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Abstract

Modern analytical techniques enable researchers to collect data about cellular states,

before and after perturbations. These states can be characterized using analytical tech-

niques, but the inference of regulatory interactions that explain and predict changes in these

states remains a challenge. Here we present a generalizable, unsupervised approach to

generate parameter-free, logic-based models of cellular processes, described by multiple

discrete states. Our algorithm employs a Hamming-distance based approach to formulate,

test, and identify optimized logic rules that link two states. Our approach comprises two

steps. First, a model with no prior knowledge except for the mapping between initial and

attractor states is built. We then employ biological constraints to improve model fidelity. Our

algorithm automatically recovers the relevant dynamics for the explored models and recapit-

ulates key aspects of the biochemical species concentration dynamics in the original model.

We present the advantages and limitations of our work and discuss how our approach could

be used to infer logic-based mechanisms of signaling, gene-regulatory, or other input-output

processes describable by the Boolean formalism.

Author summary

Mechanisms of biological processes that explain and predict biological behaviors continue

to be challenging to attain. In this context, logic-based models with few parameters can be

formulated to describe experimental data. However, constructing such networks based on

the available evidence is often done in an ad-hoc, error-prone manner that reflects the

bias of the modeler. Here we present an algorithm that infers Boolean logic models from

mappings of initial states to steady states, from available experimental data, and without
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human supervision. Moreover, our methodology enables users to incorporate additional

biological information (expert knowledge) to further refine Boolean models of cellular

processes.

Introduction

A mechanistic understanding of dynamic cellular processes is at the core of multiple areas of

research including molecular cell biology, physiology, biophysics, and bioengineering [1–6].

Although analytical tools have improved the breadth and depth with which intra- or extra-cel-

lular biochemical processes are explored [7–9], the vast majority of available data is limited to

experiments that probe cue-response relationships with a specified set of inputs and outputs.

Although significant efforts have been devoted to understand how biochemical interactions

link these inputs and outputs, the formulation of mechanistic hypotheses remains a challeng-

ing problem, yet essential to explain and predict cellular responses to perturbations [10–15].

The Boolean logic formalism, introduced by Kauffmann in 1969 [16], is a simple and pow-

erful approach to describe gene-regulatory networks, signaling networks, metabolic networks,

and many others [17, 18]. In this representation, each node in a network corresponds to a gene

or gene-product while each edge corresponds to a Boolean rule or set of rules that describes

the interaction between nodes. The system can evolve for a number of discrete steps, where the

state of each node (one or zero) is determined by evaluating its associated logic rules at each

step. The system is typically evolved for a number of steps using a Markov-chain process until

a steady state (aka attractor state) is achieved [19]. In biological networks, the nodes can have

multiple biological meanings, e.g., genes or proteins, while the edges represent interactions

between the nodes. The transition of one state of nodes to another can be interpreted as the

fully executed chemical reaction that leads to another state of the system. Attractors in such a

network are states of the system that can no longer transition into another state and are inter-

preted as steady states. Multiple attractors, for example, can be interpreted as multiple pheno-

types of the same cancer cells in a heterogeneous cell population. Translating continuous data

into Boolean states is typically done by setting a threshold where everything below is set to

zero and everything above is set to one. A discussion about how to deal with data where such a

threshold is not obvious can be found, e.g., in [15]. Boolean representations of biochemical

reaction networks have yielded important biochemical insights [20–25] and offer a parameter-

free alternative to other formalisms where exact parameters may be difficult or impossible to

acquire [26, 27].

Despite the mathematical simplicity of Boolean logic based biochemical networks, the

interaction rules that dictate the dynamics cannot be directly obtained from either experimen-

tal data or curated interaction databases [28–30]. For this reason, logic rules enumeration,

which comprise a specific mechanism of action, remains a central challenge in Boolean logic

modeling. This problem can be found in all areas of biology as well as other fields of research

(e.g. electrical engineering, natural language [31, 32], and even search engines employ Boolean

techniques) where Boolean modeling is employed. Therefore, our goal was to develop a rigor-

ous methodology to automatically generate Boolean rules, given input and output states, and

generate mechanistic hypothesis to link network states within biological constraints without

human involvement beyond initial setup (i.e. unsupervised).

Assembling a Boolean-logic based model from experimental data is typically done by

hand, using informal reasoning for both network structure and Boolean rules inference even

for a large number of species [33, 34]. A common approach to bypass this cumbersome task
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is to translate a rule-based network into Boolean rules [35, 36]. Tools such as CellDesigner

[37] offer the possibility to visually construct such models using interaction graphs that can

then be translated into their Boolean counterpart via automated tools, e.g., [38]. Boolean

models can also be constructed using the data representation in their algebraic equations

form, rather than identifying the logic relations directly [39]. Data that translate into Boolean

rules can be taken from various sources including time series data, as used in [40–42] and

analyzed by tools such as BoolNet [43]. The attractors obtained from these formalisms are

therefore model predictions, given a specified mechanism rather than the inverse problem of

formulating a mechanism for a set of observables [40, 42]. Although it is desirable to preserve

experimentally observed attractors, there is no guarantee for such models that a given initial

state necessarily evolves towards the correct steady states [44]. Enforcing such constraints

manually is often a tedious and error-prone process. A proposed way of preserving the steady

state structure for synchronous updating schemes is proposed in, e.g., [45]. The chosen

updating scheme for model evolution, however, can significantly affect the interpretation of

model dynamics. For example, synchronous updating schemes may yield network dynamics

with no clear biological interpretation [46–49]. By contrast, sequential node updating

schemes, such as General Asynchronous, can provide a mechanism with better biochemical

correlation [22, 50–53].

In this work, we address the problems of mechanism inference in biological processes

where input states and attractors are known but the mechanism is unknown. The proposed

algorithm constructs both candidate network structure and the corresponding Boolean rules

in an unsupervised manner. That is, the algorithm iteratively performs model selection with-

out human intervention. Our method guarantees that the selected initial states reach their des-

ignated steady states, that no spurious steady states are introduced, and that the network logic

inferred is compatible with the biologically relevant asynchronous updating [44]. In addition,

experimentally-observed probability distributions from one initial state to multiple attractor

states are preserved by our algorithm—often a biologically important observation. Our algo-

rithm can thus be used for hypothesis exploration, model identification, and mechanism

exploration in silico in the context of complex experimental data.

Our proposed method explores the Boolean mechanism or the network dynamics and

phrases the resulting network in the form of a Boolean rule set. We also want to point out that

in this paper, we are creating a network based on the state transition graphs and formulating

them into Boolean rules.

Methods

In this section, we introduce how the algorithm works using enzyme-substrate dynamics. To

demonstrate the working of the algorithm, we start with a network in which pathways only go

forward towards the attractors. Then we will extend the method towards all possible network

connections and, in the end of the section, we suggest how to make a more informed network

choice. The main idea of the proposed algorithm is shown in Fig 1. As input, a mapping

between each initial state and the corresponding steady states is given. In asynchronous updat-

ing, as we consider here, the state of only one species can be changed per step. This means that

the Hamming distance (i.e., the number of bits that differ between the states) of all states that

are reachable in the next step is equal to one [54]. We exploit this knowledge to construct

paths from each initial value to the reachable steady states, while avoiding paths that lead to

incorrect results. This allows us to generate (in general many) candidate networks that satisfy

precisely the prescribed mapping. The probability distribution of the steady states can also be

specified. This is then used, within a genetic optimization algorithm, to select models which
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show the same dynamics. At this point, expert knowledge on the network (such as on which

species a given rule depends on or specific transitions that should be included) can be incorpo-

rated as well. A number of good candidate models are then selected and the corresponding

Boolean rules are generated. The algorithm automatically simplifies these results using sym-

bolic manipulation. The algorithm proposed is described in the following sections for two

examples: an Enzyme-Substrate kinetics model and an established Epithelial to Mesenchymal

Transitions (EMT) epithelial mouse cancer cell metastasis [55, 56].

The basic algorithm is explained in some detail for the Enzyme-Substrate kinetics reaction

mechanism which is facilitated by the smaller size of that particular problem. However, all the

steps in the algorithm (except for the problem specific expert guidance that can be used) have

been fully automated and are part of a parallelized hybrid Python/C++ code. Thus, the crea-

tion of the Boolean rules is done fully automatically and the detailed enumeration of some of

those steps for the Enzyme-Substrate kinetics reaction mechanism problem are only provided

as examples to gain a better understanding of the algorithm. For both examples we show how

Fig 1. Schematic depiction of our workflow. Our input data is of the form initial state and corresponding steady states. If the same initial state is observed to end up in

multiple steady states, a probability to reach each steady state can be prescribed as well. From the initial state to attractor relationship, a network is created using the state

transition graph, taking into account every possible connection allowed by an asynchronous updating scheme. We then simulate the network and compare the resulting

probabilities to the specified measurement data. If necessary, we remove transitions from the network to achieve a better match between the probabilities of the resulting

network and the the experimental data. The result is a system of Boolean rules that describes the network dynamics.

https://doi.org/10.1371/journal.pcbi.1009035.g001
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to incorporate expert knowledge into our method. This by necessity is problem dependent and

thus different approaches, that should generalize well to many other problems, are explored.

We note however, that our approach generates candidate networks based on the transition

graphs and formulates Boolean rules from said graphs. Therefore, network representations

should not be confused with interaction or regulatory networks, where network edges corre-

spond to biochemical interactions. It follows that a Boolean pathway describes the possible

paths that a simulation can take to reach the steady state in the network, and has no connection

to e.g. signaling pathways. Finally, a Boolean rule does not necessarily possess a chemical

mechanism interpretation. Our method explores the Boolean mechanism or the network

dynamics and phrases the resulting network in the form of a Boolean rule set. The (bio)chemi-

cal interpretation of these rules may not be obvious from a biological perspective and further

exploration and simplification may be necessary to interpret the biological meaning of a given

logic rule.

Network inference for Enzyme-Substrate dynamics

We employ an enzyme-substrate reaction system to demonstrate the details of our approach.

In this representation E is the enzyme, S is the substrate, and P is the resulting product. The

enzyme can bind to the substrate into the complex ES via a specific rate kf and break up into

the two species via the rate kr or catalyze the substrate-to-product reaction, resulting in free

enzyme and product according to the chemical equation

Eþ SÐ
kr

kf
ES; ES!

kc Eþ P: ð1Þ

Mathematically, this results in a system of ordinary differential equations (ODEs) with spe-

cies concentration E, S, ES, and P as well as the three parameters kf, kr, and kc.
Our goal is to model the corresponding dynamics using a Boolean network. Boolean net-

works assume that the species are either present (1) or absent (0), i.e. E, S, ES, P 2 {0, 1}, and

that all reactions are equally likely, i.e. all rate constants are equal to 1. To match this we will

also make the assumption that kf = kr = kc = 1 in our enzyme-substrate reaction. For the con-

centrations we will start with either 1 or 0 for each species, but the concentration is allowed to

take on fractional values as the reaction dynamics evolve. The results of such a simulation are

shown in Fig 2. The initial value to steady state mapping so obtained will be used in this section

to automatically construct a Boolean network using the proposed algorithm. The goal of this

Boolean network is to recover the dynamics of the ODE simulation. Let us note that in the

Boolean model the values of the species are necessarily either 1 or 0. We will, however, inter-

pret the average of the stochastic asynchronous update as a (relative) concentration similar to

the one found in the ODE model.

For this particular system, we have four species each of which can take on two conditions,

for a total of 24 = 16 possible states of the system, namely:

ðE; S;ES;PÞ 2 fð0; 0; 0; 0Þ; ð0; 0; 0; 1Þ; ð0; 0; 1; 0Þ; ð0; 0; 1; 1Þ; ð0; 1; 0; 0Þ; ð0; 1; 0; 1Þ;

ð0; 1; 1; 0Þ; ð0; 1; 1; 1Þ; ð1; 0; 0; 0Þ; ð1; 0; 0; 1Þ; ð1; 0; 1; 0Þ; ð1; 0; 1; 1Þ;

ð1; 1; 0; 0Þ; ð1; 1; 0; 1Þ; ð1; 1; 1; 0Þ; ð1; 1; 1; 1Þg:

For consistency, each tuple represents the species in the order as shown (i.e. the first entry

is the E state, the second entry is the S state, the third is the ES state, and the fourth entry is the

P state). Once all states have been defined we can analyze the states for biochemical signifi-

cance. For example, state (0, 0, 0, 0) signifies that no species are present in the system and
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therefore no chemical reactions can occur. States (1, 0, 0, 0), (0, 1, 0, 0), and (0, 0, 0, 1) similarly

have only one of enzyme, substrate, or product present and similarly no chemical reactions

can take place. Absence of reactions is also seen in the state (0, 1, 0, 1), since substrate and

product do not interact with each other. Removing those states form further considerations

leads to a network that treats them as a steady state which can not be accessed by any other

state. All other states, however, converge towards the attractor state (1, 0, 0, 1). The first step of

our introduced method is to match all initial states to their according steady state represented

in Table 1.

Fig 2. Reaction kinetics of an enzyme-substrate system with rate constants kf = kr = kc = 1 and initial

concentrations E = S = 1 and ES = P = 0. The simulation is the solution of the underlying ordinary differential

equation, and the concentrations of the species are therefore still 2 R½0;1�. The dynamics depicted in this graph is

considered to be the underlying truth that our algorithm tries to recreate with an automatically generated Boolean

logic network.

https://doi.org/10.1371/journal.pcbi.1009035.g002

Table 1. Mapping of the initial states to their corresponding steady state. By mapping states to themselves, they cre-

ate a steady state for the network that can not be accessed by any other state. Note, that in principle, initial states can

converge towards multiple different steady states. This behavior is captured easily by just adding these states to all of

the corresponding steady state lists.

Steady

State

Initial States

(0, 0, 0, 0) (0, 0, 0, 0)

(0, 0, 0, 1) (0, 0, 0, 1)

(0, 1, 0, 0) (0, 1, 0, 0)

(0, 1, 0, 1) (0, 1, 0, 1)

(1, 0, 0, 0) (1, 0, 0, 0)

(1, 0, 0, 1) (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1,

1, 1, 0), (1, 1, 1, 1)

https://doi.org/10.1371/journal.pcbi.1009035.t001
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In the next step, for each attractor, the initial states are sorted according to their Hamming

distance from the steady state. The sorting for steady state (1, 0, 0, 1) is listed in Table 2.

Based on the asynchronous updating scheme, a state with Hamming distance n will require

at least n updates to reach the attractor. We then identify the transitions necessary to build a

pathway for each Hamming distance level.

We use this information to create a transition map for each species that contains the neces-

sary transformations to reach a given attractor. We achieve this by working our way backwards

from each attractor. For example, for a level one (i.e. Hamming distance = 1) transition, the

state (1, 0, 1, 1) needs to flip the third bit (the bit for ES) to reach the attractor (1, 0, 0, 1). Simi-

larly the state (1, 1, 0, 1) needs to flip the second bit (the bit for S) to reach the attractor (1, 0, 0,

1). Therefore, the transition lists for S and ES will be updated with the states (1, 1, 0, 1), and (1,

0, 1, 1) respectively. We do the same for level 2 (i.e. states with Hamming distance = 2), as well

as for all other levels and extend the lists accordingly. The full sorting can be found in Table 3.

Note, that for a system with multiple attractors, each attractor gets a similarly created list.

A graphic representation for the corresponding pathways can be found in the transition

graphs S1 and S2 Figs in the supplementary material. This list includes all the necessary transi-

tions for each species to reach a given attractor. In a system with multiple steady states, this

procedure has to be performed for each attractor. With the transition list, we can then infer

the Boolean rules to update each species according to its associated transition list using the fol-

lowing steps:

1. Each binary number is matched as a Boolean expression. For the enzyme-substrate system,

e.g., the state (0, 0, 1, 1) is matched by the Boolean expression that only returns True, if the

state is E = 0 (or not E), S = 0 (or not S), ES = 1, and P = 1. Since every other state returns

False, this is equivalent to connecting each element of the expression via the logical AND
operator, i.e.: (not E AND not S AND ES AND P). From now on, we will continue by

using the mathematical notation, where not X is written as X , and AND is written as ^, i.e.,

ðE ^ S ^ ES ^ PÞ
In the first step, we translate every state from Table 3 into its corresponding Boolean

expression.

Table 2. Sorting of the initial states according to their Hamming distance from the steady state (1, 0, 0, 1).

Hamming distance from steady state (1, 0, 0, 1) Initial States

1 (1, 0, 1, 1), (1, 1, 0, 1)

2 (0, 0, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)

3 (0, 0, 1, 0), (0, 1, 1, 1), (1, 1, 1, 0)

4 (0, 1, 1, 0)

https://doi.org/10.1371/journal.pcbi.1009035.t002

Table 3. List of transitions for each species that make up the network pathways sorted by their Hamming distance

d to the steady state (1, 0, 0, 1). Note, that a state can reach the steady state in multiple ways. It is therefore possible to

have the same initial assigned to multiple species.

species list for d = 1 list for d = 2 list for d = 3 list for d = 4

E (0, 0, 1, 1) (0, 0, 1, 0), (0, 1, 1, 1) (0, 1, 1, 0)

S (1, 1, 0, 1) (1, 1, 1, 1) (0, 1, 1, 1), (1, 1, 1, 0) (0, 1, 1, 0)

ES (1, 0, 1, 1) (1, 1, 1, 1) (1, 1, 1, 0)

P (1, 0, 1, 0), (1, 1, 0, 0) (0, 0, 1, 0), (1, 1, 1, 0) (0, 1, 1, 0)

https://doi.org/10.1371/journal.pcbi.1009035.t003
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2. Let us now look at the first row of Table 3, namely the transitions for the enzyme, which is

True for the four Boolean expressions ðE ^ S ^ ES ^ PÞ, ðE ^ S ^ ES ^ PÞ, ðE ^ S ^ ES ^ PÞ,
and ðE ^ S ^ ES ^ PÞ. This means, that E is set to True, if any of these expressions is True.
We therefore combine the four expressions via the logical OR operator notated by _.

3. By construction of the network, the enzyme E is supposed to be flipped, if the expression

from step 2 is True and not flipped in any other case. This means, that we need an if-condi-

tion of the form if(expression from step 2 is True): change the current state of E, else: keep E

as it was. This can be achieved by the logical exclusive OR operator, for short XOR ( ⊻ ),

which returns True if and only if one of the conditions of the input is True. Contrary to the

OR operator, XOR returns False, if both input conditions are met. If we therefore couple the

expression from step 2 with E using the XOR operator in this way (expression from Point 2

XOR E), we have the following possibilities:

• E = 0 and none of the states from Table 3 is met! the input for the XOR operator is

ðFalse ⊻ FalseÞ, and E stays E = 0.

• E = 0 and one of the states is met! ðTrue ⊻ FalseÞ, and E gets updated to E = 1.

• E = 1 and none of the states is met! ðFalse ⊻ TrueÞ, and E stays E = 1.

• E = 1, and one of the states is met! ðTrue ⊻ TrueÞ, and E gets updated to E = 0.

Therefore, the updating rule for E can be written as:

ððE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞÞ ⊻ E

Using Boolean algebra, this expression can be further simplified to

E _ ES

The same procedure for the other species results in the following rules

rule for S:

ððE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ

_ðE ^ S ^ ES ^ PÞÞ ⊻ S ¼ ðE ^ S ^ ESÞ _ ðS ^ ES ^ PÞ

rule for ES:

ððE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞÞ ⊻ ES ¼ ðE ^ ESÞ _ ðS ^ ES ^ PÞ

rule for P:

ððE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ

_ðE ^ S ^ ES ^ PÞÞ ⊻ P ¼ ðE ^ SÞ _ ES _ P

Let us now try to interpret these rules from a chemical kinetics point of view: We know,

that the steady state for this example has the enzyme turned on, i.e., E = 1. According to the

rule E� = E _ ES, E is either already on or it is turned on by ES. S is turned off in the steady

state, and according to the rule, it gets turned off, if E and ES are off at the same time, or if ES
is off and P is on at the same time. ES is turned off, if E is turned off or S and P are turned off at

the same time, while P either is already on, ES is on, or E and S are on at the same time.
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Dynamic behavior of the forward-only (ES-F) network. The described way to obtain

Table 3 only includes the transitions in one direction (from initial state to steady state) and

therefore qualifies as “forward-only” network that does not allow for transitions that step back-

wards away from the steady state. The automatically created network evaluating forward-only

interactions results in the following set of update rules

E� ¼ E _ ES

S� ¼ ðE ^ S ^ ESÞ _ ðS ^ ES ^ PÞ

ES� ¼ ðE ^ ESÞ _ ðS ^ ES ^ PÞ

P� ¼ ðE ^ SÞ _ ES _ P:

The generated network structure of the forward network is depicted in Fig 3 top left. Using

the General Asynchronous updating scheme [50, 51, 53] for the initial state (1, 1, 0, 0) for 100

simulations yields the result shown in Fig 3 on the top right. The depicted initial condition is

the same as we have used for the kinetic simulation in Fig 2 to compare and judge the quality

of our result.

The kinetic model in Fig 2 depicts concentrations of the species in the system, i.e,

E; S;ES;P 2 R�0. Since this is not possible for a Boolean simulation, where E, S, ES, P 2 {0, 1},

to capture the overall dynamics of the network, multiple simulations have to be performed.

The random nature underlying the General Asynchronous updating scheme results in differ-

ent pathways taken by each simulation. Looking for each species at the fraction of how many

simulations are 0 or 1 at each simulation step allows us to capture dynamics similar to the

kinetic description.

As we can see, the correct steady state is achieved. However, in these dynamics the enzyme

never gets bound to the substrate, but substrate is directly converted into the product. The

middle part of the enzyme-substrate kinetics is thus omitted. This is clearly not the desired

dynamics.

A look at the graphic representation of the network as depicted in Fig 3, top left, gives us

further insight into this problem. We can see that by our basic construction, we only allow the

direct “forward” pathway for the network: The state (1, 0, 0, 0), i.e., the state where substrate is

consumed has not been included into the network and therefore, the only possibility of our

initial state to change is the creation of the product into the state (1, 1, 0, 1). This state has also

no other path than directly go to the final state (1, 0, 0, 1), i.e., consume the substrate. However,

no circulation or other dynamics are allowed in this network. Michaelis-Menten kinetics, how-

ever, are only a simple example that already demonstrates, that circulation within the pathways

are an important biological factor of networks.

We therefore propose to extend our method to include the backward pathways into the net-

work as well.

Backward dynamic paths to enable dynamic loops (ES-B). The list from Table 3 only

accounts for transitions in the forward direction towards the attractor. By extending the corre-

sponding lists to include the backward transitions, we generate a new rule-set that extends to a

new network including all possible backward pathways as well. Note, however, that we can

only include backward pathways starting with level 1 and higher. Including a backward path

for level 0, i.e., the attractor, means that the simulation can leave this state and it therefore

would be no longer be a steady state.
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Fig 3. State transition graphs for the Boolean networks created by our proposed rules generator (left) for the enzyme-substrate mechanics and their

resulting dynamics after 100 asynchronous updating simulations for the initial state (E, S, ES, P) = (1, 1, 0, 0) (right). The first row depicts the resulting

network from the forward-only pathways network (ES-F), the second row the network including backward paths (ES-B), and the third row the network

including expert knowledge (ES-E). For the network representation, the pathway for state (1, 1, 0, 0) to reach the steady state is highlighted in green. The

darker the arrow, the more simulation steps are necessary to reach this particular transition. For the dynamics plots (right), the fraction of 100 simulations of

the asynchronous updating scheme that are on/off is shown on the y-axis. The x-axis shows the number of simulation steps taken, representing the number of

steps necessary for all 100 simulations to reach the steady state.

https://doi.org/10.1371/journal.pcbi.1009035.g003
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Using the extended transition sets and the same translation into updating rules, we obtain

E� ¼ ðE ^ ESÞ _ ðE ^ ESÞ

S� ¼ ðS ^ ESÞ _ ðE ^ S ^ ESÞ _ ðS ^ ES ^ PÞ

ES� ¼ ðE ^ ESÞ _ ðE ^ S ^ ESÞ _ ðS ^ ES ^ PÞ

P� ¼ ðES ^ PÞ _ ðE ^ S ^ PÞ _ ðE ^ ES ^ PÞ _ ðS ^ ES ^ PÞ:

The network structure and simulation results for this rule-set and the initial state (1, 1, 0, 0)

is depicted in the middle row of Fig 3 on the left.

The network depiction demonstrates, that all paths in the network are now enabled. I.e., the

state (1, 1, 0, 0) can also transition into (1, 1, 1, 0), which means that the product ES is gener-

ated. We observe, that the simulation now both consumes enzyme and creates the complex ES
before the attractor is reached. The dynamics, depicted in the middle row of Fig 3 on the right,

match the ground truth from Fig 2 well. We can also see, that it takes noticeably longer for all

simulations to reach their overall attractor. This makes sense, since backward paths also enable

simulations to loiter in loops.

Reduction of logic-rule search space with experimental data (ES-E). Both networks

described above are created by automatically mapping initial states to their corresponding

attractor without any additional knowledge. Due to the construction of our method, however,

it is straightforward to include expert knowledge into the dynamics as well.

Let us for example look back at the construction of our first network. We have noted that in

this case we omit the pathway for the creation of the complex ES. We are, however, aware that

this part is a necessary step of the dynamics. In this example, we therefore propose to start with

the forward-pathway network and add the transitions for (1, 1, 0, 0) to (1, 1, 1, 0), as well as the

resulting consumption of E, namely the transition from (1, 1, 1, 0) to (0, 1, 1, 0) to the corre-

sponding transition list.

The resulting ruleset is

E� ¼ ðE ^ PÞ _ ðE ^ ESÞ _ ðE ^ ESÞ _ ðE ^ SÞ

S� ¼ ðE ^ S ^ ESÞ _ ðS ^ ES ^ PÞ

ES� ¼ ðE ^ ESÞ _ ðS ^ ES ^ PÞ _ ðE ^ S ^ ES ^ PÞ

P� ¼ ðE ^ SÞ _ ES _ P

and in Fig 3 bottom, we see the resulting network (left) and the corresponding simulation for

the initial state (1, 1, 0, 0) (right). Since we only added the absolute minimum necessary to cre-

ate ES, most of the loops from the backward pathways model are omitted and the simulation

reaches the steady state in a similar time frame as the simulation with the forward pathways

only while also capturing some of the dynamics of the ES creation and E consumption.

Note, that in this case we manually added transitions to the network we judged feasible.

We also provide the option to exclude transitions that the user is certain are biologically

unfeasible.

Our implementation enables the user to start with either the forward-path network, or the

full backward path including network from which transitions can be added or removed as

seen fit. Note, however, that not all removals are valid to keep the network dynamics: adding

and/or removing random transitions could result in the following problems:
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1. adding a transition that leads directly away from the attractor will result in a loss of this

attractor as a steady state

2. adding a transition could create a pathway to the wrong attractor

3. removing a transition could make it impossible for a state to reach its attractor

Since the full backward path network includes all possible pathways between all nodes in the

network, for an unknown process, we recommend to start with the full backward path network

and start strategically removing transitions from there. This way, we can be certain that the nec-

essary network connections are present, while we only need to assure that point 3. of the list is

not violated. Note, however, that due to the many loops that are created in this network, more

steps are required by the asynchronous updating scheme before equilibrium is achieved.

Results

Application to an established model: Epithelial to Mesenchymal Transition

(EMT) in cancer cell metastasis

To demonstrate our mechanism inference approach in a real-world system, we infer the Bool-

ean logic mechanism for the EMT transition observed in [55, 56]. The ruleset for the reference

EMT model is:

NICD� ¼ Notch ^ TP63 TP73 ^ TP53

Notch� ¼ ECM ^miRNA

TP53� ¼ ðDNAdam _NICD _miRNAÞ ^ EMTreg ^ TP63 TP73

TP63 TP73� ¼ DNAdam ^miRNA ^ NICD ^ TP53

miRNA� ¼ ðTP53 _ TP63 TP73Þ ^ EMTreg

EMTreg� ¼ NICD ^miRNA

ECM� ¼ ECM

DNAdam� ¼ DNAdam

The system comprises six species NICD, Notch, TP53, TP63_TP73, miRNA, and EMTreg.

ECM and DNAdam are input parameters that do not change during the simulation. For exam-

ple, the model has been used in [55] to investigate the effect of Notch upregulation and TP53

deletion. The model captures the EMT dynamics triggered by TP53 deletion and Notch activa-

tion, and the interplay between multiple interactions that lead to mesenchymal behavior in

epithelial mouse cells. Such mechanisms are also common in many other cancers.

Let us now assume, that this set of rules is the underlying truth for our mechanism infer-

ence algorithm, and therefore refer to the model as EMT-O (original). We have generated ref-

erence data by running the asynchronous updating simulator 100 times for each of the 28 =

256 states and recorded the steady state for each run. We use this data, to automatically infer a

set of rules.

Table 4 summarizes the so obtained results.

Since ECM and DNAdam are parameters and can not change during the simulation, the

network naturally divides into four mutually exclusive sub-networks depending on the param-

eter inputs

ðECM;DNAdamÞ 2 fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg:
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Each of those sub-networks contains the 64 states with the corresponding parameters fixed

in each. In three of the four networks, the data suggests that initial states can run into two differ-

ent steady states. A closer inspection reveals, that the system has in total three different attrac-

tors: (NICD, Notch, TP53, TP63_TP73, miRNA, EMTreg) = (0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0), or

(1, 1, 0, 0, 0, 1). Note, however, that for our method we treat the parameters as species and there-

fore work with seven different attractors. A schematic depiction of the resulting four sub net-

works divided by the corresponding parameter set can be found in S2 File. The input file for

our method consists of a list for every one of the 256 states and their corresponding attractors.

We can now run the Boolean rules generator described in the previous section. Due to the

many species involved in this system, we do not expect our method to produce rules that are

short and easily understandable (at least not without additional constraints). However, they

are created automatically and we could immediately put the generated rule-set into the asyn-

chronous simulator and analyze the inferred model.

In the supplemental S3–S6 Figs, we depict the four generated subnetworks determined by

the four different parameter options generated by our method. The blue lines are transitions

that are captured in the original model (EMT-O) [55] as well as our forward path model

(EMT-FW). The orange lines are transitions that are captured by EMT-FW but not EMT-O.

The green lines are transitions that are not captured by EMT-FW, but are added by the back-

ward model (EMT-BW). We want to point out, that EMT-O introduced some states that are

part of a dual-attractor network, but only reach one of the steady states (denoted with the

bright blue lines). Our implementation recognizes those states and successfully treats them in

the same way.

In the supplementary Fig 4S, we can observe the difference between EMT-FW and

EMT-BW for a network with a single steady state more clearly. Due to the large number of

species, the inter-connectivity between the states results in backward transitions even in

EMT-FW (thus a forward connection for one rule can act as the backward connection for

another). The difference between the two networks only occurs between level 1 and level 2 of

the distance to the steady state. Note, that for some states, EMT-O includes these transitions

that are not captured by EMT-FW. Since the rulesets are very long, we put them into the sup-

plement S1 File. As we can see, the terms are now too complicated to actually get a meaningful

chemical kinetics interpretation.

Comparison between data and automatically created networks. Since the construction

of EMT-BW includes all possible transitions under the asynchronous updating scheme, we

need to remove particular transitions to recapture EMT-O. In the supplementary S2 File, we

Table 4. Summary of the asynchronous updating results for the EMT model from [55] after 100 asynchronous

updating simulations for each of the 256 possible initial states. The order of species is (NICD, Notch, TP53,

TP63_TP73, miRNA, EMTreg, ECM, DNAdam). The network splits into four mutually exclusive sub-networks

depending on the two parameters ECM and DNAdam. Initial states for three of those sub-networks can run into two

different attractors with varying frequency.

(ECM, DNAdam) SS frequency

(0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 0.61

(0, 0, 1, 0, 1, 0, 0, 0) 0.39

(0, 1) (0, 0, 1, 0, 1, 0, 0, 1) 1.0

(1, 0) (0, 0, 1, 0, 1, 0, 1, 0) 0.52

(1, 1, 0, 0, 0, 1, 1, 0) 0.48

(1, 1) (0, 0, 1, 0, 1, 0, 1, 1) 0.79

(1, 1, 0, 0, 0, 1, 1, 1) 0.21

https://doi.org/10.1371/journal.pcbi.1009035.t004
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list the full list of transitions to be removed from EMT-BW to capture the original EMT

model, and depict the resulting network graph separated by the corresponding parameter set.

In Table 5, we summarize the transitions by counting how many of them to remove from

EMT-BW to obtain the original model.

The numbers on the left denote the number of transitions for EMT-O, while the numbers

on the right are the corresponding numbers of transition we obtain with the backward rule

generator. These numbers confirm our suspicion, that our generated rules include about twice

as many transitions as EMT-O.

Let us now look at some simulation results. In Fig 4, we depict the dynamics of two initial

states (NICD, Notch, TP53, TP63_TP73, miRNA, EMTreg, ECM, DNAdam) = (0, 0, 0, 0, 0, 0,

1, 0), and (0, 1, 0, 0, 0, 1, 0, 0) for the original model (row 1), and EMT-BW (row 2). For the

first initial condition, EMT-O reaches the steady state (1, 1, 0, 0, 0, 1, 1, 0) more than half the

time and the steady state (0, 0, 1, 0, 1, 0, 1, 0) less than half the time. For EMT-BW this dynam-

ics is exactly reversed. For the second initial state reaching the attractor (0, 0, 1, 0, 1, 0, 0, 0) is

significantly less likely in EMT-O than in EMT-BW, but qualitatively the correct behavior is

obtained.

To get a broader view, we extended Table 4 by the corresponding frequencies for our auto-

matically created systems in Table 6. We interpret that the subnetwork (ECM, DNAdam) = (1,

0) experiences a trend towards steady state (1, 1, 0, 0, 0, 1, 1, 0) for the systematic approach,

where for EMT-O, both steady states of the subnetwork are reached about the same number of

times. For the other three subnetworks, the frequencies to enter into a given steady state gener-

ally match well with EMT-O.

Automated model selection. Our automatic rule-creation method does not take the time

evolution of the system into account. It is therefore not surprising, that our results experience

some qualitative differences between the input model and our created models.

If, however, a model predicts the majority of a cell fate as death, when the experiment

clearly states the majority as survival, the model is very restricted in its usefulness. In this sec-

tion, we therefore propose an automatic model selection algorithm to find a model that agrees

better with the underlying data.

If we start with the backward pathway model, we already cover all possible connections in

the system. From Table 5, we know that we would need to remove about half of the connec-

tions from each network. This, however, is information taken from the underlying truth and

can not be assumed as knowledge in a real experiment.

Our hypothesis is, that by removing a transition from the pathway towards an attractor, the

initial state has to take a “detour” through the network to reach the attractor, thus making it

less likely to reach this particular steady state, and more likely to move towards the other one

instead. Due to the highly interconnected structures of our networks, however, we are aware

that by removing the transition for one state to make it harder to reach an attractor, we might

Table 5. Summary of transitions assigned to each network. Each species in each sub-network has a number of transitions. The number on the left is the number of transi-

tions for EMT-O, the number on the right is the number of transitions for the backward pathway model generated by our tool. The last row denotes the percentage for all

four sub-networks in total.

(ECM, DNAdam) NICD Notch TP53 TP63_TP73 miRNA EMTreg

(0, 0) 32|61 32|61 32|56 32|56 28|56 24|57

(0, 1) 32|63 32|63 32|63 28|63 36|63 24|63

(1, 0) 32|62 32|62 32|59 32|59 28|59 24|59

(1, 1) 32|60 32|62 32|57 28|57 32|60 24|57

52.03% 51.61% 54.47% 51.06% 52.1% 40.68%

https://doi.org/10.1371/journal.pcbi.1009035.t005
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Fig 4. Comparison between EMT-O and some of our automatically created rulesets (EMT-BW, EMT-C, EMT-E).

Initial state (0, 0, 0, 0, 0, 0, 1, 0) has the two attractors (0, 0, 1, 0, 1, 0, 0, 0) and (1, 1, 0, 0, 0, 1, 1, 0) (left column). The

initial state (0, 1, 0, 0, 0, 1, 0, 0) converges towards the two attractors (0, 0, 1, 0, 1, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 0, 0) (right

column). On top, we depict the dynamics of the original model EMT-O. From row 2 to row 3 and 4, we include the

more and more sophisticated automatically created network (EMT-BW, EMT-C, and EMT-E, respectively).

https://doi.org/10.1371/journal.pcbi.1009035.g004
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involuntarily also affect states that are supposed to reach the attractor more often. Therefore, a

gradient based optimization will not perform well.

We chose a genetic optimization algorithm instead and extended our implementation by

an option to randomly remove a number of transitions from the transition lists of each species.

After gathering all the transitions created by EMT-BW and before we translate the transition

lists into the ruleset, we randomly remove entries from those lists. The number of transitions

to remove is the parameter that our optimizer chooses in order to improve the frequencies of

the steady states.

This setup leads to a couple of difficulties.

1. By removing transitions, we could violate point 3 of our problem list above and remove the

pathway necessary to reach the attractor. Before we remove any transition from a species

list, we therefore first check, if removing this transition is legal. Only if the reachability

check answers True, the transition will be removed from the list. We therefore ensure that

the initial states will always be able to reach their attractors. These checks, however, extend

the runtime for the creation of each model. Furthermore, we do not always remove the

number of transitions proposed by the optimizer. If, for example, the optimizer proposes to

remove 50 transitions and the algorithm can only find 40 valid transitions to remove, it will

stop at the removal of 40 transitions, while still registered as a model with 50 transitions

removed.

2. Due to the randomness of the removal, it is not enough to only create one model according

to the suggested number of transition removals. In a genetic optimizer, every generation

consists of multiple individuals that suggest their own number of transitions to remove.

One of the individuals might have found the perfect number, however, the randomly

selected transitions might be a bad choice and thus result in a bad fit. To avoid this, each

individual of the algorithm does not only simulate one model, but multiple models with the

same number of transitions removed.

A genetic algorithm consists of a number of individuals called a generation. After each indi-

vidual computes its fitness, a selection process decides how to pick individuals to mate with

each other and produce two new individuals according to the selected crossover. Some parts of

the new individuals also get mutated according to the given mutation percentage.

For our optimization, our algorithm is based on the software package DEAP [57] using the

build-in toolboxes for crossover, mutation, and selection.

We initialize 150 individuals as lists of random numbers between 0 and 1, denoting the

number of transitions to be removed. Then, each individual uses its list of numbers to create

Table 6. Summary of the asynchronous updating results after 100 asynchronous updating simulations for each of the 256 possible initial states. The numbers on the

right hand side are frequencies that the simulation reaches the corresponding steady state for the EMT model from [55], EMT-FW, and EMT-BW, respectively. The order

of species is (NICD, Notch, TP53, TP63_TP73, miRNA, EMTreg, ECM, DNAdam).

(ECM, DNAdam) SS EMT-O EMT-FW EMT-BW

(0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 0.61 0.51 0.52

(0, 0, 1, 0, 1, 0, 0, 0) 0.39 0.49 0.48

(0, 1) (0, 0, 1, 0, 1, 0, 0, 1) 1.0 1.0 1.0

(1, 0) (0, 0, 1, 0, 1, 0, 1, 0) 0.52 0.73 0.72

(1, 1, 0, 0, 0, 1, 1, 0) 0.48 0.27 0.28

(1, 1) (0, 0, 1, 0, 1, 0, 1, 1) 0.79 0.78 0.77

(1, 1, 0, 0, 0, 1, 1, 1) 0.21 0.22 0.23

https://doi.org/10.1371/journal.pcbi.1009035.t006
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50 models that differ from each other by the randomness of the transition removals. Each of

these models then runs 100 asynchronous updating simulations for each of the 256 initial

states. It gathers the resulting frequencies of each state and compares it with the corresponding

frequencies of the experimental data (i.e., the data taken from the model from [55]). The root

mean square error (RMS) is computed by taking the difference between each of the corre-

sponding frequencies. The fitness for each individual is the smallest RMS from the 50

simulations.

The detailed parameter setup of DEAP for our simulation can be found in the supplemen-

tary file S1 Table. In the supplementary S7 Fig, we see the development of the RMS over 90

generations. This simulation creates a total of 150 × 50 × 90 = 675000 models. We identify the

smallest RMS at the 86th generation with a value of 12.68. This will be from now on referred to

as model EMT-C. A similar RMS of 12.76 can be found at generation 40 (EMT-B), which is

less than half of the full simulation. As a third point of interest, we chose a relatively early

model found at generation 7 with an RMS of 13.14 (EMT-A).

Model selection using expert knowledge. The above introduced model selection is the

most general version with the least amount of knowledge input possible. In this section, we

decrease the state space of models by adding expert knowledge to the interference process.

Often the network structure (i.e. the dependence of a rule on other species) is known, or at

least suspected. In our situation, the rule for NICD, e.g., displays a dependency to Notch,

TP63_TP73, and TP53, but not to miRNA, EMTreg, ECM, or DNAdam. We now assume here

that we know the dependencies for each node. In other words, the expression of our new rule

set is no longer allowed to include the dependency of a species that it does not depend on in

the original rule set. This is an assumption that we can impose upon a Boolean ground truth.

Note, that in the case of our enzyme-substrate example, we are reconstructing a kinetic model

rather than a Boolean model. We therefore can not directly use this approach, since the depen-

dencies in this case are unknown.

For the EMT model, however, we can take a closer look into how the ruleset is formulated

from the transition states that have been determined by our model creator. Similar to the auto-

mated model selection from the previous section, we select our new network by legally discard-

ing transitions. In this case, however, we do not randomly choose a set, but exploit the fact that

ðx ^ y ^ zÞ _ ðx ^ y ^ zÞ ¼ y ^ z. I.e., if we want to eliminate a dependency of a variable, we

need to eliminate each transition that does not include its symmetric counter part in the transi-

tion list. This method assures a non-dependency of the right hand side on the chosen species.

Note, however, that our rules are formulated by species� ¼
�

V
transitions

transition state
�
⊻ species:

Due to the XOR operation, we need to treat the self-dependency in the opposite manner. While

for the elimination process of the other species we want to make sure that the symmetric

counter parts are all present in the transition list, to ensure non self dependency we want to

make sure that only one state of the two counter parts is present. In this step we need to be care-

ful to ensure the symmetry from the step before. Let us, e.g,. assume that we want to create the

first rule for species A for a list of five species (A, X, Y, Z, W), that only depends on the second

and third species X and Y. Let us further assume, that the last two species, Z and W, have been

eliminated from the formulation by only keeping the symmetric counterparts of each transition

state in the list. In addition, both states (0, X, Y, Z, W) and (1, X, Y, Z, W) are in the transition

list. We therefore need to eliminate one of those states. The algorithm needs to choose, whether

to eliminate the transition, where the first species is in state 0, or in state 1. Both choices lead to

a correct network. However, to guarantee the symmetry, for a fixed pattern of X and Y, the

same choice has to be made. Eliminating transition states this way, however, might result in the

loss of the connection to a steady state. We therefore include the reachability check that we
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already discussed in the automated model selection in this type of optimization as well. If reach-

ability is not satisfied for any of the possible networks, the assumptions made by the user are

not compatible with the biological observations of the experiment. In this case, relaxed assump-

tions have to be applied. The selection process is detailed in Algorithm 1.

Algorithm 1: Model selection using biological insight.
start with all possible transitions EMT-BW;
while select species to make rule for do
while select species that must not be part of the rule, except self

reference do
If symmetric counterpart not in transition list then
eliminate transition from list;

else
keep both transitions in list;

end
end
if both symmetric counterparts regarding the selected species are in

the transition list then
choose a pattern for the non-eliminated species;
decide the state of the species to remove (either 0 or 1);
for every transition state of the same pattern, eliminate the tran-

sition where the species is in the chosen state;
else
keep the transitions;

end
end

Due to the non-unique choice of the asymmetric elimination process taking place for the

self-elimination, this algorithm leads once again to multiple possibilities of the network struc-

ture. In Table 7, we give an overview of the species to eliminate and the resulting number of

possibilities for each rule.

From there we can see that the rules for Notch and EMTreg are both unique. There are,

however, still>8e6 network possibilities for the rule for TP53 alone. Since each of these transi-

tion lists can be combined with every other transition list, this method still leads to a total of

16 × 1 × 8388608 × 256 × 32 × 1> 1e12 possible networks to choose from. We therefore used

again the DEAP algorithm to optimize for the frequencies of the steady states. For the list of

the used DEAP parameters see the supplementary file S1 Table. In the supplementary S8 Fig,

we show the results for running the optimization over 25 generations using a population of

150 individuals. We already reach an RMS of 7.45 at generation 14, however, the smallest RMS

achieved in this optimization is 7.44 at generation 20. This is the model that we use as expert

guided model (EMT-E) in the following analysis. Note, that for this optimization, there was no

Table 7. Overview of model selection for the expert knowledge guided variant. The numbers are obtained using

Algorithm 1, starting with the transition list of the full backwards model and removing every possible combination of

the elimination of self reference by brute force.

rule species to eliminate possible number of resulting networks

NICD NICD, miRNA, EMTreg, ECM, DNAdam 16

Notch NICD, Notch, TP53, TP63_TP73, EMTreg, DNAdam 1

TP53 Notch, TP53, ECM 8388608

TP63_TP73 Notch, TP63_TP73, EMTreg, ECM 256

miRNA NICD, Notch miRNA, ECM, DNAdam 32

EMTreg Notch, TP53, TP63_TP73, EMTreg, ECM DNAdam 1

https://doi.org/10.1371/journal.pcbi.1009035.t007
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additional random choice necessary. This simulation therefore produced 150 × 25 = 3750

models, where some of them are equivalent.

The resulting rule set for this choice is

NICD� ¼ ðNotch ^ TP53 ^ TP63 TP73Þ

_ðNotch ^ TP53 ^ TP63 TP73Þ

Notch� ¼ ECM ^miRNA

TP53� ¼ ðDNAdam ^ EMTreg ^miRNA ^NICD ^ TP63 TP73Þ

_ðDNAdam ^ EMTreg ^miRNAÞ

_ðDNAdam ^ EMTreg ^NICDÞ

_ðDNAdam ^miRNA ^NICDÞ

_ðDNAdam ^NICD ^ TP63 TP73Þ

_ðDNAdam ^ EMTreg ^miRNA ^NICDÞ

_ðEMTreg ^miRNA ^ TP63 TP73Þ

_ðEMTreg ^miRNA ^NICD ^ TP63 TP73Þ

_ðEMTreg ^NICD ^ TP63 TP73Þ

TP63 TP73� ¼ False

miRNA� ¼ EMTreg ^ TP53

EMTreg� ¼ NICD ^miRNA

ECM� ¼ ECM

DNAdam� ¼ DNAdam

As we can see, the unique possibilities of the model selection for Notch and miRNA result

in the correct rule expression. Setting TP63_TP73 to False is correct from a mathematical

point of view (all attractors have this species at 0). This is a choice out of 256 possibilities and is

valid given the system constraints imposed on the model selection. This rule could be made

more biologically relevant by imposing additional expert knowledge, if desired. Due to the

>8e6 possible formulations for TP53, the convoluted formulation is not very surprising. The

randomly chosen models from the model optimizer above, as well as the original EMT-FW

and EMT-BW models have even longer and more convoluted terms. The rules for NICD and

miRNA are very close to the ones from the original paper. With the reduction of terms, the

interpretation of the rules becomes easier as well.

Analysis of the different models. In Fig 4, we can observe how the optimization gradually

improves the model. While EMT-BW produces some qualitatively wrong dynamics, EMT-C

converges towards the correct dynamics. EMT-E captures the dynamics nearly perfectly. For a

full comparison of the dynamics of all initial values, we refer the reader to the additional S3–S6

Files. To get an overall idea of how the dynamics of the states develop, we extend Table 6 by

the frequencies resulting from the three models with EMT-A, EMT-B, and EMT-C, as well as

the result for the expert knowledge guided optimization EMT-E, respectively in Table 8. As we

have observed before, the steady state for the parameter set (ECM, DNAdam) = (0, 0) for the

EMT model is biased towards the first state (NICD, Notch, TP53, TP63_TP73, miRNA,

EMTreg, ECM, DNAdam) = (0, 0, 0, 0, 0, 0, 0, 0) with approximately 60%. Both the EMT-FW

and EMT-BW, as well as our first selected model EMT-A are very close in their behavior to
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50%. With an RMS <13 (EMT-B, EMT-C, EMT-E), the models, however, capture the bias

towards the first steady state with 60% very similar to EMT-O. Contrary to the predictions of

EMT-FW and EMT-BW, that bias the steady states of the parameter set (ECM, DNAdam) =

(1, 0) towards the steady state (NICD, Notch, TP53, TP63_TP73, miRNA, EMTreg, ECM,

DNAdam) = (0, 0, 1, 0, 1, 0, 1, 0) with 70%, all of our selected model keep the ratio of approxi-

mately 50% towards both steady states similar to the EMT results.

The bias observed for the parameter set (ECM, DNAdam) = (1, 1) towards the steady state

(NICD, Notch, TP53, TP63_TP73, miRNA, EMTreg, ECM, DNAdam) = (0, 0, 1, 0, 1, 0, 1, 1)

is observed by all the models.

Looking at the dynamics for parameter set (ECM, DNAdam) = (1, 0), we immediately see

the effect of the optimizer finding the trend of no bias towards a steady state compared with

the non-optimized models. In Fig 5, we look into the distributions of the models according to

Table 8. We only depict one of the steady states, since the other state would only be a comple-

ment to the corresponding figure.

The Kolmogorov-Smirnov test tries to evaluate whether two data sets are drawn from the

same distribution. A small p-value therefore hints towards two different distributions underly-

ing the data sets. In Fig 5, we see for the subnetwork (ECM, DNAdam) = (0, 0), that the distri-

butions of EMT-FW and EMT-BW hint towards a different underlying distribution than the

data drawn from EMT-O. The generally selected models with EMT-A, EMT-B, and EMT-C

have a relatively large p-value and therefore hint towards a similar distribution to the data for

EMT-O. For the expert knowledge guided EMT-C model, the p-value is close to 1, showing

that we have obtained excellent agreement.

A similar behavior can be observed for the subnetwork (ECM, DNAdam) = (1, 0). How-

ever, the p-values for EMT-FW and EMT-BW are even smaller, while for the optimized

models, the p value is relatively large. This means that performing the optimization is more

important for this subnetwork.

For the subnetwork (ECM, DNAdam) = (1, 1) we see that EMT-FW and EMT-BW give a

relatively large p-value compared to the other two subnetworks—they can still be considered

small, but are far from significant. These models, therefore, might already give a decent

approximation to the underlying data set. The optimization, in this case, actually gives a worse

result for the models EMT-A and EMT-B. The effect of the optimizations for EMT-C and

EMT-E are not as strong as for the other subnetworks, but both optimization results can still

be seen as an improvement to EMT-FW and EMT-BW.

The dynamics for all models discussed in this chapter for steady state 1, 2, 3, and 4 can

be found in S3–S6 Files, respectively. Note, that for steady state (ECM, DNAdam) = (0, 1)

Table 8. Summary of the asynchronous updating results after 90 asynchronous updating simulations for each of the 256 possible initial states. The numbers on the

right hand side are frequencies that the simulation reaches the corresponding steady state for the EMT model from [55]. This is an extension to Table 6 with the inclusion

of the three selected models from the genetic optimizer EMT-A, EMT-B, and EMT-C, respectively. Furthermore, we include the model found by the expert knowledge

guided optimization EMT-E.

(ECM, DNAdam) SS EMT-O EMT-FW EMT-BW EMT-A EMT-B EMT-C EMT-E

(0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 0.61 0.51 0.52 0.59 0.66 0.6 0.63

(0, 0, 1, 0, 1, 0, 0, 0) 0.39 0.49 0.48 0.42 0.34 0.4 0.37

(0, 1) (0, 0, 1, 0, 1, 0, 0, 1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(1, 0) (0, 0, 1, 0, 1, 0, 1, 0) 0.52 0.73 0.72 0.5 0.5 0.5 0.5

(1, 1, 0, 0, 0, 1, 1, 0) 0.48 0.27 0.28 0.5 0.5 0.5 0.5

(1, 1) (0, 0, 1, 0, 1, 0, 1, 1) 0.79 0.78 0.77 0.75 0.76 0.77 0.8

(1, 1, 0, 0, 0, 1, 1, 1) 0.21 0.22 0.23 0.25 0.24 0.23 0.2

https://doi.org/10.1371/journal.pcbi.1009035.t008
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(S4 File), the initial states all converge towards a single attractor. Since the corresponding

steady state is unique, EMT-BW, EMT-A, EMT-B, and EMT-C are equivalent (up to random

fluctuations in the stochastic solver).

To summarize those findings, we look at Fig 6, where we explore in detail the differences

between EMT-O and our automatically generated models. In the first category <10, we

include all the states that are within 10% of the EMT model. For example, if a state in EMT-O

reaches a steady state 70%, and our selected model reaches the same state 65% of the time, we

compute the distance using 70 − 65 = 5. A distance of 5 is smaller than 10 and thus can be con-

sidered as a good state that represents a similar behavior than EMT-O.

Category (10, 19) counts all the states that are within 20% of the EMT results, and also expe-

rience the same qualitative behavior. If, e.g., a state in EMT-O reaches a steady state 70%, and

Fig 5. Frequency distribution of the states divided by the corresponding subnetworks. The second steady state for each of those subnetworks is omitted, since it is the

complement of the depicted plots here. The noted p-value is taken from a Kolmogorov-Smirnov test between the distribution of frequencies between the original model

EMT-O and EMT-FW, EMT-BW, EMT-A, EMT-B, EMT-C, and EMT-E, respectively. The top left figure depicts the distribution of all states that can reach the attractor

(00000000). The figure in the top right depicts the distribution of all states that can reach the attractor (00101010). The figure on the bottom depicts the distribution of all

states that can reach the attractor (00101011).

https://doi.org/10.1371/journal.pcbi.1009035.g005
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the corresponding model state reaches this state 55%, the distance of these states is 70

− 55 = 15. Both states have a bias towards this steady state (i.e., they are both larger than 50%),

and therefore this state gets sorted into this category.

If the EMT-O state reaches a steady state 60%, and the corresponding model state reaches

the same steady state 45%, the distance is still 60 − 45 = 15, the qualitative behavior, however,

is now reversed (60> 50, but 45< 50), and this state gets sorted into category r(10, 19). On

first glance, the qualitative behavior of the states seems like a more important metric to keep

on the states behavior. Note, however, that for a state to be within 20% of the EMT states and

have a reversed behavior, both frequencies have to be relatively close to 50% and thus can still

be considered approximately half.

The larger the distance, the more significant the impact of qualitatively wrong behavior gets

as well. Therefore, the higher the bar on the left, i.e, the more states that are close to the EMT

frequencies, the better the model. In this figure, we include now all the models discussed in

this section. The purple colors depict the non-optimized models EMT-FW and EMT-BW. We

can see, that both models experiences a couple of states, that are more than 50% away from the

behavior of the EMT model. Neither of our optimized models has states in this category.

Our expert knowledge guided model has one state that is within 30% discrepancy that has

the wrong qualitative behavior. 77% of states are within 10% of the original frequency values.

This graph shows clearly, that most states are on the left side of the graph, i.e., close to the

results of EMT-O, and that the optimization algorithm clearly skews the bars further to the

Fig 6. Accuracy of the steady state frequencies in relation to the EMT-O. The categories on the x-axis are in reference to the distance of the

frequencies resulting from the EMT model over all states that converge to 2 steady states. In category<10, all states are counted that are within a

distance of 10% of the frequencies resulting from EMT-O. Category (10, 19) counts the number of states that are within a distance of 20% from the

results from EMT-O with the same qualitative behavior. In category r(10, 19), we count the number of states that are within a distance of 20% from the

results from EMT-O that also have a reversed qualitative behavior. Categories (20, 29) and r(20, 29) count the number of states that are within 30% of

the EMT states with the same qualitative behavior, and the reversed qualitative behavior respectively, similar to categories (30, 39), r(30, 39), (40, 49),

and r(40, 49). In category>50, we count all the states that are more than 50% away from the EMT-O frequencies.

https://doi.org/10.1371/journal.pcbi.1009035.g006
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left. The 217 orange states in the category <10 demonstrate the power of additional knowledge

to guide the model selection process.

Discussion

We have proposed an algorithm to infer Boolean rules from the mapping of initial states to

attractors. We have exemplified this method for two biologically relevant examples. Namely, a

classic enzyme-substrate system and a model of Epithelial to Mesenchymal Transition (EMT)

in cancer metastasis. In both cases the algorithm, without providing any additional informa-

tion, provides candidate models that match the dynamics of the underlying system well. In

particular, the steady states and their respective probability are reproduced accurately. For the

enzyme-substrate system the dynamics is also well resolved. However, for the EMT model

there is still an extremely large number of possible candidates and thus the dynamical behavior

is not always faithfully resolved. This can be improved by incorporating additional insight into

the systems. We have done this by constraining the network structure. That is, we have made

assumptions on the species that each Boolean rule depends on. This results in a Boolean net-

work which extremely accurately describes the dynamics of the underlying model. In fact,

some of the inferred Boolean rules are identical to the ground truth.

The proposed algorithm could be used to infer the mechanisms of signaling, gene-regula-

tory, and any other input-output processes in an automated manner. This enables us to use

our methodology as part of a larger data processing, model inference, and prediction frame-

work that can be used without human intervention. In this work we have exclusively consid-

ered data that only model the initial and final state of the system, because such experimental

data are commonly available [15]. However, with ever advancing measurement techniques,

time series information is becoming increasingly more available for such systems. We envisage

the use of such time series to further improve model selection, which will be the subject of

future research.

One limitation of our method is the necessity to map every possible state towards at least

one steady state. Knowledge from experimental data may not provide this information, thus

necessitating modeling assumptions. To address these limitations, users could first map all

known states to their corresponding known steady states. Next, a reachability check is neces-

sary to determine whether these states have a possible pathway available to reach their steady

states. If this is not the case, other states may have to be assigned to build a pathway. However,

the user must ensure that these states do not enable pathways towards undesired steady states.

Other states that have not been assigned at this point could be incorporated into the network

in multiple ways. The least biased method would involve assigning them to as many steady

states as possible, as long as this does not enable unwanted connections towards an undesired

attractor. The choice of the attractor and state association can also be made by the proximity

to the given attractors in the system. Yet another option could be made to exclude a given state

from the network by not assigning it to any attractors at all. Since all these choices are model

assumptions, they could also be incorporated by the model selection process as an additional

parameter.

In this work, we used the General Asynchronous updating scheme as, e.g., proposed in [23,

50–53] to simulate network dynamics. As discussed in the Enzyme-Substrate dynamics sec-

tion, this corresponds with the model assumption that all reactions are equally likely to occur,

which is not always a reasonable approximation for biological processes. Different biological

processes, such as signal transduction events and transcriptional events, occur within different

time frames. To account for different time scales, the asynchronous updating scheme can be

ranked according to the biological time frame, as suggested in e.g., in [58]. Another way of
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adding more biological relevance to the updating scheme is to weight activation actions and

inhibition actions of a node differently as proposed, in e.g. [59]. With this strategy, the activa-

tion and degradation propensities are taken into account in a manner similar to their formula-

tion in the chemical master equation. Using a differently weighted asynchronous updating

scheme can have a significant effect on the simulated frequencies. We note, however, that in

our setup, the asynchronous update simulator is an exchangeable simulator and that the opti-

mization algorithm is still perfectly usable with a different simulation setup.

Finally, our work takes advantage of parallel computing environments, thus reducing the

amount of time required to enumerate logic rules by hand. We believe that computer-driven

mechanism exploration coupled with a model selection, such as that presented in this work,

could be a highly suitable tool to advance mechanism exploration and accelerate hypothesis

prediction and testing in silico for experimental validation, thus reducing the time and effort

required to obtain mechanistic knowledge from experimental data.

Conclusion

We presented a general-purpose algorithm for mechanism exploration, hypothesis explora-

tion, and model selection using initial and attractor state data and high-performance comput-

ing. We demonstrated the mechanism of our method using the simpler example of enzyme-

substrate kinetics, and extended our method to the larger and biologically relevant EMT

model. We have shown how to improve the obtained models by including an unbiased genetic

optimization pipeline for a model selection process. To decrease the resulting search space for

this process, we also suggested a way to incorporate expert biological knowledge as part of the

optimization process, which was able to obtain an appropriate model in a significantly shorter

timespan. We therefore conclude that our approach greatly accelerates the inference of logic-

based rules for complex biochemical networks and leads to dynamic networks that can be fur-

ther explored in order to obtain testable hypotheses.

Extended methods

The generic model selection consists of a genetic algorithm population of 150 individuals.

Each of the individuals performs 50 simulations to account for the randomness of transition

removal. We sequentially initialize the optimization with a Python interface and spawn a paral-

lel environment using 50 nodes on an IBM power 9 architecture. On each node, one of the

50 individuals create and simulate the model according to the random process of transition

removal. These simulations are completely independent and thus scaling is only restricted by

the size of the population of the genetic algorithm. To speed up the simulations, each of the

created rule sets was compiled into a C++ code to perform the asynchronous updating simula-

tions. We measured a computational wallclock time for approximately 6 hours for one genera-

tion of the algorithm. The full code can be accessed at https://github.com/LoLab-VU/Boolean_

rules_creator.

Supporting information

S1 File. Demonstration of Algorithm 1, and Rulesets for EMT-FW, EMT-BW, EMT-A,

EMT-B, and EMT-C.

(PDF)

S2 File. Lists all states that have to be taken from the full backward model to obtain the

original model from the paper. The states are in the form of lists, as well as the graphic
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representation of the network.

(PDF)

S3 File. Displays all the simulation results for the EMT network that reach steady state 1:

(ECM, DNAdam) = (0, 0).

(PDF)

S4 File. Displays all the simulation results for the EMT network that reach steady state 2:

(ECM, DNAdam) = (0, 1).

(PDF)

S5 File. Displays all the simulation results for the EMT network that reach steady state 3:

(ECM, DNAdam) = (1, 0).

(PDF)

S6 File. Displays all the simulation results for the EMT network that reach steady state 4:

(ECM, DNAdam) = (1, 1).

(PDF)

S1 Fig. Graphic representation of how to achieve the transition table for the enzyme-sub-

strate dynamics for states that have a Hamming distance of 2 away from the steady state

(E, S, ES, P) = (1, 0, 0, 1) marked in red. The states of Hamming distance 2 to the attractor

are marked in pink. Each of these pink states has the possibility to switch one of the species

E, S, ES, and P. If the bit flip results in a possible pathway, the new state is colored in green,

otherwise it stays black. For the state (E, S, ES, P) = (0, 0, 1, 1), e.g., the flip of bit E results

into the state (1, 0, 1, 1), which is a Hamming distance away from the attractor, and therefore

a viable pathway. The state (1, 0, 1, 1) is therefore marked in green. Since state (0, 0, 1, 1)

needs to swap the E-bit, this state will get added to the transition list for species E (see

Table 3 of the main paper). For this pathway to reach the destination, the state (1, 0, 1, 1)

needs to flip its third bit (denoted in green over the arrow) to reach the red attractor (there-

fore, (1, 0, 1, 1) is sorted in the transition list for ES in Table 3). The flip of S and P result in

the states (0, 1, 1, 1) and (0, 0, 1, 0) respectively, which are a Hamming distance of 3 away

from the attractor. This would mean that the pathway is going away from the attractor, and

therefore these states are not considered in the forward only algorithm. Therefore, these

states are denoted in black. Note, however, that these states would be sorted into the back-

ward pathways algorithm. Flipping the bit for ES results in the state (0, 0, 0, 1). This state

has been eliminated as initial condition since a system in which only P exists is not meaning-

ful. This path therefore will also not be sorted in any of the transition lists and therefore

stays black.

(PDF)

S2 Fig. This figure is a continuation for the pathway construction started in S1 Fig. On top,

we see the possible evolution of states with a Hamming distance of 3 away from the attractor

in blue. The state (E, S, ES, P) = (0, 0, 1, 0), e.g., can flip either the first or the fourth bit, to

reach one of the pink states introduced in S1 Fig. The state (0, 0, 1, 0) gets therefore sorted into

the transition list of E as well as P. It would be sorted into the S list, if we consider backward

pathways as well, but flipping ES leads to an unfeasible state in the system, which is why this

state is never sorted into the transition list for ES. On the bottom, we see the starting pathway

for the state that is a Hamming distance of 4 away from the attractor and how to reach the

Hamming distance states of 3 to create the desired pathway.

(PDF)
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S3 Fig. Network structure for the parameter set (ECM, DNAdam) = (0, 0) resulting from

the rule set created by our tool. The bright red circles are the target attractors of the system.

The blue lines are the lines that occur in EMT-O, as well as in EMT-BW. The orange lines are

transitions that are part of EMT-BW but not part of EMT-O. The green lines are transitions

that are part of EMT-BW but not EMT-FW. The light blue lines depict states that are part of

the network, but only have access to one of the attractors and not both of them.

(PDF)

S4 Fig. Network structure for the parameter set (ECM, DNAdam) = (0, 1) resulting from

the rule set created by our tool. The bright red circle is the target attractors of the system. The

blue lines are the lines that occur in EMT-O, as well as in EMT-BW. The orange lines are tran-

sitions that are part of EMT-BW but not part of EMT-O. The green lines are transitions that

are part of EMT-BW but not EMT-FW.

(PDF)

S5 Fig. Network structure for the parameter set (ECM, DNAFdam) = (1, 0) resulting from

the rule set created by our tool. The bright red circles are the target attractors of the system.

The blue lines are the lines that occur in EMT-O, as well as in EMT-BW. The orange lines are

transitions that are part of EMT-BW but not part of EMT-O. The green lines are transitions

that are part of EMT-BW but not EMT-FW. The light blue lines depict states that are part of

the network, but only have access to one of the attractors and not both of them.

(PDF)

S6 Fig. Network structure for the parameter set (ECM, DNAdam) = (1, 1) resulting from

the rule set created by our tool. The bright red circles are the target attractors of the system.

The blue lines are the lines that occur in EMT-O, as well as in EMT-BW. The orange lines are

transitions that are part of EMT-BW but not part of EMT-O. The green lines are transitions

that are part of EMT-BW but not EMT-FW. The light blue lines depict states that are part of

the network, but only have access to one of the attractors and not both of them.

(PDF)

S7 Fig. Span for the root mean square (RMS) error for each generation of the genetic opti-

mization algorithm. Each generation has 150 individuals and each individual chooses the

minimum out of 50 independent runs for its RMS. Setup for the DEAP algorithms can be

found in S1 Table. The orange line is largest RMS for each generation, and the blue line is the

smallest RMS both chosen as the smallest number of 50 random simulations. The smallest

RMS within 90 generations is 12.68 (EMT-C) at generation number 86. We reach a similar

RMS at generation 40 with a value of 12.76 (EMT-B). An early fit after 7 generations already

achieves an RMS of 13.14 (EMT-A).

(PDF)

S8 Fig. Span for the root mean square (RMS) error for each generation of the genetic opti-

mization algorithm for the human guided variant. Each generation has 150 individuals.

Setup for the DEAP algorithms can be found in S1 Table. The orange line is largest RMS for

each generation, and the blue line is the smallest RMS. The smallest RMS within 25 genera-

tions is 7.44 at generation number 20 (EMT-E). The fit found before that is similarly high with

a value of 7.45.

(PDF)

S1 Table. Parameters for the DEAP algorithm.

(PDF)
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