
based on animals with the fewest number of fixations available after excluding
animals that stopped making saccades after ablation; animals whose average sac-
cade rate never increased above one saccade per direction per minute were
excluded (n= 3 animals from cluster ablation experiments, 2 from treated group,
and 1 from control). Specifically, if we denote the number of fixations before or
after ablation (indexed by i) from animal j, as nij , then Nmin ¼ mini;j nij . The
number of times we repeated each measurement of fractional change in median
fixation duration varied per fish and was determined by how many more fixations
each animal made compared to Nmin. Specifically, the number of times we repeated

each measurement for animal j equaled round ðmini nij
Nmin

Þ. The fractional change in

median fixation duration was computed as the difference in median fixation
duration (after minus before ablation) divided by the median fixation duration
before ablation. Using l to denote the index of the repeated measurement in animal
j and tijml to denote the mth randomly sampled fixation duration (integer m varies
from 1 to Nmin) in condition i (i=1 denotes before ablation and i = 2 denotes after
ablation), the fractional change in fixation duration was computed as:

yjl ¼
medianm t2jml �medianm t1jml

medianm t1jml
; ð12Þ

for l= 1, 2, …, roundðmini nij
Nmin

Þ and j= 1, 2, …, total number of animals.

To determine how the variability in cluster ablation results depended on the
sample size used to compute the change in fixation duration, Nmin, we reran the
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entire procedure described >13 times each time setting a different floor to Nmin
(floor values equaled 55, 65, 75, …175). For each floor value, Nmin was computed
after removing every animal whose minimum value of fixations either before or
after ablation was below the floor value (see minimum number of fixations per fish
in Supplementary Table 2). At each floor value, we computed the Pearson
correlation coefficient between the elements of y and the fraction of cells removed
during a cluster ablation (see “Methods” section “Cluster laser ablations” for a
description of how we estimated the fraction of SR cells ablated for each animal).
Since the elements of y depend on the random samples chosen, we repeated our
sampling procedure 100 times for each floor value to obtain 100 samples of y, and
subsequently 100 correlation coefficients and then computed the median across
these samples resulting in 13 median correlation coefficients. In the “Results”
section regarding cluster ablations (see “Focal laser ablations identify SR cells as
indispensable for setting spontaneous fixation durations”), we presented the average
correlation across these 13 values (Nmin varied between 57 and 176 fixations, n
varied between 10 and 29 animals, see Supplementary Table 2 to determine exact n
at a given floor). At each floor value, we also ran a one-sided, two-sample KS test
between the 100 samples of correlation coefficients and 100 coefficients obtained by
correlating randomly shuffled elements of y, with the fraction of ablated SR cells.
This resulted in 13 p values since we used 13 floor values. All 13 p values were
significant at a criterion of 0.001 using the Holm–Bonferroni method to control for
multiple comparisons. As expected, the variability in correlation coefficients
increased when too few samples, Nmin; were used to compute each fractional
change; the average correlation across the eight values with the largest values of
Nmin (Nmin varied between 105 and 176 fixations, n varied between 10 and 20
animals)= 0.33. The values plotted in Fig. 7d are from one of the hundred samples
of y at Nmin = 57 that contained a typical correlation coefficient; Supplementary
Fig. 8d shows results from the same run used to construct Fig. 7d.

In the “Results” section regarding single-cell targeted ablations, we repeated our
sampling procedure 100 times to calculate 100 samples of the mean of y and
presented the minimum, maximum, and median across these samples. We did not
remove animals for single-cell ablation analysis (Nmin = 33 fixations; see
Supplementary Table 3 for the number of repeated measurements per animal j, i.e.,

roundðmini nij
Nmin

Þ, where the conditions before and after ablation are indexed by i).

Figure 7e shows one of the hundred runs of y that results in a typical change
between SR and control-targeted groups. The sham ablation results presented in
Fig. 7e were computed without making repeated measurements using Nmin = 33
fixations per animal to compute fractional change in median fixation duration. For
each sample of y for control and SR-targeted animals, we ran a Wilcoxon rank-sum
test (100 tests in total) of the null hypothesis that the medians are equal between
the distribution of y for SR-targeted and the distribution of y from control animals
against the alternative that the median is greater in SR-targeted animals. The
minimum, maximum, and median p values across the 100 runs were also presented
in the results. MATLAB function ranksum with the appropriate value of tail was
used to perform the one-sided Wilcoxon tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The calcium and eye movement traces that support the findings of this study are available
in figshare with the identifier https://doi.org/10.6084/m9.figshare.14558064.v1 (ref. 71).
Source data are provided with this paper.

Code availability
The code used for data analysis in this study can be downloaded from GitHub at https://
github.com/alxdroR/SRNatComm21.git [https://doi.org/10.5281/zenodo.4743159]72.
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