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Abstract

Statistical learning (SL) is the ability to extract regularities from the environment. In the

domain of language, this ability is fundamental in the learning of words and structural rules.

In lack of reliable online measures, statistical word and rule learning have been primarily

investigated using offline (post-familiarization) tests, which gives limited insights into the

dynamics of SL and its neural basis. Here, we capitalize on a novel task that tracks the

online SL of simple syntactic structures combined with computational modeling to show that

online SL responds to reinforcement learning principles rooted in striatal function. Specifi-

cally, we demonstrate—on 2 different cohorts—that a temporal difference model, which

relies on prediction errors, accounts for participants’ online learning behavior. We then show

that the trial-by-trial development of predictions through learning strongly correlates with

activity in both ventral and dorsal striatum. Our results thus provide a detailed mechanistic

account of language-related SL and an explanation for the oft-cited implication of the stria-

tum in SL tasks. This work, therefore, bridges the long-standing gap between language

learning and reinforcement learning phenomena.

Introduction

Statistical learning (SL) is the ability to extract regularities from distributional information in

the environment. As a concept, SL was most popularized by the work of Saffran and col-

leagues, who first demonstrated infants’ use of the transitional probabilities between syllables

to learn both novel word forms [1] as well as simple grammatical relations (nonadjacent

dependencies (NADs)) [2,3]. The idea of a mechanism for SL has since raised a considerable

amount of interest, and much research has been devoted to mapping the scope of this cognitive

feat. This work has been crucial in describing the SL phenomenon as it occurs across sensory
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modalities (auditory [4–6], visual [7,8] and haptic [9]), domains [8] (temporal and spatial), age

groups [10,11], and even species (nonhuman primates [12] and rats [13]). After all this

research, however, little is yet known about the mechanisms by which SL unfolds and their

neural substrates.

One of the main reasons for this important gap in the literature is that the vast majority of

SL studies have focused on the output of learning, generally assessed via offline post-familiari-

zation tests, rather than on the learning process itself [14,15]. It is only recently that work on

SL has started to shift toward the use of online measures of learning. Online measures afford a

more detailed representation of the learning dynamics and thus offer the possibility of generat-

ing hypotheses about the computations underlying SL.

Online measures capitalize on the gradual development of participants’ ability to predict
upcoming sensory information (e.g., an upcoming syllable or word) as the regularities of the

input are learned (e.g., a statistical word form or a grammatical pattern). Indeed, prediction is

often understood as the primary consequence of SL [16,17]. Interestingly, however, the status

of prediction as the driver of SL, rather than a mere consequence of it, i.e., its causal implica-

tion in learning, has not been explicitly investigated.

In the current study, we examined the online development of predictions as a fundamental

computation for SL. In particular, we used an amply validated algorithm of reinforcement

learning—temporal difference (TD) [18,19]—to model participants’ online learning behavior

and investigate its neural correlates. Note that, in adopting a model of reinforcement learning,

a domain where reward generally plays an important role, we are not assuming (nor discard-

ing) the phenomenological experience of reward (e.g., intrinsic reward [20,21]) during SL.

Instead, we assessed whether particular computational principles reflected in TD learning can

account for participants’ SL behavior and their brain activity during learning.

TD models are based on the succession of predictions and prediction errors (the difference

between predicted and actual outcomes) at each time step, by which predictions are gradually

tuned. In contrast to models typically used to explain SL (e.g., [22,23]), a vast body of research

supports the neurobiological plausibility of TD learning, with findings of neural correlates of

predictions and prediction errors both using cellular-level recordings and functional magnetic

resonance imaging (fMRI). Several brain areas, notably the striatum, have been implicated in

the shaping of predictions over time and the selection of corresponding output behavior [24–

29]. Interestingly, activity in the striatum has also been documented in the SL of NADs [30,31]

as well as of phonological word forms [32], but the precise role of these subcortical structures

in this domain remains unspecified.

With the aim of clarifying the mechanisms for SL and their neural underpinnings, we com-

bined computational (TD) modeling with fMRI of participants’ brain activity while perform-

ing a language learning task. In particular, participants completed an incidental NAD learning

paradigm. In natural languages, NADs are abundant and underly important morphological

and syntactic probabilistic rules (e.g., the relationship between un and able in unbelievable).
Sensitivity to NADs is therefore important in the early stages of grammar learning, when the

relation between phrase elements is tracked at a superficial level and before more abstract rep-

resentations (syntactic rules) can be created via other mechanisms and brain structures [33].

However, sensitivity to NADs can also be critical for speech segmentation in the early stages of

word learning [34], both in prelexical development [2] and beyond (i.e., second language

acquisition [35]).

The main advantage of this particular SL task over similar tasks (e.g., [2,36]) is that it pro-

vides a reliable measure of online learning [37] that we can then model. For modeling, we used

a TD algorithm for its greater sensitivity to temporal structure compared to simpler RL models

(e.g., Rescorla-Wagner (RW) [38]). Note that this an important prerequisite for NAD learning,

PLOS BIOLOGY Language statistical learning responds to reinforcement learning principles rooted in the striatum

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001119 September 7, 2021 2 / 23

Funding: This work was supported by the

European Research Council grant ERC-StG-313841

(TuningLang) (RdD-B), by the BFU2017-87109-P

Grant from the Spanish Ministerio de Ciencia e

Innovación (RdD-B), which is part of Agencia

Estatal de Investigación (AEI) (Co-funded by the

European Regional Development Fund. ERDF, a

way to build Europe), and by ICREA Academia

(JM-P). We also thank CERCA Program /

Generalitat de Catalunya for the institutional

support. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: BOLD, blood oxygenation level–

dependent; fMRI, functional magnetic resonance

imaging; FWE, family-wise error; LLE, log-

likelihood estimate; LLR, log-likelihood ratio; MNI,

Montreal Neurological Institute; MTL, medial

temporal lobe; NAD, nonadjacent dependency; PE,

prediction error; RT, reaction time; RW, Rescorla-

Wagner; SL, statistical learning; TD, temporal

difference; VTA/SNc, ventral tegmental area/

substantial nigra pars compacta.

https://doi.org/10.1371/journal.pbio.3001119


since the to-be-associated elements are separated in time. Nonetheless, we additionally com-

pared the adequacy of these simpler algorithms to that of the TD model.

We expected the interplay of predictions and prediction errors, as modeled by the TD algo-

rithm, to closely match participants’ online SL behavior. In addition, and in line with the afore-

mentioned research on both reinforcement learning and SL, we expected striatal activity to be

associated with the computation of predictions.

Results

Two independent cohorts (behavioral group: N = 19; fMRI group: N = 31) performed the

same incidental NAD learning task (Fig 1; see Materials and methods for details). In brief, par-

ticipants were auditorily exposed to an artificial language, which, unbeknown to them, con-

tained statistical dependencies between the initial (A) and final (C) elements of 3-word

phrases with variable identity of middle X elements. Orthogonal to SL, participants’ instruc-

tions were to detect the presence or absence of a given target word, which was always the final

C element of one of the 2 A_C dependencies presented (Fig 1). The online SL of the NADs was

measured as participants’ decrease in reaction times (RTs) over trials, which reflects the grad-

ual learning of the predictive value of the initial element A in respect to the dependent element

C of each phrase (i.e., the equivalent of learning that un predicts able in unbelievable). In line

with previous research [33,37], we expected faster RTs in a so-called NADs block with such

dependencies compared to a Random block with no statistical dependencies (i.e., equally prob-

able element combinations). This indicates that participants learned the dependency between

A and C elements and were thus able to use the identity of the initial word A to predict the

presence or absence of their target word C.

This behavioral paradigm was initially tested in a group of 19 volunteers (behavioral group:

N = 19; 15 women; mean age = 21 years, SD = 1.47). After ruling out Order effects (NADs

block first/Random block first; main effect of Order and all its interactions with other factors

p> 0.4), a repeated measures ANOVA with Structure (NADs/Random) and Target (Target/

No Target) as within-participant factors confirmed that SL of the dependencies occurred over

the NADs block. In particular, responses to phrases in the NADs block were overall faster

compared to the Random block (F(1,18) = 13.6, p< 0.002, Partial η2 = 0.43; mean differ-

ence = 149.40 ms, SE = 40.51). A significant effect of Target (F(1,18) = 24.46, p< 0.001, Partial

η2 = 0.58) further indicated, as reported previously [37], that responses to target C elements

were faster than to no target C elements (mean difference = 68.66 ms, SE = 13.88). Impor-

tantly, we found no interaction between Structure and Target (F(1,18) = 0.53, p> 0.48), sug-

gesting that both dependencies were learned comparably.

These results were furthered using a linear mixed model analysis. This analysis allows us to

assess whether learning occurred progressively over trials, by using the RTs for all trials and

participants. Note that this represents a more sensitive measure of the online SL process than a

single mean value per participant per block. Specifically, we contrasted the slopes for each of

the main conditions (NADs versus Random). A steeper slope (i.e., more negative; Fig 2A) for

the NADs block compared to the Random block (ßdiff = −5.84, t = −8.88, p< 0.001; ßdiff is

the estimate of the difference in slopes between the NADs and Random conditions; see Materi-

als and methods) indicated that learning of the dependencies occurred gradually over the trials

of the NADs block.

We next assessed the extent to which a TD model (see Materials and methods) could pre-

dict participants’ SL behavior. If participants’ RTs reflect SL in terms of the ability to predict
the last element (C) of a phrase from the identity of the initial (A) element, their overall devel-

opment should be mimicked by the model parameter representing the predictive value of the
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initial (A) element (P(A); see Materials and methods). That is, with time, the predictive value

of the initial A element according to the TD model should change (increase) in a way resem-

bling participants’ RTs. Note that RTs can reflect prediction learning as well as fluctuations

due to decision processes, motor response preparation and execution, random waxing and

waning of attention, and system noise, which are not the object of this investigation. Indeed,

Fig 1. NAD learning task. The same procedure was used for the behavioral and fMRI groups, except for the ITI, lasting 1 second in the behavioral

group and jittered between 1.5 and 3 seconds in the fMRI group. Participants were requested to indicate, via a button press, whether the target word

was present (YES) or absent (NO) after listening to each phrase, with a maximum of 1.5 second allowed for response. RTs were calculated from the

onset of the third word of each phrase. Trial (i.e., event) onsets for fMRI analyses were set to the beginning of each phrase. fMRI, functional magnetic

resonance imaging; ITI, intertrial interval; NAD, nonadjacent dependency; RT, reaction time.

https://doi.org/10.1371/journal.pbio.3001119.g001

Fig 2. Behavioral group’s SL and TD model results. (A) Slopes for NADs and Random blocks (N = 19) derived from the linear mixed model. A significantly

steeper slope for the NADs block (red) compared to the Random block (black) indicates SL over trials. Actual data shown averaged into 6 trial bins with the SEM

for display purposes only. All data points per participant were used for the linear mixed model analysis. (B) Plot of participants’ mean RTs (blue) against the TD

model’s estimates of the development of predictions over learning (red; inverted as 1-P(A) before averaging and z-scoring for display purposes). Vertical bars = SD.

RTs were initially transformed (see Materials and methods) and are plotted with the inverted model estimates in z-score values. P(A) = TD model’s predictions

from the initial word (A) of the dependencies. Data used to generate Fig 2 can be found in S1 Data. NAD, nonadjacent dependency; RT, reaction time; SL,

statistical learning; TD, temporal difference.

https://doi.org/10.1371/journal.pbio.3001119.g002
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we used modeling to strip these off and so derive a purer measure of prediction learning. Fig

2B shows the development of participants’ RTs over trials plotted against the development of

the predictive value of the initial word A (P(A)) as computed by the TD model (inverted as 1-P
(A) and z-scored for display purposes). Model fit was evaluated at the individual level by the

model fit index (see Materials and methods), calculated as 1 minus the log-likelihood ratio

(LLR) between the log-likelihood estimate (LLE) for the TD model and the LLE for a model

predicting at chance. Model fit index values of 1 would indicate an exact model fit. Our results

show a group average model fit index of 0.74 (std = 0.05), indicating that the TD model was 3

to 4 times better than the chance model at adjusting to participants’ RTs. We additionally com-

pared the performance of the TD model against that of an RW model [38] (S1 Fig). In contrast

to the TD model, the RW model treats each AX_ combination as a single event, therefore com-

bining the predictive values of the 2 (A plus X) elements [38–40], and so does not take into

account nonadjacent relations (which are also captured by the TD model through the devalua-

tion of the prediction parameter; see Materials and methods). A paired-samples t test indicated

that model fit index values produced by the TD model were significantly better than those pro-

duced by the RW model (mean difference = 0.098, SE = 0.013; t(18) = 7.65, p< 0.001,

d = 0.83), which only achieved an average model fit index of 0.64 (2 to 3 times better than the

chance model; std = 0.1). The TD model was, therefore, superior to the RW in adjusting to

each participant’s RT data.

We then replicated these behavioral results on a new cohort of participants from whom we

additionally acquired fMRI data while performing the incidental NAD learning task (fMRI

group; N = 31; 20 women; mean age = 23 years, SD = 3.62). We used the same analytical proce-

dure to evaluate SL at the behavioral level and model adequacy thereafter. Having discarded

block order effects (main effect of Order and all interactions: p> 0.1), a repeated measures

ANOVA with factors Structure (NADs/Random) and Target (Target/No Target) indicated

that SL occurred in the NADs block (F(1,30) = 4.96, p< 0.034, Partial η2 = 0.14), again with

faster mean RTs to phrases in the NADs block compared to the Random block (mean differ-

ence = 42.67 ms, SE = 19.16). As expected, RTs to target C elements were faster than to no tar-

get C elements (mean difference = 57.2 ms, SE = 43.28; F(1,30) = 54.15, p< 0.001, Partial η2 =

0.64). As with the behavioral group’s data, the null interaction between the factors Structure

and Target (F(1,30) = 0.168, p> 0.68) indicated that both target and no target dependencies

were similarly learned. A linear mixed model again indicated gradual learning of the depen-

dencies, with a steeper slope for the NADs block compared to the Random block (ßdiff = −2.4,

t = −6.9, p< 0.001; Fig 3A).

We next fitted the TD model to the fMRI group behavioral dataset. The development of

participants’ RTs is plotted in Fig 3B with the development of the predictive value of the initial

element (A) according to the TD model. At a group level, the mean model fit index was 0.71

(std = 0.04), again indicating a fit between 3 and 4 times better than that of a model predicting

at chance. This was also significantly better than the average model fit index produced by the

RW model (mean difference = 0.11, SE = 0.01; t(30) = 12.20, p< 0.001, d = 1.26), which only

reached a benchmark of 0.6 (again, 2 to 3 times better than the chance model; std = 0.08;

S1 Fig).

These results, therefore, represent a replication of our previous findings from the behavioral

group, both in terms of participants’ overall SL behavior and of the adequacy of the TD model

in providing a mechanistic account of its dynamics.

To investigate the brain areas or networks sensitive to the trial-wise computations related to

SL from speech, we used a measure of the trial-by-trial development of predictions from the

initial word A of structured phrases (P(A); see Materials and methods) as estimated by the TD

model for each participant. Specifically, we correlated this proxy for prediction learning with
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each participant’s trial-wise blood oxygenation level–dependent (BOLD) signal measures for

the NADs block, time locked to the onset of the A element of each phrase. We only report

results for clusters family-wise error (FWE)-corrected at p< 0.001 at the cluster level

(p< 0.001 uncorrected at the voxel level; minimum cluster size = 20). The contrast between P
(A)-modulated NADs block activity against an implicit baseline (see Materials and methods)

yielded a large cluster covering most of the striatum (i.e., bilateral caudate nuclei, putamen,

and ventral striatum; Fig 4 and S1 Table). Also, noteworthy, there were 2 additional clusters,

one in the left superior posterior temporal gyrus extending medially to Rolandic opercular

regions and another including right inferior and middle occipital areas. While formalized as

prediction learning, we note that activity in these regions could also reflect the gradual increase

in prediction error on the initial element A of each phrase. This is because the specific A ele-

ment can never be anticipated, and, therefore, predictions and prediction errors should be

commensurate with each other. An investigation of prediction error responses on the C (tar-

get/no target) elements was not possible due to the presence of button presses on these ele-

ments as required by the task.

In order to further support the specificity of these results, we completed a series of control

analyses. First, while, by definition, no structure can be derived from the Random block, this

does not preclude the engagement of particular brain regions in the attempt to capture the

relationship between specific phrase elements. In other words, we cannot ascertain that similar

type computations are not taking place in the Random block, even when these will accrue no

substantial knowledge. Therefore, to assess the specificity of the reported clusters in prediction

learning, we next contrasted the P(A)-modulated activity for the NADs block with the equiva-

lent in the Random block (P(X1)) directly (see Materials and methods). That is, we compared

the brain activity related to the trial-by-trial predictive value of stimuli A during the NADs

Fig 3. fMRI group’s SL and TD model results. (A) Slopes for NADs and Random blocks (N = 31) derived from the linear mixed model. A significantly steeper

slope for the NADs block (red) compared to the Random block (black) indicates SL over trials. Actual data shown averaged into 6 trial bins with the SEM for

display purposes. All data points per participant were used for the linear mixed model analysis. (B) Plot of participants’ mean RTs (blue) against the TD

model’s estimates of the development of predictions over learning (red; inverted as 1-P(A) before averaging and z-scoring for display purposes). Vertical

bars = SD. RTs were initially transformed (Materials and methods) and are plotted with the inverted model estimates in z-score values. P(A) = TD model’s

predictions from the initial word (A) of the dependencies. Data used to generate Fig 3 can be found in S2 Data. fMRI, functional magnetic resonance imaging;

NAD, nonadjacent dependency; RT, reaction time; SL, statistical learning; TD, temporal difference.

https://doi.org/10.1371/journal.pbio.3001119.g003
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block to its counterpart during the Random block (i.e., X1). Significant differences centered

on the same 3 relatively large clusters (S2 Fig and S2 Table) observed in the main analysis,

namely bilateral caudate, putamen and ventral striatum, left transverse and posterior superior

temporal gyri, and right middle occipital cortex (not shown in the figure). The converse con-

trast (P(X1)-modulated Random versus P(A)-modulated NADs) did not produce any signifi-

cant results.

It is generally understood that the final goal of (TD) learning is to inform behavior [40].

Even if we consider predictions themselves as some form of covert behavior [41] used to opti-

mize online learning and processing, our paradigm also required participants to make an overt
response (a button press) to the presence of their target word. RTs are often understood as

modulators of a condition’s related BOLD signal measurements and used to extract the vari-

ability pertaining to such motor responses. However, as previously illustrated (Figs 2 and 3),

RTs in the NADs block will tend to show a close relationship to online learning. Hence, a

more suitable baseline to remove response-related brain activity is the RTs to the Random

block, i.e., where no SL can occur. We therefore contrasted P(A)-modulated NADs block

activity with the RT-modulated Random block activity (activity estimates for the contrast

between P(A)-modulated NADs and RT-modulated NADs activity are also reported in S4 Fig

and S4 Table). Significant prediction-related NADs activity remained in the dorsal striatum,

particularly in bilateral caudate nuclei and right putamen (S3 Fig and S3 Table).

Finally, we investigated the brain areas related to SL at the block level rather than to online

(trial-by-trial) SL. Specifically, for each participant, we computed the difference between their

mean RT for the Random block and their mean RT for the NADs block (we called this the

NADs effect). Larger NADs effect values indicate more aggregate SL. We then covaried, at the

second level of analysis, each participant’s NADs block minus Random block first-level con-

trast with their own NADs effect. As can be seen in Fig 5 (S5 Table), activity centered on 2

large clusters. One cluster covered much of the left frontal insular cortex reaching the

Fig 4. Brain regions related to changes in the predictive value of the initial word of each phrase in the NADs block vs. implicit baseline (i.e., NADs P(A)-modulated

activity vs. implicit baseline). Activity in the basal ganglia (bilateral caudate nuclei, putamen, and ventral striatum) and in the left posterior STG was modulated by the

trial-by-trial development of predictions (P(A)) as estimated by the TD model (contrast: NADs P(A)—Baseline). Results are reported for clusters FWE-corrected at

p< 0.001 at the cluster level (minimum cluster size = 20). Neurological convention is used with MNI coordinates shown at the bottom right of each slice. Data used to

generate Fig 4 can be found in http://identifiers.org/neurovault.collection:10421. FWE, family-wise error; NAD, nonadjacent dependency; STG, superior temporal gyrus;

TD, temporal difference.

https://doi.org/10.1371/journal.pbio.3001119.g004
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putamen, amygdala, and anterior parahippocampal gyrus. The second extended from the left

superior temporal gyrus through the Rolandic operculum to the pre/post-central gyri and

insula.

Altogether, therefore, our analyses (main and control) demonstrate that activity within the

striatum was related to the computations that specifically facilitate online statistical NAD

learning from speech as predicted by the TD model.

Discussion

In this study, we provide evidence for the SL of NADs as an instance of reinforcement learn-

ing. A TD model of reinforcement learning, which capitalizes on the iteration of predictions

and prediction errors, was able to mimic participants’ RT data reflecting gradual SL over trials.

This was replicated on 2 independent cohorts, producing similar model fits that were also

clearly superior to those of simpler learning models. Functional neuroimaging data of partici-

pants’ online learning behavior also allowed us to examine the neural correlates of prediction-

based SL. In line with neurocomputational models of TD learning, the trial-by–trial develop-

ment of predictions from the initial word of the dependencies was strongly related to activity

in bilateral striatum. Importantly, striatal activity was unrelated to the overt motor responses

required by the task (i.e., button presses) or more general computations, supporting the impli-

cation of the striatum specifically in prediction-based SL.

Evidence for the adequacy of a TD algorithm in capturing participants’ online NAD learn-

ing behavior offers novel insights into the mechanisms for SL. In particular, our results under-

score the causal role of predictions for learning, compelling us to reassess the commonly

assumed relationship between SL and predictive processing. Indeed, SL not only enables pre-

dictions (predictions as a consequence of SL), as generally understood (see p.e. [14]), but also

capitalizes on predictions (predictions as a cause of SL). This new understanding of SL can

Fig 5. Brain regions related to mean SL (i.e., NADs block vs. Random block activity covarying with the NADs effect). Significant brain activity for the NADs block

minus the Random block covarying with the NADs effect, i.e., an aggregate measure of SL. Results are reported for clusters FWE-corrected at p< 0.001 at the cluster level

(minimum cluster size = 20). MNI coordinates were used. Data used to generate Fig 5 can be found in http://identifiers.org/neurovault.collection:10421. BA, Brodmann

area; CG, central gyrus; FWE, family-wise error; INS, insula; NAD, nonadjacent dependency; SL, statistical learning; SMG, supramarginal gyrus; STG, superior temporal

gyrus.

https://doi.org/10.1371/journal.pbio.3001119.g005
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thus offer interesting reinterpretations of previously reported correlations between SL abilities

and predictive processing [16], raising questions about the direction of causality.

Moreover, our results make an important contribution to the understanding of the neuro-

biological basis of SL. While previous research [14,42] has shown a similar behavioral develop-

ment of online SL (cf. Fig 2), brain imaging data and its link to a mechanistic explanation of

learning were lacking. Here, we used a measure of online SL behavior in combination with

computational modeling and fMRI data to unveil the basic mechanism underlying learning

and its brain correlates. A complementary approach to describing online SL, which involves

the frequency tagging of participants’ neurophysiological responses over learning [43–45], has

recently been used to track the emergence of new representations (in time and neuroanatomi-

cal space) as participants learn. We add to these findings by providing a mechanistic account

for how these representations (i.e., learning) come to be and a plausible neuroanatomical sub-

strate for its key computations. In particular, we show that the gradual development of predic-

tions for SL is related to robust and widespread activity in bilateral striatum (Fig 4). This

finding adds a valuable degree of specificity to the oft-cited implication of these subcortical

structures in artificial grammar learning and SL more generally [30–32].

Both the adequacy of a TD model and the involvement of the striatum in prediction-based

SL place this cognitive ability squarely in the terrain of reinforcement learning. Indeed, the

link between prediction learning and activity in the striatum is one of the most robust findings

in the reinforcement learning literature, from intracranial recordings to fMRI studies [25–

29,40,46–48]. Activity in the ventral striatum, in particular, has been associated with the deliv-

ery and anticipation of rewarding stimuli of different types (i.e., from primary to higher-order

rewards) [49]. More specifically, the ventral striatum interacts in complex ways with the dopa-

minergic system (mainly ventral tegmental area/substantial nigra pars compacta (VTA/SNc))

with responses consistent with the computation of reward prediction error [24,50–52]. Under

this light, our reported pattern of activity in the ventral striatum is consistent with the gradual

transfer over learning of prediction error–related dopaminergic responses from rewarding to

predictive stimuli as found in classic conditioning paradigms [53,54]. That is, a gradual

increase in response on A elements may be expected as their predictive value is learned, since

these elements can never be anticipated. Alternatively, activity in the ventral striatum could

reflect inhibitory signals aimed to attenuate dopaminergic inputs from the VTA/SNc [55] in

response to C elements as these become more predictable.

From a theoretical standpoint, it may be necessary to distinguish between the response of

the reward system for learning and the phenomenological experience of reward [21,56].

Recent evidence [57–59], nonetheless, supports the notion of language learning as intrinsically
rewarding [20] and suggests quantitative over qualitative differences between endogenous and

exogenous sources of reward [21]. So far, the adequacy of reinforcement learning algorithms

for the learning of intrinsically rewarding tasks has mainly remained theoretical [21,60]. Our

results now contribute to this literature by showing their suitability in specific instances of SL.

Still within the computations of the TD model, activity in the dorsal striatum (caudate and

putamen) responds to the updates at each time step of the outcome value representations asso-

ciated with each stimulus in ventromedial and orbitofrontal areas [61]. By updating the value

associated with a particular behavioral option, the dorsal striatum takes a leading role in the

selection of the most appropriate behavior [62,63]. In agreement with our results, recent data

[64] suggest that this role also applies to the language domain, with evidence for an implication

of the caudate nucleus in the selection of linguistic alternatives from left prefrontal perisylvian

regions with which it is connected [65]. The caudate could also promote the attentional selec-

tion of behaviorally relevant elements from frontal cortical areas [66–68]. In our case, while

this attentional selection should initially pertain to C elements (the target of the monitoring
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task), a shift toward A elements may also be expected as their predictive value increases. This

interpretation is consistent with the finding of a gradual increase in an early attentional event-

related component (the P2) over the exposure to (the A elements of) NADs but not to similar

but unstructured material [69,70].

The appropriate behavioral alternative, in our case, pertaining to the identity of the final C

element of each phrase, may be finally concretized as a specific motor articulatory representa-

tion of the element selected by the putamen from speech pre/motor areas used to predict

upcoming auditory input [41]. This selection of a “covert” motor response is consistent with

the attenuated (though not eliminated) activity in the putamen when regressing out overt

motor responses (button presses; S3 Fig; cf. Fig 4). This cascade of processes, with the final

selection of motor articulatory representations by the putamen, may be used to generate the

corresponding auditory predictions [41], ultimately translating into increasingly faster RTs for

the predicted C elements. In this view, activity in the posterior superior temporal gyrus (Fig 4)

would reflect the downstream (i.e., sensory) consequences of this selection [41,71]. It is

unknown at this moment in which representational space (e.g., auditory, motor, somatosen-

sory), or by which mechanism, actual prediction testing takes place. However, the present data

suggest that prediction-based SL may be fundamentally linked to such motor engagement as

part of a learning mechanism orchestrated by the striatum. This is consistent with the observa-

tion that participants that are better at predicting speech inputs embedded in noise, a situation

known to involve the speech motor system [72], are also better statistical learners [16], and

agrees with the well-accepted role for these structures in procedural learning [73,74] and the

managing of motor routines [52,65,75]. We speculate that this prediction mechanism via

motor articulatory representations should become of critical importance for learning when

putative alternative learning mechanisms (e.g., hippocampus; see below) are weakest, for

example, when a temporal separation is imposed between the elements to be associated, as in

our NAD learning task.

It is interesting that, in contrast to recent findings [76], we did not find an implication of

the hippocampus/medial temporal lobe (MTL) related to the online SL of NADs. Hippocam-

pal/MTL and basal ganglia activity are often thought to reflect the workings of 2 distinct (com-

plementary or competing) learning systems, traditionally related to declarative or explicit

versus procedural or implicit learning systems, respectively [77]. Although striatal activity in

our study is consistent with the incidental nature of our SL task, other SL tasks of incidental

learning have also reported MTL/hippocampus [78] engagement. As mentioned previously,

the difference may owe to the type of statistical relations present in the material. Specifically, as

reflected in biologically inspired computational models (e.g., [78,79]) and in line with recent

data [45], the MTL/hippocampus appears to capitalize on the relationship between pairs of

adjacent stimuli. This contrasts with the TD model, which learns in part due to the low TPs

between adjacent (AX and XC) elements (cf. [80]), and deals explicitly with the NADs through

a temporal discounting parameter. It is thus unclear how the aforementioned models of the

hippocampus would fare in the SL of NADs, where the relationship between adjacent elements

is very weak. As it occurs with declarative and procedural learning, nevertheless, it is likely that

these different learning systems be concurrently engaged in new learning situations. Reports

of hippocampal or striatal activity in SL tasks will therefore depend on the nature of the materi-

als employed. Finally, hippocampal activity may also respond to memories of the units of SL

[81,82] (e.g., words in our case) as well as to its outputs [83]. Under this light, activity in the

MTL system should correlate with aggregate measures of SL, as we observe (Fig 5), rather than

with online SL. This is also in line with recent data [45] relating hippocampal activity to the

encoding of the output units of SL (e.g., 3-syllable words), contrary to activity in prefrontal

regions, as part of the frontostriatal system, which tracked the TPs. The striatum, in contrast,
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appears to be in charge of probabilistic learning [84] and may therefore be required in situa-

tions where uncertainty is present [85], as in our task. From this standpoint, the outputs of

each system could thus potentially feed into each other; i.e., while the striatal system might uti-

lize representations stored in the hippocampal system for SL, the latter might also come to

store the outputs of that SL.

In sum, by the combination of an online measure of SL, computational modeling, and func-

tional neuroimaging, we provide evidence for SL as a process of gradual prediction learning

strongly related to striatal function. This work, therefore, makes a valuable contribution to our

understanding of the mechanisms and neurobiology of this cognitive phenomenon and intro-

duces the provoking possibility of language-related SL as an instance of reinforcement learning

orchestrated by the striatum.

Materials and methods

Participants

Two independent cohorts participated in the study. We first collected data from 20 volunteers

from the Facultat de Psicologia of the Universitat de Barcelona as the behavioral group. Data

from 1 participant were not correctly recorded, so the final cohort comprised 19 participants

(15 women, mean age = 21 years, SD = 1.47). We used the partial η2 obtained for the main

effect in the NADs block in the behavioral group to compute a sample size analysis for the

fMRI group. To ensure 90% of power to detect a significant effect in a 2 × 2 repeated measures

ANOVA at the 5% significance level based on this measure of effect size, MorePower [86] esti-

mated that we would need a sample size of at least 16 participants. However, considering (i)

that we expected participants to perform worse inside of the fMRI scanner and (ii) the recom-

mendation that at least 30 participants should be included in an experiment in which the

expected effect size is medium to large [87], we finally decided to double the recommended

sample size for the fMRI experiment. The fMRI group thus consisted of 31 participants (20

women, mean age = 23 years, SD = 3.62) recruited at the Universidad de Granada. All partici-

pants were right-handed native Spanish speakers and self-reported no history of neurological

or auditory problems. Participants in the fMRI group were cleared for MRI compatibility. The

ERC-StG-313841 (TuningLang) protocol was reviewed and monitored by the European

Research Council ethics monitoring office, approved by the ethics committee of the Universi-

tat de Barcelona (IRB 00003099), and conducted in accordance with the Declaration of Hel-

sinki. Participation was remunerated and proceeded with the written informed consent of all

participants.

Statistical learning paradigm

Two different artificial languages were used in the NAD learning task. Each language comprised

28 bisyllabic (consonant-vowel-consonant-vowel) pseudowords (henceforth, words). Words

were created using Mbrola speech synthesizer v3.02b through concatenating diphones from the

Spanish male database “es1” (https://github.com/numediart/MBROLA) at a voice frequency of

16 KHz. The duration of each word was 385 ms. Words were combined to form 3-word phrases

with 100 ms of silence inserted between words. Phrase stimuli were presented using the software

Presentation (Neurobehavioral Systems, Berkeley, CA, USA) via Sennheiser over-ear headphones

(pilot group) and MRI-compatible earphones (Sensimetrics, Malden, MA, USA; fMRI group).

The learning phase consisted of a NADs block and a Random block, each employing a dif-

ferent language. The order of blocks was counterbalanced between participants. We also coun-

terbalanced the languages assigned to NADs and Random blocks. The NADs block consisted

of 72 structured phrases (phrases with dependencies) whereby the initial word (A) was 100%
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predictive of the last word (C) of the phrase. We used 2 different dependencies (A1_C1 and

A2_C2) presented over 18 different intervening (X) elements to form AXC-type phrases.

Twelve of the 18 X elements were common to both dependencies, while the remaining 6 were

unique to each dependency. These 36 structured phrases were presented twice over the NADs

block, making a total of 72 AXC-type structured phrases issued in pseudorandom order. The

probability of transitioning from a given A element to a particular X was therefore 0.056.

Phrases in the Random block were made out of the combination 2 X elements and a final C

element (either C1 or C2, occurring with equal probability). Note that, while C elements could

be predicted with 100% certainty in the NADs block, these could not be predicted from the

previous X elements in the Random block. X elements were combined so that each X word

had an equal probability to appear in first and second position but never twice within the same

phrase. Forty-eight unstructured phrases were presented twice over the Random block, mak-

ing a total of 96 pseudorandomized XXC-type unstructured phrases. Each 3-word phrase, in

both NADs and Random blocks, was considered a trial for the fMRI analysis. A recognition

test was issued at the end of each block to assess offline learning (see S1 Text for further

details).

To obtain an online measure of incidental learning, participants were instructed to detect,

as fast as possible via a button press, the presence or absence of a given target word. The target

word for each participant remained constant throughout the block and was no other than one

of the 2 C elements of the language (C1 or C2, counterbalanced). A written version of the par-

ticipant’s target word was displayed in the middle of the screen for reference throughout the

entire learning phase. Importantly, participants were not informed about the presence of

dependencies, so this word-monitoring task was in essence orthogonal to SL. Yet, if incidental

learning of the dependencies occurred over trials in the NADs block, faster mean RTs should

be observed for this block compared to the Random block where the appearance or nonap-

pearance of the target word could not be anticipated from any of the preceding elements.

Fig 1 details a trial in the SL task. The participant’s target word (e.g., RUNI) appeared on

the screen above a fixation cross to signal the beginning of each trial and remained on the

screen throughout the trial. A 3-word phrase (1,460 ms) was delivered auditorily 300 ms later,

followed by a prompt to respond YES/NO to target presence/absence, respectively. A maxi-

mum of 1,500 ms was given for participants to indicate their response before the intertrial

interval began. Upon response, the target word disappeared into the intertrial interval, which

lasted 1,000 ms (behavioral group) or was jittered between 1,500 ms and 3,000 ms (fMRI

group). fMRI analyses (event onsets; see below) were time locked to the onset of each phrase

presentation, and the trial duration was defined as the duration of the phrase.

Participants in the behavioral group indicated the detection or nondetection of the target

word by pressing the left and right arrow keys of the computer keyboard, respectively. They

were required to use their left index finger to press the left arrow key, and the right index finger

to press the right arrow key. Participants in the fMRI group responded using the buttons cor-

responding to thumb and index fingers in an MRI compatible device held in their right hand.

Response buttons were not counterbalanced for either group. Intertrial interval was fixed at

1,000 ms in the behavioral study and jittered (with pseudorandom values between 1,500 and

3,000 ms) for testing during fMRI acquisition. At the end of a given phrase, a maximum of

1,500 ms was allowed for participants to respond. RTs were calculated from onset of the last

word in the phrase until button press. Only trials with correct responses under 1,000 ms were

entered into subsequent analyses. Participants’ NAD Effect were calculated as the mean RT

difference between unstructured (Random block) and structured (NADs block) trials. A

repeated measures ANOVA on participants’ RT data with within-participants factors Structure

(NADs/Random) and Target (Target/No Target) and Order as a between-participants factor
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was initially performed to discard block order effects. A repeated measures ANOVA with fac-

tors Structure (NADs/Random) and Target (Target/No Target) was subsequently performed

to assess the statistical significance of learning.

Linear mixed model analysis

In order to assess online SL in the NAD learning task within each experimental group, we used

a linear mixed model approach to fit learning slopes reflecting RT gains over trials for the

NADs versus Random conditions. The use of mixed models to compare the slope between

conditions allows the use of RT data for all trials and participants, which results in a more sen-

sitive measure of the online learning process than a single mean value per participant [15,88].

Analyses were performed using the lme4 [89] and lmerTest [90] packages as implemented

in the R statistical language (R Core Team, 2012). Our basic model included RT (rt) and trial

as continuous variables, condition (Random, NADs), and TNT (target/no target) as 2-level fac-

tors, and participant as a factor with as many levels as participants in each group.

rt � conditionþ trialþ condition � trialþ TNT þ ð1jparticipantÞ ð1Þ

rt ¼ �0ðinterceptÞ þ �1ðconditionÞ þ �2ðtrialÞ þ �3ðTNTÞ þ �4ðcondition � trialÞ ð2Þ

As shown in (1), which indicates the specified model, we introduced condition, trial, and

their interaction as fixed effects terms. TNT was included as a predictor of no interest. To

account for interparticipant variability in basal response speed, we allowed for a different

intercept per participant by introducing participant as a random effect. The algebraic expres-

sion of the fixed effects part of the model is given in (2). Note that, in this this model, β4 (con-

dition�trial) represents an estimate of the difference in learning slopes between the NADs and

Random conditions and can therefore be interpreted as a detrended learning slope estimate

for the NADs condition. For the sake of clarity, we have referred to this estimate as βdiff. A sta-

tistically significant negative βdiff indicates that online NAD learning effectively took place

over and beyond any RT gain that may be attributed to practice effects.

Temporal difference model

We modeled participants’ learning of the dependencies using a TD model [18,19]. Drawing

from earlier models of associative learning, such as the RW model [38], the main assumption

of TD models is that learning is driven by a measure of the mismatch between predicted and

actual outcome [18,19,40,91] (i.e., prediction error (PE)). For instance, when an X element is

presented in a NAD block’s AXC trial, the PE is computed as:

@1 ¼ VðXiÞt � VðA
iÞt ð3Þ

where @1 is the PE term at element X and trial t, which amounts to the discrepancy between

the action value at that state [V(Xi)], and the predictions driven by the previous visited state [V
(Ai)].

Computationally, learning through TD is therefore conceptualized (and modeled) as predic-
tion learning [40], where the action values/predictions of the previous visited state (following

the previous example, of element A) are then updated according to:

VðAiÞtþ1
¼ VðAiÞt þ a � @

1 ð4Þ

where α is a free parameter that represents the learning rate of the participant and determines

the weight attributed to new events and the PE they generate [18].
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Similarly, when hearing element C, a new PE is generated based on the presence or absence

of the target word:

@2 ¼ R � VðXiÞt ð5Þ

where R is specified as +1 if it is the target element or −1 if not. Note that the sign choice repre-

sents a convenient yet arbitrary means to distinguish target and no target outcomes within the

same model. This could have been inverted (R (target) = −1, R (no target) = 1) with no differ-

ence in the model’s results. Element X is then updated accordingly:

VðXiÞtþ1
¼ VðXiÞt þ a � @

2 ð6Þ

One of the advantages of TD models over simpler models of learning, such as the RW (see

below), is that they account for the sequence of events leading to an outcome, rather than treat-

ing each trial as a discrete temporal event. That is, although each trial for the participant (i.e.,

each 3-word phrase) was equivalently treated as a trial for the TD model, model updates

occurred at the presentation of each individual element (see below). TD models are thus sensi-

tive to the precise temporal relationship between the succession of predictions and outcomes

that take place in a learning trial [18]. Note that this is particularly valuable in trying to account

for the learning of NADs as distinct from adjacent dependencies, making a TD model prefera-

ble in such cases. This feature is implemented as a temporal discounting factor; this is an addi-

tional free parameter γ that represents the devaluation of predictions that are more distant

from the outcome [47,92]. Thus, upon “hearing” the final element of a structured (AXC)

phrase, the prediction from the initial element A is also updated according to:

VðAiÞtþ1
¼ VðAiÞt þ a � @

2 � g ð7Þ

The absolute value of V(Ai) reflects its predictive capacities and the associative strength

between element A and a particular response, with higher values indicating stronger predic-

tions. Because of this, have replaced the formal term V(A) by the alternative term p(A)

throughout the manuscript, as p(A) may be more intuitively related to predictions from element
A by the general reader than V(A).

As a behavioral index of participants’ predictive capacities, we used RTs, since RTs should

be faster when the associations are learnt than when they are not. RTs were first standardized

(z scored; zRT) and then normalized between 0 and 1 by the softmax type function:

xRT ¼ ð1:=ð1þ expðzRTsÞÞÞ ð8Þ

Note that this function will output larger xRT values for lower input zRT values (and, con-

versely, smaller xRTs values for higher input zRTs), in accord with the idea that better predic-

tive capacities will elicit faster RTs. Importantly, the function also minimizes the effect of

extreme RT values.

To fit the free model parameters to each participant’s responses, we assumed the following

function to minimize the difference between the absolute value of V(Ai) and the transformed

RT in a given trial t:

Dt ¼ 1 � absðxRTi
t � absðVðAiÞtÞÞ ð9Þ

We then selected the α and γ values that produced the maximum LLE, indicating the best

possible fit between the model predictions and the participant’s transformed RTs. For this, we

used Matlab’s (Matlab R2017 by Mathworks) fmincon function, which implements a Nelder–

Mead simplex method [93].
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The model was then run for each block (NADs and Random) separately, from which trial-

wise prediction values [abs(V(A)t) and abs(V(X)t)] for the different phrase elements A and X

(resulting in matrices P(A) and P(X), respectively) were computed.

In summary, adopting the alternative terminology (p(A) instead of abs(V(A))), the TD algo-

rithm for each trial was implemented as depicted in Fig 6.

To illustrate the consistency between participants’ RTs and model predictions, both which

we assume to be proxies for SL, we plotted the development of P(A) computed by the model

(inverted as 1-P(A)) averaged across participants against the mean RTs of the participants over

trials in the NADs block (both z-scored; main text Figs 2 and 3).

To assess the fit of the TD model, we computed for each participant the LLR between the

TD model’s LLE and the LLE produced by a model predicting at chance. To make fit assess-

ment more intuitive, a model fit index was then calculated as 1 –LLR, where higher model fit

index values equate to a better fit. The overall fit of the TD model was assessed at the group

level by averaging across participants model fit indexes.

Rescorla-Wagner model

The RW model was specified as follows: in each trial, the state values V(Ai)t and V(Xi)t were

summed to produce a single prediction V(AiXi)t per trial. No PE was computed on the second

element of each phrase (e.g., X in NAD phrases). A PE was computed for each C element as

@ = R–V(AiXi)t. This was then used to update both V(Ai)t and V(Xi)t as V(Ai)t+1 = V(Ai)t + α �
@ and V(Xi)t+1 = V(Xi)t + α � @, respectively. Note that this is equivalent to the TD model’s

updates without the γ term.

fMRI acquisition and apparatus

The SL task comprised a single run with 830 volumes. Functional T2�-weighted images were

acquired using a Siemens Magnetom TrioTim syngo MR B17 3T scanner and a gradient echo-

planar imaging sequence to measure BOLD contrast over the whole brain [repetition time

(TR) 2,000 ms, echo time (TE) 25 ms; 35 slices acquired in descending order; slice-thickness:

3.5 mm, 68 × 68 matrix in plane resolution = 3.5 × 3.5 mm; flip angle = 180˚]. We also

Fig 6. TD model’s computations during a NADs block’s trial. The initial A element of the phrase (e.g., jupo) carries a

prediction value p(A). A prediction error @1, generated when this prediction is not met by the occurrence of the second

word X (bade), is used to update the initial prediction p(A), scaled by the learning rate α. A new prediction is issued

from this second word p(X), which also generates a prediction error @2 on C (runi). @2 is then used to update both p(X)

and p(A), scaled by the learning rate and (down)scaled by the temporal discounting factor γ in the case of the more

distant prediction p(A). NAD, nonadjacent dependency; TD, temporal difference.

https://doi.org/10.1371/journal.pbio.3001119.g006
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acquired a high-resolution 3D T1 structural volume using a magnetization-prepared rapid-

acquisition gradient echo (MPRAGE) sequence [TR = 2,500 ms, TE = 3.69 ms, inversion time

(TI) = 1,100 ms, flip angle = 90˚, FOV = 256 mm, spatial resolution = 1 mm3/voxel].

fMRI preprocessing and analysis

Data were preprocessed using Statistical Parameter Mapping software (SPM12, Wellcome

Trust Centre for Neuroimaging, University College, London, UK; www.fil.ion.ucl.ac.uk/spm/

). Functional images were realigned, and the mean of the images was coregistered to the T1.

The T1 was then segmented into gray and white matter using the Unified Segmentation algo-

rithm [94], and the resulting forward transformation matrix was used to normalize the func-

tional images to standard Montreal Neurological Institute (MNI) space. Functional volumes

were resampled to 2 mm3 voxels and spatially smoothed using an 8-mm FWHM kernel.

Several event-related design matrices were specified for convolutions with the canonical

hemodynamic response function. Trial onsets were always defined as the onset of the first

word of the phrase. To identify brain regions related to the trial-by-trial development of partic-

ipants’ predictions/PEs, a model with the conditions NADs Target, NADs No Target, Random

Target and Random No Target, and all offline test conditions (see S5 Fig) was specified at the

first level. This also included, in first place and for each trial for each of the conditions of inter-

est (NADs Target, NADs No Target, Random Target, and Random No Target), a parametric

modulator (a vector) corresponding to the RT (z-scored and inverted); and in second, a

parametric modulator (a vector) corresponding to the trial-by-trial prediction/PE (p(A), also

z-scored; S5 Fig). Events were time locked to the onset of the phrase auditorily presented in

that trial. In all cases, data were high-pass filtered (to a max. of 1/90 Hz). Serial autocorrela-

tions were also estimated using an autoregressive (AR [1]) model. We additionally included, in

all the models described above, the movement parameter estimates for each participant com-

puted during preprocessing to minimize the impact of head movement on the data (S5 Fig).

For each participant, the following contrasts were calculated at the first level (S5 Fig):

• NADs zP(A) versus implicit baseline;

• NADs zP(A) versus Random zP(X1);

• NADs zP(A) versus NADs zinvRT;

• NADs zP(A) versus Random zinvRT; and

• NADs versus Random.

These were subsequently entered into corresponding one-sample t tests at the second level
to arrive at the reported fMRI results.

We used the Automated Anatomical Labelling Atlas [95] included in the xjView

toolbox (https://www.alivelearn.net/xjview/) to identify anatomical and cytoarchitectonic

brain areas. Group results are reported for clusters at a p< 0.001 FWE-corrected threshold at

the cluster level (p< 0.001 uncorrected at the voxel level), with a minimum cluster extent of 20

voxels.

Supporting information

S1 Fig. Plot of (A) behavioral group and (B) fMRI group participants’ mean RTs (blue)

against the RW model’s estimates of the development of predictions over learning (red;

inverted as 1-P(A) before averaging and z-scoring for display purposes). Vertical bars are the

SD. RTs were initially transformed (Materials and methods) and are plotted with the model
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prediction estimates in z-score values. P(A) = RW model’s predictions from the initial word

(A) of the dependencies. Data used to generate S1 Fig can be found in S3 Data. fMRI, func-

tional magnetic resonance imaging; RT, reaction time; RW, Rescorla-Wagner.

(DOCX)

S2 Fig. Brain regions related to changes in the predictive value of the initial word of each

phrase in the NADs block (P(A)) vs. changes in the predictive value of the initial word of

each phrase (P(X1)) in the Random block (i.e., P(A)-modulated NADs block vs. P(X1)-

modulated Random block). Activity in the basal ganglia (bilateral caudate nuclei, putamen,

and ventral striatum; see S2 Table) was modulated by the trial-by-trial development of predic-

tions (P(A)) as estimated by the TD model. Results are reported for clusters FWE-corrected at

p< 0.001 at the cluster level (minimum cluster size = 20). Neurological convention is used

with MNI coordinates shown at the bottom right of each slice. Data used to generate S2 Fig

can be found in http://identifiers.org/neurovault.collection:10421. FWE, family-wise error;

NAD, nonadjacent dependency; STG, superior temporal gyrus; TD, temporal difference.

(DOCX)

S3 Fig. Brain regions related to changes in the predictive value of the initial word of each

phrase in the NADs block (P(A)) controlling for overt motor response activity in the Ran-

dom block (i.e., P(A)-modulated NADs block vs. RT-modulated Random block). Subtract-

ing the activity for the Random block modulated by participants’ RTs from the P(A)-

modulated NADs block activity had virtually no effect on basal ganglia activity estimates (see

S3 Table). Significant activity centered on the caudate nuclei and the right putamen. Results

are reported at a p< 0.001 FWE-corrected threshold at the cluster level with 20 voxels of mini-

mum cluster extent. Neurological convention is used with MNI coordinates shown at the bot-

tom right of each slice. Data used to generate S3 Fig can be found in http://identifiers.org/

neurovault.collection:10421. NAD, nonadjacent dependency; RT, reaction time.

(DOCX)

S4 Fig. Brain regions related to changes in the predictive value of the initial word of each

phrase in the NADs block (P(A)) controlling for overt motor response activity in the

NADs block (i.e., P(A)-modulated NADs block vs. RT-modulated NADs block). Significant

activations by the contrast between P(A)-modulated NADs block and RT-modulated NADs

block activity (see also S4 Table) were found in a widespread left-lateralized network of areas,

including a large portion of the IFG, parts of the pre- and post-CG, and of the STG in and

around the left auditory cortex. Interestingly, bilateral caudate nuclei were also statistically sig-

nificant along with a small portion of the thalamus. Results are reported for clusters FWE-cor-

rected at p< 0.001 at the cluster level (minimum cluster size = 20). Neurological convention is

used with MNI coordinates shown at the bottom right of each slice. Data used to generate S4

Fig can be found in http://identifiers.org/neurovault.collection:10421. CG, central gyrus; FWE,

family-wise error; IFG, inferior frontal gyrus; NAD, nonadjacent dependency; RT, reaction

time; STG, superior temporal gyrus; TTG, transverse temporal gyrus.

(DOCX)

S5 Fig. fMRI first-level model and contrasts. Model fit to each participant’s fMRI data and

vectors used to compute the specified contrasts. fMRI, functional magnetic resonance imaging;

NAD, nonadjacent dependency.

(DOCX)

S1 Table. Whole brain fMRI activity for the NADs P(A)-modulated activity vs. implicit

baseline contrast. Group-level fMRI local maxima for the P(A)–modulated NADs block
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against implicit baseline contrast (see also red-yellow regions in Fig 4, main text). Results are

reported for clusters FWE-corrected at p< 0.001 at the cluster level (minimum cluster

size = 20). MNI coordinates were used. BA, Brodmann area; fMRI, functional magnetic reso-

nance imaging; FWE, family-wise error; NAD, nonadjacent dependency.

(DOCX)

S2 Table. Whole brain fMRI activity for the P(A)-modulated NADs block vs. P(X1)-modu-

lated Random block contrast. Group-level fMRI local maxima for the P(A)–modulated

NADs block minus P(X1)–modulated Random block contrast (see also red-yellow regions in

S2 Fig). Results are reported for clusters FWE-corrected at p< 0.001 at the cluster level (mini-

mum cluster size = 20). MNI coordinates were used. BA, Brodmann area; fMRI, functional

magnetic resonance imaging; FWE, family-wise error; NAD, nonadjacent dependency.

(DOCX)

S3 Table. Whole brain fMRI activity for the P(A)-modulated NADs block vs. RT-modu-

lated Random block contrast. Group-level fMRI local maxima for the P(A)-modulated NADs

block minus RT-modulated Random block contrast (see also red-yellow regions in S3 Fig).

Results are reported at a p< 0.001 FWE-corrected threshold at the cluster level with 20 voxels

of minimum cluster extent. MNI coordinates were used. BA, Brodmann area; fMRI, functional

magnetic resonance imaging; FWE, family-wise error; NAD, nonadjacent dependency; RT,

reaction time.

(DOCX)

S4 Table. Whole brain fMRI activity for the P(A)-modulated NADs block vs. RT-modu-

lated NADs block contrast. Group-level fMRI local maxima for the P(A)-modulated NADs

block minus RT-modulated NADs block contrast (see also red-yellow regions in S4 Fig).

Results are reported for clusters FWE-corrected at p< 0.001 at the cluster level (minimum

cluster size = 20). MNI coordinates were used. BA, Brodmann area; fMRI, functional magnetic

resonance imaging; FWE, family-wise error; NAD, nonadjacent dependency; RT, reaction

time.

(DOCX)

S5 Table. Whole brain fMRI for the NADs block vs. Random block activity covarying with

the NADs effect contrast. Group-level fMRI local maxima for the NADs block against Ran-

dom block contrast covarying with the NADs Effect (see Fig 5). Results are reported for clus-

ters FWE-corrected at p< 0.001 at the cluster level (minimum cluster size = 20). MNI

coordinates were used. BA, Brodmann area; fMRI, functional magnetic resonance imaging;

FWE, family-wise error; NAD, nonadjacent dependency; RT, reaction time.

(DOCX)

S1 Text. Offline recognition test. Results of the offline recognition test that participants per-

formed after the online incidental NAD learning task. NAD, nonadjacent dependency.

(DOCX)

S1 Data. Raw data used to create Fig 2.

(XLSX)

S2 Data. Raw data used to create Fig 3.

(XLSX)

S3 Data. Raw data used to create S1 Fig.

(XLSX)
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S4 Data. Raw data used to create S1 Text.

(XLSX)
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