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Abstract: Grain protein content (GPC) is controlled by complex genetic systems and their interactions
and is an important quality determinant for hard spring wheat as it has a positive effect on bread
and pasta quality. GPC is variable among genotypes and strongly influenced by the environment.
Thus, understanding the genetic control of wheat GPC and identifying genotypes with improved
stability is an important breeding goal. The objectives of this research were to identify genetic
backgrounds with less variation for GPC across environments and identify quantitative trait loci
(QTLs) controlling the stability of GPC. A spring wheat nested association mapping (NAM) pop-
ulation of 650 recombinant inbred lines (RIL) derived from 26 diverse founder parents crossed to
one common parent, ‘Berkut’, was phenotyped over three years of field trials (2014–2016). Genomic
selection models were developed and compared based on predictions of GPC and GPC stability. After
observing variable genetic control of GPC within the NAM population, seven RIL families displaying
reduced marker-by-environment interaction were selected based on a stability index derived from a
Finlay–Wilkinson regression. A genome-wide association study identified eighteen significant QTLs
for GPC stability with a Bonferroni-adjusted p-value < 0.05 using four different models and out of
these eighteen QTLs eight were identified by two or more GWAS models simultaneously. This study
also demonstrated that genome-wide prediction of GPC with ridge regression best linear unbiased
estimates reached up to r = 0.69. Genomic selection can be used to apply selection pressure for GPC
and improve genetic gain for GPC.

Keywords: Finlay–Wilkinson regression; genome-wide association study; genomic selection; grain
protein content; nested association mapping; ridge regression best linear unbiased prediction; wheat

1. Introduction

Grain protein content (GPC) is a high-priority determinant of end-use quality for most
cereals [1], including pasta (Triticum turgidum L.) and bread wheat (Triticum aestivum L.), for
which higher GPC is preferred. Due to the large dependence on wheat, rice (Oryza sativa L.),
and maize (Zea mays L.) as primary sources of carbohydrates, they contribute 80% of dietary
calorie requirements for humans [2]. Compared to other agricultural commodities, cereal
grains contain a relatively low concentration of protein. In a screening of 12,600 lines from
the USDA world wheat collection, GPC varied from 7% to 22%, with the genetic component
accounting for only a third of the variation [3]. Breeding efforts to improve GPC have been
difficult due to strong environmental influences and the high variability of GPC across
years and locations [4], combined with variable economic value-based trade-offs between
starch and protein yields in grains [5].

Phenotypic plasticity refers to the flexibility that allows for changes in a particular
trait as a result of environmental variability [6]. Improved understanding of genotypes
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and environmental interactions could provide new strategies for breeding crop varieties
that stably perform between changing environments [7]. One of the key challenges to
identifying genes controlling environmental stability lies in the quantification of stability as
a trait [8]. There are various approaches for measuring environmental stability, including
the use of variance components of individuals across environments (represented by a
coefficient of variation), the comparison of mean responses of genotypes to the overall
mean of individuals in the trial (calculated as a coefficient of regression on an environment
index) [9,10], and expected change in the performance of a genotype as a function of
environmental effect [11]. Compared to unstructured genotype by environment interaction
models, the Finlay–Wilkinson (FW) regression fits every level of genotype and environment
and reveals genotype performance across environments [12]. GPC stability can potentially
help select stable genotypes across increasingly unpredictable environments [13]. Various
biparental and association mapping studies have identified QTLs controlling GPC, but
none of them has focused on the stability of GPC [14,15].

Nested association mapping (NAM) is a multi-parental design with higher allelic vari-
ation than biparental populations and stronger statistical power than association mapping
populations, combining the advantages of each approach [16,17]. A universal parent is
crossed to multiple genotypes, followed by inbreeding to make a combination of both
full-sib and half-sib recombinant inbred lines (RILs) [18]. NAM has proven its success
in mapping complex traits in barley (Hordeum vulgare L.) [19], maize [20], rice [21], and
arabidopsis (Arabidopsis thaliana) [22]. The NAM population design mirrors the structure of
many breeding programs, where multiple superior, diverse, or exotic lines are crossed with
a few elite breeding lines for population development in elite and pre-breeding pipelines.
The cross of exotic germplasm with elite breeding lines for population development aids
in normalizing the genetic background and selecting segregating alleles in favor of the
adapted parental alleles [23]. The resolution and power of NAM populations allow for the
assessment of complex traits like GPC stability in structured germplasm via genome-wide
association studies (GWAS) [24].

Joint linkage association mapping is applied in multi-parental mapping populations
where QTL terms are nested within families [25] instead of testing marker effects across
the families, as in GWAS [26]. Larger allelic classes and more balanced allele frequencies
increase the power to detect QTLs with small effects. NAM combines better resolution
by targeting historical recombination events in parents and also includes more causative
events that are likely to segregate in biparental progenies [27]. Thus, NAM is an effective
tool for identifying major and minor QTLs associated with a particular trait [28].

In plant breeding, the accumulation of minor QTLs is a major constraint given the
dozens of loci and resource-limited population sizes. Hence, genomic selection (GS) is
used to sum the effects of genome-wide markers to predict genomic estimated breeding
values (GEBVs) [29]. In GS, a training population is genotyped and phenotyped for the
traits of interest to estimate the genetic effect of each marker. The success of GS depends
upon the predictive accuracy of the GS models, which is measured as the correlation
between estimated breeding values and the observed phenotypic values of the selected
populations [30]. GS can translate into higher genetic gains by reducing the number of
progeny and cycles needed and also by improving selection intensity and reducing cycle
time [31,32].

Several studies have reported the application of GS for wheat yield and disease
resistance [33,34] but not thoroughly for quality traits, especially GPC and GPC stability.
GS has been tested in soft winter wheat for end-use quality. Heffner et al. found that
end-use quality and processing traits are more predictive than grain yield [35]. The
prediction accuracy for flour yield and flour protein was 0.56 and 0.39, respectively, using
a ridge regression model. GS accuracy for different agronomic traits and their stability
was predicted in a winter wheat population of 273 lines, and it was observed that GS
accuracy varied from 0.33 to 0.67 for yield, with yield stability having a higher accuracy [36].
Although several studies have focused on genomic selection for yield stability, none of
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them has investigated GPC stability. The main objectives of this study were to (1) detect
marker–trait associations for GPC stability and GPC and (2) identify the ability of GS
models to predict GPC and GPC stability under cross- and independent validations.

2. Materials and Methods
2.1. Plant Material and Trait Measurement

Thirty-two spring wheat accessions from the USDA-ARS National Small Grains Col-
lection were chosen as parental lines for the creation of the NAM population. These parents
were crossed with the common cultivar ‘Berkut’ (‘Irena’/‘Babax’/‘Pastor’; released in 2002)
to create 32 half-sib families [37]. Berkut was included in this study because it is a broadly
adapted photoperiod insensitive and semi-dwarf cultivar developed by the International
Maize and Wheat Improvement Center (CIMMYT), Mexico. More information about the
population development and field experiment is described in Sandhu et al. [37,38].

Twenty-six families with genotype data provided by Kansas State University [39,40]
were then selected, and 25 random RILs from each family (650 total RIL; named NAM650)
were planted between 2014 and 2016 at the Spillman Agronomy Farm in Pullman, WA,
under rainfed conditions. A modified augmented design was used in each trial with
three check cultivars (Berkut, ‘Thatcher’, and ‘McNeal’ [41]). Planting was completed on
5 May 2014, 8 April 2015, and 10 April 2016 based on field conditions. The agronomic
practices, including nitrogen fertilizer goals, were uniform in each environment, assuming
a 4.3 t/ha average grain yield goal. The percentage of protein content in the grain was
measured using a Perten DA 7000 NIR analyzer (Perkin Elmer, Springfield, Sweden).
High-performance liquid chromatography (HPLC) is an instrument used to measure GPC,
but in our study NIR was used as a measure. This is a commonly used tool to measure
GPC and approved by the American Association of Cereal Chemists (Method 39-25.01).
This method is also approved by the United States Department of Agriculture to meet all
domestic and export requirements and specifications. Our NIR machine was calibrated
with over 2000 samples generated from the USDA Western Wheat Quality Laboratory, and
the calibration model was shown to have a 99.3% accuracy in predicting GPC. Since the late
1990s, NIR has become a standard method for measuring GPC [42,43]. Furthermore, NIR
has been used in multiple studies to determine GPC. Most notable are those which used
NIR to fine map and identify the impact of the GPC-B1 locus in wheat [44,45]. Grain yield
was obtained using grain weight per plot with a Wintersteiger Nursery Master combine
(Ried im Innkreis, Austria).

2.2. Statistical Analysis

Best linear unbiased estimates (BLUEs) were calculated with the augmented complete
block design (ACBD) in the R program for individual environments [46,47] using the model:

Yij = u + Genj + Checkj + Blocki+ eij

where Yij is the grain protein content of an individual line, µ is the mean effect, Blocki is
the fixed effect of the ith block, Genj represents the fixed effect of unreplicated genotypes,
Checkj is the effect of the replicated checks within each block, and eij is the standard normal
error. All the effects were considered fixed in BLUE calculations.

The significance of differences in GPC were analyzed across years and between fami-
lies using analysis of variance (ANOVA). Standard deviation and coefficients of variation
were calculated within the different families to identify those with lower variation for GPC
across years. The GPC variation within families in each environment and across years was
used to select families that had less variation for GPC. Broad sense heritability for GPC
was obtained as:

H2 = σ2
g/ (σ2

g + σ2
e)

where σ2
g and σ2

e are the genotypic and error variance components, respectively.
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2.3. Stability Analysis

The stability of each RIL was assessed using a Finlay–Wilkinson (FW) program imple-
mented in the FW package in R [12]. The FW package jointly estimates the parameters of
the FWR equation:

Yij = µ + gi + (1 + bi)tj + eij

where Yij is the GPC of the ith RIL from the jth environment, µ is the mean effect, tj is
the main effect of the jth environment, gi is the main effect of the ith RIL, (1 + bi) is the
change in expected performance of the ith RIL per unit change in the environmental
effect (Stability index), and eij is an error term assumed to be independent and identically
distributed with mean zero and variance σe

2. All parameters are treated as random effects
with distributions: g ~ N(0, Aσ2

g), b ~ N(0, Aσ2
b), and t ~ N(0, Tσ2

t), where A is an N × N
kinship matrix for all the RILs calculated from the complete set of genetic markers, and T is
an M X M Pearson variance–covariance matrix, describing the relationship of phenotypic
values among M environments.

The stability of each RIL was calculated using GPC values for a selected 175 RILs
(NAM175) in each environment as dependent variables. These RIL families were selected
due to less variation in GPC across the environments, and hence were used for further
analysis instead of the full 650 RILs. The selected RILs represent seven RIL families
that demonstrated higher GPC stability across environments and showed segregation for
stability within the family. The FW package returned the environmental stable genotypic
effect (gi), environmental effect (tj), and the stability index of each RIL (bi). The stability
index for each RIL provided an idea of plasticity across the environments [7]. A stability
index of 1 and −1 means that a genotype is highly plastic and responds according to
environmental changes whereas a stability index of 0 suggests that the genotype performs
stably under different environments. Loci associated with GPC stability were identified
by GWAS of the stability index absolute values. The parents for the selected 175 RILs
were ‘Dharwar Dry’, ‘PI210945’, ‘CItr15144’, ‘PI92569’, ‘PI92569’, ‘CItr4174’, and ‘PI43355’
(Tables S1 and S2).

Furthermore, grain protein content deviation (GPD) was obtained using grain yield
and GPC information across the environments for the NAM175 population [48]. GPD
represents the relationship between GPC and grain yield, which helps a plant breeder to
make a selection. A linear regression model was fitted on grain yield and GPC to derive the
GPD for the selected population using residuals form the model [49]. The GPD distribution
in this study varied from −1.7 to 1.32, where values above zero mean higher deviation of
GPC with higher grain yield. Furthermore, GPD information was used to identify the loci
controlling this trait in the NAM175 population.

2.4. Genotyping

The NAM population genotyping, curation methods, and population maps were
previously reported [33,37,38,40]. The initial genotypic data used in this study comprised
73,345 high-quality markers which were anchored to the Chinese Spring RefSeqv1 reference
map [50] and NAM175 selected for stable GPC were used. Individual RILs with missing
GPC data were removed before filtering. Markers with more than 20% of data missing
were removed for further analysis. Individual RILs missing more than 10% allele data
were removed before culling based on markers with less than 5% minor allele frequency
(MAF) to lower the probability of Type I errors during GWAS. After filtering, 175 RILs from
NAM175 and 38,588 markers were used for GWAS analysis.

2.5. Population Structure and Genome-Wide Association Studies

Kinship matrix and structure parameters were calculated by GAPIT [51]. The Van-
Raden algorithm was used to derive the kinship parameter from marker genotypes [52].
Population structure was analyzed using principal component analysis (PCA) imple-
mented with the R function ‘prcomp’ in the software GAPIT [53]. Genetic relatedness
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among NAM175 and NAM650 was calculated using a population differentiation coefficient
(Fst) through the “Population Measures” function in JMP [54]. The GWAS was conducted in
the GAPIT R package using a mixed linear model (MLM) (Q + K model) [55], a compressed
mixed linear model (CMLM) [56], a fixed and random model circulating probability unifica-
tion (FarmCPU) [57], and the Bayesian information and Linkage-disequilibrium Iteratively
Nested Keyway (BLINK) model [58]. Multiple models were used for the GWAS analysis as
this would help us to reduce the number of false positives. A general description of all the
above models is provided below.

MLM includes the kinship matrix as a random effect in the mixed effect model, and
MLM can be represented as:

Y = SNP + Q[PCs] + Kinship + e

where Y is a matrix of phenotypic information, SNP represents the matrix of markers, Q
represents the population structure, and Kinship represents the relationship matrix between
the individuals included in the model. SNP and Q are set as fixed effects, while kinship is a
random effect in the model [55].

MLM was computationally very intensive because computational time varies with the
third power of the number of individuals in the random effect model. Furthermore, there
were confounding issues between testing marker, structure, and kinship matrix, as the
same set of markers were double counted. CMLM clustered the individuals into different
groups, resulting in a reduction of the effective size of the random effect model [56]. CMLM
obtains the kinship among the groups and is computationally more efficient than MLM.
CMLM can be represented as:

Y = SNP + Q[PCs] + Kinship + e

where Kinship is the relationship matrix among the groups and other terms are the same as
in the MLM, described above.

Both of the above models were single locus models which are not the best for handling
complex traits; hence, we used FarmCPU and BLINK for comparison. The working
principle of FarmCPU is divided into fixed and random effect models. The fixed effect
model tests single markers at a time with multiple associated markers as a covariate
to control for false positives. Furthermore, model overfitting is avoided in the random
effect model by obtaining kinship using multiple associated markers. The p-value of each
tested and associated marker is unified at each iteration. The FarmCPU model can be
represented as:

Y = SNP + QTN1 + QTN2 + QTNn + Q[PCs] + e

This is the fixed effect component of the FarmCPU model, with individual markers
tested one at a time and other terms of the equation as described previously.

Y = Q[PCs] + Kinship + e

This is the random effect component of the FarmCPU model, and all terms of the
equation are as described previously [57].

FarmCPU has an efficient fixed model, but it has a computationally expensive random
effect model. Furthermore, QTNs in random effect models were selected based on their
even distribution over the genome. In order to increase computational efficiency, the
random effect model was replaced with a fixed effect model using Bayesian information
criteria. This new method is known as the Bayesian information and linkage disequilibrium
iteratively nested keyway (BLINK), as QTNs are selected based on linkage disequilibrium
information [58].

Association studies were performed on the NAM175 using a GPC stability index,
environmentally stable phenotypic GPC values were derived from the FW regression,
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and grain protein content deviation (GPD) was combined across all environments. Model
selection function from the GAPIT manual and the Q–Q plot results were used to decide the
number of PCs for inclusion in the GWAS models. PCA groups were included as covariates
in the GWAS model to account for population structure. We also performed a pairwise
correlation among the GWAS models results and its value varied between 0.99 (MLM and
CMLM), 0.93 (MLM and FarmCPU), and 0.95 (MLM and BLINK). The Bonferroni correction
with a stringent α = 0.05 was used to identify highly significant associations. Bonferroni
corrected p-values (Bonferroni adjusted p-values) were calculated using alpha/number of
tests performed and alpha was set to 0.05. This is one of the stringent tests and allowed us
to reduce the number of significant markers [59].

2.6. Genomic Selection

Genome-wide marker effects for GPC and GPC stability were estimated using ridge
regression best linear unbiased prediction (rrBLUP) [60], according to the model:

y = µ + Zu + e

where y is an N × 1 vector of BLUEs for GPC or GPC stability for each RIL, µ is the overall
mean, Z is an N × M matrix of markers, u is a vector of marker effects, and e is a vector of
residuals. GS was performed with five-fold cross-validation, including 80% of the samples
in the training population and predicting the GEBVs of the remaining 20% of the samples
under each environmental condition. For accuracy assessment, 250 replication sets were
performed, each replication consisting of five model iterations.

Genomic selection models were developed for the NAM population of 650 RILs
(NAM650) and separately for the 175 RILs (NAM175) from seven families selected based on
lower variation for GPC across environments. Furthermore, independent validations were
performed using both sets of RILs for predicting GEBVs for GPC. During independent
validations, GS models were trained on the previous year’s data set, and predictions were
made for the upcoming year. Models trained on 2014 GPC data were used for predictions
in 2015 and 2016. Similarly, the 2015 GPC training model was used for 2016 predictions.

3. Results
3.1. Variation of Grain Protein Content across Environments

The GPC values of the NAM650 population ranged from 11.2–18.0% in 2014, 8.7–16.8%
in 2015, and 9.7–17.0% in 2016 (Figure 1), with 2014 having the highest mean GPC. A
Shapiro–Wilk normality test showed that GPC was normally distributed for the three
environments with a p-value > 0.05. Distributions of GPC values were normal in the three
environments (Figure S1), with significant positive correlations (R2 = 0.49 for 2014 and
2015, R2 = 0.42 for 2014 and 2016, and R2 = 0.57 for 2015 and 2016). Broad-sense heritability
for GPC was moderate to high, ranging between H2 = 0.62 in 2014, H 2= 0.36 in 2015, and
H2 = 0.68 in 2016. The average GPC for the 26 families evaluated in this study is presented
in Tables S1 and S2. Using this data, seven families totaling 175 RILs (NAM175) were
selected for low variation in GPC to identify loci controlling stability of the GPC (Table S3).

3.2. Stability Analysis

Stability index (b), environmental effect (t), and genotypic effect (g) values were
obtained for the NAM175 population. Absolute values of the stability index for NAM175
RILs ranged from 0.00 to 2.504 and were normally distributed. Thirty RILs were identified
which had no significant difference of stability index from 0 using individual t-test (p < 0.05).
Environment 2014 was observed to be the most favorable for high GPC. The NAM175
population was divided into five categories based on the GPC and stability index, the
trends of which are depicted by solid lines in Figure 2. Categories 2, 3, and 5 include
the stable GPC lines, with GPC in the range of 15–17%, 14–15%, and 9–14%, respectively
(Figure 2). Categories 1 and 4 represent the plastic lines, with reversal of GPC when
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moving to other environments. Categories 1, 2, 3, 4, and 5 include 81, 15, 9, 64, and
6 RILs, respectively.
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3.3. Population Structure Analysis

Population structure analyzed with PCA separated the NAM175 population into seven
separate groups based on their different parents, in addition to the common parent ‘Berkut’
(Figure 3). The PC1 accounted for 7.0% of the variation, whereas the PC2 explained 5.0%
of the genetic variation (Supplementary Figures S2 and S3). Kinship plots obtained from
VanRaden algorithms in GAPIT also separated the population into seven different groups
(data not shown). Inclusion of a different number of PCs as covariates in the GWAS model
demonstrated that the first three PCs best control the false positives and false negatives, as
evident from the Q–Q plots (Supplementary Figure S4), and, similarly, the model selection
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function based on BIC showed that first PCs should be used in the GWAS models. The Fst
coefficient was 0.11 for the NAM175 and 0.18 for that NAM650, and this provided us with
information about the genetic relatedness among the individuals within each population.
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3.4. Marker–Trait Associations for the Stability of Grain Protein Content

Eighteen QTLs controlling GPC stability were identified with the help of four different
GWAS models using a stringent Bonferroni correction of α = 0.05 (Table 1; Figure S4).
The variation explained by each locus ranged from −4.19 to 3.98%. Out of these eighteen
QTLs, eight were identified by two or more GWAS models simultaneously and will be
referred to as high confidence QTLs (to be discussed later) (Table 1). Cumulatively, these
loci explained 35.40% of the phenotypic variation. Out of those eight high confidence
QTLs, three were located on chromosome 3B and chromosomes 1A, 2A, 4D, 5B, and 7D
had one significant association. The QTLs on 1A, 2A, 3B, 4D, and 7D had a positive effect
on increasing GPC stability, while three other OTLs had a negative effect on GPC stability.
The parents of origin for associated alleles are provided in Table 1. Removal of those alleles
from a breeding program by selecting for alternative alleles at these loci will favor the
development of lines having increased GPC stability.

Eight significant QTLs were identified using the GPC values obtained across the
environments as the response trait (Table 2; Supplementary Figures S5 and S6). Out of
these eight QTLs, three were identified by two or more GWAS models simultaneously and
will be referred to as high confidence QTLs (to be discussed later) (Table 2). Cumulatively,
these loci explained 24.80% of the phenotypic variation. Out of those three high confidence
QTLs, each of them was located on chromosomes 2B, 7A, and 7B. The QTL on 2B and 7B
positively affects GPC, while the QTL on 7A negatively affected GPC such that removing
those alleles would increase GPC. As there are multiple alleles with favorable effects
identified from various different parental lines, pre-breeding efforts will be required to
introgress all the QTLs identified. As some QTLs were identified from landraces, selection
during this pre-breeding process may help reduce linkage drag.
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Table 1. Significant markers representing quantitative trait loci for grain protein content stability in a nested association mapping of hard spring wheat identified using four different
GWAS models.

Marker Description ∆ Allelic Effect
∫

Significance Values

SNP name Chromosome Position on
Chromosome Alleles l Parental Line with Bolded

Allele
Model Providing

Significant Results
Minor Allele

Frequency
Cumulative

R2
p-Value
(Bonf.)

SpringWheatNAM_tag_81337:59 1A 50917564 C/T Berkut, Dharwar Dry BLINK, MLM, CMLM 0.40 +1.15 7.91 × 10−8

SpringWheatNAM_tag_302718 1B 381359110 A/G CItr15144 BLINK 0.12 −4.19 1.32 × 10−7

SpringWheatNAM_tag_94853 2A 569963539 T/G CItr15144, PI210945, PI92001,
Dharwar Dry BLINK, MLM, CMLM 0.36 +3.68 1.06 × 10−6

SpringWheatNAM_tag_272313 2A 196126844 C/G Berkut, Dharwar Dry FarmCPU 0.15 +1.58 9.39 × 10−7

SpringWheatNAM_tag_269074 2B 155136626 A/C PI210945, PI43355 BLINK 0.11 −3.62 5.67 × 10−12

BS00036168_51 3A 6.89 × 108 T/C CItr15144 FarmCPU 0.17 −2.01 2.16 × 10−7

SpringWheatNAM_tag_84633 3B 23359725 A/T PI92569 BLINK, MLM, CMLM 0.14 −3.98 1.05 × 10−8

SpringWheatNAM_tag_7037 3B 508522245 G/T Berkut, Dharwar Dry, PI92569 BLINK, MLM, CMLM 0.42 −1.27 2.84 × 10−9

SpringWheatNAM_tag_75584 3B 6.77 × 108 T/G Berkut, CItr15144,
PI210945, PI92569 MLM and CMLM 0.29 +2.53 0.000218

SpringWheatNAM_tag_281164 4A 309647389 T/C Berkut, Dharwar Dry,
CItr15144, PI210945, BLINK 0.30 −0.51 2.84 × 10−9

SpringWheatNAM_tag_75584 4D 6.77 × 108 A/G CItr15144, PI210945, PI92001,
Dharwar Dry, Berkut MLM and CMLM 0.43 +1.68 0.000218

SpringWheatNAM_tag_17034 5B 4.31 × 108 T/C PI210945, PI43355, PI92569 MLM and CMLM 0.41 −0.74 0.000399
SpringWheatNAM_tag_18817:22 7B 100166484 C/A Berkut, Dharwar Dry FarmCPU 0.27 +2.13 2.81 × 10−8

SpringWheatNAM_tag_108839 7B 98739595 T/G CItr15144, PI210945 FarmCPU 0.32 +1.06 2.43 × 10−7

SpringWheatNAM_tag_37074 7B 720870596 C/G CItr15144, PI210945, PI92001 FarmCPU 0.25 −2.70 9.39 × 10−7

SpringWheatNAM_tag_72025 7B 721085362 A/C Berkut, Dharwar Dry FarmCPU 0.17 +0.43 6.48 × 10−7

SpringWheatNAM_tag_37362 7B 720892406 G/T PI92569 FarmCPU 0.20 +1.89 2.00 × 10−7

SpringWheatNAM_tag_280095 7D 57137544 A/C Dharwar Dry, Berkut MLM and CMLM 0.15 +0.25 0.000187
∆ Description of markers representing the tag of SNP, allele form of the tag SNP, minor allele frequency, chromosome, and position;

∫
phenotypic variation explained by the marker polymorphism: + increasing

effect of minor allele, – decreasing effect of minor allele; l Minor alleles are bolded.



Agronomy 2021, 11, 2528 10 of 18

Twelve significant QTLs were identified for grain protein content deviation obtained
across the environments as the response trait (Table 3). Out of these twelve QTLs, three
were identified by two or more GWAS models simultaneously and will be referred to
as high confidence QTLs (to be discussed later) (Table 3). Cumulatively, these loci ex-
plained 27.63% of the phenotypic variation. Loci controlling GPC stability, GPC, and GPD
are different, demonstrating separate genetic architectures for each trait which could be
selected simultaneously.

3.5. Prediction for Grain Protein Content and Stability

The prediction accuracy for GPC in the NAM650 population was r = 0.50 in 2014,
r = 0.55 in 2015, and r = 0.53 in 2016. Overall, GPC stability was less predictable with
prediction accuracy values between r = 0.34 and 0.44 and a mean of 0.40. There was
a significant difference in prediction accuracy for GPC and GPC stability, which was
assessed using Tukey’s test (p-value < 0.05; F statistics = 9.9). The prediction accuracy
of GPC in the selected NAM175 subset ranged between r = 0.56 to 0.69. The maximum
prediction accuracy of r = 0.69 was achieved again for the 2015 environment, while the
lowest prediction accuracy of r = 0.56 was obtained for the 2014 environment. Comparison
of prediction accuracies for each environment using the two different sets of populations
is presented in Figure 4. Prediction accuracy is generally high when using the NAM175,
increasing by 15% as compared to the NAM650.
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Table 2. Significant markers representing quantitative trait loci for grain protein content in a nested association mapping of hard spring wheat.

Marker Description ∆ Allelic Effect
∫ Significance

Values

SNP Name Chromosome
Position on

Chromosome
(cM)

Alleles l Parental Line with Bolded
Allele

Model Providing
Significant Results

Minor Allele
Frequency

Cumulative
R2 p-Value

SpringWheatNAM_tag_190170 1A 1.24 × 108 T/C Berkut, Dharwar Dry BLINK 0.49 +6.78 1.60 × 10−8

SpringWheatNAM_tag_127808 1A 3.66 × 108 T/A Berkut, Dharwar Dry FarmCPU 0.14 +3.02 6.07 × 10−17

SpringWheatNAM_tag_82306 2B 7.17 × 108 A/T CItr4175 MLM, CMLM 0.16 +0.44 4.33 × 10−5

SpringWheatNAM_tag_32264 3B 125543693 A/T Berkut, PI43355 BLINK 0.34 −7.30 1.26 × 10−6

SpringWheatNAM_tag_82154 4A 6.4 × 108 C/A CItr15144, PI210945, CItr4175. BLINK 0.26 −2.34 1.23 × 10−7

SpringWheatNAM_tag_124206 6B 7.07 × 108 A/G PI43355 FarmCPU 0.14 −1.02 1.74 × 10−15

SpringWheatNAM_tag_136322 7A 6.67 × 108 T/G Berkut, PI43355 BLINK, MLM, CMLM 0.41 −0.32 1.55 × 10−8

SpringWheatNAM_tag_122369 7B 6.19 × 108 C/G Berkut, Dharwar Dry MLM, CMLM 0.16 +3.59 5.31 × 10−5

∆ Description of markers representing the tag of SNP, allele form of the tag SNP, minor allele frequency, chromosome, and position;
∫

Phenotypic variation explained by the marker polymorphism: + increasing
effect of minor allele, – decreasing effect of minor allele; l Minor alleles are bolded.

Table 3. Significant markers representing quantitative trait loci for grain protein content deviation in a nested association mapping of hard spring wheat.

Marker Description ∆ Allelic Effect
∫

Significance Values

SNP Name Chromosome Position on
Chromosome (cM)

Model Providing
Significant Results Minor Allele Frequency Cumulative R2 p-Value

SpringWheatNAM_tag_127808 1A 3.66 × 108 FarmCPU 0.14 +3.53 7.26 × 10−8

BS00022409_51 2A 745092365 FarmCPU 0.11 +2.18 1.06 × 10−10

SpringWheatNAM_tag_40957:20 2B 2737380 FarmCPU, BLINK 0.22 −1.83 1.64 × 10−7

SpringWheatNAM_tag_252336 2B 534836257 FarmCP, BLINK, MLM, CMLM 0.17 +2.76 3.01 × 10−13

SpringWheatNAM_tag_69709 4A 118275776 FarmCPU 0.48 −3.05 2.25 × 10−8

Kukri_c20822_1029 4B 106973454 FarmCPU 0.12 −2.70 3.34 × 10−8

SpringWheatNAM_tag_84935 4B 5.92 × 108 BLINK 0.13 +1.85 1.43 × 10−7

SpringWheatNAM_tag_218381 5A 6.87 × 108 BLINK 0.21 +0.89 2.70 × 10−8

SpringWheatNAM_tag_53378 6A 543101208 FarmCPU 0.20 +1.54 4.08 × 10−7

SpringWheatNAM_tag_101029 6B 4.76 × 108 MLM, CMLM 0.12 −2.88 1.56 × 10−5

SpringWheatNAM_tag_94821 6B 517508015 FarmCPU 0.42 +1.69 5.57 × 10−11

SpringWheatNAM_tag_38314 6B 659974659 FarmCPU 0.16 −2.73 2.22 × 10−7

∆ Description of markers representing the tag of SNP, allele form of the tag SNP, minor allele frequency, chromosome, and position;
∫

Phenotypic variation explained by the marker polymorphism: + increasing
effect of minor allele, – decreasing effect of minor allele.
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GS accuracy was significantly lower for the independent validation of each population
set and under different environments compared to cross-validation GS accuracies assessed
using Tukey’s test (p-value < 0.05; F statistic = 9.2) (Figure 5). Independent prediction
accuracies for the NAM650 population ranged between r = 0.30 to 0.39 and ranged between
r = 0.35 to 0.43 for the NAM175 for GPC. The independent prediction accuracies were higher
for the NAM175, and the same results were observed during the cross-validation prediction
scenario. The highest independent prediction accuracy was obtained by a training model
on 2015 GPC to 2016 GPC (Figure 5).
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4. Discussion
4.1. Stability of Genotypes across Environments

A primary goal of plant breeding programs is to select germplasms with superior
adaptation to the targeted environments. The performance of genotypes may range from
those that are very well adapted to a narrower set of environments and perform below
average in others to genotypes that perform consistently relative to others across a wider
range of environments and are considered to have greater stability. Herein, we used a
static stability concept, targeting a predetermined value of GPC across all the environments.
There are numerous statistical tools for analyzing static stability but here we applied FW
regression analysis as it is capable of summarizing the interactions in comprehensible
ways [9].

Crossover and non-crossover interactions were observed in our FW regression analysis
which included reversals in rank and scale effects for GPC due to environmental effects and
G*E interactions. Identification of only thirty lines with stable GPC across the environments
out of 650 lines highlights the challenge of maintaining an adequate population size when
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selecting for a complex quantitative trait in genetically diverse germplasm. Evaluating
this population in a greater number of environments would provide more insight into
the genetic control of this trait. Additionally, the founder parents of the NAM population
are primarily landraces that have not undergone routine selection for GPC [37], as has
been performed with contemporary germplasms for at least the past 60 years. The stable
lines varied in their average GPC, but lines having high and stable GPC (Category 2)
demonstrate the ability to select genotypes for these traits. The lines identified in this
study having high GPC and stability are particularly useful for introgression into modern
breeding germplasm to expand available allelic variation for this important trait.

4.2. Genomic Regions Controlling Stability of GPC

The QTLs associated with GPC stability and GPC per se performance were not detected
in the same genomic regions, suggesting that GPC stability and GPC are under the control
of different genes. Accounting for the different genetic architectures of these two traits
could aid the indexed selection for the desired GPC along with stability. Different QTLs
controlling yield stability and yield per se in wheat have similarly been documented [61].
In maize, yield and yield stability were observed to be independent, demonstrating the
potential for simultaneous selection for both traits [62]. Loci controlling yield stability
were located in the same regions as QTLs for yield and yield-component traits in a barley
mapping effort [63]. Critical factors that are not captured or quantifiable in each of these
yield-related studies are the precise abiotic or biotic factors limiting yield potential in
different environments. Thus, stability is an important aspect to consider, and our study
suggests that breeding programs may select for both GPC and GPC stability by treating
them as separate traits for developing varieties grown in climates with environmental
variables that are difficult to predict.

Genomic regions controlling GPC stability have not been investigated in wheat based
on the available literature. In the present study, eight high confidence QTLs controlling
GPC stability distributed over six chromosomes were identified that individually explained
−4.19 to 3.98% of variation for GPC stability. The QTLs on 1A, 2A, 3B, 4D, and 7D had
a positive effect on GPC stability, while three other OTLs had a negative effect on GPC
stability. Similar results were obtained by Sehgal et al. when mapping genomic regions
for yield stability, where 11 QTLs associated with yield stability were distributed on seven
chromosomes [64]. The amount of phenotypic variation explained by their yield stability
QTLs varied from 3.2 to 8.1%. Thus, although stability is an important consideration
when selecting for complex quantitative traits, such as yield and GPC, appropriate index
weighting in genomic selection approaches is most likely an improved alternative in
selection schemes.

Marker–trait associations have reported QTLs for GPC on all 21 chromosomes of
wheat [65–69]. Loci controlling GPC were mapped to chromosomes 1A, 2B, 3B, 4A, 6B,
7A, and 7B in this study. The region linked to SpringWheatNAM_tag_190170 on 1A was
previously identified in a DH population using composite interval mapping [70] and Groos
et al. [66] used an F7 RIL population grown in five environments. The favorable allele for
this locus was identified in Berkut and Dharwar Dry, both of which are modern cultivars.
The 7A GPC locus was discovered in the same region as another investigation [70,71].
These studies also reported that this locus had a negative effect on total GPC. Loci on
chromosomes 3B and 4A have not been previously reported for GPC in wheat [14,67,72],
which may be due to no prior utilization of these landraces in mapping studies [37]. These
two loci had a negative effect on GPC, with associated alleles identified in the landraces.
The utilization of diverse landraces in this study provides information about different
genomic regions that are absent in present-day cultivars [73].

Similar to GPC stability loci, QTLs controlling GPC per se explained a small portion
of the variance (24.80%). Given the number of small-effect loci controlling each trait, the
GS approach proposed in this study should improve the ability to select for these traits
simultaneously during the breeding process. The utilization of indexed genomic selection
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would assist in selecting simultaneously for GPC stability and GPC [74]. Rapp et al. [71]
demonstrated the use of phenotypic and genomic selection indices to select durum wheat
lines for high GPC and grain yield. Similarly, lines having high GPC and grain yield were
selected using index selection in a multi-variate GS model for wheat [75]. These studies
suggested that utilization of index selection in multi-variate GS models would potentially
aid in selecting lines having stable GPC in addition to high GPC and grain yield.

4.3. Accuracy for Predicting GPC and GPC Stability

Prediction accuracy for GPC ranged between 0.50 and 0.69, which is moderately
higher than prediction accuracies for grain yield [38,39]. Heritability of GPC, the effect of
the NAM population, and population sizes used for training the GS models would each
affect prediction accuracy [76,77]. Our results are consistent with previous studies where
high heritability has resulted in better prediction accuracies in cereals [78]. The heritability
of GPC is usually higher than yield, which ultimately resulted in better predictions for
GPC [79]. In a genomic prediction experiment for grain yield in oats (Avena sativa L.),
lower prediction accuracy was obtained because the experiment was planted under diverse
environmental conditions, resulting in reduced genetic variance as compared to G*E
interactions and thereby reduced heritability [80]. The NAM population in the current
study was investigated in more homogenous target environments for wheat production in
the PNW. This should result in a relatively lower G*E variance relative to genetic variance,
leading to a higher heritability estimate and an increase in genomic selection accuracy.

Prior studies are not available to compare the accuracy of GS for GPC stability with
stability index values obtained from FW regression in wheat. GS accuracies for GPC stabil-
ity were significantly (p < 0.05) lower than GPC, suggesting a more complex architecture for
GPC stability. Huang et al. [36] conducted GS for grain yield, test weight, and flour protein
content stability using an additive main effect and multiplicative interaction (AMMI) model
in wheat. They observed an accuracy from 0.14 to 0.31 for the stability of flour protein using
four different GS models, namely, Bayesian ridge regression (0.14), elastic net (0.27), rrBLUP
(0.31), and RKHS (0.31). Their study also demonstrated that the stability index for quality
traits has less prediction accuracy than the trait itself. Our results, coupled with those of
Huang et al. [36], suggest that GS can be used for predicting GPC stability. Furthermore,
the prediction accuracy for GPC stability could be improved by obtaining a stability index
from a larger number of field trials, as a large number of environments are useful for more
reliable estimations of stability [81]. The GS models could be retrained by incorporating
data from additional environments in subsequent years. High prediction accuracies for
stability could better predict the performance of genotypes at multiple locations during
breeding cycles [82].

There was an improvement of prediction accuracy when the model was trained on
NAM175 compared to the NAM650 population. This is in contrast to other studies where it
was observed that prediction accuracies improve when the number of individuals in the
training population increases [83–85]. This argument was strengthened by the population
differentiation coefficient (Fst), suggesting that lines in the NAM175 were more genetically
related compared to the NAM650. It has been observed that prediction accuracies increase
when training and testing populations are more genetically related to each other, as was
the case in the NAM175 population set [86,87]. These results suggest that selection for lines
having GPC stability also aids in the improvement of GS accuracy for GPC. This study
opens up an avenue for the utilization of GS in a spring wheat breeding program selecting
lines having GPC stability in addition to high GPC.

5. Conclusions

Selection for GPC is often secondary to grain yield in terms of breeding objectives for
spring wheat, although it is a primary trait that producers consider when selecting varieties.
We report the first large-scale study of nested association mapping and evaluation of GS
for GPC stability in wheat. This study identified wheat lines having less variation for
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GPC and mapped QTLs controlling GPC stability, an important and often overlooked trait.
The identification of stable genotypes with high GPC could help in developing cultivars
that can perform similarly in multiple environments. The QTLs identified in this study
explained a small amount of phenotypic variation, demonstrating the complexity of the
trait, which suggests a GS approach could best address breeding for GPC and GPC stability.
Prediction accuracy is sufficiently high for the implementation of GS for GPC and GPC
stability in this study. With the implementation of GS for these traits, predictions can be
available while evaluating grain yield, enabling selection for GPC along with agronomic
and yield traits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11122528/s1. Supplementary Table S1: Average grain protein content of 26
NAM families across the three environments planted at Spillman Agronomy Farm, Pullman, WA;
Supplementary Table S2. Phenotypic description and broad sense heritability of the grain protein
content across the three environments (2014-16); Supplementary Table S3: Average grain protein
content and standard deviation for families selected to have less variation. The origin represents
countries of the NAM population founder parents; Supplementary Figure S1: Distribution of average
GPC for environments 2014, 2015, and 2016. The X-axis shows the environments, namely, 2014, 2015,
and 2016, the Y-axis shows the density of individuals; Supplementary Figure S2: Variation explained
in the NAM175 population by each principal component obtained in this study; Supplementary
Figure S3: Population structure inferred from principal component analysis and illustrated with
the first three principal component’s; Supplementary Figure S4: Manhattan plot representing the
position of significant markers controlling the grain protein content stability. The threshold used
for the significant association is a Bonferroni correction of 0.05 (A). Quantile-Quantile (Q-Q) plot
of marker-trait association study using different principal components as a covariate in the BLINK
model for grain protein content stability (B); Supplementary Figure S5: Manhattan plot representing
the position of significant markers controlling the grain protein content. The threshold used for
significant association is a Bonferroni correction of 0.05 (A). Quantile-Quantile (Q-Q) plot of marker-
trait association study using different principal components as a covariate in the BLINK model
for grain protein content (B); Supplementary Figure S6: Linkage disequilibrium analysis on the
population using complete set of the marker data.
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