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Abstract

The use of social contact rates is widespread in infectious disease modelling, since it is known that they

provide proxies of crucial determinants of epidemiological and disease transmission parameters. Infor-

mation on social contact rates can, for example, be obtained from a population-based contact diary

survey, such as the POLYMOD study. Estimation of age-specific contact rates from these studies is

often done using bivariate smoothing techniques. Typically, smoothing is done in the dimensions of the

respondent’s and contact’s age. In this paper, we introduce a smoothing constrained approach - taking

into account the reciprocal nature of contacts - where the contact rates are assumed smooth from a

cohort perspective as well as from the age distribution of contacts. This is achieved by smoothing

over the diagonal components (including all subdiagonals) of the social contact matrix. This approach

is supported by the fact that people age with time and thus contact rates should vary smoothly by

cohorts. Two approaches that allow for smoothing of social contact data over cohorts are proposed:

(1) reordening of the diagonal components of the social contact rate matrix; and (2) reordening of

the penalty matrix associated with the diagonal components. Parameter estimation is done using

constrained penalized iterative reweighted least squares. A simulation study is presented to compare

methods. The proposed methods are illustrated on the Belgian POLYMOD data of 2006.

Key words: Contact rates; Penalized iterative reweighted least squares; Penalized likelihood; Smooth-

ing; Social contact data
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1 Introduction

The use of social contact mixing patterns is omnipresent in statistical and mathematical models of

infectious disease transmission. Mixing patterns are known to be crucial determinants of important

epidemiological parameters such as the basic reproduction number and the force of infection (see e.g.,

Vynnycky and White, 2010). One approach to account for mixing patterns is by the use of the so-called

“Who Acquires Infection From Whom” (WAIFW) matrix and the use of serological data to estimate

the WAIFW parameters (Anderson and May, 1991; Greenhalgh and Dietz, 1994; Farrington et al.,

2001; Van Effelterre et al., 2009). Another approach proposed by Farrington and Whitaker (2005) is

to model contact rates as a continuous contact surface and estimate parameters from serological data.

Both approaches are some what ad hoc in the sense that they require assumptions about the structure

of the WAIFW matrix and the parametric model used for the continuous contact surface.

Alternatively, over the last two decades, several studies have reported on ways of collecting data

on social mixing behaviour relevant to the spread of close contact infections directly from individuals

through self-reported number of contacts (Wallinga et al., 2006; Beutels et al., 2006; Edmunds et al.,

1997, 2006; Mikolajczyk et al., 2007; Van Hoang et al., 2018). The European commission project

POLYMOD is arguably one of the most important studies to date (Mossong et al., 2008). The study is

a large and representative population based survey on social contacts recorded on a randomly assigned

day in 8 European countries (Belgium, England and Wales, Finland, Germany, Italy, Luxembourg,

Poland and The Netherlands). Social contact rates estimated from these self-reported data have been

used in ample studies to investigate the spread of infectious disease transmission (see e.g., Goeyvaerts

et al., 2010; Abrams and Hens, 2015).

The estimation of smooth age-specific contact rates from the POLYMOD project data is typically

performed by applying a negative binomial model on the aggregated number of contacts. For smoothing

purposes, but in addition to ensure enough flexibility, a bivariate smoothing approach (within the

likelihood framework) is undertaken using a tensor product spline as a function of the respondent’s

and contact’s age as a smooth interaction term (Mossong et al., 2008; Hens et al., 2009; Goeyvaerts

et al., 2010). Recently, also hierarchical Bayesian models have been used for social contact rates

estimation (van de Kassteele et al., 2017). When estimating the social contact rates, the reciprocal

nature of contacts needs to be taken into account (which means that the total number of contacts on

the population level from age i to age j must equal the total number of contacts from age j to age i) and

this will be achieved by the proposed method. We propose a smoothing constrained approach where

the contact rates are assumed smooth from a cohort perspective as well as from the age distribution

of contacts. Thus, smoothing in the direction of the age of contacts will remain, however instead of

smoothing over the dimension of the age of respondents, we will smooth contact rates from a cohort
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perspective. This is achieved by smoothing of the social contact rates over the diagonal components

(including all subdiagonals). In this manner the social contact rates are modelled from a cohort

perspective, namely people age through time and we assume that contact rates for consecutive time

points are similar. The maximum likelihood framework is used for parameter estimation.

In the current paper, we describe two approaches that allow for smoothing of social contact data

over the diagonal components: (1) reordening of the diagonal components to reproduce a rectangular

grid; and (2) reordening of the penalty matrix such that penalization is performed over the diagonal

components. The first approach builds further upon work published by two of the co-authors in a

proceedings paper (Camarda et al., 2013). Poisson or negative binomial distributions are assumed for

the aggregated number of contacts.

The use of smoothing approaches for estimating social contact rates could lead to contact rate

estimates that are oversmoothed for individuals of the same age, meaning that the estimated contact

rate is smaller than than the true one in the population. For example, students make an above average

number of contacts with individuals of their own age (e.g., in school, sport clubs, etc.). Smoothing

approaches thus, potentially, lead to an underestimation of the social contact rates on the main diagonal

of the social contact matrix, especially for children and young adults. To take this into account, we

introduce the use of a so-called kink on the main diagonal of the social contact matrix that can force

a sudden increase (or decrease) of the estimated social contact rates for children and young adults of

the same age.

To illustrate the proposed methods, we apply these to the POLYMOD social contact data of

Belgium. The methods can also be applied to the POLYMOD data of other countries or studies.

We refer to http://www.socialcontactdata.org/ for a website on sharing social contact data from

different countries and studies. The Belgian POLYMOD data were obtained via a population-based

contact survey that has been carried out over the period March-May 2006. Participants kept a paper

diary with information on their contacts over one day. A contact was defined as a two-way conversation

of at least three words in each other’s proximity. The contact information included the age of the

contact, gender, location, duration, frequency, and whether or not touching was involved. In this

paper, we consider the contact data of all participants aged between 0 and 76 years (both included). In

total, we have information on 745 participants from which 399 (53.6%) are females and 345 (46.3%) are

males (the information on gender was omitted for one participant). The mean age of the respondents

is 31.0 years. There is at least one participant at each age between the range of 0 and 76. We also

restrict to the contacts made with individuals between 0 and 76 years (both included). In total, there

is information on 13 493 contacts. This thus gives a crude mean of 18.1 contacts per participant.

The age structure of the general population in which the contact survey is conducted in the year

2006 is obtained from (Eurostat, 2017). The size of the population aged 0-76 years in Belgium 2006
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was N=9 777 488.

The proposed methodology is described in details in Section 2. A simulation study to investigate

the performance of the proposed methodology is presented in Section 3. The application of the methods

to the Belgian POLYMOD data is presented in Section 4. We end with a discussion in Section 5.

2 Methodology: a Smoothing Constrained Approach

In this section, we present the smoothing constrained approach (SCA) used in this paper to estimate

smooth social contact rates. First, we describe the approach when smoothing is performed in the

dimensions of the respondent’s and contact’s ages. Smoothing in these dimensions is typically done

when estimating smooth social contact rates. Next, the most important contribution of this paper is

described, namely the SCA where the contact rates are assumed smooth from a cohort perspective

which is achieved by smoothing of the social contact rates over the diagonal components (including

all subdiagonals). Two approaches are investigated both in terms of performance and speed: (1)

reordening of the diagonal components to reproduce a rectangular grid; and (2) reordening of the

penalty matrix such that penalization is performed over the diagonal components.

2.0 No Smoothing over Cohorts

Let Y = (yij) be a m ×m matrix where the ijth element is the total number of contacts made by

the respondents of age i − 1 with individuals of age j − 1, with i = 1, . . . ,m and j = 1, . . . ,m. This

information can be extracted from the self-reported contact diaries of the participants. In our specific

case m = 77. Let y be the m2 × 1 vector obtained by arranging the matrix Y by row order into a

vector. Furthermore, let the m×1 vector r = (ri) contain the total number of respondents of age i−1.

Define the m ×m matrix E = r1m, where 1m is a 1 ×m vector of ones, and define e as the m2 × 1

vector obtained by arranging the matrix E by row order into a vector. Let the m× 1 vector p = (pi)

denote the population size of individuals of age i − 1 (see Supplementary Materials) and define the

m ×m matrix P = p1m. In the Supplementary Materials we present all these vectors and matrices

for an example with m = 4.

Define the expected number of contacts made by participants of age i−1 with contacts of age j−1

as E(yij) = µij = riγij , where γij is the actual contact rate of individuals of age i − 1 with contacts

of age j − 1. The interpretation of γij is the average number of contacts an individual of age i − 1

makes with an individual of age j − 1. Define the so-called social contact matrix Γ as the m × m

matrix with elements γij (see Figure 1 left panel) and let γ be the m2×1 vector obtained by arranging

the matrix Γ by row order into a vector. The expected number of contacts can also be written as

E(y) = µ = e� γ, where � denotes component-wise multiplication.

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290551doi: bioRxiv preprint 

https://doi.org/10.1101/290551


 

Age of the contacted person (j-1) 

A
ge

 o
f 

th
e 

re
sp

o
n

d
en

t 
(i

-1
) 

 

0 1 2 …   m-1 

 

0 𝛾11 𝛾12 𝛾13    𝛾1𝑚 
 

1 𝛾21 𝛾22 𝛾23     
 

2 𝛾31 𝛾32 𝛾33     
 

…
        

 

        
 

        
 

m-1 𝛾𝑚1      𝛾𝑚𝑚 
 

         

 

  Cohort of the respondent (i-1) 
 

  
0 1 2 …   m-1 

 

A
ge

 d
if

fe
re

n
ce

 o
f 

th
e 

co
n

ta
ct

ed
 p

er
so

n
 (

i-
j)

 

m-1       𝛾𝑚1  
 

...       
  

       
  

2   𝛾31    
  

1  𝛾21 𝛾32    
  

0 𝛾11 𝛾22 𝛾33    𝛾𝑚𝑚  

 

-1 𝛾12 𝛾23     
  

-2 𝛾13      
  

       
  

...       
  

1-m 𝛾1𝑚      
  

        
  

 

Figure 1: Schematic representation of the original data structure of Γ over ages of respondents and

ages of contacts (left panel) and the restructured matrix Γ̆ over cohorts of the respondents and age

differences of the contacted persons (right panel). Cells with nuisance parameters in Γ̆ are depicted

with gray squares.

The interest is in the estimation of the unknown contact rates γij from data y in a smooth way such

that the important signal in the mixing patterns is captured. For this purpose, we assume that the

observed contacts (yij) are realizations from a Poisson distribution, namely y ∼ Pois(µ). For modelling

purposes a log-link function is used, namely log(γ) = η which yields log(µ) = log(e) + log(γ) =

log(e) + η. Let H be the m × m matrix with ijth element ηij . Interest is in the estimation of the

m2 unknown parameters η. It can be readily seen that the maximum likelihood estimates are given

by η̂ = log(y/e), and thus γ̂ = y/e, in case the parameters can be estimated freely. However, these

estimates do not yield a smooth contact rate surface and is, therefore, only of interest for exploratory

analysis. We prefer to work with a modelling approach that yields social contact rates that are smooth

and reciprocal. The reciprocal nature of contacts can be expressed as γijpi = γjipj for all i = 1, . . . ,m

and j = 1, . . . ,m. This can be written as log(γij)− log(γji) = log(pj)− log(pi) and thus

ηij − ηji = log(pj)− log(pi). (1)

In matrix form:

Lη = ν, (2)
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where L is a m(m−1)
2 ×m2 allocation matrix with entries +1 and −1 to suit the left-hand side of (1)

and the vector ν is given by

νT =(log (p2)− log (p1), log (p3)− log (p1), . . . , log (pn)− log (p1),

log (p3)− log (p2), log (p4)− log (p2), . . . , log (pn)− log (p2), . . . ,

log(pn)− log(pm−1)).

Estimation of the smoothed parameters η that satisfy the reciprocal constraints is performed

through constrained penalized iterative reweighted least squares (C-PIRLS) (Nelder and Wedderburn,

1972; McCullagh and Nelder, 1989; Eilers and Marx, 1996; Wood, 2006). Given current estimates η̂[k]

and µ̂[k] at iteration k, parameter estimates η̂[k+1] at iteration k + 1 are found by solving the set of

linear equations  W[k] + P LT

L 0

 η̂[k+1]

ζ[k+1]

 =

 W[k]z[k]

ν

 . (3)

The parameter estimates γ̂[k+1] are easily obtained by γ̂[k+1] = exp(η̂[k+1]). In (3), ζ[k+1] is a m(m−1)
2 ×

1 vector of Lagrange multipliers, W[k] is a m2 × m2 diagonal matrix with entries W
[k]
ll = µ

[k]
l =

el exp(η
[k]
l ) and z[k] is a m2 × 1 vector of the so-called pseudodata given by

z
[k]
l = η

[k]
l +

(
yl

µ
[k]
l

− 1

)
. (4)

To enforce smoothness over two dimensions, the penalty term P in (3) is a m2 ×m2 matrix which is

given by (Marx and Eilers, 2005)

P = λ1Im ⊗ (DT
hDh) + λ2(DT

v Dv)⊗ Im, (5)

where λ1 and λ2 are smoothing parameters for, respectively, the horizontal and vertical dimension in

Figure 1 (left panel). The matrices Dh and Dv are second order difference matrices. We iterate this

process until convergence, namely until max | η̂[k+1] − η̂[k] |< 10−4.

A grid search is done to find the optimal smoothing parameters. The optimal smoothing parameters

are chosen based on minimization of the Akaike Information Criterion (AIC) (Akaike, 1973):

AIC = −2 log(L̂) + 2ÊD, (6)

where L̂ is the maximized value of the likelihood function and the effective degrees of freedom, ÊD, is

the trace of the hat matrix which is given by (Wood, 2006)

A = W1/2 (W + P)
−1

W1/2. (7)
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2.1 Smoothing over Cohorts: Reordening of the Contact Matrix

In the section above, we smooth the contact rates parameters in the dimensions of the respondent’s and

contact’s ages. Next, we describe how the contact rates can be smoothed over the diagonal component

and thus over cohorts. In addition, we also smooth over the dimension of the contact’s age since the

distribution of the age of (grand)parents can in general be assumed smooth (e.g., children will meet

their parents and grandparents who are, for example, ± 30 and ±60 years older). We describe how

this can be achieved by restructuring the data and contact matrix over the cohorts and the age of the

contacts.

We explain the restructuring for the contact matrix Γ in detail. The contact matrix Γ is restruc-

tured such that each diagonal (the main diagonal and all sub-diagonals) is present as a row in the

restructured matrix. The restructured matrix is denoted Γ̆. Figure 1 (right panel) presents a graph-

ical representation of this restructured matrix. The matrix Γ̆ is of dimension (2m − 1) × m and is

constructed by entering row i of Γ in column i of Γ̆ at positions m− i+ 1 to 2m− i. From Figure 1

(right panel), it can be observed that in this manner all subsequent diagonal elements are present in

the same row. By construction, the matrix Γ̆ contains nuisance contact rates parameters which are

not of interest.

Restructured matrices Y̆ and Ĕ, constructed from Y and E, are created similarly as Γ̆. Missing

cell entries are present for Y̆ and Ĕ at the same cells where the nuisance parameters are present for Γ̆.

To handle these missing entries, we impute arbitrary values (e.g., 9999) in Y̆ and Ĕ and we construct

a (2m − 1) ×m weight matrix W̆, where the ijth entry of W̆ equals zero if the ijth entry in Γ̆ is a

nuisance parameter and one otherwise. This matrix weight is used to avoid that the imputed values

for the missing entries influence parameter estimation.

Let y̆, ĕ, w̆ and γ̆ be the (2m2 − m) × 1 vector obtained by arranging the matrices Y̆, Ĕ, W̆

and Γ̆ by column order into a vector. Again, we assume that E(y̆) = µ̆ = ĕ � γ̆ � w̆ and that

the observations result a Poisson distribution, namely y̆ ∼ Pois(µ̆). For modelling purposes, we set

log(γ̆) = η̆. Interest is the estimation of the 2m2 − m unknown parameters η̆. However, only the

m2 parameters of η̆ corresponding to the non-nuisance parameter entries in Γ̆ are of interest. The

reciprocity assumption of the contacts, namely γ̆ijpi = γ̆jipj , can again be written in matrix form as

Lη̆ = ν, (8)

where L is a (m(m−1)
2 )× (2m2 −m) allocation matrix to suit the reciprocity constraints.

Estimation of the smoothed parameters η̆ is again performed through C-PIRLS. Updated parameter

estimates are now updated by solving the set of linear equations W[k] + P LT

L 0

 ˆ̆η[k+1]

ζ[k+1]

 =

 W[k]z[k]

ν

 . (9)
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In (9), ζ[k+1] are again Lagrange multipliers, W[k] is a (2m2 −m)× (2m2 −m) diagonal matrix with

entries W
[k]
ll = µ̆

[k]
l = ĕl exp(η̆

[k]
l )w̆l and z[k] is a (2m2 −m)× 1 vector of pseudodata given by

z
[k]
l = η̆

[k]
l +

(
y̆l

µ̆
[k]
l

− 1

)
. (10)

Here, the penalty term P in (9) is a (2m2 −m)× (2m2 −m) matrix which is given by

P = λ1Im ⊗ (DT
v Dv) + λ2(DT

hDh)⊗ I2m−1, (11)

where λ1 and λ2 are smoothing parameters for, respectively, the vertical and horizontal dimension in

Figure 1 (right panel). Optimal smoothing parameters are again chosen via grid search using AIC.

2.2 Smoothing over Cohorts: Reordening of the Penalty Matrix

In this section, we describe how we can smooth over the cohorts and over the dimension of the contact’s

age by reordening of the penalty matrix. The methodology is very similar as the one described in

Section 2.0. The matrices Y, E, P, Γ and the vectors y, e, µ, γ, η are defined similar as in Section 2.0.

Again, we assume a Poisson distribution for the observed contact rates and the reciprocity constraint

is written in matrix form as Lη = ν, while C-PIRLS by solving the set of linear equations in (3) is

used for parameter estimation. The penalty matrix P, constructed differently as the penalty term

in (5), is a m2 ×m2 matrix given by

P = λ1Im ⊗ (DT
hDh) + λ2Pd (12)

where λ1 and λ2 are smoothing parameters for, respectively, the horizontal and the diagonal dimension

in Figure 1 (left panel). The m2 ×m2 matrix Pd is responsible for the penalization of the parameters

of the cohorts (all diagonals and subdiagonals). For example, in the specific case where Γ is a 4 × 4
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matrix (thus γ = {γ11, γ12, γ13, γ14, γ21, . . . , γ44}) the penalty matrix Pd is a 16× 16 matrix given by

Pd =



γ11 γ12 γ13 γ14 γ21 γ22 γ23 γ24 γ31 γ32 γ33 γ34 γ41 γ42 γ43 γ44

γ11 1 −2 1

γ12 1 −2 1

γ13 1 −1

γ14 0

γ21 1 −2 1

γ22 −2 5 −4 1

γ23 −2 4 −2

γ24 −1 1

γ31 1 −1

γ32 −2 4 −2

γ33 1 −4 5 2

γ34 1 −2 1

γ41 0

γ42 −1 1

γ43 1 −2 1

γ44 1 −2 1



.

Optimal smoothing parameters are again chosen via grid search using AIC.

The advantage of using the penalty matrix Pd to achieve cohort smoothing is the fact that no

nuisance parameters need to be constructed in the matrix Γ (cfr. the approach in the previous section

using Γ̆). This speeds up computation time since only m2 parameters in Γ need to be estimated,

whereas the approach in the previous section needs estimating of 2m2 − m parameters in Γ̆ (thus

including m2 − m nuisance parameters). The disadvantage of using the penalty matrix Pd is the

fact that its construction is non-trivial. Whereas the penalty in (11) is easily obtained using stan-

dard matrix multiplication, the construction of Pd requires a more computer-intensive algorithm (see

Supplementary Materials).

2.3 Kink on the Main Diagonal of the Social Contact Matrix

Using the SCA methodology described in Sections 2.0-2.2, it can be argued that the main diagonal

of the matrix H, or equivalently Γ, is oversmoothed. In other words, the contact rates between

respondents and contacts of the same age are oversmoothed, which leads to an underestimation of

the social contact rates on the main diagonal. This effect could especially be present for children and

young adults who make an above average number of contacts with persons of the same age (i.e., in
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school, sports club, . . . ). Therefore, we introduce a so-called kink that can force a sudden increase or

decrease of the estimated social contact rates for children and young adults on the main diagonal.

We introduce this kink for the methods described in Sections 2.1-2.2. Allowing for the kink is done

by a small adjustment in the penalty matrices in (11) and (12). More specifically, in the dimension of

the contact’s age the social contact rates that belong to the main diagonal, i.e. ηii and γii, are not

penalized. In (11) this is achieved by changing the (2m− 3)× (2m− 1) matrix Dv as follows

D∗v =



... m−3 m−2 m−1 m m+1 m+2 m+3 ...

...

m−3 1 −2 1

m−2 1 −1 0

m−1 1 0 −1

m 0 −1 1

m+1 1 −2 1

m+2 1 −2
...



. (13)

From the matrix D∗v, it is clear that the social contact rates that belong to the main diagonal, i.e. ηii

and γii, are not penalized since column m only has the values zero. The penalty matrix in (11) is now

given by

P = λ1

(
I(1)m ⊗ (D∗Tv D∗v) + I(2)m ⊗ (DT

v Dv)
)

+ λ2(DT
hDh)⊗ I2m−1, (14)

where I
(1)
m and I

(2)
m are diagonal indicator matrices given by

I(1)m = { 1, . . . , 1︸ ︷︷ ︸
× max.kink.age

, 0, . . . , 0︸ ︷︷ ︸
× m-max.kink.age

} and

I(2)m = { 0, . . . , 0︸ ︷︷ ︸
× max.kink.age

, 1, . . . , 1︸ ︷︷ ︸
× m-max.kink.age

} ,

where max.kink.age indicates the maximum age at which a kink on the main diagonal is possible.

In this paper, we take max.kink.age = 31 (i.e., {0, . . . , 30} years). A sensitivity analysis with higher

values for max.kink.age yielded quantitatively similar results. In penalty matrix (12), a similar ad-

justment is applied to the matrix Dh.

We note that the social contact rates on the main diagonal that are adjusted by the kink are still

penalized in the dimension of the cohort to assure that smooth contact rates are obtained on the

diagonals of the contact rates. The introduction of this kink thus leads to a smoothed contact surface

that is non-differentiable on the main diagonal in the dimension of the contact’s age. More details on

the implementation and example code of the kink are given in the Supplementary Materials.
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2.4 Negative Binomial Likelihood

In case the Poisson distribution is used for the observed contacts (yij), it is assumed that the mean

and the variance are equal: E(Yij) = Var(Yij). However, in practice, contact data often display

overdispersion meaning that the variance of the responses exceed the mean. Not accounting for this

possible overdispersion can lead to erroneous results. To accommodate overdispersion a negative

binomial distribution can be assumed for the observed contacts, namely yij ∼ NegBin(µij , αij). The

use of a negative binomial distribution implies that E(Yij) = µij and Var(Yij) = µij+µ2
ijα
−1
ij . Different

parametrizations for αij lead to different negative binomial distributions (Lawless, 1987). Here, we will

consider the parametrization with αij = µijφ
−1, where φ > 0 denotes the disperion parameter. In this

parametrization, the variance of the negative binomial distribution is given by Var(Yij) = µij(1 + φ).

If φ tends to zero, the mean and variance will be equal. If φ > 0, the variance will exceed the

mean and thus accounting for overdisperion in the data. We note that the variance term, Var(Yij) =

µij(1 + φ), resembles the error term of an overdispersed Poisson distribution (Nelder and Lee, 1992).

The parametrization with αij = φ−1 (leading to Var(Yij) = µij(1 + φµij)) was also explored by the

authors but not further described since this parametrization performed worse in terms of AIC for the

application in Section 4.

In case φ would be fixed at a certain value, parameter estimates η̂ are again obtained through C-

PIRLS. The methodology for the C-PIRLS estimation is similar as described in Sections 2.0-2.2 with

only one adaptation, namely the entries of W[k] are given by W
[k]
ll = µ

[k]
l /(1 + φ). However, rather

than fixing φ at a certain value, we are also interested in obtaining an estimate for φ using the available

data. For this, a two-stage iteration scheme is undertaken, namely by iterating and cycling between

holding φ fixed and holding η fixed at its current estimates, the estimates (φ̂, η̂) will be obtained. More

specifically, by holding φ fixed at the current estimate φ̂[k], estimates η̂[k+1] are obtained through C-

PIRLS estimation. Next, η is fixed at the estimates η̂[k+1] and an updated estimate φ̂[k+1] is obtained

using the moment estimation (Breslow, 1984). This process is iterated until convergence. Moment

estimation of φ is based on the Pearson chi-squares statistic (Breslow, 1984), namely

m∑
i,j=1

(
yij − µ[k]

ij

)2
(1 + φ)µ

[k]
ij

= m2 − ÊD, (15)

where ÊD is the trace of the matrix given in (7). This leads to a straightforward estimate of φ̂[k],

namely

φ̂[k] =
1

m2 − ÊD

m∑
i,j=1

(
yij − µ[k]

ij

)2
µ
[k]
ij

. (16)

Optimal smoothing parameters λ1 and λ2 are again chosen via grid search using AIC, which is

given by AIC = −2 log(L̂) + 2(ÊD+ 1) for the negative binomial distribution. The probability density
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function of the negative binomial distribution is used to calculate the maximized value of the likelihood

function. The plus one term in the calculation of the AIC is included to account for the estimation of

the φ parameter.

2.5 Uncertainty of the Estimates

In the previous sections we have discussed how the model parameters η can be estimated using C-

PIRLS. It is also of interest to quantify the uncertainty of the obtained estimates. In particular, we

are interested in the variance-covariance matrix associated with the η̂ estimates. For this purpose a

Bayesian posterior covariance matrix which is given by

Vη = (W + P)
−1

(17)

can be used (Wood, 2006). Furthermore, the corresponding posterior distribution is the multivariate

normal

η ∼ N (η̂,Vη) . (18)

This last results is only approximate and is justified by large sample results (Wood, 2006). The result

in (18) can be used to calculate confidence intervals for parameters ηij or for non-linear functions of

these parameters ηij (e.g., γij). An estimate of Vη can be obtained by plugging in W at convergence

together with the estimated optimal smoothing parameters λ̂1 and λ̂2 in P. The result in (18) can

also be used to generate new social contact matrices by sampling from the obtained multivariate

normal distribution. This can be extremely useful when one wants to acknowledge for the variability

originating from social contact data in the estimation of epidemiological parameters and/or health

economic evaluations (Bilcke et al., 2011).

2.6 Computational Note

R version 3.4 is used to fit the proposed models. To enhance convergence of the proposed C-PIRLS

fitting scheme, we first perform parameters estimation using penalized iterative reweighted least squares

without using the symmetry constraint and use the obtained estimated parameters as starting values

in the C-PIRLS fitting. To initiate the estimation of PIRLS without the symmetry constraint, starting

values η̂[0] are needed. These can, for example, be set at η̂[0] = log ((y + 1)/(e + 1)).

Our proposed methodology does not employ any regression basis such as B-splines because an

exact link between the constraints and linear predictors is needed. This, however, implies that the

same number of parameters are estimated as there are entries in the matrices Γ or Γ̆. For instance,

in our application (m = 77) in Section 4, we need to estimate m2 = 5 929 and 2m2 − m = 11 781
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parameters, respectively. This is practically challenging on a regular personal computer. Therefore, we

make use of sparse matrix implementations using the R-package Matrix (Bates and Maechler, 2017).

To choose the optimal smoothing parameters λ1 and λ2, a grid search is performed with both

λ1, λ2 ∈ {0.5, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000}. This initial grid search gives a good indication

(based on minimization of the AIC) of the values of the optimal smoothing parameters. In a second

step, a grid search on a more narrow grid is performed.

More details on the implementation and example code are given in the Supplementary Materials.

Code of the algorithm used to construct the penalty matrix Pd is also provided there. In Section 4,

computing times of the data application are reported. All software code is freely available from

https://github.com/yannickvandendijck/.

3 Simulation Study

In order to compare the proposed methods in Section 2.0-2.2, a simulation study is used. We perform

the simulation study once assuming that the observed contact rates are realizations from the Poisson

distribution and once that they arise from the negative binomial distribution. Furthermore, we shall

investigate scenarios in which no kink is needed on the main diagonal, and a scenario in which the

kink is needed. This thus yields the investigation of four simulation scenarios.

To establish a so-called true social contact matrix, denoted by Γ∗, from which data will be sim-

ulated, a non-parametric regression is applied to the Belgian social contact data. More specifically,

the observed contacts rates (see Figure 2), yij/ri, of the Belgian social contact data are smoothed

using local linear regression. Using the local linear regression there is no guarantee that K∗ ≡ Γ∗ �P

is symmetric. Therefore, using a simple solution, a symmetric matrix from K∗, denoted by K̆∗, is

calculated by
(
K̆∗
)
ij

=
(
K̆∗
)
ji

=
(K∗)ij+(K∗)ji

2 . The true contact surface, Γ̆
∗
, which is used for data

simulation is obtained by Γ̆∗ij = K̆∗ij/Pij . Finally, let H∗ij = log
(

Γ̆∗ij

)
. In Figure 3 the true social

contact matrices Γ̆
∗

and H∗ are shown.

In two of the four simulation settings, a kink is introduced on the main diagonal of the social

contact matrix. Let Γ̆
†

denote the true social contact matrix with a kink on the main diagonal. The

matrix Γ̆
†

is exactly similar as matrix Γ̆
∗
, with the exception that the values of Γ̆†ii, for i = 1, . . . , 24,

are artificially increased in the following manner

Γ̆†ii =


Γ̆∗ii
(
1 + 1

11 (i− 1)
)

i ∈ {1, . . . , 12},

Γ̆∗ii
(
2.0− 1

11 (i− 13)
)

i ∈ {13, . . . , 24},

Γ̆∗ii i > 24.

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290551doi: bioRxiv preprint 

https://github.com/yannickvandendijck/
https://doi.org/10.1101/290551


Age of the respondent

N
um

be
r 

of
 r

es
po

nd
en

ts

0
5

10
15

20
25

0 3 6 9 13 18 23 28 33 38 43 48 53 58 63 68 73

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
70

Age of the respondent

A
ge

 o
f t

he
 c

on
ta

ct

−3

−2

−1

0

1

2

Figure 2: The number of respondent per age (left) and the observed log-contact rates (log(yij/ri))

(right) of the Belgian social contact data. A white cell indicates that there were no contacts observed

for those particular ages of the respondents and contacts.

Thus for ages between 0 and 23 a higher number of contacts is obtained on the main diagonal. The

main diagonal elements of Γ̆
∗

and Γ̆
†

are presented in Figure 3.

Data is simulated using the same participant distribution as in the Belgian social contact data

(n = 745) (see Figure 2). For the Poisson distribution, data is simulated as

y∗ij ∼ Pois
(
riΓ̆
∗
ij

)
. (19)

For the negative binomial distribution (using φ = 2.0) data is simulated as

y∗ij ∼ NegBin
(
µij = riΓ̆

∗
ij , αij = µij(2.0)−1

)
. (20)

For each setting S = 100 simulated datasets are obtained. Next, each simulated dataset is analysed

using the methods described in Sections 2.0-2.2. In all simulation settings, both models with and

without a kink are used to allow for comparison. Data simulated from the Poisson distribution are

analyzed using a Poisson likelihood, and similar for the negative binomial distribution. Optimal

smoothing parameters are obtained via grid search using AIC. This yields estimated social contact

matrices Γ̂
(s)

and Ĥ(s), for s = 1, . . . , S. The estimation performances of the different methods are

compared using squared bias and mean squared error. These measures of performance are calculated

as

Bias2 =
m∑
i=1

m∑
j=1

(
1

S

S∑
s=1

(
Γ̆∗ij − Γ̂

(s)
ij

))2

and Bias2 =
m∑
i=1

m∑
j=1

(
1

S

S∑
s=1

(
H∗ij − Ĥ

(s)
ij

))2

, (21)
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Figure 3: The true social contact matrices Γ̆
∗

(left) and H∗ (middle) used in the simulation study.

The true social contact surfaces are obtained from a non-parametric regression using a local linear fit

of the Belgian social contact data. The main diagonal elements of the true social contact matrices Γ̆
∗

and Γ̆
†

(right).

MSE =

m∑
i=1

m∑
j=1

(
1

S

S∑
s=1

(
Γ̆∗ij − Γ̂

(s)
ij

)2)
and MSE =

m∑
i=1

m∑
j=1

(
1

S

S∑
s=1

(
H∗ij − Ĥ

(s)
ij

)2)
. (22)

A similar approach is followed for the social contact matrix with a kink on the main diagonal.

In addition to the estimation performance, the estimation of the uncertainty (see Section 2.5) is

evaluated by calculating the nominal coverage of the 95% pointwise confidence intervals (CIs) of ηij .

Using result (18), 95% pointwise CIs can be easily calculated (i.e., ±1.96× the square root of the

Bayesian posterior variance). The reported nominal coverages of the CIs are calculated by averaging

over the entire social contact matrix (thus for i = 1, . . . ,m and j = 1, . . . ,m).

For all simulation settings, we observe (see Table 1) that models that smooth over the cohorts

(models M1 and M2) are performing better in terms of MSE than the model that does not smooth

over the cohorts (model M0). This holds for both H∗ and Γ̆
∗
. In terms of bias, the results are less

clear, but overall model M2 is performing best. When comparing models M1 and M2, we observe

that M2 (based on the methodology described in Section 2.2) is performing better. In the simulation

settings in which no kink is introduced on the main diagonal, it is observed that the models with a

kink on the main diagonal perform slightly worse than the models without a kink. However, in the

simulation settings with a kink, a more pronounced difference is observed in favour of the models with

a kink on the main diagonal, especially for Γ̆
∗
. The better performance of the models with a kink is

mainly due to the better estimation of the main diagonal components of the social contact matrix. No

meaningful differences are observed outside the main diagonal region (see Supplementary Materials).

Other graphical results are also presented in the Supplementary Materials.

In the negative binomial simulation setting, the overdisperion parameter φ is estimated well. In the
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Table 1: Squared bias and MSE of the social contact matrices H∗ and Γ̆
∗

over 100 simulation using

the methods described in Sections 2.0-2.2 with and without a kink on the main diagonal. Data is

simulated using four simulation settings.

bias2 results

Models without kink Models with kink

on main diagonal on main diagonal

bias2 of H∗ (H†) bias2 of Γ̆
∗

(Γ̆
†
) bias2 of H∗ (H†) bias2 of Γ̆

∗
(Γ̆
†
)

Simulation setting M0 M1 M2 M0 M1 M2 M1 M2 M1 M2

Poisson w/o kink 69.62 58.62 49.41 1.53 1.39 1.32 58.92 49.66 1.49 1.43

NegBin w/o kink 93.16 91.53 77.76 2.50 2.63 2.52 93.64 79.42 3.05 2.92

Poisson w kink 57.67 60.86 51.79 3.32 3.37 3.30 58.57 49.33 1.53 1.47

NegBin w kink 96.52 82.14 70.44 4.77 4.38 4.31 80.70 68.63 2.62 2.53

MSE results

Models without kink Models with kink

on main diagonal on main diagonal

MSE of H∗ (H†) MSE of Γ̆
∗

(Γ̆
†
) MSE of H∗ (H†) MSE of Γ̆

∗
(Γ̆
†
)

Simulation setting M0 M1 M2 M0 M1 M2 M1 M2 M1 M2

Poisson w/o kink 90.81 74.45 68.05 2.41 1.98 1.94 75.13 68.67 2.18 2.14

NegBin w/o kink 154.73 130.41 123.72 4.79 3.99 3.96 133.15 126.00 4.57 4.51

Poisson w kink 82.36 77.78 71.85 4.33 3.98 3.95 75.72 69.63 2.28 2.24

NegBin w kink 156.94 123.59 120.50 7.11 5.86 5.87 122.71 119.25 4.41 4.40

M0: Based on the methodology described in Section 2.0; M1: Based on the methodology described in

Section 2.1; M2: Based on the methodology described in Section 2.2

simulation setting without a kink, model M2 without a kink has an average estimate for φ of 1.92 with

95% of the estimated overdispersion parameters between 1.74 and 2.22. For the simulation setting

with a kink, we find 1.93 (1.71 - 2.20) for model M2 with a kink.

Table 2 presents the nominal coverage results of the different simulation settings. We observe that

all methods produce pointwise CIs with close to 95% nominal coverage. In the last simulation setting

(the negative binomial distribution with a kink on the main diagonal) an overcoverage is observed for

methods M1 and M2. In this simulation setting, the average lengths of the 95% CIs are 0.65, 0.61

and 0.60, for M0, and M1 and M2 with a kink, respectively. This implies that the overcoverage is not

directly associated with wider CIs. The results in Table 2 indicate that the large sample result in (18)

can be used to construct CIs of appropriate nominal coverage.
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Table 2: Nominal coverage (in %) of the 95% point-wise confidence intervals of the social contact

matrices H∗ (H†) over 100 simulation using the methods described in Sections 2.0-2.2 with and without

a kink on the main diagonal. The nominal coverage is calculated by averaging over the entire social

contact matrix. Data is simulated using four simulation settings.

Models without kink Models with kink

on main diagonal on main diagonal

Simulation setting M0 M1 M2 M1 M2

Poisson w/o kink 92.06 93.86 94.47 93.57 95.16

NegBin w/o kink 95.10 94.51 95.92 93.90 95.36

Poisson w kink 94.79 93.17 94.76 93.48 95.07

NegBin w kink 95.01 96.26 97.26 96.22 97.26

M0: Based on the methodology described in Section 2.0

M1: Based on the methodology described in Section 2.1

M2: Based on the methodology described in Section 2.2

4 Application: Belgian Social Contact Data

In Figure 2, the observed log-contact rates (log(yij/ri)) of the POLYMOD Belgian social contact

data are shown. To estimate the social contact rates from these data the three different modelling

approaches described in Section 2.0-2.2 are applied. A Poisson and negative binomial distribution is

assumed. In addition, models with a kink on the main diagonal are also investigated.

In Table 3, summary results of the fitted models are given. When comparing the distributions, it

can be observed that the negative binomial distribution performs better in terms of AIC. Thus implies

that the assumption of a variance that is linearly dependent on the mean is preferred. The effective

degrees of freedom for the Poisson case are also higher indicating that the Poisson distribution tries

to explain the observed variability through the mean. We now discuss in more details the results of

the negative binomial distribution. It can be observed that approaches M1 and M2 are performing

somewhat better in terms of AIC as compared to M0. The models with the kink on the main diagonal

are performing slightly better than the models without kink. For the estimated smoothing parameters

λ̂1 and λ̂2 an interesting difference is observed between model M0 and models M1 and M2. In M0 the

optimal values for λ̂1 and λ̂2 are similar. For M1 and M2, however, the optimal value for λ̂2 is larger

than λ̂1, which indicates that more penalization is needed in the direction of the cohorts for M1 and

M2.

In Table 3, computation times to fit the different models are provided. It is clear that parameter

estimation in model M2 is much faster (4 times faster) when compared to model M1. This difference

in computation time can be explained by the difference in parameters that need to be estimated.
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Table 3: Summary results of the nine fitted models to the Belgian social contact data. Estimated

smoothing parameters, effective degrees of freedom, -2 times log-likelihood, AIC and φ are provided.

Computation time (Tcomp) in seconds is also given.

Model Distribution λ̂1 λ̂2 ÊD −2 log(L̂) AIC φ̂ Tcomp

M0 Poisson 1 1 1 378.8 19 579.1 22 336.7 - 12.9

M0 NegBin 20 20 182.4 19 777.9 20 144.8 1.95 94.3

M1 Poisson 1 1 1 377.1 19 909.4 22 663.6 - 39.3

M1 NegBin 10 1000 86.3 19 948.7 20 123.2 2.20 260.5

M2 Poisson 1 1 1 411.9 19 890.1 22 713.9 - 11.4

M2 NegBin 10 1500 87.5 19 957.3 20 134.2 2.20 57.1

Models with kink on main diagonal (see Section 2.3)

M1 NegBin 20 800 77.6 19 948.0 20 105.2 2.17 237.4

M2 NegBin 20 1000 80.3 19 950.3 20 112.9 2.18 55.3

M0: Based on the methodology described in Section 2.0

M1: Based on the methodology described in Section 2.1

M2: Based on the methodology described in Section 2.2

For model M1, 2m2 − m = 11 781 parameters (including m2 − m nuisance parameters) need to be

estimated, whereas for model M2, m2 = 5 929 parameters are estimated.

In Figure 4, the estimated log contact rates surfaces, Ĥ, and the mixing at the population level,

Γ̂ � P, for models M0, M1 and M2 with the negative binomial distribution and without kink are

shown. In general the surfaces capture the important features of human contact behaviour. There

is a clear difference in the estimated surfaces of model M0 and models M1 and M2. It can observed

that diagonal components are more pronounced for models M1 and M2. The shifted diagonal between

children and parents is also more clearly observed. The estimated surfaces of models M1 and M2 are

very similar.

Based on the results of the simulation study in Section 3, the computation times and the fact that

the estimated contact rates are very similar for models M1 and M2, we prefer the use of model M2

(thus based on the methodology described in Section 2.2) for the POLYMOD Belgian social contact

data.

In Figure 5, estimated contact surfaces are shown for model M2 with the negative binomial distri-

bution with a kink on the main diagonal. From the figure on the right hand-side, it is observed that

the main diagonal has higher values for younger ages for the model with the kink. This yields higher

values on the main diagonal of Ĥ and Γ̂ � P for the model with the kink. For the model without

the kink, the values in the estimated matrix Γ̂ � P range from 2 287.4 to 253 511.6, whereas for the

model with kink the values range from 2 350.8 to 397 637.7. The kink thus allows for a huge increase
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Figure 4: The estimated log contact rates surface (top), Ĥ, and the mixing at the population level

(bottom), Γ̂�P, for models M0, M1 and M2 without kink (left to right) with the negative binomial

distribution.

in the estimated number of contacts for children and young adults with individuals of the same age.

Based on the AIC-values in Table 3, the models with a kink on the main diagonal are preferred. These

results enforce the fact that a kink is needed to capture the non-smooth effect of mixing with people

of the same age, especially for the children and young adults.

Additional results for this data application are provided in the Supplementary Materials.

5 Discussion

Quantifying contact behaviour contributes to a better understanding of how infectious diseases spread

(Anderson and May, 1991; Edmunds et al., 1997). Social contact rates play a major role in mathe-

matical models used to model infectious disease transmission. In this paper, we describe a smoothing

constrained approach to estimate social contact rates from self-reported social contact data. The pro-

posed approach assumes that the contact rates are smooth from a cohort perspective as well as from

the age distribution of contacts. Thus, besides smoothing in the direction of the age of contacts, we
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Figure 5: The estimated log contact rates surface (left), Ĥ, and the mixing at the population level

(middle), Γ̂�P, for model M2 with the negative binomial distribution with an additional kink on the

main diagonal. The diagonal elements of Ĥ for the model without and with a kink (right), together

with the observed log-contact rates.

propose to smooth contact rates from a cohort perspective. This is achieved by smoothing of the so-

cial contact rates over the diagonal components. Social contact rates are thus modelled from a cohort

perspective, namely people age through time and thus contact rates for consecutive time points are

similar. Two possible models to achieve this cohort smoothing were described: (1) reordening of the

diagonal components to reproduce a rectangular grid; and (2) reordening of the penalty matrix such

that penalization is performed over the diagonal components.

The maximum likelihood framework was used and parameter estimation was done through con-

strained penalized iterative reweighted least squares. The proposed approach has the advantage that

smooth contact rates are obtained over the cohorts. Typical smoothing approaches for social contact

data smooth in the direction of the respondent’s and contact’s age which can lead to less smooth results

over the cohorts (Goeyvaerts et al., 2010). Second, the reciprocal nature of contacts can be explicitly

taken care of in the parameter estimation through Lagrange multipliers. Third, the described methods

are easily adjusted such that a kink can be introduced for the main diagonal contact rates. This

adjustment is desirable because underestimation of the social contact rates on the main diagonal can

be present since, especially, children and young adults make an above average number of contacts with

persons of the same age. The epidemiological interpretation and the impact on key epidemiological

parameters of such a kink is an interesting topic for future investigation.

The results of the simulation study and the data application show that approach (2), in which

the penalty matrix is reordered such that penalization is performed over the diagonal components, is

performing better. In the simulation study it was observed that this method yielded the smallest MSE

over all simulation settings. Additionally, confidence intervals with nominal coverage of close to 95%
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were obtained. In the application study, the computation time of method (2) is three to four times

faster than method (1). Therefore, we recommend the use of approach (2) for the estimation of social

contact rates.

The true social contact surface used in the simulation study was obtained through local linear

regression of the raw social contact rates of the Belgian POLYMOD study. This approach was preferred

for two reasons. First, by using the same data in the simulation study as in the application presented

in Section 4 a better view of the performance of the different approaches was obtained. Second, the

authors are not aware of any easy applicable mathematical formula or fully parametric model of a two

dimensional surface that would represent a contact rates surface.

A grid search is needed to estimate the smoothing parameters λ1 and λ2. This is a disadvantage

compared to the approach by van de Kassteele et al. (2017) in which the amount of smoothing is

directly estimated together with model parameters from the information in the data. However, with

the availability of fast parallel computing a grid search can be performed fast. To determine the

optimal smoothing parameters the Akaike information criterion (Akaike, 1973) was used in this paper.

We also investigated the use of the Bayesian information criterion (BIC) (Schwarz, 1978) for smoothing

parameter selection, however, we noticed that the use of BIC leads to overly-smoothed and thus non-

satisfactory social contact rates.

In this paper, the contact rates are assumed indifferent for men and women. Recently, van de

Kassteele et al. (2017) presented a Bayesian model for estimating social contact rates for men and

women. Their results reveal that different contact patterns exist between men and women. Future

work could investigate how the proposed methodology in this paper can be extended to estimate social

contact rates between both sexes without increasing the computational burden.

In the application, it was observed that the negative binomial distribution is better to describe

the POLYMOD data at hand. In this paper, the dispersion parameter for the negative binomial

distribution is assumed constant across ages and is treated as a nuisance parameter. It would be

interesting in future work to allow for the dispersion parameter to depend on age as well. Although

this would be computationally challenging since the moment estimation of φ applied in this paper could

not be used. The paper of Perperoglou and Eilers (2010) on modelling individual deviance effects could

be a good starting point to investigate this further. The association between the dispersion parameter

and age could be of direct interest to infectious disease modellers.

A comparison with other methods used to smooth social contact data was not done in this paper.

Future work of the authors will focus on the impact of social contact matrices obtained from different

methods on key epidemiological parameters. In general, age-specific contact rates are also used as

an input in the comparison and evaluation of vaccination schedules via future projections (Beutels

et al., 2013). Most evaluations assume a fixed social contact rate matrix and thus assume that no
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uncertainty is related to this input. Result (18) offers a tool to account for the variability associated

with the estimation of social contact rates. By simulation of new contact matrices from (18) the

associated variability can be taken into account in the evaluation of vaccination strategies and related

health economic evaluations.

Our proposed methodology does not employ any regression basis such as B-splines because an exact

link between the constraints and linear predictors is needed. We are exploring whether the proposed

methodology can be adjusted such that basis functions can be deployed which likely will lead to a

reduction of the computational cost.

SUPPLEMENTARY MATERIAL: (xxxxxxxx.pdf) This file contains additional information with

respect to the notations used in the paper. Software code is also presented. Additional results

of the simulation study in Section 3 and the applications in Section 4 are provided.
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