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Abstract	
Recent	advances	in	light-sheet	microscopy	enable	imaging	of	cell	morphology	and	signaling	with	
unprecedented	detail.	However,	 the	 analytical	 tools	 to	 systematically	measure	 and	visualize	 the	
intricate	 relations	 between	 cell	 morphodynamics,	 intracellular	 signaling,	 and	 cytoskeletal	
dynamics	 have	 been	 largely	missing.	Here,	we	 introduce	 a	 set	 of	 computer	 vision	 and	 graphics	
methods	to	dissect	molecular	mechanisms	underlying	3D	cell	morphogenesis	and	to	test	whether	
morphogenesis	 itself	 affects	 intracellular	 signaling.	 We	 demonstrate	 a	 machine	 learning	 based	
generic	morphological	motif	detector	that	automatically	finds	lamellipodia,	filopodia,	and	blebs	on	
various	 cell	 types.	 Combining	 motif	 detection	 with	 molecular	 localization,	 we	 measure	 the	
differential	association	of	PIP2	and	KrasV12	with	blebs.	Both	signals	associate	with	bleb	edges,	as	
expected	for	membrane-localized	proteins,	but	only	PIP2	is	enhanced	on	blebs.	This	suggests	that	
local	 morphological	 cues	 differentially	 organize	 and	 activate	 sub-cellular	 signaling	 processes.	
Overall,	our	computational	workflow	enables	the	objective,	automated	analysis	of	the	3D	coupling	
of	morphodynamics	with	cytoskeletal	dynamics	and	intracellular	signaling.	

Introduction	
Cellular	morphogenesis	is	critical	to	single	and	collective	cell	migration,1,2	tissue	homeostasis	and	
remodeling,3	 environmental	 sensing,4	 and	 cell-cell	 communication.5	Morphogenesis	 is	 driven	by	
forces	 generated	 primarily	 by	 the	 assembly	 and	 contraction	 of	 the	 actomyosin	 cytoskeleton.6	
These	mechanical	 processes	 are	 downstream	 of	 chemical	 signaling	 activities.	 The	 cascade	 from	
signaling	 to	 cytoskeleton	dynamics	 and	 finally	 to	 cell	morphology	has	been	extensively	 studied.	
For	 example,	 the	 formation	 of	 the	 three	 common	morphological	 structures,	 lamellipodia,	 blebs,	
and	 filopodia	(Fig.	1a-c	and	Supplementary	Fig.	1),	depends	on	well-characterized	assemblies	of	
actin	 filaments	 (Fig.	 1d-f).7	 How	 morphology,	 in	 turn,	 may	 govern	 signaling	 has	 been	 little	
investigated.	Morphology	likely	participates	as	a	key	element	in	signal	transduction	pathways	via	
mechanisms	such	as	preferential	protein	interaction	with	membranes	of	particular	curvature,8	or	
modulation	 of	 the	 concentration	 and	 diffusion	 of	 signaling	 components,9,10	 which	 affects	 the	
underlying	biochemical	reaction	cascade.		

The	integrated	study	of	signaling	and	morphology	at	subcellular	length	scales	has	become	possible	
with	the	recent	advent	of	high-resolution	3D	light-sheet	microscopy.11-16	Critically,	some	of	these	
microscopes	allow	observation	of	subcellular	processes	 in	cells	 that	are	deeply	embedded	 in	3D	
tissue	models	where	the	morphology	is	not	constrained	by	adhesion	to	a	coverslip.	To	probe	the	
putative	relationships	between	signaling	and	morphology,	we	used	microenvironmental	selective	
plane	 illumination	microscopy15	 (meSPIM)	 to	 image	 the	sub-cellular	activity	of	 two	prototypical	
signaling	molecules,	 PIP2	 and	 transformed	 KrasV12,	 in	 cells	 embedded	 in	 3D	 collagen.	 PIP2	 is	 a	
membrane-bound	 phosphoinositide	 that	 plays	 critical	 roles	 in	 many	 signaling	 pathways.17	 We	
unexpectedly	 found	that	PIP2	 forms	activation	clusters	 in	both	branched	(Fig.	1g,h)	and	blebbed	
cells	 (Fig.	1i,j).	Three-dimensional	 renderings	of	 the	activation	 levels	 suggest	 that	 these	clusters	
tend	to	colocalize	with	filopodial	tufts	(Fig.	1h)	and	blebs	(Fig.	1j).	KrasV12	is	constitutively	active	
with	broad	oncogenic	functionality.18	Like	PIP2,	it	appears	to	colocalize	with	certain	morphological	
structures	(Fig.	1k,l).	These	associations	pose	the	question	of	whether	rugged	surface	geometries	
generally	 associate	with	 elevated	 signaling,	 and	whether	 there	 are	 differences	 in	 the	modes	 of	
association	between	PIP2	and	Kras.		

Answering	 such	 questions	 with	 statistical	 robustness	 requires	 the	 interpretation	 of	 massive	
quantities	 of	 3D	 images	 using	 automated	 workflows.	 However,	 few	 computational	 tools	 are	
available	to	analyze	these	data.19	Here,	we	 introduce	computational	 tools	combining	approaches	
from	computer	vision,	machine	learning,	and	computer	graphics	to	unravel	the	coupling	between	
morphology,	the	cytoskeleton,	and	signaling.	Since	morphological	structures,	such	as	lamellipodia,	
blebs,	and	filopodia,	tend	to	be	associated	with	distinct	signaling	and	cytoskeletal	hierarchies,	we	
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We	 next	 decompose	 the	 surface	 into	 patches.	 Although	 various	mesh	 segmentation	 algorithms	
have	been	developed	for	this	purpose	in	computer	graphics,20	they	do	not	segment	out	biologically	
relevant	 features,	 and	 the	 benchmark	 data	 sets	 they	 were	 tested	 on	 lack	 the	 multitude	 of	
protrusion	 types	 common	 to	 cells	 imaged	 at	 high	 resolution.21	 In	 our	 workflow,	 we	 first	
decompose	the	surface	into	convex	patches	and	then	merge	these	patches	into	convex	regions	that	
are	 locally	 as	 large	 as	 possible.	 We	 decompose	 the	 surface	 into	 convex	 patches	 since	 most	
protrusions	are	either	 convex,	 e.g.	 filopodia	and	blebs,	or	 composed	of	multiple	 convex	 regions,	
e.g.	lamellipodia	and	flagella.	Indeed,	by	visual	inspection	people	tend	to	partition	3D	surfaces	into	
convex	regions,22	suggesting	that	canonical	protrusions	are	likely	convex	or	composed	of	multiple	
convex	regions.	

Decomposing	 a	 mesh	 into	 convex	 regions	 is	 an	 NP-complete	 problem,23	 and	 thus	 is	
computationally	 intractable	 for	 large	 meshes,	 even	 with	 extensive	 computing	 resources.	 We	
therefore	combine	several	techniques	to	segment	the	surface	into	approximately	convex	patches.	
First,	we	calculate	the	mean	curvature	at	every	face	on	the	mesh,	and	then	break	the	surface	into	
small	 patches	 via	 a	 watershed-based	 segmentation	 of	 mean	 curvature	 (Fig.	 2i,j).24	 These	 small	
patches	are	computationally	manipulated	more	easily	than	individual	faces	and	are	analogous	to	
superpixels	 in	 image	 segmentation.	 Next,	 we	 merge	 adjacent	 patches	 using	 a	 spill-depth	
criterion.24	In	this	context,	the	spill-depth	is	the	difference	between	the	maximum	curvature	at	the	
patch-patch	interface	and	the	minimum	curvature	inside	the	patches(Fig.	2k).	The	effect	of	varying	
patch-merging	parameters,	such	as	the	spill-depth	threshold,	is	shown	in	Supplementary	Fig.	3.		

Following	spill-depth	merging,	we	further	iteratively	merge	patches	using	the	line-of-sight	(LOS)25	
and	the	triangle15	criteria	(Fig.	2l,m).	The	LOS	criterion	merges	patches	if	the	percentage	of	rays	
that	connect	the	two	patches	without	exiting	the	cell	is	above	a	certain	threshold.	Hence,	fulfilling	
this	criterion	requires	only	approximate	convexity	between	the	patches.	When	left	unconstrained,	
this	criterion	would	merge	a	small	patch	into	an	adjacent	large	patch	if	the	majority	of	the	large	
patch	 extended	 to	 the	 far	 side	 of	 the	 cell.	 To	 overcome	 this	 problem,	we	 only	 consider	 rays	 of	
length	 less	 than	 twice	 the	 smaller	 patch	 size.	 Similar	 to	 the	 law	of	 cosines	 in	 trigonometry,	 the	
triangle	criterion	merges	adjacent	patches	whose	joint	closure	surface	area	is	small	compared	to	
the	 sum	 of	 their	 individual	 closure	 surface	 areas.	 We	 define	 the	 closure	 surface	 area	 as	 the	
additional	 surface	 area	 needed	 to	 close	 the	 mesh	 composing	 the	 patch.	 The	 triangle	 criterion	
embodies	the	short-cut	rule,26	which	states	that	given	multiple	convex	shape	decompositions,	the	
decomposition	with	the	shortest	cuts	between	segments	is	preferred.	Collectively,	the	three	patch-
merging	criteria	decompose	the	cell	surface	into	convex	patches.	

Convex	patches	are	 then	classified	by	morphological	motif	 type	using	a	Support	Vector	Machine	
(SVM).	 For	 each	 patch,	 23	 geometric	 features	 are	 calculated,	 including	 standard	 geometric	
measures,	 such	 as	 perimeter	 and	mean	Gaussian	 curvature,	 and	measures	 that	 have	 previously	
been	 developed	 for	mesh	 segmentation,	 such	 as	 the	 shape	 diameter	 function27	 (Supplementary	
Table	 1).	 Features	 are	 automatically	 selected	 for	 each	 set	 of	 training	 data	 by	 successively	
removing	randomly	chosen	features	until	prediction	quality	is	hampered.	Following	SVM	training	
(Fig.	2n)	and	feature	selection,	an	SVM	is	used	to	classify	patches	by	motif	type	(Fig.	2o,p).		
The	outcomes	of	machine	learning	approaches,	such	as	SVMs,	are	critically	dependent	on	training	
data	quality.	To	generate	training	data	for	the	SVM,	we	built	an	interface	where	users	can	rotate	
3D	surfaces,	zoom	in	and	out,	and	click	on	patches	to	identify	them	as	protrusions.	Presented	with	
the	 same	 four	 randomly	 chosen	 cells	 and	 asked	 to	 identify	 blebs,	 three	 users	 chose	 46±6%	 of	
patches.	On	 the	other	hand,	when	asked	 to	 identify	patches	 that	were	not	blebs,	 the	same	three	
users	chose	25±4%	of	the	patches,	hence	classifying	75%	of	the	patches	as	blebs.	This	discrepancy	
carried	over	into	SVM	models,	where	for	the	two	training	sets	45±7%	and	77±6%	of	the	patches	
were	 identified	as	blebs.	Asking	users	 to	click	only	on	patches	 that	are	certainly	blebs	and	 then	
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bleb	 detector	 trained	 on	 synthetic	 data	 correctly	 classified	 all	 blebs	 that	 were	 decomposed	 as	
convex	surfaces.	

Our	workflow	requires	relatively	little	training	data.	We	found	that	one	user,	training	on	just	one	
cell	 in	a	dataset	of	19	MV3	cells,	yields	an	F1	score	of	0.94±0.04	(mean	±	standard	deviation)	on	
the	remaining	cells	(Fig.	4c	and	Supplementary	Fig.	7a).	Increasing	the	training	set	size	to	3	and	8	
cells	 increases	 the	F1	 score	 to	0.97±0.01	and	0.987±0.004,	 respectively.	Additional	 training	data	
from	one	user	improves	the	model	accuracy	relatively	little,	suggesting	that	models	generated	by	a	
single	 user	 on	 different	 data	 sets	would	 be	 similar.	 Indeed,	models	 trained	 by	 a	 single	 user	 on	
distinct	 sets	 of	 four	 MV3	 cells	 show	 95.9±0.7%	 overlap,	 as	 measured	 by	 the	 Sorrenson-Dice	
index.28	 This	 compares	 to	 an	 88±3%	 overlap	 between	 models	 generated	 by	 different	 users	
(Supplementary	 Fig.	 7b).	 These	 results	 underscore	 the	 importance	 of	 developing	 definitions	 of	
protrusive	phenotypes	that	can	be	objectively	and	reproducibly	applied	to	diverse	datasets.		

We	found	that	models	generated	from	training	on	one	cell	type	can	be	extended	to	dissimilar	cell	
types.	Applying	a	bleb	model	generated	from	19	MV3	cells,	originating	from	a	melanoma	cell	line,	
to	 24	M405	 cells,	 originating	 from	 a	 human	melanoma	 xenograft	 cultured	 in	mice,	 yields	 an	 F1	
score	of	0.97,	which	is	the	same	score	as	the	bleb	model	generated	from	the	M405	cells	applied	to	
the	M405	cells	(Fig.	4d).	The	MV3	and	M405	derived	bleb	models	are	also	similar,	showing	91%	
overlap	when	 applied	 to	 the	 combined	M405-MV3	dataset.	 To	 demonstrate	 that	models	 can	 be	
successfully	applied	to	entirely	different	cell	types,	we	generated	a	filopodia	model	from	9	M405	
melanoma	 cells,	 all	 but	 one	 of	 which	 exhibited	 only	 small	 numbers	 of	 filopodia.	 Applying	 this	
model	 to	 a	 dataset	 of	 13	HBEC	 cells,	which	 are	 transformed	 lung	 epithelial	 cells,	 yielded	 an	 F1	
score	of	0.90,	compared	to	an	F1	score	of	0.96	applying	this	M405	model	to	the	M405	cells	(Fig.	
4e).	In	conclusion,	our	morphological	motif	detector	is	nearly	as	accurate	as	manual	data	labeling,	
requires	 little	 training	data,	 and,	 importantly,	 is	 portable	 between	 cell	 types,	 allowing	 objective	
comparisons	between	large	numbers	of	diverse	datasets.	

Association	of	morphological	motifs	with	 fluorescence	signal	distributions.	To	evaluate	the	
ability	 of	 our	 morphological	 motif	 detector	 to	 be	 used	 to	 measure	 relationships	 between	 cell	
morphology,	 cytoskeletal	 organization,	 and	 intracellular	 signaling,	 we	 first	 examined	 the	
established	relationship	between	actin	localization	and	blebs.29,30	A	bleb	is	initially	devoid	of	actin,	
but	 as	 the	 bleb	 collapses	 it	 becomes	 enriched	 in	 actin.	We	 sought	 to	 observe	 this	 well-known	
heterogeneity	in	actin	localization	on	blebs.	In	a	population	of	MV3	melanoma	cells	cultured	in	a	
3D	collagen	matrix	and	expressing	tractin-CyOFP31	as	well	as	cytosolic	GFP	(Fig.	4f),	we	measured	
the	 localization	 of	 cytosol	 and	 actin	 (Fig.	 4g)	 near	 the	 cell	 surface.	 To	measure	 localization,	 at	
every	mesh	 face	we	 computed	 the	 average	 fluorescence	 intensity	 in	 a	 sphere	 around	 that	 face	
including	 only	 pixels	 within	 the	 cell.	 To	 correct	 for	 surface	 curvature-dependent	 artifacts,	 we	
depth-normalized	 the	 raw	 image	 prior	 to	 measuring	 localization.32	 Comparing	 mean	 cytosolic	
intensity	 to	mean	 actin	 intensity	 for	 each	 bleb,	we	 found	 that,	 as	 expected,	 actin	 localization	 is	
more	heterogeneous	than	localization	of	cytosolic	GFP	(Fig.	4h).		

Kras	and	PIP2	both	associate	with	blebs,	but	do	so	differently.	Equipped	with	a	computational	
framework	 that	 permits	 the	 systematic	 and	 unbiased	 analysis	 of	 3D	 cell	 morphology	 and	
molecular	localization	at	the	submicron	scale,	we	set	out	to	identify	initial	relationships	between	
morphological	motifs	and	signaling	events.	We	again	focused	our	analysis	on	blebs,	since	they	are	
the	predominant	motif	in	melanoma	cells	in	soft	3D	environments15	and	sought	to	measure	how	
PIP2	 and	 constitutively	 active	 KrasV12,	 may	 associate	 with	 blebs.	 Visually	 examining	 MIPs	 and	
individual	 slices	of	3D	 images,	both	KrasV12	 (Fig.	5a)	and	PIP2	 (Fig	5b)	appear	 to	associate	with	
blebs.	 To	 test	 this	 hypothesis,	 we	measured	 the	 localization	 of	 KrasV12	 within	 2	 μm	 of	 the	 cell	
surface	for	13	MV3	melanoma	cells	(Fig.	5c).	Applying	a	bleb	detection	model	trained	on	MV3	cells	
expressing	 tractin-GFP,	 we	 found	 that	 cells	 expressing	 GFP-KrasV12	 exhibited	 morphological	
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volume,	we	found	that	indeed	larger	blebs	show	greater	association	with	PIP2	than	smaller	blebs	
(Fig.	 6b).	 This	 contrasts	 to	 cytosolically	 labeled	 cells,	 where	 no	 such	 relationship	 is	 found	
(Supplementary	 Fig.	 10c).	 Our	 workflow	 also	 measures	 the	 cellular-scale	 configuration	 of	
morphological	motifs	using	spherical	statistics.	Analyzing	the	average	direction	of	blebs	and	PIP2	
localization	relative	to	the	cell	center,	we	found	that	blebs	and	PIP2	co-polarize	(Fig.	6c).	Since	the	
cell	 is	 not	 a	 sphere,	 as	 assumed	 in	 spherical	 statistics,	 we	 constructed	 control	 distributions	 by	
randomizing	 the	 population	 of	 patches	 classified	 as	 blebs.	 Since	 the	 study	 of	 many	 signaling	
pathways	 benefit	 from	 measuring	 not	 just	 morphology,	 but	 also	 morphodynamics,	 we	 also	
developed	a	measure	of	boundary	motion	at	each	mesh	face.	Fig.	6d	shows	the	boundary	motion	of	
a	PIP2-labled	cell	over	several	frames.	Measuring	the	motion	difference	over	~30	sec,	which	is	on	
the	 order	 of	 the	 bleb	 lifetime,33	 we	 found	 that	 blebs	 preferentially	 associate	 with	 regions	 of	
protrusive	motion	(Fig.	6e,f).	We	also	observed	that	regions	of	high	PIP2	tend	to	be	more	retractive	
than	 regions	of	 low	PIP2	 (Fig.	 6g),	which	 is	 consistent	with	 increased	PIP2	 localization	on	blebs	
because	blebs	form	and	retract	cyclically.		

Discussion	
Recent	advances	in	high-resolution	3D	light-sheet	microscopy,11-16	allow	the	direct	observation	of	
subcellular	processes	at	unprecedented	spatial	and	temporal	scales.	However,	incorporating	these	
observations	 into	 a	 scientific	 framework	 that	 enables	 data	 exploration,	 hypothesis	 testing,	 and	
ultimately	the	development	of	new	biological	theories	 is	a	challenge	that	we	have	only	begun	to	
undertake.	Even	simply	visualizing	a	3D	image	on	a	2D	screen	requires	imposing	an	interpretation	
on	 it.19	Compared	to	1D	and	2D	features,	such	as	 length	and	area,	human	observers	also	exhibit	
decreased	ability	to	make	quantitative	comparisons	of	3D	features,	such	as	volume.34	Additionally,	
the	scale	of	data	presents	hurdles	to	interpretation.	A	single	movie	from	a	light-sheet	microscope	
can	 be	 thousands	 of	 frames	 long	 and	 1	 TB	 in	 size.19	 Such	 large	 data	 sizes	 not	 only	 prohibit	
intensive	 examination	 of	 individual	 frames,	 but	 also	 tax	 even	 state-of-the-art	 computing	
infrastructures.	To	 interpret	 light-sheet	microscopic	data,	 further	development	of	3D	computing	
infrastructures	and	image	analysis	algorithms	is	required.	

Here,	 we	 focused	 on	 developing	 algorithms	 that	 enable	 the	 analysis	 of	 biological	 surfaces.	 In	
particular,	 we	 developed	 an	 algorithm	 to	 detect	 diverse	 morphological	 motifs	 on	 the	 3D	 cell	
surface	 using	 a	machine	 learning	 approach.	 This	 offers	 the	 flexibility	 to	 quantify	 the	 frequency,	
configuration,	and	geometry	of	any	motif	of	interest.	As	a	demonstration,	we	trained	classifiers	to	
detect	blebs,	filopodia,	and	lamellipodia,	which	are	three	abundant	morphological	motifs	found	on	
cells.	To	detect	a	new	type	of	morphological	motif,	users	need	only	click	on	examples	of	surface	
regions	 that	 are	 and	 are	 not	 that	motif.	 Our	 algorithm	 speeds	up	 analysis	 by	 relieving	 the	 user	
from	attempting	 to	 count	motif	 occurrences	 in	3D	data,	which	 can	be	 extremely	difficult	 and	 is	
often	effectively	impossible.	It	also	enables	objective	analysis,	not	only	via	complete	and	unbiased	
measurement	 of	 morphological	 parameters	 within	 a	 single	 dataset,	 but	 also	 between	
perturbations,	projects,	and	laboratories.	This	is	the	first	generic	morphological	motif	detector	and	
is	one	of	the	first	image	analysis	tools	for	cell	biology	that	incorporates	techniques	from	computer	
graphics.	Clearly,	with	 the	rapid	rise	of	3D	microscopy	 in	 live	cell	and	 tissue	 imaging,	 computer	
graphics	methods	will	become	an	important	factor	in	biological	discovery.	

In	 addition	 to	 a	morphological	motif	 detector,	we	 developed	 and	 integrated	 a	 suite	 of	 tools	 for	
investigating	 the	 coupling	 between	 morphology,	 morphodynamics	 and	 molecular-scale	
mechanisms.	As	a	proof	of	concept,	we	used	these	tools	to	examine	the	differential	association	of	
KrasV12	and	PIP2	signaling	with	cell	surface	blebs.	We	expect	that	our	tools	will	become	the	basis	
for	projects	ranging	from	cell	behavioral	screens	and	cell	migration	studies,	to	molecularly	specific	
investigations	of	signal	distribution.	Although	we	validated	our	methods	for	single	cells	imaged	via	
advanced	light-sheet	microscopy	with	nearly	isotropic	resolution,11-16	many	of	our	analyses	could	
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likely	be	extended	to	other	imaging	modalities	following	independent	validation.	In	particular,	our	
algorithms	 could	 in	 principle	 be	 applied	 to	 the	 analysis	 of	 surfaces	 of	 multicellular	 biological	
structures,	such	as	spheroids	and	organs.	
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Methods	
Cell	culture	and	labeling.	All	cells	were	cultured	at	5%	CO2	and	21%	O2.	MV3	melanoma	cells	(a	
gift	 from	 Peter	 Friedl	 at	 MD	 Anderson	 Cancer	 Center)	 were	 cultured	 using	 DMEM	 (Gibco)	
supplemented	with	10%	fetal	bovine	serum.	Primary	melanoma	cells	(a	gift	from	Sean	Morrison	at	
UT	 Southwestern	 Medical	 Center)	 were	 cultured	 using	 the	 Primary	 Melanocyte	 Growth	 Kit	
(ATCC).	 Human	 bronchial	 epithelial	 cells	 (HBEC;	 a	 gift	 from	 John	 Minna	 at	 UT	 Southwestern	
Medical	 Center),	 immortalized	 with	 Cdk4	 and	 hTERT	 expression	 and	 transformed	 with	 p53	
knockdown,	 KrasV12,	 and	 cMyc	 expression,35	 were	 cultured	 in	 keratinocyte	 serum-free	medium	
(Gibco)	supplemented	with	50	mg/ml	of	bovine	pituitary	extract	(Gibco),	5	ng/ml	of	EGF	(Gibco),	
and	 1%	 Anti-Anti	 (Gibco).	 Conditionally	 immortalized	 hematopoietic	 precursors	 to	 dendritic	
cells36	 that	 express	 Lifeact-GFP37	 (a	 gift	 from	 Michael	 Sixt,	 IST	 Austria)	 were	 cultured	 and	
differentiated	as	previously	described.38	

Fluorescent	constructs	were	introduced	into	cells	using	the	pLVX	lentiviral	system	(Clontech)	and	
selected	 using	 antibiotic	 resistance	 to	 either	 puromycin	 or	 geniticin.	 The	 GFP-tractin	 construct	
contains	residues	9–52	of	the	enzyme	IPTKA39	fused	to	GFP.40	The	CyOFP-tractin	peptide	contains	
the	 tractin	 peptide	 fused	 to	 the	 CyOFP	 protein.	 CyOFP	 is	 a	 cyan-excitable	 orange	 fluorescent	
protein	with	peak	excitation	at	505	nm	and	peak	emission	at	588	nm.31	The	GFP-KrasV12	plasmid	
was	constructed	by	cloning	a	KrasV12	fragment	from	the	pLenti-KrasV12	construct35	into	the	pLVX-
GFP	vector.	The	biosensor	for	PIP2,	PLCΔ-PH-GFP,	encodes	a	PI(4,5)P2	lipid	selective	PH	domain	
that	can	be	used	as	a	fluorescent	translocation	biosensor	to	monitor	changes	in	the	concentration	
of	plasma	membrane	PI(4,5)P2	lipids.41	Some	MV3	cells	expressing	GFP	in	the	cytosol,	which	were	
analyzed	here	as	a	control	population,	appeared	in	a	previous	publication.15	
Collagen	gels	were	created	by	mixing	bovine	collagen	I	(Advanced	Biomatrix)	with	concentrated	
PBS	and	water	to	a	collagen	density	of	2.0	mg/ml.	This	collagen	solution	was	then	neutralized	with	
1	N	NaOH	and	mixed	with	cells	just	prior	to	incubation	at	37	°C	to	induce	collagen	polymerization.		
Light-sheet	 imaging.	 Imaging	 was	 performed	 via	 microenvironmental	 selective	 plane	
illumination	microscopy,15	a	type	of	two-photon	Bessel	beam	light	sheet	microscopy	that	confers	
near-isotropic	 resolution	 (300	nm	 lateral,	 340	nm	axial)	 and	permits	 recording	of	 cell	 behavior	
several	millimeters	from	mechanically	perturbing	hard	surfaces.	Images	were	acquired	at	37	°C	in	
a	non-descanned	image	capture	mode	with	an	axial	step	size	of	160	or	200	nm	and	an	excitation	
wavelength	of	900	nm.	Melanoma	cells	were	 imaged	 in	cell	 culture	medium	supplemented	with	
HEPES	buffer	to	maintain	pH	during	imaging.	
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Image	deconvolution.	As	a	first	step	towards	analysis,	we	Wiener	deconvolved	each	3D	image	as	
previously	 described.15	 Unless	 otherwise	 specified,	 all	microscopy	 images	 shown	 here	 are	 raw,	
non-deconvolved	images.	The	Wiener	parameter,	which	is	the	inverse	of	the	signal-to-noise	ratio,	
was	usually	set	to	0.018.	To	better	detect	the	dim	ends	of	filopodia,	for	filopodia	detection	it	was	
set	 to	 0.015.	 For	 cytosolically	 labeled	 cells,	 we	 automatically	 estimated	 the	 parameter	 in	 each	
frame	by	defining	the	signal	as	the	average	fluorescence	intensity	within	the	cell	and	the	noise	as	
the	standard	deviation	of	the	fluorescence	intensity	outside	the	cell.	Following	deconvolution,	an	
apodization	 filter	was	 applied	 to	 the	 optical	 transfer	 function	 (OTF)	 of	 the	 image	 in	 the	 spatial	
frequency	domain.	This	filter	had	a	value	of	1	at	the	origin	and	decayed	linearly	to	0	at	the	edge	of	
the	 filter	 support,	 which	 is	 set	 by	 the	 user	 as	 a	 percentage	 of	 the	 maximum	 OTF	 value.	 This	
threshold	 value,	 here	 termed	 the	 apodization	 height,	 was	 usually	 adjusted	 according	 to	 the	
homogeneity	of	the	fluorescence	label	and	the	fineness	of	the	morphological	motif	being	detected.	
Higher	apodization	heights	smooth	the	image	more	and	allow	for	more	robust	detection	of	large	
objects,	 whereas	 lower	 apodization	 heights	 allow	 for	 the	 detection	 of	 finer	 structures	 but	 also	
admit	more	noise.	For	lamellipodia	and	bleb	detection	on	Kras	and	PIP2	labeled	cells,	it	was	set	to	
0.06,	 for	 bleb	 detection	 on	 tractin	 and	 cytosolically	 labeled	 cells,	 it	 was	 set	 to	 0.04,	 and	 for	
filopodia	detection	it	was	set	to	0.	

Cell	 surface	 extraction.	 The	 deconvolved	 images	were	 further	 processed	 prior	 to	 cell	 surface	
extraction.	For	bleb	detection	on	tractin	and	cytosolically	labeled	cells,	an	Otsu	threshold	was	first	
calculated	 from	 the	3D	 image,42	 holes	were	 then	 filled	using	 a	3D	grayscale	 flood-fill	 operation,	
and	 objects	 disconnected	 from	 the	 main	 cell	 were	 removed.	 Matlab’s	 isosurface	 function	 was	
finally	used	to	create	a	triangle	mesh	at	the	intensity	value	specified	by	the	Otsu	threshold.		

For	filopodia	detection,	we	similarly	extracted	the	cell	surface,	however	the	reduced	apodization	
compared	to	bleb	detection	yielded	a	noisier	image,	which	we	compensated	for	by	smoothing	the	
deconvolved	image	with	a	3D	Gaussian	kernel	of	standard	deviation	0.6	pixels.		

For	bleb	detection	on	Kras	and	PIP2	labeled	cells,	we	processed	the	deconvolved	images	similarly	
to	 tractin	 and	 cytosolically	 labeled	 cells	 used	 for	 bleb	 detection.	 However,	 since	 Kras	 and	 PIP2	
label	the	cell	less	homogeneously,	we	first	applied	a	gamma	correction	of	0.7	to	the	deconvolved	
images.	Even	with	this	correction,	in	PIP2	labeled	cells,	the	nucleus	was	sometimes	not	segmented	
along	with	 the	 cell.	 For	 all	 PIP2	 labeled	 cells,	we	 therefore	 also	 combined	 the	 gamma	 corrected	
image	with	an	“inside”	image	that	segmented	the	cell	 interior.	To	create	the	“inside”	image	from	
the	 gamma	 corrected	 image,	 we	 applied	 an	 additional	 gamma	 correction	 of	 0.6,	 smoothed	 the	
image	with	a	3D	Gaussian	kernel	of	width	2	pixels,	Otsu	thresholded	the	image,	morphologically	
dilated	the	image	by	4	pixels,	filled	holes	in	each	xy-slice,	morphologically	eroded	the	image	by	6	
pixels,	and	finally	smoothed	the	binary	image	with	a	3D	Gaussian	kernel	of	width	1	pixel.	Since	this	
process	 shrinks	 the	 cell,	 if	 the	 parameters	 are	 chosen	 correctly	 the	 edges	 of	 the	morphological	
motifs	 should	 mostly	 lay	 outside	 the	 “inside”	 image.	 To	 combine	 the	 “inside”	 image	 with	 the	
deconvolved	 image,	we	normalized	 the	deconvolved	 image	by	 its	Otsu	 threshold	value,	 took	 the	
pixel-by-pixel	maximum	of	this	image	and	the	“inside”	image,	and	extracted	a	triangle	mesh	as	an	
isosurface	at	an	intensity	level	of	1.		
The	 ends	 of	 the	 long,	 thin	 lamellipodia	 of	 dendritic	 cells	 fail	 to	 segment	 using	 the	 techniques	
described	 above.	 To	 better	 segment	 lamellipodia,	 we	 combined	 the	 “inside”	 and	 normalized	
deconvolved	 images	 described	 above	 for	 PIP2	 labeled	 cells	 with	 a	 “surface	 filtered”	 image	 that	
enhances	planar	 features,	 such	as	 lamellipodia	 (Supplementary	Fig.	2).	The	 surface	 filter,	which	
was	developed	by	Elliott	et	al.,32	uses	multiscale	Gaussian	second	order	partial-derivative	kernels	
of	the	form	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2018. ; https://doi.org/10.1101/376608doi: bioRxiv preprint 

https://doi.org/10.1101/376608
http://creativecommons.org/licenses/by/4.0/


𝑠(𝑥)!,! =
!

!!,! !!
!!!

! !!!! !

!!!,!!

!!!!
𝐼 𝑥! ,!!∈!!

!! 		 	 	 	 					(1)	

where	𝐼 𝑥 	is	 the	 image	 intensity,	𝜎!,!	is	 the	half	width	of	 the	Gaussian	 in	dimension	𝑖	at	scale	𝜔,	
Ω!is	the	filter	kernel	support,	and	𝑠(𝑥)!	is	the	filter	response	at	scale	𝜔.	The	total	filter	response,	
𝑆(𝑥),	is	merged	across	scales	via		

𝑆 𝑥 = max 𝒔 𝑥 !  𝜎! |𝜔 = 1,… ,𝑛 ,         𝜎! = 2!!! .					 																	(2,	3)	
We	 used	 filter	 scales	 1,	 1.5,	 2,	 and	 4	 pixels	 to	 segment	 lamellipodia	 of	 various	 thicknesses.	 To	
combine	the	response	of	the	surface	filter	with	the	“inside”	and	normalized	deconvolved	images,	
we	normalized	the	response	by	subtracting	both	the	mean	image	intensity	and	twice	the	standard	
deviation	of	the	image	intensity	prior	to	dividing	by	the	standard	deviation	of	the	image	intensity.	
The	resultant	triangle	meshes	were	smoothed	using	6	iterations	of	curvature	flow	smoothing.43	

Although	 not	 used	 in	 this	 paper,	 our	 software	 also	 includes	 the	 option	 to	 segment	 cells	 by	
combining	a	normalized	deconvolved	 image	with	a	steerable	 filtered	 image.	Steerable	 filters	are	
computationally	 efficient	 edge	 detectors	 that,	 depending	 upon	 the	 parameters	 chosen,	 enhance	
linear	or	planar	structures	at	specified	scales.44,45	
Segmentations	were	spot	checked	by	thresholding	the	3D	image	at	the	isosurface	intensity	value	
immediately	prior	to	mesh	extraction	and	examining	the	overlaid	raw	and	thresholded	images	as	
3D	 image	stacks	 in	 ImageJ46	 (Supplementary	Fig	11).	For	analyses	where	 internal	mesh	cavities	
could	 alter	 results,	 meshes	 were	 also	 exported	 to	 ChimeraX47	 for	 further	 examination.	
Segmentations	 that	 were	 found	 to	 be	 inaccurate	 or	 had	 cavities	 were	 excluded	 from	 further	
analysis.	
Decomposition	of	the	cell	surface	into	convex	patches.	Although	the	image	deconvolution	and	
cell	surface	extraction	parameters	require	customization	for	different	cell	types,	the	remainder	of	
the	workflow	does	not,	and	its	parameters	were	kept	constant	throughout	the	paper.	

To	decompose	the	cell	surface	into	convex	patches,	we	first	performed	a	watershed	segmentation	
of	surface	mean	curvature,	as	previously	described.15	This	oversegments	the	cell	surface	into	small	
patches,	which	 are	 analogous	 to	 superpixels	 in	 image	 analysis,	which	we	 later	merge	 to	 create	
convex	patches.	First,	we	calculated	 the	mean	and	Gaussian	curvature	at	every	 triangle	 face.32,48	
Next,	we	constructed	an	adjacency	graph	of	 faces	where	each	face	is	a	node	that	 is	connected	to	
exactly	three	other	spatially	adjacent	faces.	Matlab’s	isosurface	function	does	not	always	produce	
triangle	meshes	with	sufficient	topological	consistency	to	create	such	a	graph.	Our	software	fixes	
common	topological	inconsistencies,	such	as	triangular	edges	that	are	only	connected	to	one	face.	
Rarely,	however,	a	face	graph	cannot	be	constructed.	In	these	situations,	very	slightly	changing	the	
image	deconvolution	parameters	usually	solves	 the	problem,	although	we	did	not	need	to	do	so	
here.	Since	curvature	can	be	noisy,	we	next	smoothed	mean	curvature	in	two	different	ways.	First,	
we	used	a	kd-tree	 to	median	 filter	 curvature	 in	3D	 space	over	2	pixels.	The	meSPIM	 is	Nyquist	
sampled,	and	so	2	pixels,	which	 is	320	nm,	 is	approximately	the	microscope’s	spatial	resolution.	
Second,	to	reduce	spurious	curvature	fluctuations,	we	diffused	mean	curvature	on	the	mesh	using	
a	diffusion	kernel49,50	according	to	the	equation	

	 	 	 	 	 	 𝑺 = 𝐴!𝑹 											 	 	 	 	 					(4)	

for	20	 iterations,	where	R	 is	 the	 curvature,	𝐴	is	 a	normalized,	weighted	 adjacency	matrix	 of	 the	
faces	graph,	k	is	the	number	of	iterations,	and	S	is	the	smoothed	curvature.	We	defined	𝐴	as		
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𝐴!" =  

 1, if 𝑖 = 𝑗                    
!
!!"
, if 𝑖 is adjacent to 𝑗 

0, otherwise            

      	 	 	 					 	 (5)	

where	𝑑!" 	is	 the	 distance	 between	 faces	𝑖	and	𝑗.	 To	 normalize	𝐴,	 we	 multiplied	 it	 by	 a	 diagonal	
matrix,	where	each	diagonal	element	was	the	inverse	of	the	sum	of	that	row.	Next,	we	performed	a	
watershed	 segmentation	 of	 the	 smoothed	 curvature	 over	 the	 cell	 surface.24	 Watershed	
segmentations	 are	 often	 performed	 on	 2D	 images,	where	 each	 pixel	 is	 adjacent	 to	 exactly	 four	
other	pixels.	Here,	we	similarly	performed	a	watershed	segmentation	over	the	adjacency	graph	of	
faces,	where	each	face	is	adjacent	to	exactly	three	faces.	
We	next	merged	adjacent	patches	using	a	spill	depth	criterion.24	Here,	the	spill	depth	between	two	
adjacent	patches	was	defined	as	the	maximum	curvature	of	the	two	patches	minus	the	maximum	
curvature	at	the	patch-patch	interface.	This	is	analogous	to	the	depth	of	water	that	the	patch	can	
hold	before	spilling	into	the	neighboring	patch.	Starting	with	the	smallest	spill	depth,	we	merged	
patches	until	no	spill	depth	was	below	a	cutoff	of	0.6	times	the	Otsu	threshold	of	mean	curvature	
for	the	cell.	Supplementary	Fig.	3	shows	the	effect	of	altering	the	spill-depth	cutoff	and	other	patch	
merging	parameters.	

Finally,	we	decomposed	the	surface	into	approximately	convex	patches	by	iteratively	applying	the	
triangle	 and	 line-of-sight	 (LOS)	 criteria.	To	apply	 the	 triangle	 criterion,15	we	 first	 calculated	 the	
closure	surface	area	for	each	patch	and	pair	of	adjacent	patches.	We	defined	the	closure	surface	
area	as	the	minimum	additional	surface	area	needed	to	create	a	closed	polyhedron	from	a	surface	
patch.	We	then	merged	adjacent	patches	if	they	meet	the	criterion	

!!!!!!!!"
!!!!

> 𝜌,		 	 	 	 			 					(6)	

where	𝜎!	and	𝜎! 	are	the	closure	surface	areas	of	the	two	patches,	𝜎!" 	is	the	closure	surface	area	of	
the	merged	patch,	 and	𝜌	is	 the	 triangle	 cutoff	parameter,	which	we	here	 set	 to	0.7.	The	 triangle	
criterion	can	be	thought	of	as	similar	to	the	law	of	cosines	and	intuitively	seeks	to	merge	patches	
that	meet	at	small	angles.	Starting	with	the	largest	𝜌,	we	merged	all	pairs	of	patches	that	met	the	
triangle	criterion	before	applying	the	LOS	criterion.	
The	LOS	criterion	merges	adjacent	patches	with	high	mutual	visibility.25,51	We	defined	the	mutual	
visibility	of	patches	𝐴	and	𝐵	as	the	percentage	of	line	segments	that	connect	a	face	in	𝐴	with	a	face	
in	𝐵	that	 are	 lines	 of	 sight,	where	 a	 line	 of	 sight	 is	 a	 line	 segment	 that	 falls	 entirely	within	 the	
mesh.	We	 calculated	mutual	 visibility	 by	 randomly	 selecting	 a	 face	 on	 each	 patch,	 and	 using	 a	
triangle-ray	 intersection52	 algorithm	 to	 determine	 whether	 a	 line	 segment	 connecting	 the	 two	
faces	exited	and	reentered	the	mesh.	A	small	patch	and	an	adjacent	very	large	patch	may	have	a	
large	mutual	 visibility	 because	 of	 lines	 of	 sight	 that	 extend	 across	 the	width	 of	 the	 cell,	 even	 if	
these	two	patches	should	not	be	merged.	When	merging	two	patches,	we	therefore	discarded	line	
segments	 that	were	 longer	 than	twice	 the	smaller	patch	size.	Supplementary	Fig.	12a	shows	the	
convergence	of	mutual	visibility	as	a	function	of	the	number	of	line	segments	tested.	We	calculated	
mutual	visibility	from	20	line	segments	per	pair	of	patches.	In	an	exact	convex	decomposition,	any	
two	points	within	any	patch	could	be	connected	by	a	line	of	sight.	However,	because	of	biological	
variation	 and	 image	 noise,	 requiring	 a	mutual	 visibility	 of	 1	 is	 too	 strict	 a	 requirement	 for	 cell	
images.	We	 instead	merge	patches	 if	 their	mutual	visibility	 is	greater	 than	0.7.	Starting	with	the	
largest	mutual	visibility	between	patch	pairs,	we	merged	all	patch	pairs	meeting	the	LOS	criterion,	
before	again	applying	the	triangle	criterion.	
Having	 three	 patch	 merging	 criteria	 for	 convex	 surface	 decomposition	 allows	 us	 to	 balance	
accuracy,	 speed,	 and	 robustness	 to	 noise.	 The	 spill-depth	 criterion	 is	 fast	 but	 potentially	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2018. ; https://doi.org/10.1101/376608doi: bioRxiv preprint 

https://doi.org/10.1101/376608
http://creativecommons.org/licenses/by/4.0/


inaccurate,	 whereas	 the	 LOS	 criterion	 is	 relatively	 slow,	 but	 exact.	 The	 triangle	 criterion	
implements	 the	 short-cut	 rule,26	 which	 biases	 merging	 towards	 certain	 types	 of	 convex	
decompositions.	 By	 adjusting	 the	 three	 merging	 parameters,	 users	 can	 control	 which	 criteria	
dominate	in	their	analysis.			

Classification	of	morphological	motifs.	To	classify	each	patch	by	morphological	motif,	we	first	
performed	feature	selection	on	the	geometric	patch	features	listed	in	Table	1.	Implemented	by	the	
Matlab	 built-in	 function	 sequentialfs(),	 our	 sequential	 feature	 selection	 randomly	 successively	
removed	features	as	long	as	doing	so	reduced	the	misclassification	rate.	The	misclassification	rate	
was	 measured	 using	 10-fold	 cross	 validation.	 The	 geometric	 features	 selected	 can	 vary	
considerably	 from	 dataset	 to	 dataset	 even	 for	 similar	 training	 sets,	 presumably	 because	 of	
correlations	between	features,	randomness,	and	dataset	differences.	For	example,	Supplementary	
Table	4	shows	the	features	selected	for	bleb	detection	models	generated	by	three	different	users	
training	on	the	same	four	cells.	In	this	example,	no	feature	was	selected	by	all	three	models,	and	no	
two	models	shared	more	than	two	selected	features.	Once	features	were	selected,	 features	were	
normalized	to	have	the	same	mean	and	standard	deviation,	and	a	linear	support	vector	machine	
(SVM)	was	used	 to	 classify	patches.	 Since	 SVM	models	 vary	 from	user	 to	user,	 to	 analyze	 actin,	
Kras,	 and	 PIP2	 localization,	 we	 had	 models	 created	 by	 three	 different	 users	 vote	 on	 the	
classification	of	each	bleb.	

Characterization	 of	 patches.	 To	 classify	 patches	 by	 morphological	 motif,	 we	 calculated	
geometric	 descriptions	 of	 each	 patch.	 The	 full	 list	 of	 23	 features	 used	 by	 the	 SVM	 classifier	 is	
provided	 in	 Table	 1.	 In	 calculating	 these	 features,	 mean	 curvature	was	 smoothed	 as	 described	
above,	 but	 Gaussian	 curvature	 was	 not.	 We	 defined	 the	 average	 patch	 position	 as	 the	 mean	
location	of	the	faces	in	the	patch,	and	we	similarly	defined	the	weighted	average	patch	position	as	
the	mean	 location	of	 the	 faces	weighted	by	curvature.	The	 feature	 ‘variation	 from	a	sphere’	was	
defined	 by	 the	 standard	 deviation	 of	 the	 distances	 from	 a	 patch’s	 faces	 to	 the	 average	 patch	
position	divided	by	the	mean	distance	of	those	faces	to	the	average	patch	position.	We	defined	the	
closure	surface	area	as	described	above.	The	closure	center	was	also	defined	as	the	mean	position	
of	 the	mesh	vertices	at	 the	patch	edge.	We	defined	the	patch	radius	as	 the	mean	distance	of	 the	
patch’s	faces	from	the	closure	center.		
The	volume,	𝑉,	was	calculated	using	the	equation		

𝑉 =  !
!

𝒗𝟏,𝒊 ∙ 𝒗𝟐,𝒊×𝒗𝟑,𝒊!
! ,	 	 							 	 		 (7)	

where	𝑁	is	the	number	of	faces,	and	𝒗𝟏,𝒊,	𝒗𝟐,𝒊,	and	𝒗𝟑,𝒊	are	the	vertices	of	face	𝑖.	The	vertices	must	
be	ordered	such	that	the	face	normal	extends	outwards	from	the	cell.	To	derive	this	equation,	the	
mesh	can	be	thought	of	as	decomposed	into	tetrahedrons	where	the	vertices	of	each	tetrahedron	
are	those	of	a	face	combined	with	the	origin.53	The	signed	volumes	of	the	tetrahedrons	sum	to	the	
volume	of	the	mesh.	Patches	were	closed	prior	to	calculating	their	volumes.	
We	 calculated	 the	 shape	 diameter	 function	 similarly	 to	 Shapira	 et	 al.27	 For	 each	 patch,	 we	
randomly	picked	20	mesh	faces	on	the	patch	and	extended	a	ray	inwards	from	the	mesh	face	at	a	
randomly	 chosen	angle	within	𝜋 3	of	 the	direction	opposite	 to	 the	 face’s	normal.	We	 calculated	
the	 distance	 each	 ray	 traveled	 before	 intersecting	 the	 opposite	 side	 of	 the	 mesh.	 The	 shape	
diameter	function	of	the	patch	was	then	defined	as	the	mean	travel	distance	within	one	standard	
deviation	of	the	median	distance.	
Optional	 merging	 of	 convex	 patches.	 Some	 morphological	 motifs,	 such	 as	 lamellipodia	 and	
flagella,	are	not	convex	but	are	composed	of	multiple	convex	regions.	To	detect	 such	motifs,	we	
optionally	merge	 convex	 patches	 into	 patch	 composites.	 Since	 adjacent	 patches	 that	 compose	 a	
larger	 structure	 often	 have	 smooth	 curvature	 at	 their	 interface,	we	 first	merge	 patches	 using	 a	
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modified	line	of	sight	criterion	with	line	segment	length	capped	at	10	pixels	and	a	mutual	visibility	
cutoff	 of	0.7.	The	 line	of	 sight	 criterion	 is	described	above.	This	 step	 is	not	 required	 for	 convex	
patch	 merging	 and	 can	 be	 disabled	 by	 the	 user.	 We	 next	 employed	 a	 more	 versatile	 machine	
learning	 based	 framework	 to	merge	 adjacent	 patches.	Using	 the	 geometric	 features	 for	 pairs	 of	
adjacent	patches	 listed	 in	Table	2,	as	well	as	user	provided	 training	data,	we	 trained	an	SVM	to	
automatically	merge	patches.	We	used	the	same	feature	selection	procedure	and	SVM	parameters	
as	for	patch	classification.	

Characterization	of	 adjacent	patches.	To	merge	adjacent	patches	 into	patch	composites	using	
an	SVM,	we	calculated	geometric	characterizations	of	each	pair	of	adjacent	patches.	The	full	list	of	
36	 features	used	by	 the	 SVM	 is	provided	 in	Table	2.	 Some	measures	of	 patch	pairs	 incorporate	
individual	 patch	 measures,	 which	 are	 described	 above.	 Unless	 otherwise	 specified,	 mean	
curvature	was	smoothed	as	described	above,	but	Gaussian	curvature	was	not.	

To	better	describe	the	surface	geometry	at	patch-patch	interfaces,	we	calculated	the	two	principal	
curvatures,	𝜅!and	𝜅!,	everywhere	on	the	cell	surface,		

𝜅! = 𝐻 + 𝐻! − 𝐾,        𝜅! = 𝐻 − 𝐻! − 𝐾,		 	 	 												(8,	9)	

where	𝐻	is	 the	 unsmoothed	 mean	 curvature	 and	𝐾	is	 the	 unsmoothed	 Gaussian	 curvature.	 For	
various	geometries	defined	by	principal	 curvature	values,	we	 then	calculated	 the	 fraction	of	 the	
interface	 that	 had	 that	 geometry.	 As	 a	 noise	 threshold,	 we	 used	 the	 standard	 deviation	 of	 the	
smoothed	mean	curvature.	Principal	curvatures	above	this	threshold	or	below	the	negative	of	this	
threshold	were	defined	as	large,	and	those	more	than	four	times	above	or	below	it	as	very	large.	
We	defined	a	 ridged	geometry	as	a	 large	positive	𝜅!and	a	 small	𝜅!,	 a	very	 ridged	geometry	as	a	
very	large	positive	𝜅!and	a	small	𝜅!,	a	valley-like	geometry	as	a	small	𝜅!	and	a	large	negative	𝜅!,	a	
very	valley-like	geometry	as	a	small	𝜅!	and	a	very	large	negative	𝜅!,	a	domed	geometry	as	a	large	
positive	𝜅!	and	a	large	positive	𝜅!,	a	cratered	geometry	as	a	large	negative	𝜅!	and	a	large	negative	
𝜅!,	a	flat	geometry	as	a	small	𝜅!	and	a	small	𝜅!,	and	a	saddle-like	geometry	as	a	large	positive	𝜅!	
and	a	large	negative	𝜅!.	

Generation	of	 training	data.	We	designed	a	graphical	user	interface	to	enable	the	collection	of	
training	data	necessary	for	motif	classification.	Users	are	shown	a	surface	rendering	of	a	cell	with	
surface	patches	outlined	and	can	interact	with	the	cell	by	rotating	and	moving	it,	and	zooming	in	
and	out	on	regions	of	interest.	To	generate	data	for	patch	classification,	we	asked	users	to	click	on	
patches	that	are	certainly	the	morphological	motif	of	interest	and	then	subsequently	asked	them	
to	click	on	patches	that	are	certainly	not	that	motif.	Similarly,	to	generate	data	for	the	optional	step	
of	 convex	 patch	merging,	 we	 asked	 users	 to	 click	 on	 pairs	 of	 patches	 that	 should	 certainly	 be	
merged	and	then	asked	them	to	click	on	pairs	of	patches	that	should	certainly	not	be	merged.	Pairs	
of	 patches	 that	 were	 not	 adjacent	were	 automatically	 excluded	 from	 the	 training	 set.	We	 have	
successfully	 tested	 this	 interface	 in	 Matlab	 versions	 R2017b	 and	 R2013b.	 However,	 since	 in	
Matlab	 user	 interface	 functionality	 can	 vary	 from	 version	 to	 version,	 it	may	 not	work	 in	 some	
versions	of	Matlab.		

Generation	 and	 analysis	 of	 synthetic	 images.	 For	 algorithm	validation,	we	 created	 synthetic	
spherical	 cells	 of	 radius	 48	 pixels.	 The	 cell	 size	 was	 chosen	 to	mimic	 the	 pixel	 spacing	 on	 the	
meSPIM	of	0.16	μm	per	pixel	 for	a	 cell	7.6	μm	 in	 radius.	Placed	 randomly	on	 the	 cells’	 surfaces	
were	spherical	blebs	that	ranged	in	radius	from	2	to	32	pixels	and	in	number	from	4	to	256	per	
cell.	(See	Supplementary	Fig.	6	for	example	synthetic	cells).	Since	pixelation	at	the	cell	edge	could	
hamper	 the	 cell	 surface	 extraction	 and	 subsequent	 analysis,	 edge	pixels	were	 subdivided	 into	 a	
finer	 3D	 grid	 to	 calculate	 the	 percentage	 of	 the	 pixel	 occupied	 by	 the	 synthetic	 cell.	 The	 final	
synthetic	 images	 were	 saved	 with	 32	 grayscale	 intensity	 values.	 Synthetic	 cells	 were	 not	
deconvolved,	 but	 the	 remainder	 of	 the	 analysis	 workflow	 was	 identical	 to	 that	 used	 for	
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microscopic	 data.	 The	 same	 surface	 extraction	 parameters	 were	 used	 as	 for	 bleb	 detection	 on	
tractin	and	cytosolically	labeled	cells.	

Mapping	fluorescence	intensity	to	the	cell	surface.	To	measure	the	fluorescence	intensity	local	
to	each	mesh	face,	we	used	the	raw,	non-deconvolved,	fluorescence	image.	At	each	mesh	face,	we	
used	a	kd-tree	to	measure	the	average	pixel	intensity	within	the	cell	and	within	a	sampling	radius	
of	the	mesh	face.	To	correct	for	surface	curvature	dependent	artifacts,	we	depth	normalized32	the	
image	 prior	 to	measuring	 intensity	 localization	 by	 normalizing	 each	 pixel	 by	 the	 average	 pixel	
intensity	 at	 that	distance	 interior	 to	 the	 cell	 surface.	 Prior	 to	 analysis,	we	 also	normalized	 each	
cell’s	surface	intensity	localization	to	a	mean	of	one.		

Calculation	 of	 distance	 from	 a	 bleb	 edge.	On	 the	adjacency	graph	of	 faces,	we	calculated	 the	
distance	 from	 each	 face	 to	 the	 nearest	 bleb	 edge	 measured	 in	 number	 of	 faces	 traversed.	 To	
convert	 this	 distance	 to	micrometers,	we	multiplied	 by	 the	 average	 distance	 between	 faces	 for	
each	 cell	 in	 each	 frame.	 Since	 the	 distance	 in	 micrometers	 between	 adjacent	 faces	 varies,	 our	
calculation	of	distance	is	an	estimate	rather	than	exact.	
Calculation	 of	 local	 bleb	 density.	To	calculate	bleb	density,	we	 first	assigned	the	value	one	 to	
each	mesh	face	on	a	bleb	and	the	value	zero	to	each	mesh	face	not	on	a	bleb	(Supplementary	Fig.	
9a).	 We	 then	 diffused	 these	 values	 on	 the	 mesh	 surface	 using	 Eq.	 4	 over	 600	 iterations	
(Supplementary	Fig.	9b).	We	choose	the	number	of	iterations	such	that	the	bleb	density	would	be	
calculated	 over	 a	 short	 distance	 on	 the	 order	 of	 a	 bleb	 length.	 Eq.	 4	 does	 not	 allow	 an	 exact	
measurement	 of	 bleb	 density	 and	 may	 be	 unstable	 over	 distances	 on	 the	 order	 of	 many	 bleb	
lengths.	

Spherical	 statistics.	 The	 von	 Mises-Fisher	 distribution	 is	 defined	 on	 an	ℝ!!! sphere	 within	
ℝ!space.54	For	𝑑 = 2	dimensions	it	approximates	a	wrapped	normal	distribution	on	a	circle,	and,	
similar	 to	 the	normal	distribution,	 for	any	𝑑	is	parameterized	by	a	mean	and	an	 inverse	spread.	
For	𝑑 = 3	dimensions,	the	von-Mises	Fisher	distribution	is	

𝑝 𝒙;𝝁, 𝜅 =  !
!!(!!!!!!)

exp 𝜅𝝁′𝒙  ,					 	 	 	 (10)	

where	𝝁	is	the	mean	direction	parameter	and	𝜅	is	the	concentration	parameter,	which	is	inversely	
related	to	the	data	spread.	The	maximum	likelihood	estimate	of	the	mean	direction	is	simply	

𝝁 =  𝒙𝒊!
!
𝒙𝒊!

!
	.	 	 	 	 	 	 							(11)	

A	Newton’s	Method	approximation	for	𝜅, 𝜅!,	in	three	dimensions	is	

𝑅 =  𝒙𝒊!
!
!

,         𝐴 𝜅 =  
!!
!
(!)

!!
!
(!)

 ,		 	 	 	 					(12,	13)	

𝜅 = !(!!!!)
!!!!

 ,		 	 	 	 	 	 						(14)	

𝜅! = 𝜅 − ! ! !!
!!! ! !!!!! !

 ,		 	 	 	 	 (15)	

𝜅! = 𝜅! −
! !! !!

!!! !! !! !
!!
! !!

 , 	 	 	 	 	 				(16)	

where	𝑁	is	the	number	of	data	vectors	and	𝐼	are	Bessel	functions	of	the	first	kind.54	

In	 Fig.	 6f	 we	 computed	 the	 directional	 correlation	 of	 morphological	 motifs,	 here	 blebs,	 with	
intensity	localization.	In	each	frame,	we	defined	the	directional	correlation	as	𝝁𝒃𝒍𝒆𝒃𝒔 ∙ 𝝁𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚.	To	
measure	𝝁𝒃𝒍𝒆𝒃𝒔,	we	calculated	a	set	of	unit	vectors,	𝒙𝒃𝒍𝒆𝒃𝒔,	that	extended	in	the	direction	from	the	
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cell	center,	defined	as	the	location	of	the	pixel	farthest	from	the	cell	edge,	to	each	mesh	face	on	a	
bleb.	 To	 measure	𝝁𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚,	 we	 calculated	 a	 set	 of	 unit	 vectors, 𝒙𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚,	 that	 extended	 in	 the	
direction	 from	the	cell	 center	 to	every	mesh	 face,	and	 in	Eq.	11	we	weighted	𝒙𝒊	by	 the	 intensity	
localization.	Since	the	cell	is	not	a	sphere	and	most	cells	have	polarized	shapes,	the	surface	itself	is	
expected	 to	 have	 a	 nonrandom	𝝁 	and	 a	 small	𝜅. 	To	 account	 for	 this,	 we	 created	 a	 control	
distribution	 of	 directional	 correlations	𝝁𝒃𝒍𝒆𝒃𝒔𝑹𝒂𝒏𝒅 ∙ 𝝁𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚 ,	 where	𝝁𝒃𝒍𝒆𝒃𝒔𝑹𝒂𝒏𝒅 	was	 calculated	
from	a	 set	of	vectors	where	 the	patch	classification	was	 randomly	permuted.	 In	each	 frame,	we	
created	200	such	permutations	by	randomly	assigning	patches	to	be	a	bleb	or	not	a	bleb.	Although	
our	study	does	not	include	analysis	of	𝜅,	the	software	package	computes	𝜅	for	future	analyses	and	
thus	is	documented	here	for	the	sake	of	completeness.	

Measurement	 of	 boundary	motion.	To	measure	boundary	motion,	 for	each	 face	we	 found	the	
closest	face	in	the	previous	frame	using	a	kd-tree.	We	then	defined	the	boundary	motion	as	

𝑚! = −sign 𝒅𝒊 ∙ 𝒏𝒊 𝒅𝒊 	,	 	 	 	 		 (17)	

where	𝑚!  is	 the	boundary	motion	at	 face	𝑖,	𝒅𝒊	is	 the	vector	 from	 face	𝑖	to	 the	closest	point	 in	 the	
previous	frame,	and	𝒏𝒊	is	the	normal	to	the	surface	at	face	𝑖.		

This	 is	 not	 an	 ideal	measure	 of	 boundary	motion	 since	 the	mapping	 vectors	𝒅𝒊	may	 cluster	 on	
select	faces	of	the	previous	frame’s	surface,	or	even	alter	the	topology	among	faces,	in	a	physically	
unrealistic	 manner	 (see	 Machacek	 et	 al.55	 for	 an	 illustration	 of	 these	 problems	 with	 2D	
boundaries).	 As	 a	 control,	we	 also	 calculated	 the	 boundary	motion	 for	 each	 face	 by	 finding	 the	
closest	 point	 in	 the	 next	 frame.	 Supplementary	 Fig.	 12b	 shows	 the	 protrusive	 and	 retractive	
motion	 of	 six	 cells	 using	 both	 definitions	 of	 boundary	 motion.	 Here,	 backwards	 motion	 is	 the	
mapping	of	points	from	each	frame	to	the	previous	frame	and	is	the	definition	used	elsewhere,	and	
forwards	motion	is	the	mapping	of	points	from	each	frame	to	the	subsequent	frame.	Even	though	
the	 backwards	 and	 forwards	 motions	 of	 the	 cells	 are	 different,	 in	 both	 cases	 blebs	 are	 more	
protrusive	than	non-blebs.	This	measure	is	also	not	a	subpixel	measure	of	motion,	and	should	not	
be	used	to	measure	subpixel	motions.	Because	we	map	each	face	to	the	closest	face	rather	than	the	
closest	 surface	 point	 in	 the	 previous	 frame,	 motions	 that	 are	 less	 than	 the	 average	 distance	
between	faces	will	be	undersampled	in	the	motion	distribution.	

Statistical	 hypothesis	 testing.	 For	 each	 Kras	 and	 PIP2	 labeled	 cell,	 we	 measured	 the	 mean	
intensity	 localization	 of	 faces	 on	 and	 off	 blebs	 and	 then	 performed	 a	 one-sided	 t-test	 on	 the	
differences	of	the	means	after	testing	for	normality	using	a	Kolmogorov-Smirnov	test.	The	Cohen’s	
d	effect	size	was	measured.		

Unless	otherwise	indicated,	all	errors	and	error	bars	show	the	standard	error	of	the	mean.		
Surface	 rendering.	 The	 majority	 of	 triangle	 meshes	 were	 rendered	 in	 ChimeraX.47	 Colored	
triangle	meshes	were	exported	 from	Matlab	as	Collada	 .dae	 files	using	custom-written	code	and	
were	 rendered	using	 full	 lighting	mode.	Lighting	 intensity	and	ambient	 intensity	were	adjusted.	
Colormaps	were	modified	from	colorBrewer.56	The	surfaces	in	Supplementary	Figures	5,	7,	and	10	
were	rendered	within	Matlab.	Our	software	is	capable	of	rendering	all	meshes	shown	in	the	paper	
within	Matlab,	as	well	as	creating	Collada	files	for	export	to	ChimeraX.	

Data	 availability.	 Some	 of	 the	 data	 analyzed	 here	 is	 provided	 with	 the	 software	 for	
demonstration	 purposes.	 The	 remainder	 of	 the	 data	 that	 support	 the	 findings	 of	 this	 study	 are	
available	from	the	corresponding	author	upon	reasonable	request.	

Software	availability.	The	software	described	here,	as	well	as	a	user’s	guide	and	test	data	will	be	
made	available	upon	publication	of	this	paper.	To	analyze	the	test	data	via	the	provided	software,	
we	recommend	using	a	system	with	at	least	64	GB	of	RAM.	
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