1 Short title: The seasonal dynamics of grapevine bud dormancy

- 2 Author contact Dr Michael J Considine; michael.considine@uwa.edu.au
- 3

4 The seasonal dynamics of bud dormancy in grapevine suggest a regulated

5 checkpoint prior to acclimation

- 6 Yazhini Velappan¹[^], Tinashe G Chabikwa¹[^], John A Considine², Patricia Agudelo-Romero,¹
- 7 Christine H Foyer³, Santiago Signorelli^{1,4}, Michael J Considine^{1,2,5}*
- 8 ¹ ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences,
- 9 University of Western Australia, Perth, Australia, 6009.
- ² The UWA Institute of Agriculture, University of Western Australia, Perth, Australia, 6009.
- ³ School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
- ⁴ Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900,
- 13 Uruguay.
- ⁵ Department of Primary Industries and Regional Development, South Perth, Australia, 6151.
- 15 * corresponding author: Dr Michael J Considine; michael.considine@uwa.edu.au
- 16 ^ joint first authors YV and TGC.
- 17

18 One sentence summary

- 19 Physiology and transcriptome data provide strong evidence of a regulatory checkpoint prior
- 20 to acclimation and dormancy in latent grapevine buds.

21 List of author contributions

- 22 YV and SS carried out all of the physiological analyses, TGC and PAR performed the
- 23 transcriptome analysis, JAC analysed physiological and climate data, CHF assisted

- 24 experimental design and interpretation, MJC conceived the study and wrote the manuscript
- 25 with contributions from all authors.

26 Funding information

- 27 This work was supported by an Australian Research Council grant to MJC, CHF and JAC
- 28 (DP150103211), an ARC Future Fellowship to MJC (FT180100409) and scholarships to YV by
- 29 the Australian Government (Scholarship International Research Fees), UWA (University
- 30 Postgraduate Award International Students) and Wine Australia (GWR Ph1201).

31 Present addresses

- 32 TGC is currently at QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston,
- 33 Brisbane, QLD 4006
- 34 PAR is currently at the Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Ave,
- 35 Nedlands WA 6009

36 Email address of Author for Contact

- 37 michael.considine@uwa.edu.au
- 38
- 39
- 40

41 ABSTRACT

42	Grapevine (Vitis vinifera L.) displays wide plasticity to climate and seasonality, ranging from
43	strongly deciduous to evergreen. Understanding the physiology of decisions to grow or
44	quiesce is critical for improved crop management, prediction, and the adaptability of
45	production to alternative climate scenarios. The perenniating bud (N+2) is a major economic
46	unit and focus of study. Here we investigated the physiology and transcriptome of cv.
47	Merlot buds grown in a temperate maritime climate from summer to spring in two
48	consecutive years. The changes in bud respiration, hydration and internal tissue oxygen data
49	were consistent with the transcriptome data. ABA-responsive gene processes prevailed
50	upon the transition to a deep metabolic and cellular quiescence in the bud during autumn.
51	Light, together with hypoxia and redox signalling presided over the resumption of nuclear
52	and cellular growth in the transition to spring. Comparisons with transcriptome data from
53	bud burst studies revealed a number of regulatory candidates for the orderly resumption of
54	growth in spring, including components that may integrate light and temperature signalling.
55	Importantly however, the bud burst forcing data, which is widely used as a measure of bud
56	dormancy, were not consistent with the physiological and transcription data. We
57	hypothesise the existence of a physiological checkpoint following bud set in summer, which
58	if not met results in extreme quiescence. Collectively this is the most integrated
59	developmental dataset of the latent bud of cultivated grapevine, and establishes a platform
60	for systems approaches to study seasonal plasticity.
61	
62	Keywords

63 Bud dormancy, acclimation, respiration, transcription, perennial plant, seasonality,

64 phenology.

65 INTRODUCTION

66	The dormancy of the latent or perenniating bud is a seasonally entrained condition that is
67	expressed by many perennial plant species. Improved knowledge of how seasonal cues
68	entrain bud development and dormancy is important in order to manage and mitigate the
69	effects of regional and global climate change in perennial forest and crop systems. Despite
70	recent advances in understanding the seasonality of bud dormancy in some temperate and
71	boreal species (reviewed by Rohde and Bhalerao, 2007; Tanino et al., 2010; Cooke et al.,
72	2012; van der Schoot et al., 2013; Singh et al., 2017), our knowledge of the regulation of bud
73	dormancy in cultivated grapevine (Vitis vinifera L.) remains poor. There is a considerable gap
74	in our understanding of the onset and depth of bud dormancy in grapevine.
75	
76	Dormancy is defined as the failure of a quiescent but viable and intact meristem to resume
77	growth in a permissive environment (Rohde and Bhalerao, 2007). Photoperiod and
78	temperature are the primary ecological cues driving the onset of, and release from
79	dormancy. However, dormancy is considered to be a quantitative condition; ecological cues
80	and developmental state influence the timing and depth of dormancy (Cooke et al., 2012).
81	Genetic analyses in some woody perennial species have dissected the regulation of
82	correlated developmental processes, such as the cessation of growth, bud set, and the
83	onset of dormancy. For example, ethylene insensitive birch (Betula pendula), expressing a
84	dominant negative ETR1 ethylene receptor (etr1-1), did cease shoot growth but failed to set
85	terminal buds during the transition to short days (Ruonala et al., 2006). Although delayed,
86	the axillary buds did enter dormancy. In wild type Vitis spp., the transition to short days
87	accelerated the cessation of shoot growth, bud set, periderm formation and the onset of

dormancy (Fennell and Hoover, 1991; Wake and Fennell, 2000; Grant et al., 2013). Short day

treatment also enhanced the depth of dormancy (Fennell and Hoover, 1991).

90

91	Data on the depth of dormancy in <i>Vitis</i> spp. are considerably diverse. The depth of bud
92	dormancy is typically measured in a bioassay of single node explants, grown in forcing
93	conditions (Lavee and May, 1997; Camargo Alvarez et al., 2018). However, dormancy may
94	be calculated as a percentage of buds burst within a given period (e.g. 28 d), or as the time
95	required to reach 50 % bud burst (BB $_{50}$). The two metrics may give quite different seasonal
96	profiles in the depth of dormancy. Measurements of several grapevine varieties from 26° to
97	34° latitude suggest that the depth of dormancy increases to a maximum prior to, or during
98	early winter (Lavee and May, 1997; Parada et al., 2016; Rubio et al., 2016; Zheng et al.,
99	2018a). A selection of studies illustrate a distinct behaviour, where the depth of dormancy
100	shows a pronounced peak in late summer before declining prior to winter (Pouget, 1963;
101	Nigond, 1967; Cragin, 2015). Additionally, the depth of dormancy varies widely. Measured
102	as BB_{50} , Rubio et al. (2019 and references therein) showed a range in peak dormancy for cv.
103	Thompson Seedless of <i>ca</i> . 30 – 45 d in two climate regions (33°34'S latitude <i>cf</i> . 30°02'S),
104	while earlier studies of cv. Merlot (44°50'N; Pouget, 1963a) and cv. Carignan (43°36'N;
105	Nigond, 1967) showed BB_{50} of over 200 d. Considerable intra-annual and inter-climate
106	plasticity has been shown in other perennial fruit trees (El Yaacoubi et al., 2016).
107	
108	Against a background of a growing number of extensive molecular and biochemical studies
109	of the later stages of bud development in grapevine (Halaly et al., 2008; Ophir et al., 2009;
110	Meitha et al., 2015; Zheng et al., 2015; Sudawan et al., 2016; Khalil-Ur-Rehman et al., 2017;

111 Meitha et al., 2017; Signorelli et al., 2018; Zheng et al., 2018a), few have followed

112	development for an extended period of time, from the onset of dormancy. The most
113	extensive catalogue to date spanned the transcriptional state of the bud from shoot
114	development, prior to the summer solstice and periderm formation, through to bud burst
115	following winter (cv. Tempranillo, Madrid, Spain, 40°28'N; Diaz-Riquelme et al., 2012).
116	Pronounced circannual rhythms were seen in homologues of flowering pathway
117	transcriptional regulators as well as major functional categories of genes, e.g.
118	photosynthesis and regulation of the cell cycle (Diaz-Riquelme et al., 2012). No physiological
119	data or experimental manipulation were presented, however. Other more acute temporal
120	studies have demonstrated the role of photoperiod in floral initiation (Sreekantan et al.,
121	2010), cell wall thickness (Rubio et al., 2016) and dormancy onset (Fennell et al., 2015).
122	
123	Here, we have established for the first time an integrated platform of physiological and
124	transcriptome data to investigate the seasonal signalling relationships that govern the
125	quiescence states of the latent bud in cultivated grapevine. The physiological data were
126	consistent with the dynamic observations of BB_{50} by Pouget (1963) in cv. Merlot in
127	Bordeaux, France, revealing an extreme resistance of explants to resume growth when
128	sampled in late summer. This resistance however, was not consistent with the respiration,
129	hydration or internal tissue oxygen data of the bud, nor the prevailing influences at the level
130	of the transcriptome. These indicated that metabolic and gene regulatory activity was highly
131	primed during summer, followed by an increasingly quiescent state during autumn and the
132	onset of winter. We propose the existence of an acclimation checkpoint in late summer,
133	which if not met will trigger a stress-induced dormancy akin to secondary dormancy of
134	seeds.

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

137 **RESULTS**

138 The within year dynamics of dormancy and physiology of grapevine buds

139	We evaluated the competence of bud growth of cv. Merlot explants sampled from mid-
140	summer through to early spring over two consecutive years (Margaret River, Australia;
141	33°47'S, 115°02'E). Single node cuttings from a commercial vineyard were transferred to a
142	controlled temperature growth room for up to 350 d (forcing conditions). The first sample
143	point was in late January (<i>ca</i> . 4 weeks after the summer solstice at 22 nd December). The
144	data revealed a pronounced but transient peak in bud dormancy (BB $_{50}$), during the period
145	from late January to April, reaching a climax during February/ March at BB ₅₀ ca . 250 d
146	(Figure 1b). The BB_{50} declined at a similar rate as it developed, from late March to early
147	April, from BB_{50} ca. 240 to 70 d. Thereafter the BB_{50} continued to decline at a more linear
148	but steady rate towards August/ September, at the beginning of spring (Figure 1b). Between
149	70-80 % buds sampled during the summer/ autumn climax period burst within 350 d and
150	the remaining were necrotic. Positive control buds treated with hydrogen cyanamide
151	(H_2CN_2) reached >95 % bud burst (Figure 1b, refer below), indicating that the necrotic buds
152	were viable at the time of sampling. Notwithstanding, the buds sampled during the
153	February/ March period were remarkably resilient. These trends were consistent in both
154	2015 and 2016 (Supplemental Table S1), and consistent with the patterns observed in cv.
155	Merlot and cv. Carignan in France (Pouget, 1963; Nigond, 1967).
156	
157	The application of H_2CN_2 dramatically accelerated the rate of bud burst (BB ₅₀) when applied
158	to explants sampled during the period from February through to April (Figure 1b;

159 Supplemental Table S1). Thereafter, H_2CN_2 had very little effect on the rate of bud burst.

160 The H₂CN₂-treated buds did however show an interesting developmental trend; a moderate

161 but progressive increase in the BB₅₀ from January (mid-summer) through to August (end

162	winter), from BB_{50} ca. 30 to 70 d, before an abrupt decline ca. 20 d in September, which was
163	shortly before the time of natural bud burst in the field (Figure 1b). The trend was observed
164	in both the 2015 and 2016 seasons (Figure 1b; Supplemental Table S1).
165	
166	Matching bud material was used to determine hydration levels, respiration rates and
167	internal tissue oxygen status. The hydration levels of buds sampled in late January (mid-
168	summer) was ca . 55 gH ₂ O.100g FW ⁻¹ (Figure 1c, Supplemental Table S1). Hydration levels
169	initially declined quite rapidly until April, then more gradually towards a point of inflection
170	at 40 gH ₂ O.100g FW ⁻¹ by July, and increased thereafter. The O ₂ consumption and CO ₂
171	production rates remained high until the end of February, before declining rapidly and in
172	parallel by <i>ca</i> . 2-3-fold by April. The gas exchange rates then declined more gradually to
173	reach a minimum during May/ June, and increased thereafter (Figure 1d, Supplemental
174	Table S1). We expected that changes in respiration and hydration may also influence the
175	pO_2 within buds. Figure 2 shows a moderate but consistent decline in the pO_2 at the
176	meristematic region of the bud (ca. 1500-2000 μ m) from February through to August,
177	before returning to a more normoxic state by September.
178	

Taken together, the data show a remarkable seasonal dynamic of BB₅₀, with a pronounced but transient peak during late summer/ early autumn. This behaviour was not reflected by changes in respiration or hydration levels of the buds. Hydration levels began to decline before changes in BB₅₀ and respiration. The decline in respiration also appeared to precede the decline in BB₅₀ in autumn, however the rate at which BB₅₀ declined was more rapid. The respiration rate then began to increase in early winter, prior to the increase in hydration levels. Natural bud burst occurs in early to mid-spring, and there was an abrupt increase in

186 hydration at this point. Internal tissue oxygen status was less informative, although there

- 187 appeared to be a major transition in August, with oxygen levels at the core of the bud
- 188 becoming more hypoxic, at the time when respiratory oxygen consumption reached a peak
- 189 prior to natural bud burst in September (Figure 2).
- 190

191 Relationship of dormancy and physiology to climate indices

- 192 Site weather data were obtained for the two years of the study (Supplemental Figure S1,
- 193 Supplemental Table S1). The maximum daylength was ca. 14 hrs at the summer solstice,

194	which had declined by ca. 1 hr by the earliest sample point 4 weeks later in late January. The
195	minimum daylength was ca. 10 hrs at the winter solstice. Temperature maxima/ minima
196	ranged from <i>ca</i> . 28/ 12 °C in January to <i>ca</i> . 16/ 5 °C in July. Rainfall data were also collected,
197	showing a temperate pattern of rain falling predominantly during the winter months
198	(Supplemental Table S1). While the study vineyard site was not irrigated, there was 78 mm
199	and 170 mm rain in the January to March period of 2015 and 2016, indicating adequate
200	water availability during the drier summer months.
201	
202	The accumulated chilling in the vineyard was calculated according to three commonly used
203	models (Supplemental Figure S1). Chilling began to accumulate from April onwards (ca.
204	100 d post-solstice), at a near-linear rate towards and beyond the time of natural bud burst
205	in the field in September (ca. 270 d post-solstice). The chill summation was similar for both
206	Utah models (> 1000 units) and <i>ca</i> . 260 units according to the base 7.2 °C calculation
207	(Supplemental Figure S1c).
208	
209	Differential transcriptome analysis
210	RNA extracted from buds collected at six time points in 2015 were sequenced. After pre-
211	processing, normalized log2 counts per million (CPM) data were used to generate a Principal
212	Component Analysis (PCA) plot, showing that replicates of each time point largely clustered
213	together, and that the September (S9) samples formed the most distinct cluster (Figure 3a).
214	The first component (32.36%) seemed to be largely affected by developmental age, while
215	the second component (26.81 %) appeared to be linked to metabolic activity and degree of
216	hydration (Figure 1, Figure 3a). A similar discrimination along developmental trends was
217	reported by Diaz-Riquelme et al. (2012). Differential expression analysis showed very few

Figure 3. PCA plot of normalized count data, and Venn diagrams and functional enrichment analysis of differentially expressed genes (DEG) from grapevine buds collected at different stages of dormancy transition February to April, April to June and June to September. (a) Principal components analysis (PCA) of normalized read counts (S1-January; S2-February; S3-March; S4-April; S6-June; S9-September). (b) Venn diagrams indicating the number of significant (FDR ≤ 0.01 , Log₂FC |1|) DEGs across three comparisons and the overlap between each set of genes separated into up- and down-regulated genes. Horizontal bar plots of selected functional categories significantly enriched ($P \leq 0.05$ using the hypergeometric test) in the developmental comparisons February-April (c), April-June (d) and June to September (e). Three different functional enrichment analyses were performed for each comparison, where "ALL" (up- plus down-regulated genes), "UP" (up-regulated genes) and "DOWN" (down-regulated genes) make reference to the list of genes assessed.

- 218 differentially expressed genes (DEGs) between January-February and February-March time-
- 219 points while PCA showed February and March clustered together (Figure 3a). Considering
- this, and guided by the BB₅₀, respiration, hydration and chilling data (Figure 1, Supplemental
- 221 Figure S1), we chose to refine the comparisons to three:
- 222 (i) April/ February (ca. 95/ 40 d post-solstice), representing rapid decline from the
- 223 dormancy peak and a parallel decline in respiration and hydration.

224 (ii) June/ April (ca. 175/ 95 d post-solstice), representing the period prior to winter,

- accompanied by the minimum hydration and respiration rates, and the onset ofchilling accumulation.
- 227 (iii) September/ June (*ca*. 240/ 175 d post-solstice), representing the period during
 228 winter, accompanied by the resumption of hydration and respiration and the
 229 majority of chilling accumulation.

230 Following differential expression analysis, annotations were assigned to the core set of DEGs

against the V. vinifera 12X v.2.1 annotation file, and functional enrichment was performed

- 232 based on gene ontology (GO) analysis.
- 233

A total of 4490 DEG were identified across the three stages of dormancy transition

235 (Supplemental Table S3), which represents ca. 10 % of the predicted genes in the V. vinifera

236 genome (Canaguier et al., 2017). A Venn diagram of DEGs revealed that the June-September

transition was the most discriminating, as over half of all DEGs (2727) were uniquely up-

regulated and one third (1451) uniquely down-regulated during this transition (Figure 3b).

239 Few genes were consistently up-regulated between successive transitions; no genes were

consistently up-regulated throughout the experiment and only 6 genes consistently down-

241 regulated (Figure 3b). These data suggest stage-specific gene expression profiles during the

subsequent developmental transitions. Functional enrichment analysis showed that genes

243 involved in hormone signalling, nutrition, cell proliferation, morphological development,

244 epigenetic regulation were highly regulated during the time course (Figure 3c-e).

245 Comprehensive gene ontology (GO) enrichment results are presented in Supplemental Table

246 S4.

247

248 The transition from summer to autumn

249	The April/ February transition represented a 4-fold decline in BB_{50} and parallel declines in
250	hydration and cellular respiration (Figure 1b-d). The GO enrichment, together with the DEG
251	data revealed a pronounced decline in the expression of response to stimuli functions,
252	including abiotic, hormone and nutrient stimuli (Figure 3c; Supplemental Table S3, S4).
253	Expression profiles and unique identifiers of all genes subsequently described are shown in
254	Supplemental Table S5.
255	
256	Down-regulated abiotic response genes included four homologues of GALACTINOL
257	SYNTHASE as well as a RAFFINOSE SYNTHASE and STACHYOSE SYNTHASE, which collectively
258	encode functions to synthesise raffinose family oligosaccharides (RFO; Supplemental Table
259	S5). The VACUOLAR INVERTASE 2 (VI2), involved in sucrose catabolism, a sugar transporter
260	SWEET17 (previously known as NODULIN MtN3), and TREHALOSE-6-PHOSPHATE
261	PHOSPHATASE A (TPPA) were down-regulated, as were an AMMONIUM TRANSPORTER 2
262	and an AMINO ACID PERMEASE, indicative of a transcriptional down-regulation of nutrient
263	transport functions from February to April. Genes involved in abscisic acid (ABA)
264	biosynthesis and signalling were down-regulated; two 9-CIS-EPOXYCAROTENOID
265	DIOXYGENASES, and MOTHER OF FT AND TFL1 (MFT), together with four LATE
266	EMBRYOGENESIS ABUNDANT and two homologues of SENESCENCE-ASSOCIATED GENE 101.
267	Genes encoding functions that generate or process reactive oxygen species (ROS) were also
268	down-regulated during this transition, including a 1-CYSTEINE PEROXIREDOXIN, two
269	PEROXIDASES and a RESPIRATORY BURST OXIDASE HOMOLOGUE (RBOH).
270	

271	Against this, a small number of functions assigned to phyllome development were
272	significantly enriched in the GO data, and up-regulated during this transition (Supplemental
273	Table S4). For example, a DORNROSCHEN-like (DRN-LIKE/ ESR2) ethylene response factor
274	(ERF) transcription factor, two GROWTH-REGULATING FACTOR genes, and two gibberellic
275	acid (GA)- responsive genes were up-regulated (Supplemental Table S5). Interestingly DRN-
276	LIKE is the most homologous grapevine gene to the poplar EARLY BUD-BREAK 1 (EBB1),
277	which is a positive regulator of bud burst (Yordanov et al., 2014; Busov et al., 2016). Taken
278	together, these data indicate that the February condition, where the time to BB_{50} was
279	maximal, was highly regulated, with relatively high expression of genes functioning in
280	responses to abiotic stimuli, ABA and ROS. The trend to a decline in ABA synthesis and
281	responses may however indicate that ABA levels remained high and were in the process of
282	down-regulation by negative feedback.
283	
284	The transition from autumn to winter
285	By comparison with the previous transition. April to June represented quite modest declines

By comparison with the previous transition, April to June represented quite modest declines 285 286 in the BB₅₀, hydration and the rate of respiration (Figure 1). The number of genes 287 differentially regulated was also the least of each of the transitions, and the majority were 288 down-regulated (Figure 3b, Supplemental Table S3). Nevertheless, GO analysis revealed a 289 prominent enrichment of carbohydrate metabolism, namely sucrose metabolism, starch 290 catabolism, polysaccharide catabolism, oligosaccharide metabolism, glucan catabolism, 291 disaccharide biosynthesis, carbohydrate catabolism and biosynthesis. None of these GO 292 were enriched in the other two transitions (Figure 3), suggesting a specific regulation of 293 carbohydrate metabolism during the autumn to winter transition. GO analysis also revealed

that response to temperature, cold and oxidative stress/ ROS were more enriched in June,

relative to April (Figure 3d; Supplemental Table S4).

296

- 297 Transcripts coding for ABA synthetic enzymes; NCED6 and ABA DEFICIENT 2 (ABA2) were
- 298 down-regulated, as well as genes coding for the synthesis of RFOs, which were down-
- regulated in the previous transition (Supplemental Table S3, S5). A PEROXIDASE 1 and
- 300 GLUTATHIONE PEROXIDASE 8 were representative of declines in ROS processing functions,
- 301 although a *ROXY1* thioredoxin superfamily protein was up-regulated. The

302 γ -GLUTAMYLCYSTEINE SYNTHETASE (ECS1), which codes for the first committed step of

303 glutathione synthesis was also up-regulated. Up-regulation of temperature-regulated genes

304 were represented by two homologues of the *COR27* cold regulated gene. Together, these

305 are consistent with acclimation to abiotic stress and desiccation, and a more metabolically

306 quiescent state than the preceding phase.

307

308 The transition from winter to spring

309 The final developmental comparison of September/ June was accompanied by a relatively

310 modest decline in the BB₅₀, however hydration, the rate of respiration and tissue oxygen

- 311 status increased markedly, as did photoperiod and the cumulative exposure to chilling
- 312 (Figures 1-2, Supplemental Figure S1). By this stage buds had not burst naturally in the field,
- 313 although bud burst was imminent. The number of uniquely up- or down-regulated genes
- 314 was the greatest of any transition (Figure 3b). The GO analysis showed a strong enrichment
- of functions assigned to DNA replication and epigenetic modification in this transition, such
- 316 as histone modification, histone lysine methylation, histone H3-K9 methylation, G2/M
- transition of mitotic cells, DNA methylation and chromatin remodelling (Figure 3e;

318	Supplemental	Table S4). In addition,	GO	analysis revealed	a significant	enrichment of
-----	--------------	-------------------------	----	-------------------	---------------	---------------

- 319 transcript involved in shoot and vascular system development. Numerous functions were
- 320 unique or regulated in an opposite direction to changes of previous transitions.
- 321
- 322 Four homologues of CHROMOMETHYLASE 2 and 3, a METHYLTRANSFERASE 1 (MET1) and a
- 323 chromatin remodelling DECREASE DNA METHYLATION 1 (DDM1) were up-regulated in
- 324 September (Supplemental Table S5). In addition, ARABIDOPSIS TRITHORAX-RELATED
- 325 PROTEIN (ATXR) 5 and ATXR6, two genes encoding a nucleolar histone methyltransferase-
- related protein, and a histone deacetylase were up-regulated, as were numerous genes
- 327 coding for histone subunits. VERNALIZATION 1 (VRN1), VERNALIZATION 3-LIKE (VEL1) and
- 328 other related epigenetic factors are also outlined below, while cell cycle genes are outlined
- in a section below.
- 330

331 ABA- and stress-responsive genes were widely down-regulated. These included homologues 332 of NCED4, LEA4-5, dehydrin XERO1, three cold regulated COR27, and four PP2C genes; ABA 333 INSENSITIVE 1 (ABI1), ABA-HYPERSENSITIVE GERMINATION 3 (AHG3) and two HIGHLY ABA-334 INDUCED genes (HAI2 and HAI3; Supplemental Table S5). Two of the COR27 were previously 335 up-regulated from April to June. Homologues of SNF1-related protein kinase genes were 336 down-regulated (SNRK2.6, SNRK3.14, SNRK3.8, AKINBETA 1, KING1), as were genes coding 337 for dormancy associated proteins DELAY OF GERMINATION 1 (DOG1) and DORMANCY 338 ASSOCIATED PROTEIN 1 (DRM1). Against this, genes encoding auxin transport and signalling 339 functions were predominantly up-regulated. These included two homologues encoding the 340 auxin efflux carrier PIN-FORMED 1 (PIN1), plus PIN2, PIN5 and PIN6, together with the auxin 341 receptor TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and number of auxin responsive factor

342	proteins. Cytokinin signalling genes were also up-regulated, including a number of
343	homologues of ARABIDOPSIS RESPONSE REGULATOR family genes. Meanwhile GA- and
344	ethylene-related functions were differentially regulated. GA biosynthetic genes were up-
345	regulated, as was a homologue of the DELLA-degrading F-box protein SLEEPY2, while a GA
346	receptor (GID1B) and two genes of GASA domain proteins were down-regulated. Similarly,
347	the ethylene biosynthetic gene ACC OXIDASE 1 was up-regulated while ETR1 and EIN3 were
348	down-regulated. Together these indicate a finely controlled transition of hormone synthesis
349	and processing during bud development between June and September, with a considerable
350	decline in the influence of ABA against an increase in that of auxin and cytokinin-dependent
351	functions.
352	
353	Together with the down-regulation of cold-regulated COR27, the up-regulation of VRN1,
354	VEL1 and DROUGHT SENSITIVE 1 and changes in metabolic functions were consistent with
355	acclimation following stress (Supplemental Table S5). A number of AMYLASE genes were
356	down-regulated, while three homologues of PHOSPHOENOLPYRUVATE CARBOXYKINASE 1,
357	three TREHALOSE-6-PHOSPHATE SYNTHASEs (TPS), a TREHALOSE-6-PHOSPHATE
358	PHOSPHATASE, three SUCROSE SYNTHASE (SUSY) and SEED IMBIBITION 1 and 2, which
359	encode raffinose synthases were up-regulated. Important genes involved in facilitating
360	transmembrane sugar and nitrogen transport were up-regulated. These included CELL WALL
361	INVERTASE 1, SWEET 17 and ERD SIX-LIKE 1, a homologue of a stress-inducible
362	monosaccharide transporter. Two homologues of AMINO ACID PERMEASE 2 and a nitrate
363	transporter NRT1:2 were up-regulated. These reflect a transcriptional up-regulation of
364	gluconeogenesis, sucrose, trehalose and raffinose metabolism and transport functions
365	during this transition.

367	Cell wall, pectin and cellulose metabolism was widely regulated during this transition,
368	through up-regulation of a number of genes encoding cellulose and glucan synthases pectin
369	methylesterase and invertase/pectin methylesterase inhibitors (Supplemental Table S5).
370	
371	Genes encoding redox-related functions were largely up-regulated, including homologues of
372	RBOHD, ROXY1 and ROXY2 (Supplemental Table S5). Ascorbate synthesis was positively
373	regulated through L-GALACTONO-1,4-LACTONE DEHYDROGENASE (GLDH), as was cysteine
374	through O-ACETYLSERINE (THIOL) LYASE (OAS-TL), while glutathione synthesis was mildly
375	down-regulated (ECS1). Response to hypoxia was also evident; homologues of 10/49
376	conserved hypoxia response genes were regulated only at this final transition (Mustroph et
377	al., 2009; Supplemental Table S5). These included ACC OXIDASE 1, LOB DOMAIN-
378	CONTAINING PROTEIN 41 (LBD41), SUSY4, PLANT CYSTEINE OXIDASE 1 (PCO1), and a
379	homologue of RBOHD (mentioned above), which were strongly up-regulated, consistent
380	with the function in hypoxic response. Also up-regulated were RELATED TO AP 2.3 (RAP2.3)
381	and LITTLE ZIPPER 2 (ZPR2), which have demonstrated functions in hypoxia (Weits et al.,
382	2019).
383	
384	Numerous genes encoding cell identity, meristem and flowering functions were up-
385	regulated in addition to those mentioned above (VRN1, VEL3, ZPR2, LBD41; Supplemental
386	Table S5). These include multiple homologues of WUSCHEL-RELATED HOMEOBOX proteins

387 (WOX1, 3, 4, 9), CLAVATA 1 (CLV1), CLAVATA3/ESR-RELATED 44 (CLE44) and SHOOT

388 MERISTEMLESS (STM).

389

- 390 The broad functions represented in the transcriptional changes from June to September are
- 391 consistent with a post-acclimation reorganisation of nuclear, metabolic and cellular
- 392 structure and function. The prominence of redox- and hypoxia-responsive genes may reflect
- a relationship to chromatin regulation and differentiation.
- 394

395 Comparison of quiescence and bud burst data

- 396 In earlier studies we have identified a number of developmentally and light-regulated
- transcripts during the early transition towards bud burst (Meitha et al., 2017; Signorelli et
- al., 2018). A comparison of those DEG data sets with the present set revealed 80 genes that
- 399 were differentially regulated in all studies (Supplemental Table S5). Of these only two were
- 400 not differentially regulated in the transition from winter to spring here. There was
- 401 considerable agreement between those genes regulated between winter and spring and
- 402 those light-regulated in the first 144 h of bud burst. This included the down-regulation of
- 403 DRM1 and a SNF1-related protein kinase KING1, and up-regulation CRYPTOCHROME 3
- 404 (CRY3), glutamyl t-RNA reductase HEMA1, GENOMES UNCOUPLED 4 (GUN4) and
- 405 *PROTOCHLOROPHYLLIDE OXIDOREDUCTASE C (PORC).*

406

407 *Cis*-regulatory element enrichment identifies common and unique stress- and

408 developmental gene regulation

- 409 To gain further insight to the prevailing transcriptional control during dormancy transitions,
- 410 we carried out enrichment analysis for known and *de novo cis*-regulatory motifs in the 1.2-
- 411 kb upstream region of the DEGs (Figure 4; Supplemental Table S6). A remarkably large
- 412 proportion of the total number of enriched motifs were common to all transitions (Figure
- 413 4b). Figure 4a shows the most significant (lowest p-value) motifs identified, and Figure 4c

Figure 4. Enrichment analysis of known *cis*-regulatory binding motifs identified in promoter regions DEGs (FDR \leq 0.01, Log₂FC [1]) at different stages of bud dormancy transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest *P* value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A scatter plot of selected unique motifs found in each comparison.

- 414 shows a selection of the unique motifs identified at each transition. The TEOSINTE
- 415 BRANCHED1, CYCLOIDEA, PCF (TCP) and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTORS
- 416 (ERF) binding sites featured prominently throughout (Figure 4a). Two WRKY motifs were
- 417 specifically represented in the April/ February dataset. Meanwhile the MYB3R and SPL
- 418 motifs predominated among enriched motifs in the September/ June dataset, suggesting a
- 419 prominent role of the MYB3R and SPL family transcription factors during the final transition
- 420 preceding bud burst.

422 Core cell cycle genes, water-relations and diverse roles of ERF family genes during

423 dormancy transitions

424	Our earlier studies have indicated oxygen and ethylene signalling (Meitha et al., 2015;
425	Meitha et al., 2017) and cell-cell transport (Signorelli et al., 2020) may hold key regulatory
426	roles in bud development. In addition, we have reviewed the role of cell cycle regulation as
427	a master or slave of dormancy transitions (Velappan et al., 2017). We thus sought to
428	evaluate the transcriptional data here for evidence in support of these functions. Previous
429	studies have identified a set of 61 core cell cycle genes in Arabidopsis (Vandepoele et al.,
430	2002), 138 members of the APETALA2/ethylene-responsive element binding protein
431	(AP2/EREBP) family of plant transcription factors (Riechmann and Meyerowitz, 1998) and 33
432	aquaporin genes (Ward, 2001) in Arabidopsis. We used Vitis 12X v.2.1 annotation file to
433	identify a set of Vitis homologues of these genes within our set of DEGs (Supplemental Table
434	S7). We identified 28 cell cycle and 7 aquaporin-related genes (purple and blue panel) which
435	were all up-regulated during the final transition preceding bud burst (June to September;
436	Figure 5, Supplemental Table S7). The dehydration-responsive element binding protein
437	(DREB) subfamily of the AP2/EREBP family were largely down-regulated from June to
438	September (Figure 5). As mentioned above, the grapevine homologue of the poplar EBB1
439	(DRN-LIKE) was strongly up-regulated in the April/February transition and unchanged
440	thereafter, which is not consistent with the proposed EBB1 function in other species
441	(Yordanov et al., 2014; Busov et al., 2016). Other AP2/EREBP family genes had no definitive
442	expression pattern, which suggests functional diversity amongst this family of transcription
443	factors.

444

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

DISCUSSION

447	Bud dormancy in woody perennials is understood to be a quantitative condition, however
448	questions remain of the measurable definition of dormancy in this context (Doorenbos,
449	1953; Samish, 1954; Lang et al., 1987; Rohde and Bhalerao, 2007; Cooke et al., 2012;
450	Considine and Considine, 2016; Camargo Alvarez et al., 2018). For this reason, we
451	predominantly use the terms BB_{50} and quiescence through the following discussion,
452	referring to the phenotype without suggesting the underlying physiological state.
453	
454	The extreme quiescence of summer buds is consistent with a checkpoint prior to
455	acclimation
456	The depth and seasonal dynamics of BB_{50} reported here for cv. Merlot (33°47'S) correlated
457	very well with those reported for cv. Merlot (44°50'N) and cv. Carignan (43°36'N) (Pouget,
458	1963; Nigond, 1967). There was also reasonable agreement with the seasonal dynamics
459	reported for cv. Thompson Seedless (33°34'S; Parada et al., 2016; Rubio et al., 2016; Rubio
460	et al., 2019), cv. Chardonnay and cv. Cabernet Sauvignon (46°17'N; Camargo Alvarez et al.,
461	2018), although the peak magnitude in days to bud burst reported therein was considerably
462	less. The studies of cv. Thompson Seedless, cv. Chardonnay and cv. Cabernet Sauvignon also
463	reported a more prolonged plateau at the peak of $\ensuremath{BB_{50}}$ than the studies of cv. Merlot and cv.
464	Carignan (Pouget, 1963; Nigond, 1967). The majority of other bud burst data reported for
465	summer or autumn quiescence of grapevine buds are not comparable to data reported
466	here, for example due to differences in experimental conditions (Or, 2009; Fennell et al.,
467	2015; Pérez and Noriega, 2018).

469	Trends in respiration data correlated well with that of cv. Merlot (44°50'N; Pouget, 1963)
470	and reasonably well with cv. Thompson Seedless (33°34'S; Parada et al., 2016). Parada et al.
471	(2016) reported an inverse relationship between respiration and BB_{50} . Our data show that
472	respiration was not a good predictor of the potential BB_{50} , as gas exchange rates of O_2 and
473	CO_2 remained high even in buds that developed a BB_{50} >250 d (Figure 1). Water content in
474	our data also failed to explain the dynamics of BB_{50} . Water content declined from ca . 55 to
475	45 g $H_2O.100g^{-1}$ fresh weight from February to March, while respiration and BB_{50} remained
476	high.

477

478	The first time point in this study was within 4 weeks of the summer solstice and the first
479	point used for differential gene expression analysis was at <i>ca</i> . 7 weeks. We found no
480	differentially expressed genes between these time points. Considering the definition of
481	Rohde and Bhalerao (2007), which we have adopted, the buds developed a highly dormant
482	state over this three week period, despite little change in day length, respiration rate,
483	desiccation, or gene expression, and prior to any exposure to chilling. The physiological and
484	transcriptional changes at subsequent time points were consistent with acclimation to cold
485	and desiccation, and the development of a highly quiescent state of metabolism and genetic
486	control. As a result, we question whether the state of quiescence measured during the
487	transition from late summer to autumn truly reflects bud dormancy sensu stricto. We
488	hypothesise that the extreme resistance to resume growth observed in buds sampled in late
489	summer and early autumn was a stress response, akin to secondary dormancy of seeds.
490	
404	Consider the second to be take to describe the second se

491 Secondary dormancy is a state induced in non-dormant seeds when exposed to

492 unfavourable conditions (Bewley, 1997; Finch-Savage and Footitt, 2017, and references

493	therein). Seed banks cycle through states of primary and secondary dormancy in nature, as
494	an adaptive response to changes in soil moisture and temperature and light availability. The
495	entry into secondary dormancy of seed appears to be regulated by the balance of ABA and
496	GA signalling pathways (Ibarra et al., 2016). Imbibed Arabidopsis seed induced into
497	secondary dormancy by darkness showed a decline in abundance and sensitivity to GA (GA $_4$;
498	Ibarra et al., 2016). While ABA synthesis was important for the development of secondary
499	dormancy, ABA sensitivity did not discriminate the dormancy states (Ibarra et al., 2016).
500	
501	Developmentally dependent effects of exogenous GA in particular have been well-
502	documented in buds of grapevine and other species (Lavee and May, 1997; Rinne et al.,
503	2011; Zheng et al., 2018b, and references therein). The sensitivity of buds to exogenous ABA
504	declined from late autumn to winter (cv. Early Sweet, 42°58'N), as the levels of endogenous
505	ABA catabolites and VvA8H-CYP707A4 accumulated (Zheng et al., 2015). Vines over-
506	expressing VvA8H-CYP707A4 showed a more rapid bud burst in explants collected from
507	autumn through winter, relative to wild type (Zheng et al., 2018a). In a related study,
508	exposure of explants collected in winter to GA_3 , GA_4 or GA_7 had an inhibitory effect on the
509	rate of bud burst (Zheng et al., 2018b). When collected in spring, treatment of explants with
510	GA_3 at day 0 transiently inhibited bud burst, while treatment at day 3 accelerated it (Zheng
511	et al., 2018b). The authors also demonstrated timing-dependent effects of exogenous GA_3
512	on buds pre-treated with hydrogen cyanamide or chilling.
513	
514	This knowledge provides a basis to explore the sensitivity of explants to ABA and GA
515	collected at different developmental states and treated following periods of time in forcing

516 conditions. For example, whether the sensitivity to GA declines in explants collected in late

517	summer following a period of forcing conditions. Such a study may test whether the buds
518	collected in late summer in the present study did develop a stress-induced dormancy state
519	akin to secondary dormancy, helping to substantiate the existence of a developmental
520	checkpoint prior to natural dormancy in the field. Notwithstanding this interpretation, the
521	accompanying physiological and transcriptome data reflect field-state of the buds.
522	
523	ABA-dependent processes govern early seasonal changes in transcription
524	As described above, ABA plays important roles in the acquisition of dormancy, as well as

- 525 cold, desiccation tolerance. In poplar, the function of ABA in the onset of dormancy is
- 526 downstream of photoperiod responses (Tylewicz et al., 2018). In our data, the transition
- 527 from summer to autumn accompanied a strong down-regulation of genes coding for the
- 528 ABA biosynthesis and responses, notably the synthesis of RFOs. Additional ABA- and RFO-
- 529 synthetic genes were down-regulated at the subsequent stage from autumn to winter, while
- 530 ABA signalling genes were down-regulated in the final transition to spring. However, we
- 531 found no clear evidence of a photoperiod response in our data. While V. riparia responds
- 532 strongly to photoperiod, V. vinifera is considered a facultative long day species (Fennell and
- 533 Hoover, 1991; Kühn et al., 2009; Pérez et al., 2009; Sreekantan et al., 2010; Pérez et al.,
- 534 2011; Fennell et al., 2015).
- 535

ABA positively regulates the synthesis of RFOs in a number of species, which in turn play important functions in development, energy homeostasis, desiccation tolerance and response to oxidative stress (Nishizawa-Yokoi et al., 2008; Nishizawa et al., 2008; Urano et al., 2009; Sengupta et al., 2015). In glasshouse grown vines, *in situ* buds of daylengthsensitive *V. riparia* accumulated ABA content up to 21 days after exposure to short days,

541 followed by a mild decline, while raffinose and trehalose metabolite levels did not 542 accumulate until 28-42 days, when the buds were deemed to be dormant (Fennell et al., 543 2015). Four homologues of GALACTINOL SYNTHASE were up-regulated at the dormant stage 544 (28-42 days) in the short day grown V. riparia against long day. The V. riparia data appear to 545 be consistent with those seen in apple and other temperate/ boreal species, where 546 homologues of GALACTINOL SYNTHASE showed strong circannual rhythms, that were 547 paralleled by the concentration of galactinol and raffinose (Cox and Stushnoff, 2001; Derory 548 et al., 2006; Pagter et al., 2008; Ibánez et al., 2013; Falavigna et al., 2018). Wang et al. 549 (2020) reported an increase in concentration of galactinol and stachyose in the explants 550 following exogenous ABA. In the absence of exogenous ABA however, there was little 551 temporal change in sugar and oligosaccharide content (Wang et al., 2020). 552 553 As described above, over-expression of VvA8H-CYP707A4 accelerated bud burst, whether forced in autumn, winter or spring (Zheng et al., 2018a). While homologues of A8H-CYP707A 554 555 were not differentially regulated, our data were consistent with a decline in ABA signalling 556 responses in the transition to spring, including the down-regulation of XERO1, DOG1, HAI2, 557 HAI3, DRM1, and genes coding for SNF1-related protein kinases. These data suggest that 558 ABA and RFO levels were already high in the buds of our earliest time point and played an 559 important function in the regulation of respiration, desiccation, acclimation to stress and 560 physiological quiescence during the transition to autumn.

561

562 Light and temperature responses implicate a role for blue light signalling in the

563 resumption of growth

564	In our data, regulation of CRY3, HEMA1, GUN4, PORC and the COR27 homologues were
565	among the most upstream transcriptional response to light and temperature. CRY3 encodes
566	a cryptochrome receptor for blue and UVA light. Together with other photoreceptors, it
567	positively regulates photomorphogenesis via the ELONGATED HYPOCOTYL5 (HY5)
568	transcription factor (Gangappa and Botto, 2016, and references therein). HY5 directly
569	regulates other light signalling genes, including those coding for the synthesis of chlorophyll
570	as seen prominently here; HEMA1, GUN4, PORC and a number of light harvesting
571	complexes. HY5, together with CRY3, HEMA1, GUN4 and PORC was light-regulated during
572	bud burst (Meitha et al., 2017; Signorelli et al., 2018), but not observed in the present data.
573	In addition, we observed down-regulation of DRM1 and KING1 in the transition to spring
574	here and in light-grown buds during bud burst (Meitha et al., 2017; Signorelli et al., 2018).
575	Both DRM1 and KING1 genes in Arabidopsis are repressed by blue light (Jiao et al., 2003;
576	Kleine et al., 2007), and blue light and cytokinins function together in photomorphogenic
577	processes during bud outgrowth (Roman et al., 2016; Signorelli et al., 2018).
578	
579	The COR27 and COR28 homologues are key integrators of light and temperature cues in
580	Arabidopsis (Fowler and Thomashow, 2002). The Arabidopsis COR27 and COR28 proteins
581	are stabilised by blue light and directly interact with HY5 in transcriptional regulation of
582	photomorphogenesis (Li et al., 2020). These proteins function downstream of CIRCADIAN
583	CLOCK ASSOCIATED 1 (CCA1) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) but
584	upstream of floral regulators, as well as playing a role in the development of freezing
585	tolerance (Li et al., 2016; Li et al., 2020). The prominent regulation of three COR27
586	homologues from autumn through to spring is thus consistent with a regulatory function of
587	blue light signalling via cryptochromes.

589 Redox and hypoxia signalling may play important roles in structural remodelling and DNA

590 synthesis and repair during bud development

- 591 There was prominent regulation of genes coding for redox homeostasis and carbon
- 592 metabolism at each transition. Sugar and nitrogen transporters, and genes coding for
- 593 gluconeogenesis were prominently down-regulated between summer and autumn, while
- these functions, together with activities that mobilise sugars from lipids, organic acids and
- 595 oligosaccharides were up-regulated from winter to spring. In the intervening transition from
- 596 autumn to winter there was little change, indicating metabolic quiescence. The synthesis of
- 597 cysteine, glutathione and ascorbate was strongly regulated in the transition to spring, along
- 598 with *RBOHD*, *ROXY1* and *ROXY2*, and other prominent redox processing functions.
- 599 Moreover, ten homologues of the 49 Arabidopsis hypoxia response genes (Mustroph et al.,
- 600 2009) were differentially regulated in the transition from winter to spring, together with
- 601 *RAP2.3* and *ZPR2* (Weits et al., 2019).
- 602

603 Redox processing plays important metabolic roles, and ROS are intricately involved in cell

expansion, cell-wall thickening and the conductivity of plasmodesmata (Gapper and Dolan,

605 2006; Benitez-Alfonso et al., 2011; Considine and Foyer, 2014). We have previously

606 demonstrated strong temporal and spatial correlation between ROS and lignin abundance

607 during bud burst in grapevine (Meitha et al., 2015), and data here indicate these processes

- 608 commence well before the acute transition to bud burst. Developmental hypoxia also plays
- 609 important roles in meristem functions and metabolic regulation, including during bud burst
- 610 (Considine et al., 2017; Meitha et al., 2017; Gibbs et al., 2018; Weits et al., 2019; Weits et
- al., 2020). The pO₂ data shown here are consistent with developmental control of hypoxia,

612	through metabolic regulation and diffusion constraints through structural changes. It is
613	important to indicate the strong regulation of the nuclear landscape, DNA synthesis and
614	repair, which was most prominent in the transition towards spring. Redox processing is
615	critical for enabling a competent rhythm during the cell cycle upon imbibition in seeds (de
616	Simone et al., 2017), and regulated ROS synthesis is important for DNA synthesis and repair,
617	and regulation of cell cycle transitions (Tsukagoshi et al., 2010; Velappan et al., 2017).
618	
619	CONCLUSIONS
619 620	CONCLUSIONS The form and phenology of grapevine displays considerable plasticity to climate and
619 620 621	CONCLUSIONS The form and phenology of grapevine displays considerable plasticity to climate and seasonality. For the first time, we have established a field-based platform for systems
619 620 621 622	CONCLUSIONS The form and phenology of grapevine displays considerable plasticity to climate and seasonality. For the first time, we have established a field-based platform for systems approaches to study the regulation of quiescence in grapevine from bud set to bud burst.
619 620 621 622 623	CONCLUSIONS The form and phenology of grapevine displays considerable plasticity to climate and seasonality. For the first time, we have established a field-based platform for systems approaches to study the regulation of quiescence in grapevine from bud set to bud burst. Further development of this platform will enable advanced understanding of vine phenology

625 late summer to resume growth, which was not consistent with the seasonal dynamics in

respiration or hydration, nor the differential gene expression. We hypothesise the existence

of a physiological checkpoint following bud set, which if not met results in extreme

628 quiescence. This reveals important considerations for interpreting bud forcing bioassays,

629 which are widely used as a quantitative measure of dormancy. Interpretations of the field-

630 state data however were consistent with an important regulatory role for ABA in the onset

of dormancy and acclimation. Specific gene regulation of light, hypoxia and redox signalling

632 functions during the transition to spring were accompanied by strong up-regulation of

histone and chromatin regulators, together with canonical genes of the cell cycle and

634 meristem identity. In addition, the prominent induction of aquaporin-related genes in spring

635 suggested an important role of water transport in enabling the resumption of growth and

- 636 communication prior to bud burst. Together, this study provides critical insight to the
- 637 understanding of the regulation of quiescence, and prompts wider investigation of the
- 638 seasonal and climate-dependencies of phenology in grapevine.

640 MATERIALS AND METHODS

641 Unless otherwise stated, all chemicals were supplied by Sigma Aldrich, NSW, Australia.

642

643 Plant material

- 644 Material for this study was collected from 275 similarly vigorous, non-consecutive vines of
- 645 V. vinifera (L.) cv. Merlot (clone FVD3v14/VX/UCD on own roots), across six rows in a
- 646 commercial vineyard from the Margaret River region in Western Australia, Australia (33°47'S
- 647 115°02'E). The Margaret River region has a maritime temperate climate, with mean annual
- 648 temperatures 10.7-21.4 °C, predominantly winter rainfall of 957 mm per annum, and
- 649 elevation 80 m (http://www.bom.gov.au/climate/averages/tables/cw_009746.shtml).
- 650 Merlot is typically pruned in the first week of July, with bud burst occurring in early
- 651 September. The vines used in this study were not pruned until following the final sampling
- in September, at which point <10 % buds had burst in the field. Vines used in this study
- 653 were not treated with hydrogen cyanamide (H_2CN_2) in the field.
- 654

Prior to the study, the canes were tagged from numbered vines and randomly assigned to

- 656 collection dates. Canes of diameter 5-12 mm, comprising nodes 2-11 acropetally (where
- node 1 is the node above the first internode >7 mm) were collected from specific vines from
- 658 mid-summer in January through to spring in September in the years 2015 and 2016 on 12
- 659 sampling dates (28 January, 10 February, 23 February, 11 March, 23 March, 7 April, 28 April,
- 660 20 May, 7 June, 7 July, 5 August and 1 September) in 2015 and 5 sampling dates (6 January,
- 15 February, 10 May, 10 August and 23 September) in 2016 (Figure 1a). At the earliest
- sampling time (January), all basal buds up to node >15 were mature and lignified (data not
- shown). Immediately following sampling, the canes were stored at 20 °C in the dark for

664	<48 h, during which time all respiratory and tissue oxygen partial pressure (pO_2) analyses
665	were performed. Nodes were randomly assorted to the assays, such that a single node is the
666	basic biological unit, and where necessary, multiple buds were pooled into one biological
667	replicate, as described for each method herein. Buds for the gene expression profiling
668	(RNAseq) were snap-frozen at sampling and stored at -80 °C. All the material was collected
669	between 7 to 10 am, to avoid changes in gene expression due to circadian regulation.
670	
671	Depth of dormancy (BB ₅₀)
672	Bud dormancy was measured using single node explants, which is a commonly used system
673	to study the physiology of early shoot and inflorescence development in grapevine (Pouget,
674	1963; Mullins, 1966; Nigond, 1967; Antolín et al., 2010), and excludes the influence of
675	adjacent or distant organs. Each explant comprised ca. 50 mm of cane beneath and 10 mm
676	cane above the node, diameter <i>ca</i> . 7-12 mm. Explants were grown in potting mix (pH~6.0
677	fine composted pine bark : coco peat : brown river sand, ratio $2.5:1:1.5$ (w/w)) in a
678	controlled temperature room at 20 °C, 12 h photoperiod, illuminated with fluorescent light
679	at 100 μ mol.m ⁻² .s ⁻¹ . Soil moisture was maintained at >80% of water holding capacity.
680	
681	Because bud burst varies stochastically, 50 buds were used to represent the dormancy state
682	of the population at the time of sampling. H_2CN_2 was used as a positive control, as it is a
683	widely used dormancy breaking agent and has also been widely studied in the context of

bud dormancy. For the H_2CN_2 treatment, 50 buds were immersed in 2.5 % v/v Dormex[®]

685 (Crop Care, Australasia; equal to 0.31 M H₂CN₂), for 20 seconds and air dried prior to

- transplanting. The untreated buds were immersed in distilled water for 20 s and air dried
- 687 prior to planting. The stage of bud burst was scored at the emergence of visible green leaf

688	tips (EL4), according to the modified Eichorn-Lorenz scale (Coombe, 1995). Bud burst was
689	recorded three times per week for up to 350 d or until 100 % bud burst, and the depth of
690	dormancy was calculated as the time to reach 50 % bud burst (25/ 50 buds burst; BB_{50}).
691	
692	Climate and chilling data
693	The weather data was obtained from the Moss Wood vineyard in Margaret River, Western
694	Australia for 2015 and 2016. Average daily mean air temperatures were calculated from
695	hourly air temperatures using the R statistical package (R Core Team, 2020) and plotted
696	using ggplot2 package of R (Wickham, 2009) as scatter dot plots fitted with a quadratic
697	spline with degree of freedom (df)=4 and degree=2. The photoperiod data was obtained
698	from the website http://aa.usno.navy.mil/cgi-bin/aa_rstablew.pl and plotted using the
699	ggplot2 package of R (Wickham, 2009) as a line plot.
700	
701	Chilling data were modelled by three methods; the Daily Positive Utah Chill Unit (DPCU)
702	model (Linsley-Noakes and Allan, 1994), the Utah model (Richardson et al., 1974), and the
703	base 7.2 °C model. The cumulative chilling was calculated for each day from the raw data
704	and represented as a line plot using R package (R Core Team, 2020) and ggplot2 package of
705	R (Wickham, 2009) respectively.
706	
707	Bud moisture content
708	Ten buds per biological replicate (3 biological replicates) were transversely sectioned from
709	the canes and their fresh weight was recorded. All buds were inspected for signs of necrosis

prior to including them in the analysis. Dry weight was calculated post-drying at 60 °C for

711 7 d, and moisture content was calculated as g $H_2O.100g^{-1}$ fresh weight.

713 Bud respiration

- 714 Five buds per biological replicate (3 biological replicates) were transversely sectioned from
- the canes and weighed immediately and placed on a thin agar plate, sectioned side down, to
- prevent dehydration and gas exchange from the cut base. Rate of O₂ uptake and CO₂ release
- 717 were calculated.

718

- 719 O_2 uptake: The rate of O_2 uptake for every biological replicate was measured in the dark
- vith Clark-type O₂ using Unisense MicroRespiration system (OX-MR, Unisense, Denmark) with Clark-type O₂
- 721 microsensor in a 4 mL respiration chamber at a constant temperature of 20 °C (Shaw et al.,

2017). The readings were obtained using the SensorTrace RATE software (Unisense,

- 723 Denmark).
- 724
- 725 CO₂ release: The rate of CO₂ release was measured in the dark, in an insect respiration

726 chamber (6400-89; Li-COR, Lincoln, NB, USA) attached to a Li-6400XT portable gas exchange

system at 20 °C, in CO₂-controlled air (380 μ mol CO₂.mol⁻¹ air) with 100 μ mol.m⁻¹.s⁻¹ air flow,

728 at 55–75 % relative humidity. The measurements were recorded once the 'stableF' value

- read 1 (i.e. after stabilization of humidity, CO₂ and air flow) following transfer of sample to
- the chamber. The readings obtained were later analysed.
- 731

732 Internal bud O₂ partial pressure (pO₂)

The internal pO_2 of 3 to 4 in 2015 (6 in 2016) biological replicates with one single bud cutting per replicate was measured in the dark at 20 °C using a Clark-type oxygen micro-sensor with a tip diameter of 25 μ m (OX-25; Unisense A/S, Aarhus, Denmark). The microelectrode was

736	calibrated at atmospheric pO_2 of 20.87 kPa and at zero pO_2 (100 % nitrogen gas). Then
737	mechanically guided into the bud, starting from the outer scale surface at 0 μm to the inner
738	meristematic core at 2000 μm , in 25 μm steps with a stabilizing pause of 3 s in between
739	steps with the aid of a motorized micro-manipulator, as previously described (Shaw et al.,
740	2017). The values were recorded automatically at the end of each step (i.e. every 25 μm).
741	The readings were processed using the SensorTrace RATE software (Unisense, Denmark),
742	analysed using R statistical package (R Core Team, 2020) and presented in graphical form
743	using the ggplot2 package of R (Wickham, 2009), data fitted with a LOESS regression curve
744	at 95 % confidence intervals (n=3 to 6 per month per year).
745	
746	Physiological data analysis and statistics
747	All calculations were performed using Microsoft Excel 2016 and R statistical package (R Core
748	Team, 2020) and graphics were compiled using the ggplot2 package of R (Wickham, 2009).
749	At least three biological replicates were used per analysis. Significant differences among
750	various sampling dates were corroborated statistically by applying one-way ANOVA test,
751	using Tukey's honestly significant difference (HSD) posthoc test with <i>P</i> ≤0.01.
752	
753	RNA isolation, library preparation and RNAseq
754	RNA extractions and libraries (three biological replicates of 2-3 buds each per condition, ca.
754 755	RNA extractions and libraries (three biological replicates of 2-3 buds each per condition, <i>ca</i> . 50 ng) were prepared from material collected at the corresponding dates (Figure 1a) and
754 755 756	RNA extractions and libraries (three biological replicates of 2-3 buds each per condition, <i>ca</i> . 50 ng) were prepared from material collected at the corresponding dates (Figure 1a) and prepared for sequenced as described in Meitha et al. (2017), with minor modifications.

- 758 (Illumina, Scorseby, Australia) according to manufacturer's instructions. RNAseq was
- performed on an Illumina HiSeq2500 by Novogene (Hong Kong) at *ca*. 9 Gb data of 150 pair-

- 760 end (PE) reads per library. Raw data files have been submitted to NCBI (BioProject ID
- 761 PRJNA575976, http://www.ncbi.nlm.nih.gov/bioproject/575796).
- 762

763 **RNAseq data processing and analysis**

764	Transcriptomic data analysis was performed according to Meitha et al. (2017) with minor
765	modifications, and summary statistics of read length and read mapping are provided in
766	Supplemental Table S2. Briefly, FastQC software was used to assess the quality of the fastq
767	files (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter and quality
768	trimming were performed using Trimmomatic (Bolger et al., 2014) with default settings.
769	Salmon (Patro et al., 2017), a pseudoalignment algorithm was used to map the trimmed
770	reads to the 12X v2.1 V. vinifera PN40024 reference genome (Canaguier et al., 2017) with
771	sequence-specific and GC bias correction, and quantify gene expression. The grapevine
772	reference genome and annotation were obtained from the Phytozome v.12.1 database
773	(Goodstein et al., 2012). The counts matrix obtained from Salmon was read into edgeR
774	(Robinson et al., 2010), then normalized using the trimmed mean of M values (TMM)
775	method to log counts per million reads (logCPM) and filtered to remove lowly expressed
776	genes i.e. genes with <1 reads in any sample. Graphical representations of the data before
777	and after normalization are presented in Supplemental Figure S2 (a and b). The quality of
778	the replicates was checked using unsupervised clustering of samples before and after
779	normalisation and presented in the multi-dimensional scaling (MDS) plot (Supplemental
780	Figure S2c). The normalized counts for each gene were further transformed and fitted into a
781	linear model using the Voom function from limma (Law et al., 2014). Mean-variance
782	relationships were evaluated before and after Voom precision weights were applied to the
783	data (Supplemental Figure S3).

785	Differentially expressed gene (DEG) analysis was carried out using edgeR and limma
786	(Robinson et al., 2010; Ritchie et al., 2015) Bioconductor packages with default settings. P
787	values were corrected for multiple testing using the Benjamini-Hochberg method (FDR \leq
788	0.01) (Benjamini and Hochberg, 1995). The data were then filtered to consider only genes
789	with an absolute Log_2Fold Change ≥ 1 ($Log_2FC 1 $).
790	
791	Functional enrichment analysis
792	Three lists of DEGs from each comparison, up- and down-regulated genes and all (up- plus
793	down-regulated genes) were used to perform a functional enrichment analysis using
794	GOstats (Falcon and Gentleman, 2007) in R. This was done to identify significant functional
795	categories of the genes based on V. vinifera functional classification of 12X v. 2.1. GOstats
796	uses the hypergeometric distribution (a widely used method to test for overrepresentation),
797	to compare each DEG list with the list of total genes. Gene ontology (GO) terms with P<0.05
798	were considered to be significantly enriched. All plots were rendered using the gplots and
799	ggplots programs in R.
800	
801	Known <i>cis</i> -regulatory motif analysis
802	Grapevine promoter sequences (1.2 kb upstream of the coding sequence) of all annotated
803	V. vinifera 12X v.2.1 genes (which is referred to as the background) were obtained from the

- 804 Grape Genome Database (Vitulo et al., 2014). Subsets of promoter sequences of DEGs from
- 805 the three comparisons February-April, April-June, June-September were retrieved from all
- 806 Grapevine genes promoter sequences i.e. the background. Each gene set was analysed for

- 807 enriched transcription factor binding motifs/cis-elements using by using Homer v.4.11
- 808 (Heinz et al., 2010) findMotifs.pl script with default parameters.
- 809

810 Acknowledgements

- 811 We are extremely grateful to Keith Mugford and his team of Moss Wood Vineyards in
- 812 Margaret River for their generous information, support and for enabling the sampling to
- 813 continue at irregular times. We also acknowledge support and teamwork of other
- 814 laboratory members, particularly Dr Karlia Meitha, Dr Dina Hermawaty, Juwita Dewi and
- 815 Wisam Salo.

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

816 Figure legends

817	Figure 1. Dormancy and physiology of grapevine buds sampled throughout the season in
818	the Margaret River region of Western Australia (2015, 33°S latitude). (a) Phenological
819	calendar showing the sampling dates for 2015 and 2016 in this study and corresponding
820	seasons. The calendar position of the bud images indicates the sample times used for RNA
821	sequencing. (b) The depth of dormancy of single-node explants collected in 2015 and grown
822	forcing conditions, expressed as the time to 50 % bud burst (BB $_{50}$; n=50). Control (C) and
823	buds treated with 0.31 M hydrogen cyanamide (H_2CN_2). (c) Water content (n=3) and (d)
824	respiration (n=4) of samples collected at the corresponding dates. Vertical bars on (c) and
825	(d) represent $s_{\overline{x}}$. Data for 2016 provided in Supplemental Table S1.
826	
827	Figure 2. Tissue oxygen partial pressure (pO_2) profiles in grapevine buds sampled from
828	summer to spring in the Margaret River region of Western Australia in 2015 and 2016.
828 829	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with
828 829 830	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with the exception of February (2016 only, n=3). Sample dates (Feb, May, Aug and Sep) are shown
828 829 830 831	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with the exception of February (2016 only, n=3). Sample dates (Feb, May, Aug and Sep) are shown in Figure 1a. Data show the pO2 from immediately within the outer scales (0 µm depth) to
828 829 830 831 832	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with the exception of February (2016 only, n=3). Sample dates (Feb, May, Aug and Sep) are shown in Figure 1a. Data show the pO2 from immediately within the outer scales (0 μm depth) to the region of the meristematic core of the primary bud (2000 μm). Atmospheric oxygen is
828 829 830 831 832 833	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with the exception of February (2016 only, n=3). Sample dates (Feb, May, Aug and Sep) are shown in Figure 1a. Data show the pO2 from immediately within the outer scales (0 μm depth) to the region of the meristematic core of the primary bud (2000 μm). Atmospheric oxygen is <i>ca</i> . 21 kPa pO ₂ . The plot represents a regression curve with 95 % confidence intervals.
828 829 830 831 832 833 834	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with the exception of February (2016 only, n=3). Sample dates (Feb, May, Aug and Sep) are shown in Figure 1a. Data show the pO2 from immediately within the outer scales (0 μm depth) to the region of the meristematic core of the primary bud (2000 μm). Atmospheric oxygen is <i>ca</i> . 21 kPa pO ₂ . The plot represents a regression curve with 95 % confidence intervals.
828 829 830 831 832 833 834 835	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with the exception of February (2016 only, n=3). Sample dates (Feb, May, Aug and Sep) are shown in Figure 1a. Data show the pO2 from immediately within the outer scales (0 µm depth) to the region of the meristematic core of the primary bud (2000 µm). Atmospheric oxygen is <i>ca</i> . 21 kPa pO ₂ . The plot represents a regression curve with 95 % confidence intervals.
828 829 830 831 832 833 833 834 835 836	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with the exception of February (2016 only, n=3). Sample dates (Feb, May, Aug and Sep) are shown in Figure 1a. Data show the pO2 from immediately within the outer scales (0 µm depth) to the region of the meristematic core of the primary bud (2000 µm). Atmospheric oxygen is ca. 21 kPa pO ₂ . The plot represents a regression curve with 95 % confidence intervals.
828 829 830 831 832 833 834 835 836 836 837	summer to spring in the Margaret River region of Western Australia in 2015 and 2016. Buds were collected over two consecutive seasons (2015, 2016), n=6 individual buds, with the exception of February (2016 only, n=3). Sample dates (Feb, May, Aug and Sep) are shown in Figure 1a. Data show the pO2 from immediately within the outer scales (0 µm depth) to the region of the meristematic core of the primary bud (2000 µm). Atmospheric oxygen is ca. 21 kPa pO ₂ . The plot represents a regression curve with 95 % confidence intervals. Figure 3. PCA plot of normalized count data, and Venn diagrams and functional enrichment analysis of differentially expressed genes (DEG) from grapevine buds collected

839 September. (a) Principal components analysis (PCA) of normalized read counts (S1-January;

840	S2-February; S3-March; S4-April; S6-June; S9-September). (b) Venn diagrams indicating the
841	number of significant (FDR \leq 0.01, Log ₂ FC [1]) DEGs across three comparisons and the
842	overlap between each set of genes separated into up- and down-regulated genes.
843	Horizontal bar plots of selected functional categories significantly enriched ($P \le 0.05$ using
844	the hypergeometric test) in the developmental comparisons February-April (c), April-June
845	(d) and June to September (e). Three different functional enrichment analyses were
846	performed for each comparison, where "ALL" (up- plus down-regulated genes), "UP" (up-
847	regulated genes) and "DOWN" (down-regulated genes) make reference to the list of genes
848	assessed.
849	
850	Figure 4. Enrichment analysis of known <i>cis</i> -regulatory binding motifs identified in
851	promoter regions DEGs (FDR \leq 0.01, Log ₂ FC 1) at different stages of bud dormancy
852	transition for the comparisons, February to April, April to June and June to September. (a)
852 853	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the
852 853 854	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b)
852 853 854 855	 transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A
852 853 854 855 856	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A scatter plot of selected unique motifs found in each comparison.
852 853 854 855 856 857	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A scatter plot of selected unique motifs found in each comparison.
852 853 854 855 856 857 858	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A scatter plot of selected unique motifs found in each comparison. Figure 5. Differential expression of putative cell cycle, aquaporin (water relations) and
852 853 854 855 856 857 858 859	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A scatter plot of selected unique motifs found in each comparison. Figure 5. Differential expression of putative cell cycle, aquaporin (water relations) and APETALA2/Ethylene Responsive Factor (AP2/ERF) genes among the DEGs (FDR ≤ 0.01,
852 853 854 855 856 857 858 859 860	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A scatter plot of selected unique motifs found in each comparison. Figure 5. Differential expression of putative cell cycle, aquaporin (water relations) and APETALA2/Ethylene Responsive Factor (AP2/ERF) genes among the DEGs (FDR ≤ 0.01, Log₂FC [1]) during different stages of bud dormancy transition February to April, April to
852 853 854 855 856 857 858 859 860 861	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A scatter plot of selected unique motifs found in each comparison. Figure 5. Differential expression of putative cell cycle, aquaporin (water relations) and APETALA2/Ethylene Responsive Factor (AP2/ERF) genes among the DEGs (FDR ≤ 0.01, Log₂FC [1]) during different stages of bud dormancy transition February to April, April to June and June to September. Homologues of core cell cycle genes of Arabidopsis
852 853 854 855 856 857 858 859 860 861 862	transition for the comparisons, February to April, April to June and June to September. (a) Bar plots showing the 10 most significantly enriched motifs (lowest <i>P</i> value) for the comparisons, February-April (red), April-June (blue) and June to September (green). (b) Venn diagram discriminating the common and unique motifs in the three comparisons. (c) A scatter plot of selected unique motifs found in each comparison. Figure 5. Differential expression of putative cell cycle, aquaporin (water relations) and APETALA2/Ethylene Responsive Factor (AP2/ERF) genes among the DEGs (FDR ≤ 0.01, Log ₂ FC 1) during different stages of bud dormancy transition February to April, April to June and June to September. Homologues of core cell cycle genes of Arabidopsis (Vandepoele <i>et al.</i> , 2002) are shown in the upper panel of the heatmap (adjacent the purple

864	(Riechmann and Me	yerowitz, 1998) are showr	n in the blue panel of the heatma	ар
-----	-------------------	---------------------------	-----------------------------------	----

- 865 Homologues of aquaporin genes of Arabidopsis (Ward, 2001) are shown in the lower three
- 866 panels of the heatmap (orange-yellow).
- 867

868 Supplemental data files

- 869 Supplemental Figure S1. Seasonal changes in photoperiod, temperature and cumulative
- 870 chilling in the Margaret River region of Western Australia (2015). (a) Daylength (Source:
- https://aa.usno.navy.mil), (b) minimum (grey) and maximum (black) daily air temperature:
- local, daily, uncorrected records), and (c) cumulative chill units by three models: Daily
- 873 Positive Utah Chilling Units (Linsley-Noakes and Allan, 1994), Utah model (Richardson et al.,
- 1974) and base 7.2 °C. All values were calculated from the raw data collected at 15 min
- 875 intervals.
- 876
- 877 Supplemental Figure S2. Box plots of read counts/effective library sizes before and after

878 normalization and a multi-dimensional scaling (MDS) plot showing the similarities and

dissimilarities between samples. Boxplots of log2 values showing expression distributions (a)

before and (b) after normalization. (c) A multi-dimensional scaling (MDS) plot showing the

881 similarities and dissimilarities between samples after normalization

882

Supplemental Figure S3. Scatterplots of the distribution of means (x-axis) and variances (yaxis) of each gene showing the dependence between the two (a) before and (b) after Voom
is applied to the data. Voom extracts residual variances from fitting linear models to logCPM transformed data.

887

888	Supplemental	Table S1. Bud bur	st, physiological	and climate data	for 2015 and 2016 Merlot
-----	--------------	-------------------	-------------------	------------------	--------------------------

- buds grown in Margaret River region of Western Australia (33°S latitude). (a) Bud burst,
- days to 50 % bud burst (n=50). (b) Respiration and hydration (n=3). (c) Chilling data
- according to the Positive Daily Chilling Units model. (d) Rainfall.
- 892
- 893 Supplemental Table S2. RNA-Seq data statistics describing reads pre- and post -quality
- control and number of reads that mapped to the genome (effective library size).
- 895
- Supplemental Table S3. Number of genes differentially expressed (FDR \leq 0.01, log2FC [1])
- in developmental comparisons from grapevine buds sampled from summer to spring in the
- 898 Margaret River region of Western Australia in 2015. Comparisons are developmental
- 899 transition for April/ February, June/ April and Sept/ June sampling dates (NCBI BioProject ID
- 900 PRJNA575976, http://www.ncbi.nlm.nih.gov/bioproject/575796).
- 901
- 902 Supplemental Table S4. Statistically significant gene ontology (GO) terms of differentially

903 expressed genes in grapevine buds sampled from summer to spring in the Margaret River

- 904 region of Western Australia in 2015. Comparisons are developmental contrasts for April/
- 905 February, June/ April and Sept/ June sampling dates.
- 906
- 907 **Supplemental Table S5.** A subset of Supplemental Table S3 referring to specific genes
- 908 outlined in the manuscript. Comparisons are developmental transition for April/ February,
- 909 June/ April and Sept/ June sampling dates. An additional worksheet shows a comparison of
- 910 differentially expressed genes in the present study with that from Meitha et al., 2017 and

- 911 Signorelli et al., 2018; data are conditionally formatted for up-regulated genes (green) and
- 912 down-regulated genes (blue).
- 913
- 914 Supplemental Table S6. Statistically enriched known cis-elements/motifs 1.2 kB upstream
- 915 the transcriptional start site (TSS) of differentially expressed genes in grapevine buds
- sampled from summer to spring in the Margaret River region of Western Australia in 2015.
- 917 Comparisons are developmental contrasts for April/ February, June/ April and Sept/ June
- 918 sampling dates.
- 919
- 920 Supplemental Table S7. Homologues of cell cycle, aquaporin and AP2/ERF genes and their
- 921 expression patterns in the DEG data set, as used for Figure 5.

Parsed Citations

Aguilar-Martínez J.A, Poza-Carrión C. & Cubas P. (2007) Arabidopsis BRANCHED1 Acts as an Integrator of Branching Signals within Axillary Buds. The Plant Cell 19, 458.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Alejandra Mandel M., Gustafson-Brown C., Savidge B. & Yanofsky M.F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277. Google Scholar: Author Only Title Only Author and Title

Alexandersson E., Danielson J., Råde J., Moparthi V.K., Fontes M., Kjellbom P. & Johanson U. (2009) Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. The Plant Journal 61, 650–60. Google Scholar: Author Only Title Only Author and Title

Al-Shahrour F., Díaz-Uriarte R. & Dopazo J. (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580.

Google Scholar: Author Only Title Only Author and Title

Aloni R., Raviv A & Peterson C.A (1991) The role of auxin in the removal of dormancy callose and resumption of phloem activity in Vitis vinifera. Canadian Journal of Botany 69, 1825-1832.

Google Scholar: Author Only Title Only Author and Title

Aoni R. & Peterson C.A. (1991) Seasonal changes in callose levels and fluorescein translocation in the phloem of Vitis vinifera L. IAWA Bulletin 12, 223-234.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Antolín M.C., Santesteban H., Ayari M., Aguirreolea J. & Sánchez-Díaz M. (2010) Grapevine Fruiting Cuttings: An Experimental System to Study Grapevine Physiology Under Water Deficit Conditions. In Methodologies and Results in Grapevine Research. (eds S. Delrot, H. Medrano, E. Or, L. Bavaresco & S. Grando), pp. 151–163. Springer, Dordrecht.

Google Scholar: Author Only Title Only Author and Title

Anzanello R., Fialho F. & Pessoa dos Santos H. (2018) Chilling requirements and dormancy evolution in grapevine buds. Ciência e Agrotecnologia 42, 364–371.

Google Scholar: Author Only Title Only Author and Title

Argyros R.D., Mathews D.E., Chiang Y.-H., Palmer C.M., Thibault D.M., Etheridge N., ... Schaller G.E. (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. The Plant Cell 20, 2102-2116. Google Scholar: Author Only <u>Title Only Author and Title</u>

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., ... Sherlock G. (2000) Gene Ontology: tool for the unification of biology. Nature Genetics 25, 25–29.

Google Scholar: Author Only Title Only Author and Title

Bangerth F., Li C.-J. & Gruber J. (2000) Mutual interaction of auxin and cytokinins in regulating correlative dominance. Plant Growth Regulation 32, 205–217.

Google Scholar: Author Only Title Only Author and Title

Barbier F.F., Dun E.A., Kerr S.C., Chabikwa T.G. & Beveridge C.A. (2019) An Update on the Signals Controlling Shoot Branching. Trends in Plant Science 24, 220–236.

Google Scholar: Author Only Title Only Author and Title

Beauvieux R., Wenden B. & Dirlewanger E. (2018) Bud Dormancy in Perennial Fruit Tree Species: A Pivotal Role for Oxidative Cues. Frontiers in Plant Science 9, 657.

Google Scholar: Author Only Title Only Author and Title

Bielenberg D., Wang Y., Li Z, Zhebentyayeva T., Fan S., Reighard G., ... Abbott A (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes 4, 495–507.

Google Scholar: Author Only Title Only Author and Title

Benjamini Y. & Hochberg Y. (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289–300. Google Scholar: Author Only Title Only Author and Title

Bewley J.D. (1997) Seed Germination and Dormancy. The Plant Cell 9, 1055. Google Scholar: Author Only Title Only Author and Title

Bolger A.M., Lohse M. & Usadel B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. Google Scholar: Author Only Title Only Author and Title

Boss P.K., Thomas M.R. (2002) Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416, 847-850.

Google Scholar: Author Only Title Only Author and Title

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Bray N.L., Pimentel H., Melsted P. & Pachter L. (2016) Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34, 525. Google Scholar: Author Only Title Only Author and Title

Brewer P.B., Yoneyama K., Filardo F., Meyers E., Scaffidi A, Frickey T., ... Beveridge C.A. (2016) LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113, 6301–6306.

Google Scholar: Author Only Title Only Author and Title

Busov V., Carneros E. & Yakovlev I. (2016) EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials. Plant Signaling & Behavior 11, e1073873.

Google Scholar: Author Only Title Only Author and Title

Camargo Alvarez H., Salazar-Gutiérrez M., Zapata D., Keller M. & Hoogenboom G. (2018) Time-to-event analysis to evaluate dormancy status of single-bud cuttings: an example for grapevines. Plant Methods 14, 94. Google Scholar: Author Only Title Only Author and Title

Canaguier A, Grimplet J., Di Gaspero G., Scalabrin S., Duchêne E., Choisne N., ... Adam-Blondon A-F. (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genomics Data 14, 56–62. Google Scholar: Author Only Title Only Author and Title

Cardon G., Höhmann S., Klein J., Nettesheim K., Saedler H. & Huijser P. (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237, 91–104.

Google Scholar: Author Only Title Only Author and Title

Cardon G.H., Höhmann S., Nettesheim K., Saedler H. & Huijser P. (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. The Plant Journal 12, 367–377. Google Scholar: Author Only Title Only Author and Title

Chaib J., Torregrosa L., Mackenzie D., Corena P., Bouquet A & Thomas M.R. (2010) The grape microvine - a model system for rapid forward and reverse genetics of grapevines. The Plant Journal 62, 1083-1092.

Google Scholar: Author Only Title Only Author and Title

Chang R., Jang C.J.H., Branco-Price C., Nghiem P. & Bailey-Serres J. (2012) Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. Plant Molecular Biology 78, 109–122.

Google Scholar: Author Only Title Only Author and Title

Chen H., Lai Z, Shi J., Xiao Y., Chen Z & Xu X (2010). Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology 10, 281. Google Scholar: <u>Author Only Title Only Author and Title</u>

Chuine I., Kramer K. & Hänninen H. (2003) Plant Development Models. In Phenology: An Integrative Environmental Science. Tasks for Vegetation Science (eds M.D. Schwartz) pp. 217-235. Springer, Dordrecht.

Google Scholar: Author Only Title Only Author and Title

Considine M.J. & Considine J.A (2016) On the language and physiology of dormancy and quiescence in plants. Journal of Experimental Botany 67, 3189–3203.

Google Scholar: Author Only Title Only Author and Title

Considine M.J., Diaz-Vivancos P., Kerchev P., Signorelli S., Agudelo-Romero P., Gibbs D.J. & Foyer C.H. (2017) Learning to breathe: Developmental phase transitions in oxygen status. Trends in Plant Science 22, 140-153. Google Scholar: <u>Author Only Title Only Author and Title</u>

Considine M.J. & Foyer C.H. (2014) Redox Regulation of Plant Development. Antioxidants & Redox Signaling 21, 1305–1326. Google Scholar: <u>Author Only Title Only Author and Title</u>

Cooke J.E.K., Eriksson M.E. & Junttila O. (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell & Environment.

Google Scholar: Author Only Title Only Author and Title

Coombe B.G. (1995) Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research 1, 104–110.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Cragin J.J. (2015) Viticulture performance and cold hardiness attributes of select winegrape cultivars in the Western Snake River plain of Idaho. PhD Thesis, Boise State University. Google Scholar: Author Only Title Only Author and Title

Díaz-Riquelme J., Grimplet J., Martínez-Zapater J.M. & Carmona M.J. (2012) Transcriptome variation along bud development in grapevine (Vitis vinifera L.). BMC Plant Biology 12, 181–181.

Google Scholar: Author Only Title Only Author and Title

Dokoozlian N.K. (1999) Chilling Temperature and Duration Interact on the Budbreak of `Perlette' Grapevine Cuttings. HortScience 34,

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1054-1056.

Google Scholar: Author Only Title Only Author and Title

Dokoozlian N.K., Williams L. & Neja R.A. (1995) Chilling Exposure and Hydrogen Cyanamide Interact in Breaking Dormancy of Grape Buds. HortScience 30, 1244-1247.

Google Scholar: Author Only Title Only Author and Title

Dun E.A., de Saint Germain A, Rameau C. & Beveridge C.A. (2012) Antagonistic Action of Strigolactone and Cytokinin in Bud Outgrowth Control. Plant Physiology 158, 487–498.

Google Scholar: Author Only Title Only Author and Title

El Yaacoubi A, Malagi G., Oukabli A, Citadin I., Hafidi M., Bonhomme M. & Legave J.-M. (2016) Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees. International Journal of Biometeorology 60, 1695–1710.

Google Scholar: Author Only Title Only Author and Title

Ewels P., Magnusson M., Lundin S. & Käller M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048.

Google Scholar: Author Only Title Only Author and Title

Fennel A & Hoover, E. (1991) Photoperiod Influences Growth, Bud Dormancy, and Cold Acclimation in Vitis labruscana and V. riparia. Journal of the American Society for Horticultural Science 116, 270-273. Google Scholar: Author Only Title Only Author and Title

Fennell AY., Schlauch K.A, Gouthu S., Deluc L.G., Khadka V., Sreekantan L., ... Mathiason K.L. (2015) Short day transcriptomic programming during induction of dormancy in grapevine. Frontiers in Plant Science 6, 834. Google Scholar: Author Only Title Only Author and Title

Ferguson J.C., Moyer M.M., Mills L.J., Hoogenboom G. & Keller M. (2014) Modeling dormant bud cold hardiness and budbreak in twenty-three Vitis genotypes reveals variation by region of origin. American Journal of Enology and Viticulture 65, 59-71. Google Scholar: Author Only Title Only Author and Title

Ferguson J.C., Tarara J.M., Mills L.J., Grove G.G. & Keller M. (2011) Dynamic thermal time model of cold hardiness in dormant grapevine buds. Annals of Botany 107, 389-396.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Frith M.C., Fu Y., Yu L., Chen J., Hansen U. & Weng Z (2004) Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Research 32, 1372–1381.

Google Scholar: Author Only Title Only Author and Title

García de Cortázar-Atauri I., Brisson N. & Gaudillere J.P. (2009) Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). International Journal of Biometeorology 53, 317–326. Google Scholar: Author Only Title Only Author and Title

George A, Nissen R. & Baker J. (1988) Effects of hydrogen cyanamide in manipulating budburst and advancing fruit maturity of table grapes in south-eastern Queensland. Australian Journal of Experimental Agriculture 28, 533. Google Scholar: Author Only Title Only Author and Title

Gomez-Roldan V., Fermas S., Brewer P.B., Puech-Pagès V., Dun E.A., Pillot J.-P., ... Rochange S.F. (2008) Strigolactone inhibition of shoot branching. Nature 455, 189–194.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Gonzalez-Grandio E., Poza-Carrion C., Sorzano C.O.S. & Cubas P. (2013) BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. The Plant cell 25, 834–850.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Grimplet J., Van Hemert J., Carbonell-Bejerano P., Díaz-Riquelme J., Dickerson J., Fennell A, ... Martínez-Zapater J.M. (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Research Notes 5, 213.

Google Scholar: Author Only Title Only Author and Title

Guo D., Zhang J., Wang X., Han X., Wei B., Wang J., ... Qin G. (2015) The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis. The Plant Cell 27, 3112. Google Scholar: Author Only Title Only Author and Title

Haga N., Kato K., Murase M., Araki S., Kubo M., Demura T. ... Ito M. (2007) R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134, 1101-1110. Google Scholar: Author Only Title Only Author and Title

Haga N., Kobayashi K., Susuki T., Maeo K., Kubo M., Ohtani M. ... Ito M. (2011) Mutations in MYB3R1 and MYB3R4 Cause Pleiotropic Developmental Defects and Preferential Down-Regulation of Multiple G2/M-Specific Genes in Arabidopsis. Plant Physiology 157, 706-717.

Google Scholar: <u>Author Only Title Only Author and Title</u>

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Halaly T., Pang X., Batikoff T., Crane O., Keren A, Venkateswari J., ... Or E. (2008) Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta 228, 79–88. Google Scholar: Author Only <u>Title Only Author and Title</u>

Honma T. & Goto K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529. Google Scholar: Author Only Title Only Author and Title

Hruz T., Laule O., Szabó G., Wessendorp F., Bleuler S., Oertle L., ... Zimmermann P. (2008) GENEVESTIGATOR V3: a reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics 2008, 420747. Google Scholar: Author Only Title Only Author and Title

Ibáñez C., Kozarewa I., Johansson M., Ögren E., Rohde A & Eriksson M.E. (2010) Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees. Plant Physiology 153, 1823-1833. Google Scholar: <u>Author Only Title Only Author and Title</u>

Jaillon O., Aury J.-M., Noel B., Policriti A, Clepet C., Casagrande A, ... The French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467.

Google Scholar: Author Only Title Only Author and Title

Keller T., Abbott J., Moritz T. & Doerner P. (2006) Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. The Plant Cell 18, 598–611. Google Scholar: Author Only Title Only Author and Title

Khalil-Ur-Rehman M., Wang W., Xu Y.-S., Haider M.S., Li C.-X. & Tao J.-M. (2017) Comparative Study on Reagents Involved in Grape Bud Break and Their Effects on Different Metabolites and Related Gene Expression during Winter. Frontiers in Plant Science 8, 1340. Google Scholar: Author Only Title Only Author and Title

Khan A, Fornes O., Stigliani A, Gheorghe M., Castro-Mondragon J.A, van der Lee R., ... Mathelier A (2017) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Research 46, D260–D266. Google Scholar: Author Only Title Only Author and Title

Klucher K.M., Chow H., Reiser L. & Fischer R.L. (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell 8, 137-153. Google Scholar: Author Only Title Only Author and Title

Koorneef M., Elgersma A., Hanhart C.J., van Loenen-Martinet E.P., van Rijn L. & Zeevaart J.AD. (1985) Agibberellin insensitive mutant of Arabidopsis thaliana. Physiologia Plantarum 65, 33-39. Google Scholar: <u>Author Only Title Only Author and Title</u>

Kovaleski A.P. & Londo J.P. (2019) Tempo of gene regulation in wild and cultivated Vitis species shows coordination between cold deacclimation and bud break. Plant Science 287, https://doi.org/10.1016/j.plantsci.2019.110178 Google Scholar: Author Only Title Only Author and Title

Kovaleski AP., Reisch B.I. & Londo J.P. (2018) Deacclimation kinetics as a quantitative phenotype for delineating the dormancy transition and thermal efficiency for budbreak in Vitis species. AoB Plants 10, https://doi.org/10.1093/aobpla/ply066. Google Scholar: <u>Author Only Title Only Author and Title</u>

Krizek B.A. (2015) AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development. Journal of Experimental Botany 66, 4537–4549. Google Scholar: Author Only Title Only Author and Title

Krizek B.A., Prost V. & Macias A (2000) AINTEGUMENTA Promotes Petal Identity and Acts as a Negative Regulator of AGAMOUS. The Plant Cell 12, 1357-1366.

Google Scholar: Author Only Title Only Author and Title

Kühn N., Ormeño-Núñez J., Jaque-Zamora G. & Pérez F.J. (2009) Photoperiod modifies the diurnal expression profile of VvPHYA and VvPHYB transcripts in field-grown grapevine leaves. Journal of Plant Physiology 166, 1172–1180. Google Scholar: Author Only Title Only Author and Title

Lang G.A, Early J.D., Martin G.C. & Darnell R.L. (1987) Endodormancy, paradormancy, and ecodormancy - physiological terminology and classification for dormancy research. Hortscience 22, 371-377. Google Scholar: Author Only Title Only Author and Title

Lata C. & Prasad M. (2011) Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany 62, 4731-4748.

Google Scholar: Author Only Title Only Author and Title

Lavee S. & May P. (1997) Dormancy of grapevine buds - facts and speculation. Australian Journal of Grape and Wine Research 3, 31–46.

Google Scholar: Author Only Title Only Author and Title

Law C.W., Chen Y., Shi W. & Smyth G.K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts.

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Genome Biology 15, R29.

Google Scholar: Author Only Title Only Author and Title

Linsley-Noakes G.C. & Allan P. (1994) Comparison of two models for the prediction of rest completion in peaches. Scientia Horticulturae 59, 107–113.

Google Scholar: Author Only Title Only Author and Title

Meitha K., Agudelo-Romero P., Signorelli S., Gibbs D.J., Considine J.A., Foyer C.H. & Considine M.J. (2018) Developmental control of hypoxia during bud burst in grapevine. Plant, Cell & Environment 41, 1154–1170. Google Scholar: Author Only Title Only Author and Title

Meitha K., Konnerup D., Colmer T.D., Considine J.A, Foyer C.H. & Considine M.J. (2015) Spatio-temporal relief from hypoxia and production of reactive oxygen species during bud burst in grapevine (Vitis vinifera). Annals of Botany 116, 703-711. Google Scholar: <u>Author Only Title Only Author and Title</u>

Miskolczi P., Singh R.K., Tylewicz S., Azeez, A, Maurya J.P., Tarkowská D. ... Bhalerao R.P. (2019) Long-range mobile signals mediate seasonal control of shoot growth. Proceedings of the National Academy of Sciences of the United States of America 116, 10852-10857 Google Scholar: Author Only Title Only Author and Title

Morales J., Kadota Y., Zipfel C., Molina A & Torres M.-A (2016) The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. Journal of Experimental Botany 67, 1663–1676. Google Scholar: Author Only Title Only Author and Title

Müller D., Schmitz G. & Theres K. (2006) Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. The Plant cell 18, 586–597.

Google Scholar: Author Only Title Only Author and Title

Mullins M.G. (1966) Test-plants for Investigations of the Physiology of Fruiting in Vitis vinifera L. Nature 209, 419–420. Google Scholar: <u>Author Only Title Only Author and Title</u>

Narsai R., Law S.R., Carrie C., Xu L. & Whelan J. (2011) In-Depth Temporal Transcriptome Profiling Reveals a Crucial Developmental Switch with Roles for RNA Processing and Organelle Metabolism That Are Essential for Germination in Arabidopsis. Plant Physiology 157, 1342-1362.

Google Scholar: Author Only Title Only Author and Title

Nigond J. (1967) Recherches sur la dormance des bourgeons de la vigne. I. Caractères généraux de l'évolution des bourgeons. Annales de Physiologie Vegetale 9, 107–152.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Ophir R., Pang X., Halaly T., Venkateswari J., Lavee S., Galbraith D. & Or E. (2009) Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Molecular Biology 71, 403-423.

Google Scholar: Author Only Title Only Author and Title

Or E. (2009) Bud dormancy release - the molecular aspect. In Grapevine Molecular Physiology & Biotechnology (eds K.A. Roubelakis-Angelakis), 2nd ed, pp 1-29. Springer, Dordrecht.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Or E., Vilozny I., Eyal Y. & Ogrodovitch A (2000) The transduction of the signal for grape bud dormancy breaking induced by hydrogen cyanamide may involve the SNF-like protein kinase GDBRPK. Plant Molecular Biology 43, 483–494. Google Scholar: Author Only Title Only Author and Title

Papdi C., Pérez-Salamó I., Joseph M.P., Giuntoli B., Bögre L., Koncz C. & Szabados L. (2015) The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. The Plant Journal 82, 772–784.

Google Scholar: Author Only Title Only Author and Title

Parada F., Noriega X., Dantas D., Bressan-Smith R. & Pérez F.J. (2016) Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines. Journal of Plant Physiology 201, 71–78. Google Scholar: Author Only Title Only Author and Title

Paszkiewicz G., Gualberto J.M., Benamar A, Macherel D. & Logan D.C. (2017) Arabidopsis seed mitochondria are bioenergetically active immediately upon imbibition and specialise via biogenesis in preparation for autotrophic growth. The Plant Cell, https://doi.org/10.1105/tpc.16.00700.

Google Scholar: Author Only Title Only Author and Title

Pearce I. & Coombe B.G. (2004) Viticulture Volume 1 – Resources, 2nd ed. (eds P. Dry & B.G. Coombe). Winetitles: Adelaide. Google Scholar: Author Only Title Only Author and Title

Peng J., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E. ... Harberd N.P. (1999) 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256-261.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Perez, F.J., Vergara, R. & Rubio S. (2008) H2O2 is involved in the dormancy-breaking effect of hydrogen cyanamide in grapevine buds.

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Plant Growth Regulation 55, 149-155.

Google Scholar: Author Only Title Only Author and Title

Possingham J.V. (2004) On the growing of grapevines in the tropics. Acta Horticulturae 662, 39–44. Google Scholar: Author Only Title Only Author and Title

Pouget R. (1963) Recherches physiologiques sur le repos végétatif de la vigne (Vitis vinifera L.): la dormance des bourgeons et le mécanisme de sa disparition. Annales de l'amélioration des plantes 13, 1-27.

Google Scholar: Author Only Title Only Author and Title

Pratt C. (1978) Shoot nodes of Vitis labruscana Bailey cv. Concord. Vitis 17, 329–334. Google Scholar: Author Only Title Only Author and Title

R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Google Scholar: Author Only Title Only Author and Title

Re D.A, Capella M., Bonaventure G. & Chan R.L. (2014) Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress. BMC Plant Biology 14, 150. Google Scholar: Author Only Title Only Author and Title

Richardson E., Seeley S. & Walker D. (1974) A model for estimating the completion of rest for "Redhaven" and "Elberta" peach trees. HortScience 9, 331–332.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Riechmann J.L. & Meyerowitz E.M. (1998) The AP2/EREBP family of plant transcription factors. Biological Chemistry 379, 633–646. Google Scholar: Author Only Title Only Author and Title

Rinne P.L., Paul L.K., Vahala J., Kangasjärvi J. & van der Schoot C. (2016) Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen. Journal of Experimental Botany 67, 5975-5991. Google Scholar: <u>Author Only Title Only Author and Title</u>

Rinne P.L., Welling A, Vahala J., Ripel L., Ruonala R., Kangasjärvi J. & van der Schoot C. (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. The Plant Cell 23, 130-136.

Google Scholar: Author Only Title Only Author and Title

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W. & Smyth G.K. (2015) limma powers differential expression analyses for RNAsequencing and microarray studies. Nucleic Acids Research 43, e47–e47. Google Scholar: Author Only Title Only Author and Title

Robinson M.D., McCarthy D.J. & Smyth G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

Google Scholar: Author Only Title Only Author and Title

Rohde, A & Bhalerao R.P. (2007) Plant dormancy in the perennial context. Trends in Plant Science 12, 217-223. Google Scholar: Author Only Title Only Author and Title

Roman H., Girault T., Gourrierec J.L. & Leduc N. (2017) In silico analysis of 3 expansin gene promoters reveals 2 hubs controlling light and cytokinins response during bud outgrowth. Plant Signaling & Behavior 12, e1284725. Google Scholar: Author Only Title Only Author and Title

Rubio S., Dantas D., Bressan-Smith R. & Pérez F.J. (2016) Relationship Between Endodormancy and Cold Hardiness in Grapevine Buds. Journal of Plant Growth Regulation 35, 266–275. Google Scholar: Author Only Title Only Author and Title

Rubio S., Noriega X. & Pérez F.J. (2019) ABA promotes starch synthesis and storage metabolism in dormant grapevine buds. Journal of Plant Physiology 234–235, 1–8.

Google Scholar: Author Only Title Only Author and Title

Saito S., Hirai N., Matsumoto C., Ohigashi H., Ohta D., Sakata K. & Mizutani M. (2004) Arabidopsis CYP707As Encode (+)-Abscisic Acid 8'-Hydroxylase, a Key Enzyme in the Oxidative Catabolism of Abscisic Acid. Plant Physiology 134, 1439-1449. Google Scholar: Author Only Title Only Author and Title

Schwarz S., Grande A.V., Bujdoso N., Saedler H. & Huijser P. (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology 67, 183–195. Google Scholar: Author Only Title Only Author and Title

Shaw D.S., Meitha K., Considine M.J. & Foyer C.H. (2017) Mitochondrial Respiration and Oxygen Tension. In Plant Respiration and Internal Oxygen: Methods and Protocols. (ed K. Jagadis Gupta), pp. 97–113. Springer, New York. Google Scholar: <u>Author Only Title Only Author and Title</u>

Shikata M., Koyama T., Mitsuda N & Ohme-Takagi M. (2009) Arabidopsis SBP-Box Genes SPL10, SPL11 and SPL2 Control Morphological Change in Association with Shoot Maturation in the Reproductive Phase. Plant and Cell Physiology 50, 2133-2145. Google Scholar: <u>Author Only Title Only Author and Title</u> bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Signorelli S., Agudelo-Romero P., Meitha K., Foyer C.H. & Considine M.J. (2018) Roles for Light, Energy, and Oxygen in the Fate of Quiescent Axillary Buds. Plant Physiology 176, 1171-1181. Google Scholar: Author Only Title Only Author and Title

Signorelli S., Shaw J., Hermawaty D., Wang Z., Verboven P., Considine J.A, Considine M.J. (2019) The initiation of bud burst in grapevine features dynamic regulation of the apoplastic pore size. Journal of Experimental Botany, https://doi.org/10.1093/jxb/erx200 Google Scholar: Author Only Title Only Author and Title

da Silveira Falavigna V., Guitton B., Costes E. & Andrés F. (2019) I want to (Bud) break free: The potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees. Frontiers in Plant Science https://doi.org/10.3389/fpls.2018.01990 Google Scholar: Author Only Title Only Author and Title

Sudawan B., Chang C.-S., Chao H., Ku M. & Yen Y. (2016) Hydrogen cyanamide breaks grapevine bud dormancy in the summer through transient activation of gene expression and accumulation of reactive oxygen and nitrogen species. BMC Plant Biology 16, 202. Google Scholar: Author Only Title Only Author and Title

Tatematsu K., Ward S., Leyser O., Kamiya Y. & Nambara E. (2005) Identification of cis-Elements That Regulate Gene Expression during Initiation of Axillary Bud Outgrowth in Arabidopsis. Plant Physiology 138, 757-766. Google Scholar: Author Only Title Only Author and Title

Tylewicz S., Petterle A, Marttila S., Miskolczi P., Azeez A, Singh R.K. ... Bhalerao R.P. (2018) Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360, 212-215. Google Scholar: Author Only <u>Title Only Author and Title</u>

Umehara M., Hanada A, Yoshida S., Akiyama K., Arite T., Takeda-Kamiya N., ... Yamaguchi S. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200. Google Scholar: Author Only Title Only Author and Title

Umezawa T., Sugiyama N., Takahashi F., Anderson J.C., Ishihama Y., Peck S.C. & Shinozaki K. (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Science Signaling 6, rs8. Google Scholar: Author Only Title Only Author and Title

Urano K., Maruyama K., Jikumaru Y., Kamiya Y., Yamaguchi-Shinozaki K. & Shinozaki K. (2017) Analysis of plant hormone profiles in response to moderate dehydration stress. The Plant Journal 90, 17–36. Google Scholar: Author Only Title Only Author and Title

Vandepoele K., Raes J., De Veylder L., Rouzé P., Rombauts S. & Inzé D. (2002) Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis. The Plant Cell 14, 903.

Google Scholar: Author Only Title Only Author and Title

Velappan Y., Signorelli S. & Considine M.J. (2017) Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? Annals of Botany 120, 495–509. Google Scholar: Author Only Title Only Author and Title

Vergara R., Noriega X., Aravena K., Prieto H. & Pérez F.J. (2017) ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds. Frontiers in Plant Science 8, 812. Google Scholar: Author Only Title Only Author and Title

Vergara R., Noriega X., Parada F., Dantas D. & Pérez F.J. (2016) Relationship between endodormancy, FLOWERING LOCUS T and cell cycle genes in Vitis vinifera. Planta 243, 411-419.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Vitulo N., Forcato C., Carpinelli E.C., Telatin A, Campagna D., D'Angelo M., ... Valle G. (2014) A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biology 14, 99. Google Scholar: <u>Author Only Title Only Author and Title</u>

Wake C.M.F. & Fennell A (2000) Morphological, physiological and dormancy responses of three Vitis genotypes to short photoperiod. Physiologia Plantarum 109, 203–210.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Wang J.-W., Schwab R., Czech B., Mica E. & Weigel D. (2008) Dual Effects of miR156-Targeted SPL Genes and CYP78A5/KLUH on Plastochron Length and Organ Size in Arabidopsis thaliana. The Plant Cell 20, 1231-1243. Google Scholar: Author Only Title Only Author and Title

Wang Z-Y., Xiong L., Li W., Zhu J.-K. & Zhu J. (2011) The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in Arabidopsis. The Plant Cell 23, 1971-1984. Google Scholar: <u>Author Only Title Only Author and Title</u>

Ward J.M. (2001) Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics 17, 560-563.

Google Scholar: Author Only Title Only Author and Title

Weigel D. & Meyerowitz E.M. (1993) Activation of Floral Homeotic Genes in Arabidopsis. Science 261, 1723-1726.

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430520; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Google Scholar: <u>Author Only Title Only Author and Title</u>

Weits D.A, Giuntoli B., Kosmacz M., Parlanti S., Hubberten H.-M., Riegler H., ... Licausi F. (2014) Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nature Communications 5, 3425. Google Scholar: Author Only Title Only Author and Title

Wickham H. (2009) GGplot2: Elegant Graphics for Data Analysis, 2nd ed. Springer Publishing Company, Incorporated. Google Scholar: Author Only Title Only Author and Title

Wu G. & Poethig R.S. (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539-3547.

Google Scholar: Author Only Title Only Author and Title

Wuest S.E., O'Maoileidigh D.S., Rae L., Kwasniewska K., Raganelli A., Hanczaryk K., ... Wellmer F. (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proceedings of the National Academy of Sciences of the United States of America 109, 13452-13457.

Google Scholar: Author Only Title Only Author and Title

Yang Y., Nicolas M., Zhang J., Yu H., Guo D., Yuan R., ... Qin G. (2018) The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis. PLoS genetics 14, e1007565. Google Scholar: Author Only Title Only Author and Title

Yin G., Sun H., Xin X., Qin G., Liang Z & Jing X. (2009) Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant and Cell Physiology 50, 1305-1318. Google Scholar: Author Only Title Only Author and Title

Yoo S.K., Wu X., Lee J.S. & Ahn J.H. (2011) AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. The Plant Journal 65, 62–76. Google Scholar: Author Only Title Only Author and Title

Yordanov Y.S., Ma C., Strauss S.H. & Busov V.B. (2014) EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proceedings of the National Academy of Sciences of the United States of America 111, 10001–10006. Google Scholar: Author Only Title Only Author and Title

Zenoni S., Fasoli M., Tornielli G.B., Dal Santo S., Sanson A, de Groot P., ... Pezzotti M. (2011) Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida. New Phytologist 191, 662–677.

Google Scholar: Author Only Title Only Author and Title

Zheng C., Acheampong A, Shi Z, Mugzech A, Halaly-Basha T., Shaya F., ... Or E. (2018) Abscisic Acid Catabolism Enhances Dormancy Release of Grapevine Buds. Plant, Cell & Environment 41, 2490-2503.

Google Scholar: Author Only Title Only Author and Title

Zheng C., Halaly T., Acheampong A.K., Takebayashi Y., Jikumaru Y., Kamiya Y. & Or E. (2015) Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. Journal of Experimental Botany 66, 1527–1542.

Google Scholar: Author Only Title Only Author and Title

Zou H.-F., Zhang Y.-Q., Wei W., Chen H.-W., Song Q.-X., Liu Y.-F., ... Chen S.-Y. (2012) The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochemical Journal 449, 373–388. Google Scholar: Author Only Title Only Author and Title