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ABSTRACT 

Childhood cognitive abilities are heritable and influenced by malleable environmental factors 

such as socioeconomic status (SES). As cognition and SES share genetic architecture, it is 

critical to understand the extent to which SES is associated with cognition beyond genetic 

propensity to inform the potential benefit of SES-based interventions. Previous investigations 

conducted in small samples have suggested that SES is linked with cognitive ability independent 

of polygenic prediction for educational attainment. Here, we extend this work to a large sample 

(total n = 4,650) of children (ages 9-10) of genomically-confirmed European ancestry. We find 

that an SES composite (i.e., family income-to-needs, caregiver education, and neighborhood 

median income) and a polygenic cognition score composite created using genomic structural 

equation modeling (COG PGS; Educational Attainment, Intelligence, and Executive Function) 

are associated with cognitive performance indices (i.e., general ability, executive function, 

learning/memory, fluid intelligence) that are largely independent of one another. SES x COG 

PGS interactions are not associated with cognition. These findings provide further evidence for 
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the significant role of modifiable environmental factors in the development of cognitive abilities 

in youth. 

BACKGROUND 

 Childhood poverty is robustly associated with general and specific cognitive performance 

deficits. 1–4 Beginning as early as six months old, youth raised with lower household incomes 

exhibit poorer performance on measures of total IQ 5 as well as specific cognitive processes (e.g.,  

executive function, memory).6–8 Greater educational attainment among children whose families 

received supplemental income 9–11 and boosts in cognitive performance induced by enriched 

environments in non-human animal models 12 highlight the plausibility that socioeconomic status 

(SES) may have a causal impact on child cognition and heighten the urgency of addressing the 

epidemic of childhood poverty. 13,14 

At the same time, the moderate heritability of cognitive ability 15 and SES, as well as 

their shared genetic architecture (rg=0.65-0.82 in adults) 16,17 has been used to argue that 

cognitive deficits related to childhood poverty may be partially attributable to shared genetic 

liability. 18 Shared genetic liability may arise from genetic inheritance that directly influences 

cognitive ability as well as gene-environment correlations that may be more amenable to 

environmental intervention.  

 Disentangling genetic and socioeconomic status associations with cognition is 

challenging. For instance, twin studies may not be able to detect genetic influences on SES or the 

influence of SES on cognitive development, as family-level SES is typically shared within a twin 

pair. 18 Another approach is to measure genetic influence using polygenic scores (PGS) that 

effectively represent genome-wide genetic liability to a particular phenotype on an individual 

level. 19 Few studies have directly explored the unique or interacting contributions of PGS and 
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SES in the prediction of cognitive abilities. Relatively small investigations (Ns ≤ 551) have 

found that both PGS for educational attainment (a frequent proxy for cognitive ability in genetics 

studies) and SES independently predict specific aspects of cognition (e.g., memory, working 

memory). 20,21 Larger investigations that more comprehensively assess PGS and cognitive 

abilities are needed. Further, work in the Adolescent Brain Cognitive Development Study 

(ABCD) sample has shown that both family income 22 and neighborhood disadvantage (median 

neighborhood income) have unique associations with neurocognitive performance in youth. 23,24 

Thus, it is critical to measure SES comprehensively including both the familial and 

neighborhood levels, as both are important predictors of cognitive development.  

 The present study tested the hypothesis that SES uniquely contributes to variance in four 

domains of cognitive ability (i.e., general ability, executive function, learning/memory, fluid 

intelligence) that is separable from genomic influence (polygenic scores [PGS] for cognition). 

Given mixed evidence that SES may moderate the heritability of cognitive outcomes (e.g., 25,26), 

we also tested an SES x PGS interaction in a sample of 4,650 children (ages 9-10) of 

genomically-confirmed European ancestry. We formed a composite measure of SES from 

familial income-to-needs, caregiver education, and median neighborhood income to increase 

comprehensiveness. Likewise, we employed genomic Structural Equation Modeling (GSEM 27) 

to generate a one-factor multivariate GWAS of cognition from three sets of summary statistics 

(Educational Attainment, N=766,345 28; Executive Function, N=427,037 29; and IQ, N=269,867 

30), from which we computed a single PGS for cognitive ability. Linear mixed effect models (to 

account for data clustered by research site) were conducted. Model parameters were estimated 

with K-fold cross-validation, and model generalizability was tested in a non-overlapping test set.  

METHODS 
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Statement on ethical regulations. Parents/caregivers provided written informed consent, and 

children verbal assent, to a research protocol approved by the central institutional review board 

at the University of California at San Diego for 20/21 data collection sites across the United 

States (https://abcdstudy.org/sites/abcd-sites.html) at by the Washington University IRB for the 

Washington University site. 

Participants. Data came from 11,875 children (mean ± SD age = 9.91±0.62 years; 47.85% girls; 

74.13% white) who completed the baseline assessment of the ongoing longitudinal Adolescent 

Brain Cognitive Development (ABCD) Study (release 3.0.1; https://abcdstudy.org/). 45 The study 

includes multiple sibling and twin pairs and triplets as part of its family-based design.46 Primary 

analyses will be restricted to genomically-confirmed participants of European ancestry with 

available genetic data (n = 4,650). 

Measures 

Demographic Measures 

 Child and parent demographics. Child age was self-reported and measured in months. 

Child sex was a caregiver-reported dichotomous variable. Caregivers reported on their 

educational attainment within the phenX Toolkit. 47 

 Familial Income. Familial income was estimated using the income-to-needs ratio (INR) 

from the baseline assessment, consistent with methods described elsewhere. 48 Briefly, binned 

gross household income and the number of household members were reported by caregivers. 

Binned income levels were adjusted to the median for each bin and divided by the 2017 federal 

poverty threshold for the given household size to derive the INR. An INR of 100% indicates that 

a family is at the federal poverty line.  
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 Neighborhood poverty. The child’s primary residential address at baseline was geocoded 

by the Data Analysis, Informatics and Resource Center of the ABCD Study, and variables from 

the American Community Survey (5-year estimates from 2011 to 2015) were linked to each 

individual according to their US census tract. Median family income in the area deprivation 

index was selected as a proxy for total neighborhood poverty.   

 Composite SES Measure. The INR, parental education, and neighborhood poverty were 

all scaled and averaged to form a composite measure of SES.   

Cognitive measures 

 Cognitive Ability. Three principal components previously derived in the ABCD sample 

representing general ability, executive function, and learning/memory were used to index 

cognitive ability. 49 Briefly, a Bayesian Probabilistic Principal Component Analysis (BBPCA) 

was applied to cognitive tasks from the NIH Toolbox cognition battery, which assesses executive 

function, attention, processing speed, working memory, episodic memory, and language; the  

Rey Auditory Verbal Learning Test, which measures  auditory learning, memory, and 

recognition; and the Little Man Task, which assesses visuospatial processing. 50 BPPCA 

component weights for each participant were made available with the ABCD curated data release 

2.0.1. The Matrix Reasoning subtest of the Wechsler Intelligence Scale for Children-Fifth 

Edition (WISC), which broadly indexes fluid reasoning and cognitive flexibility important for 

life function 51,52 was included as an additional measure of executive function. 

Polygenic Scores (PGS). Summary statistics from the most well-powered, publicly available 

genome-wide association studies (GWAS) of three cognitive phenotypes (Educational 

Attainment, N=766,345 28; Executive Function, N=427,037 29; and IQ, N=269,867 30) were used 

to generate a one-factor multivariate GWAS using genomic Structural Equation Modeling 
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(GSEM; see supplement for more information). The resulting summary statistics were used to 

generate PGS in the European ancestry subsample of ABCD (n=4,650). PGS were computed 

using PRS-CS, 53 a Bayesian approach that incorporates all SNPs (i.e., no p-value thresholding) 

and utilizes an external linkage disequilibrium (LD) reference panel to account for correlations 

between SNPs. The “auto” function within the PRS-CS software package was used to compute 

PGS (see Supplement for further details). 

 Genotyping, Quality Control, and Imputation. The Rutgers University Cell and DNA 

repository genotyped saliva samples on the Smokescreen array. Genotyped calls were aligned to 

GRCh37 (hg19). The genetic data underwent typical quality control procedures following the 

Ricopili pipeline. 54 Analyses were restricted to individuals of genetically confirmed European 

ancestry, to match the ancestry makeup of the discovery GWAS. Further details are provided in 

the Supplement.   

Analytical Methods   

 Linear mixed effects models were used to examine the relationship between SES, PGS, 

and cognition. Each of the four cognition outcomes were examined independently, with PGS and 

the SES composite included as the primary predictors of interest. All models covaried for sex, 

age, and the first 10 ancestrally informative principal components (PCs) and included research 

site as a random effect. Additional models examined whether SES moderated effects of PGS on 

each cognitive outcome, further covarying for all covariate-by-SES and covariate-by-PGS 

interactions. 55 Using a regression approach to examine GxE allows for cross-validation (see 

below), mixed models, and computation of the proportion of variance explained in the outcome. 

Follow-up analyses to our conservative approach using an SES composite were conducted with 

each SES measure independently. Similarly, supplementary analyses were conducted examining 
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each PGS (i.e., educational attainment, intelligence, executive function) independently 

(Supplement).  

Potential for Inflation. Additional supplementary analyses were conducted to assess whether the 

inclusion of a heritable environmental variable (SES) correlated with COG PGS resulted in 

biased estimates by conditioning a collider (Supplement). 

Multiple Testing Correction. The false discovery rate (FDR) 56 was used to correct for multiple 

testing. Specifically, in primary analyses examining the main effects of the cognition PGS and 

SES composite on each of four cognitive outcomes, all eight p-values were subjected to FDR 

correction simultaneously.  

Cross validation. Cross-validation procedures were used to enhance the robustness and 

generalizability of our findings. Data were initially partitioned into a training sample for model 

building and a test sample for validation, accounting for familial structure. Specifically, all 

singletons were including in the training set and participants with sibling(s) in the study were all 

included in the test set, to avoid dependencies across the training and test sets. All continuous 

and ordinal variables were scaled to have a mean of 0 and standard deviation of 1 separately in 

the training and test samples. 

 The training set was split randomly into four folds, keeping participants in the same site 

in the same fold (stratified cross-fold validation). The linear mixed effects models were 

conducted in the training set, and the parameter estimates from the fold with the lowest Root 

Mean Square Error (RMSE) were reported. The models were applied to the test set using the 

predict() function, and the resulting RMSE value was compared to that from the training set. A 

substantially greater RMSE value in the test set compared to the training set would indicate that 

the model overfitted the data and does not generalize well out-of-sample.  
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 Further, in order to examine whether the beta estimates for predictors of interest (i.e., 

SES composite and cognition PGS) predicted well out of sample, scores on these variables in the 

test sample were multiplied by the beta estimates for these variables generated from the primary 

multiple regressions. These two variables were then summed and correlated with the relevant 

neurocognitive outcome to assess whether the predicted estimates were correlated with measured 

outcomes.  

RESULTS 

Our sample of 4,650 children of genetically confirmed European ancestry was divided into a 

training sample (2,985 singletons (mean [SD] age = 118.6 [7.39] months; 46% female) and test 

sample (1,665 non-singletons (mean [SD] age = 120.4 [7.65] months; 48% female). The training 

set was significantly younger, had higher levels of caregiver education and income-to-needs, and 

exhibited higher scores on General Ability, Learning/Memory, and Matrix Reasoning and lower 

levels of Executive Function, relative to the test set. See Supplemental Table 1 for more 

descriptive information of the sample.  

Association between SES composite and Cognition PGS and Cognition.  To determine 

whether both the SES composite and Cognition PGS (COG PGS) are associated with cognitive 

ability, we examined the relationship between the SES composite and the COG PGS and each of 

the measures of cognition first using separate linear mixed effects models in the training set and 

then including both predictors in each model simultaneously. Each of the four cognition 

outcomes were examined independently. All models covaried for sex and age and included 

research site as a random effect. For models with COG PGS, we also controlled the first 10 

ancestrally informative principal components (PCs). Models including covariates and COG PGS 

explained between eight and 21 percent of the variance in cognitive abilities and similarly, 
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models including covariates and the SES composite accounted for between six and 18 percent of 

the variance in cognition (Table 1). Of this variance, COG PGS explained between one and eight 

percent of the unique variance in cognition, whereas the SES composite explained between one 

and five percent of the variance in cognition (Table 1).  The SES composite and COG PGS both 

explained the most variance in general ability relative to the other cognitive domains (Figure 1, 

Table 1).  

 To determine whether both COG PGS and the SES composite contributed unique 

variance above and beyond the other, we then examined their simultaneous contribution to 

cognition. We found that across all cognitive domains, both COG PGS and the SES composite 

explained unique variance in cognition (Table 1). The inclusion of both predictors 

simultaneously did attenuate the associations of COG PGS and the SES composite to each 

cognitive domain assessed; across models, associations were attenuated by an average of 13.64% 

and 27.8%, respectively (Table 1). Individual constituents of the SES composite and COG PGS 

showed patterns of association with each domain of cognition that were largely consistent with 

their composites (Supplement; Supplemental Tables 3-6, Supplemental Figures 3-4). 

 Cross-Validated Models with PGS and SES composite. The linear mixed effects 

models were conducted in the training set, and the parameter estimates from the fold with the 

lowest Root Mean Square Error (RMSE) were reported. Cross validation of the above models 

supported the generalizability of the results to the test sample supported the results of the above 

analyses; that the COG PGS and the SES composite were each significantly associated with all 

four measures of cognitive ability, when accounting for covariates and one another (RMSEs: 

0.862 - 0.974, Table 2).  
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 Interactions of Cognition PGS and SES on Cognition The COG PGS x SES 

interaction was not significantly associated with cognitive abilities (Table 3), indicating that SES 

does not moderate the heritability of cognitive outcomes.   

DISCUSSION 
 
 Here, we demonstrate that socioeconomic status (SES) and genetic (COG PGS) factors 

are independently associated with multiple indicators of cognitive ability in middle childhood, 

with no evidence that SES moderates the influence of COG PGS. More specifically, SES and 

COG PGS were both positively related to General Ability, Executive Function, 

Learning/Memory, and Matrix Reasoning, and in all cases SES and COG PGS had similar effect 

sizes with overlapping confidence intervals. These results extend past work showing additive 

effects of genes and environmental factors (i.e., a lack of dependency)20,21 together suggesting 

that intervention in one aspect (i.e., SES) does not depend on predisposition to higher cognitive 

abilities. 

 Broadly, this study extends these previous findings to a larger sample using a more 

comprehensive measure of genetic influences on cognitive ability and wider range of cognitive 

outcomes and suggests that public policies that reduce existing socioeconomic disparities such as 

government-funded supplemental income and universal living wage may enhance cognitive 

outcomes that augur longer term physical, mental, and financial benefits.  As such, programs 

such as the Advance Child Tax Credit are a likely good first step in supporting the cognitive and 

psychosocial development of youth.  

 Generally, both COG PGS and SES were most strongly related to General Ability and 

least strongly related to Executive Function, as indicated by non-overlapping confidence 

intervals on the beta weights for these predictors. This may indicate that both SES and PGS are 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.26.21262684doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.26.21262684
http://creativecommons.org/licenses/by-nc-nd/4.0/


most strongly related to broad cognitive factors that influence of range of function versus more 

focused cognitive abilities, though it should be noted that the PGS, which itself indexes genomic 

propensity to broad cognitive ability, would be expected to associated more strongly with broad 

vs. specific cognitive abilities. Notably, however, prior literature has reported that prefrontal 

region-mediated cognitive abilities such as executive function are among the most strongly 

related to SES, although to our knowledge no other studies simultaneously examined both 

general ability and executive function.31 It is also likely however, that our measures of executive 

function differs slightly from those previously examined.31   It is also important to note that each 

of the individual indicators of SES (INR, caregiver education, neighborhood income) continued 

to predict cognitive ability with the COG PGS in the same model, and that several SES 

indicators each accounted for unique variance in cognitive function (e.g., both INR and caregiver 

education accounted for independent variance in General Ability and Matrix Reasoning, and 

both neighborhood income and caregiver education accounted for unique variance in Executive 

Function). These findings are consistent with previous work in this sample, and also extend it by 

controlling for the influence of COG PGS and by incorporating a broader assessment of SES. 24 

Analogously, each of the individual PGS also accounted for unique variance in cognition with 

the SES composite in the models, with evidence that individual PGS each accounted for unique 

variance in cognitive function when in the same model (e.g., Intelligence and Educational 

Attainment PGS for General Ability, and all three PGS for Matrix Reasoning). Such findings 

indicate that while the composite scores for SES and PGS are highly useful and efficient ways 

for assessing unique environmental versus genetic associations with cognition, further 

examination of the individual metrics may yield important information about shared versus 

unique mechanisms and pathways. 
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 The lack of evidence for an interaction between SES and Cognition PGS on cognitive 

outcomes in the present sample contrasts with earlier findings from twin studies conducted in the 

United States that show that the influence of additive genetic factors on cognitive ability 

increases with higher levels of SES, 26,32,33 and with one study in the United Kingdom in which 

polygenic influences on cognitive ability were amplified in the context of more socioeconomic 

disadvantage. 34 However, our findings mirror those primarily from non-U.S. samples that did 

not find such an interaction, 25,35,36 as well as evidence from a more recent, population-level twin 

study of school-aged youth in the U.S. 37 Our results contribute to a complicated and 

controversial literature by showing that, among a large sample of children from across the U.S., 

genetic influences on cognition derived from three GWAS of cognitive abilities are not 

moderated by childhood SES across a range of cognitive functions.  

 Strengths of this study include the relatively large sample and cross-validation procedures 

that indicate some level of generalizability of the findings, and the use of composite measures for 

SES and PGS that enhance power and construct validity. Further, our use of polygenic scores 

derived from GWAS overcomes some important limitations of twin studies and thus represents a 

relative strength of this study. In addition to violations of the equal environments assumption38, 

twin studies are unable to isolate or examine interactions with the effect of family SES on 

cognitive ability, because twins have the same level of SES. Here, by leveraging genome-wide 

data and measured SES, we were able to estimate the independent effect of SES on cognitive 

abilities, accounting for genetic influences on cognition that share variance with SES. At the 

same time, polygenic scores include information only from common genetic variants, and thus, 

in conjunction with still-limited power of PGS to explain the common variant heritability, are 

underestimates of the true genetic effect on cognition. Further, rare genetic variants and de novo 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.26.21262684doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.26.21262684
http://creativecommons.org/licenses/by-nc-nd/4.0/


mutations not incorporated into the PGS may interact with SES, 34,39 and our approach was not 

able to account for this possibility. That we derived our cognition PGS from a multivariate 

analysis of three GWAS of cognitive abilities, however, improves upon previous analyses of 

PGS and SES in terms of power and comprehensiveness. However, this study is not without 

limitations. First, the data are cross-sectional, and SES was measured at only one time point. 

Second, the three GWAS we used to compute our PGS were conducted in samples of European 

ancestry, so we restricted our analyses to individuals also of European ancestry to avoid potential 

biases.40 Given the intersectionality between SES and race alongside typically higher levels of 

poverty among BIPOC populations, it is problematic that our findings may not be generalizable 

across all ancestral or racial groups. Third, the adjusted R2 values from our primary models when 

including covariates (≤0.24) suggest that large proportions of variance in the cognitive abilities 

examined are still unexplained. Other influences, including but not limited to caregiver and child 

stress, mental health, parent behavior, and parent genes for cognition that were not passed to 

their children but nevertheless shaped their cognitive environment, are also important factors to 

consider.  

 Fourth, the inclusion of PGS and heritable environmental factors (e.g., SES) in the same 

regression can create spurious associations. 41 In that case, the effect of the environment should 

increase, while the effect of genetics should decrease. We did not find this to be the case in our 

models, suggesting that the associations we observed are not spurious. Relatedly, prior work 

shows that gene x environment interactions may be inflated in the case of gene-environment 

correlations (i.e., between Cognition PGS and SES 41–43). Because we did not detect any 

interaction between PGS and SES in our models, we expect little inflation of these estimates. 

Finally, despite some differences between the training and test sets (Supplementary Table 1), 
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our cross-validation procedures suggested good replication across these samples, enhancing the 

generalizability of our findings.  

 Overall, the results of this study provide further evidence that measures of SES are 

independently associated with cognitive function in children after accounting for genetics, and 

that the magnitude of the relationship between socioeconomic status and cognitive ability in 

middle childhood is similar to the effect of genetic influences. These findings highlight the 

unique importance of a modifiable environmental factor, SES, to childhood cognitive ability and 

lend further empirical support to those investigating the effects of interventions designed to 

alleviate childhood poverty, such as direct payments designed to increase family financial 

stability and enhance child cognitive and psychosocial functioning. 44 This work emphasizes the 

continued need for public policy solutions to the problem of childhood poverty. Future work is 

needed to examine mechanisms through which both genes and SES may influence cognitive 

ability (e.g., brain structure, stress, physical and mental health), which may also hold 

implications for intervention efforts and local and federal policy aimed at reducing child poverty 

and its sequelae.  
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Table 1. Proportion of Variance Accounted for by COG PGS and SES Composite  
Model b 95% CI p R2c 

General Ability 
Only covariates -- -- -- 0.13 
Covariates + PGS 0.30 0.26, 0.33 8.5e-61 0.21 
Covariates + SES 0.26 0.21, 0.29 8.5e-40 0.18 
Covariates + PGS + SES PGS = 0.26 

SES = 0.20 
PGS = 0.22, 0.29 
SES = 0.16, 0.23 

2.4e-46 
1.6e-25 

0.24 

Executive Function 
Only covariates -- -- -- 0.09 
Covariates + PGS 0.07 0.03, 0.11 2.0e-04 0.09 
Covariates + SES 0.08 0.04, 0.12 8.7e-05 0.09 
Covariates + PGS + SES PGS = 0.06 

SES = 0.08 
PGS = 0.02, 0.10 
SES = 0.03, 0.11 

3.0e-03 
1.4e-03 

0.09 
 

Learning and Memory 
Only covariates -- -- -- 0.05 
Covariates + PGS 0.17 0.13, 0.21 4.2e-18 0.08 
Covariates + SES 0.12 0.08, 0.16 7.4e-09 0.07 
Covariates + PGS + SES PGS = 0.15 

SES = 0.08 
PGS = 0.11, 0.19 
SES = 0.04, 0.13 

2.4e-14 
4.9e-05 

0.09 
 

Matrix Reasoning   
Only covariates -- -- -- 0.03 
Covariates + PGS 0.22 0.18, 0.26 1.5e-25 0.08 
Covariates + SES 0.17 0.13, 0.21 1.4e-15 0.06 
Covariates + PGS + SES PGS = 0.19 

SES = 0.13 
PGS = 0.15, 0.24 
SES = 0.08, 0.17 

1.7e-19 
5.7e-09 

0.10 
 

Note. R2c = conditional R2, or the proportion of variance explained by the fixed and random effects.  
Betas (b) and p-values (p) represent the beta weights and p-values for the Cognitive PGS or SES composite in each respective model. 
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Table 2. Cross-Validated Results of Model with COG PGS and SES Composite as Simultaneous Predictors 
Model b 95% CI p pFDR 

General Ability 
Cog PGS 0.24   0.20, 0.29 2.4e-27 1.9e-26 
SES Composite 0.22  0.17, 0.26 1.4e-21 5.5e-21 
RMSE (train) a 0.862 
RMSE (test) 0.867 

Executive Function 
Cog PGS 0.05 0.01, 0.10 0.026 0.026 
SES Composite 0.09 0.04, 0.15 3.8e-04 5.1e-04 
RMSE (train) a 0.927 
RMSE (test) 0.949 

Learning and Memory 
Cog PGS 0.14 0.09, 0.19 1.8e-08 3.5e-08 
SES Composite 0.08 0.03, 0.13 1.9e-03 2.2e-03 
RMSE (train) a 0.948 
RMSE (test) 0.953 

Matrix Reasoning   
Cog PGS 0.20 0.15, 0.25 2.7e-17 7.2e-17 
SES Composite 0.12 0.08, 0.17 4.4e-07 7.0e-07 
RMSE (train) a 0.958 
RMSE (test) 0.974 
a RMSE (Root Mean Square Errors) and betas (b) are reported from the model in the training set fold with the lowest RMSE values. 
Betas represent associations between standardized variables, holding constant the first 10 ancestrally informative principal 
components, age, and sex.  
pFDR = p-values that have been corrected for multiple testing across all 8 tests using False Discovery Rate (FDR) correction. 
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Table 3. Cross-Validated Results: Models with Interactions 
 General Ability Executive Function Learning & Memory WISC Matrix Reasoning 

b [95% CI] p b [95% CI] p b [95% CI] p b [95% CI] p 

Cog PGS x SES 
Composite intx 

-0.030 [-.07, .01] 0.126 0.018 [-.03, .06] 
 

0.430 -0.005 [-.05, .04] 0.835 -0.013 [-.06, .03] 0.571 

RMSE (train) a 0.876 0.935 0.961 0.951 

RMSE (test) 0.863 0.954 0.958 0.983 
a RMSE (Root Mean Square Errors) and betas (b) are reported from the model in the training set fold with the lowest RMSE values
Covariates include the first 10 ancestrally informative principal components, age, and sex, as well as all covariate-by-SES and
covariate-by-PGS interactions. Intx = interaction. 
 

   
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Betas and 95% Confidence Intervals of Cog PGS and SES Composite for Each Cognitive Domain 
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