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ABSTRACT 30 

As the size and complexity of high-dimensional cytometry data continue to expand, comprehensive, 31 

scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and 32 

dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers 33 

of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across 34 

batches or experiments are not well incorporated into computational toolkits to allow for streamlined 35 

workflows. Here we present Spectre, an R package that enables comprehensive end-to-end integration and 36 

analysis of high-dimensional cytometry data from different batches or experiments. Spectre streamlines the 37 

analytical stages of raw data pre-processing, batch alignment, data integration, clustering, dimensionality 38 

reduction, visualization and population labelling, as well as quantitative and statistical analysis. Critically, 39 

the fundamental data structures used within Spectre, along with the implementation of machine learning 40 

classifiers, allow for the scalable analysis of very large high-dimensional datasets, generated by flow 41 

cytometry, mass cytometry (CyTOF), or spectral cytometry. Using open and flexible data structures, 42 

Spectre can also be used to analyze data generated by single-cell RNA sequencing (scRNAseq) or high-43 

dimensional imaging technologies, such as Imaging Mass Cytometry (IMC). The simple, clear, and modular 44 

design of analysis workflows allow these tools to be used by bioinformaticians and laboratory scientists 45 
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alike. Spectre is available as an R package or Docker container. R code is available on Github 46 

(https://github.com/immunedynamics/spectre). 47 

 48 

INTRODUCTION 49 

High-dimensional analysis tools 50 

High-dimensional (HD) cytometry plays an important role in the study of immunology, infectious diseases, 51 

autoimmunity, hematology and cancer biology, elucidating critical mediators of immunity and disease at a 52 

single-cell level. Advances in single-cell cytometry systems (including flow, spectral and mass cytometry) 53 

have enabled the simultaneous analysis of over 40 proteins [1] in a single panel, resulting in vast and 54 

complex datasets. A large portion of the analysis still utilizes manual gating, which is the sequential and 55 

often arduous process of identifying cells, based on the expression of one or two cellular markers at a time. 56 

While this allows for user-guided examination of the dataset, it is intractable when mapping out the vast 57 

variety of cell phenotypes that may be present in HD datasets, and may introduce selective bias through a 58 

subjective and sequential bifurcating inclusion/exclusion of markers [2]. This is in part due to the number 59 

of gates required to fully parse the dataset. As such, a variety of computational approaches have been 60 

adopted by the cytometry community to help analyze HD datasets, including automated gating [3], 61 

clustering (such as PhenoGraph [4], FlowSOM [5], X-Shift [6]), dimensionality reduction (such as t-SNE 62 

[7, 8], UMAP [9], trajectory inference (such as Wanderlust [1], Wishbone [10]), and automated cell 63 

classification [11] [12, 13]. Many of these tools have been brought together into ‘toolboxes’, providing 64 

either code- or GUI-based analysis workflows, such as Cytofkit [14], CITRUS [15], CATALYST [16], 65 

Cytofworkflow [17], or diffcyt [18]. In parallel, similar tools have also been developed in other fields, such 66 

as a wide variety of analysis approaches for single-cell RNA sequencing (scRNAseq; Seurat [19, 20], 67 

SingleCellExperiment [21], Monocle [22]). These have been developed to address similar difficulties in 68 

analysis, with developments in one field sometimes assisting another, such as the graph-based clustering 69 
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from Phenograph [4] informing the design of clustering in Seurat [19]. Overall, these tools allow for 70 

automated and data-driven data processing that may be performed in an unsupervised (requiring no human 71 

supervision) or semi-supervised manner, requiring some human decision-making. 72 

Limitations of existing algorithms and toolkits 73 

Despite the advantages offered by these computationally-driven approaches, a number of challenges persist, 74 

including slow operation speeds, difficulty in scaling to large datasets, and insufficient reproducibility of 75 

analysis results across independent experiments. As such, the use of such tools is often limited to relatively 76 

small datasets from single experiments. In particular, many scRNAseq specific tools, while suited to 77 

processing datasets with a large number of features (markers), do not necessarily scale well to dataset 78 

volumes that include tens to hundreds of millions of cells, as the volume of data may exceed the memory 79 

capacity of the computer being used for analysis, and/or the processing may carry excessively long run 80 

times [23]. In scRNAseq, independent datasets of this volume are not common outside of cell atlas-type 81 

projects [24], but cytometry frequently generates datasets of this size. In addition, these data-driven 82 

approaches are highly sensitive to the influence of batch effects, a phenomenon in which cells of the same 83 

phenotype differ in their signal intensity across multiple experimental batches. Batch effects are an artefact 84 

of time and context, in which experimental conditions and/or instrumental performance inadvertently 85 

influence the measured signal intensity. Left uncorrected, computational algorithms may falsely identify 86 

differences (or similarities) based on batch, rather than biologically relevant (and correct) differences 87 

between samples or experimental groups. Hence, having the ability to control for and differentiate batch 88 

effects from biological differences is critical. While a variety of approaches exist for scRNAseq data [19, 89 

20, 25-27], approaches designed for cytometry data are less well developed. While there exist several 90 

approaches to align data from different batches, many of these align samples individually against each other 91 

in the context of standardized clinical profiling [28], potentially removing important biological variations 92 

between samples. In contrast, recent approaches calculate batch adjustments using reference controls: 93 

aliquots of a control sample run with each batch. The resultant conversions can then be applied to all 94 
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samples in the batch, preserving biologically relevant differences [29]. Because some batch effects can 95 

differentially impact select cell lineages [30], further techniques extend this reference-based approach to 96 

apply adjustments in a cluster-specific manner [30]. As this is a developing area, a number of other 97 

approaches have also been proposed, using a variety of methods to remove technical variance [11, 31], 98 

some inspired by approaches in scRNAseq. 99 

While a number of clustering, dimensionality reduction, and batch alignment approaches exist, many of 100 

these are not directly integrated with each other - and many implementations require specific dataset 101 

formats, limiting the flexibility and interoperability of these tools. Specifically, tools that are developed in 102 

different fields (e.g. cytometry or scRNAseq) are often provided as stand-alone packages that operate on 103 

custom data formats (e.g. flowFrames, SingleCellExperiment objects, Seurat objects, etc). The dependency 104 

of individual tools on custom data formats also makes it non-trivial to apply computational tools from a 105 

broader data science and machine learning field that are not specifically designed for cytometry (and thus 106 

have no knowledge of the custom data format) but are of significant advantage in existing analysis pipelines. 107 

A streamlined solution that can operate on large datasets at speed and integrate tools across fields in a 108 

modular fashion would be of significant advantage to the cytometry community. 109 

Spectre for analysis of large and complex high-dimensional cytometry datasets 110 

To address these challenges, we developed Spectre, a computational toolkit in R that facilitates rapid and 111 

flexible analysis of large and complex cytometry datasets. This toolkit expands on the ‘Cytometry Analysis 112 

Pipeline for large and compleX datasets’ (CAPX) workflow that we have published previously for deep 113 

profiling of hematopoietic datasets [32]. Through specific function and workflow design, we demonstrate 114 

intuitive, modular, and high-speed workflows for data pre-processing (such as scaling/transformation), 115 

clustering, dimensionality reduction, plotting, as well as quantitative statistical analyses. Additionally, we 116 

incorporate an effective method for integrating data across multiple batches or experiments by extending 117 

the functionality of CytoNorm [30] batch alignment algorithm. Furthermore, we provide a means to transfer 118 

labels from reference datasets onto new datasets using machine learning classification algorithms, allowing 119 
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for reproducible analytical workflows across multiple experiments. An extension of this process allows for 120 

the analysis of very large datasets, where the size of the dataset may exceed the memory capacity of the 121 

computer being used. Analysis with Spectre can be applied to flow, spectral, and mass cytometry datasets, 122 

consisting of tens to hundreds of millions of cells, as well as to scRNAseq data and HD imaging data (such 123 

as Imaging Mass Cytometry, IMC). Spectre is available as an R package or Docker container from Github 124 

(https://github.com/immunedynamics/spectre). 125 

Here we demonstrate the utility of the package by analyzing cells isolated from murine bone marrow (BM), 126 

spleen, and central nervous system (CNS) following inoculation with West Nile virus (WNV), measured 127 

by HD flow, spectral, or mass cytometry (CyTOF). Because of the significant cellular dynamics that occur 128 

in multiple tissues in response to infection with WNV, this provides an ideal model for demonstrating 129 

analysis workflows using Spectre. 130 

 131 

METHODS 132 

Sample preparation and acquisition 133 

Ethical approval for the experimental use of mice was obtained from the Animal Ethics Committee at the 134 

University of Sydney. Briefly, mice were anesthetized with 250-300 µL of Avertin anesthetic via an 135 

intraperitoneal injection, and then inoculated intranasally (i.n.) with 10 µL of PBS or a lethal dose of West 136 

Nile virus (WNV) in sterile PBS (6x10
4
 plaque-forming units [PFU]). After 1-7 days post infection (p.i.), 137 

mice received 350 μL of Avertin anesthetic, followed by vena cava section and left ventricular cardiac 138 

perfusion with 10 - 30 mL of ice-cold PBS. Spleen, BM and CNS tissue were then extracted and prepared 139 

for flow/spectral [33] or mass cytometry [32] as previously described. Labelled samples were acquired on 140 

a 5-laser BD LSR-II, a 10-laser custom BD LSR-II, a 5-laser Cytek Aurora, or a Fluidigm Helios. Initial 141 

cleanup gating and compensation was performed using FlowJo v10.7, where single live leukocytes were 142 

then exported as CSV (scale value) or FCS files. 143 
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Data management in R via data.table 144 

Data management and operations within Spectre were performed using the data.table format, and extension 145 

of R’s base data.frame, provided by the data.table package [34]. This table-like structure organizes cells 146 

(rows) against cellular features or metadata (columns). This simple data.table structure allows for the high-147 

speed processing, manipulation (subsetting, filtering, etc.), and plotting of large datasets, as well as fast 148 

reading/writing of large CSV files. While CSV files are the preferred file format in this context, Spectre 149 

also supports reading and writing FCS files through the use of flowCore [35], where the data are then 150 

converted from an FCS file into a flowFrame, and then into a data.table. 151 

Data pre-processing and transformation 152 

In Spectre, the entire dataset to be analyzed is condensed into a single data.table. Each row (cell) contains 153 

cellular expression data and metadata pertaining to the file, sample, group, and batch, stored in separate 154 

columns. Metadata for each of the columns (e.g., alternative cellular marker names, etc.,) in the data.table 155 

can be stored separately, if required.  156 

In order to reduce the contribution of background to measured signal, and to convert cytometry data into a 157 

linear space, we facilitated ArcSinh transformation of data using the do.asinh function in Spectre. This 158 

function allows a transformation co-factor to be specified for all columns (typical in mass cytometry) or for 159 

individual columns (typical in flow or spectral cytometry). The resulting transformed values are added to 160 

the dataset as new columns. This addition of new values, rather than replacement of original values, enables 161 

greater data retention and transparency. Additional pre-processing steps, such as noise reduction for values 162 

below zero, and normalization of values onto the range of zero to one, are provided in the do.noise.reduce 163 

and do.normalise functions respectively, which similarly adds columns of new data. 164 

Batch alignment and integration 165 

To facilitate batch alignment in Spectre, we developed a wrapper for CytoNorm [30] using the do.align 166 

function. CytoNorm utilizes reference samples (aliquots of a control sample run with each batch) to 167 
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determine batch-derived technical differences and calculates a quantile conversion model to align data from 168 

each of these batches. This conversion model is then applied to samples in each batch, removing technical 169 

variation while preserving biologically relevant differences. The do.align function operates on a data.table, 170 

and allows for reference and target data to be easily specified in a dataset containing a mixture of batches. 171 

Quantile conversions for the entire dataset, or conversions for individual clusters, can then be calculated, 172 

resulting in a new set of ‘aligned’ features that are compatible across the batches. Since raw, ArcSinh 173 

transformed, and aligned data are preserved in the data.table, transparency of these analytical processes is 174 

maintained throughout the analytical process. 175 

Clustering of cells/events 176 

Clustering was implemented using the run.flowsom function, which acts as a wrapper around the FlowSOM 177 

function (available as ‘FlowSOM’ from Bioconductor [36]), which organizes acquired events (i.e., cells) 178 

into clusters using a self-organizing map (SOM), and then groups these clusters together into ‘metaclusters’. 179 

The function accepts a data.table and set of column names for generating clusters as input. Once clustering 180 

is performed, run.flowsom returns the data.table with new columns containing the cluster and metacluster 181 

IDs for each cell. Spectre’s run.flowsom provides two options for specifying a target number of 182 

metaclusters. By default, FlowSOM will determine the number of metaclusters to generate by performing 183 

consensus hierarchical clustering on the clusters using a range of different metacluster numbers. It then 184 

computes the variance in each metacluster number and determines the point in which the variances suddenly 185 

decrease at a gentler rate (the elbow point), which is regarded as the optimal number of metaclusters for the 186 

dataset. We refer the reader to the FlowSOM publication for more details on how the optimum number is 187 

chosen [5]. Alternatively, users can manually specify a target number of metaclusters (which is 188 

recommended over automatic determination) or chose not to generate metaclusters at all. In addition to the 189 

ability to choose the number of metaclusters to create, the user is also able to change the SOM grid size 190 

(xdim and ydim parameters), the seed used to generate clusters and metaclusters for reproducibility. 191 

Dimensionality reduction 192 
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Non-linear dimensionality reduction (DR) was implemented in Spectre using the run.tsne, or run.umap 193 

functions, which are wrappers around t-SNE (available as ‘rtsne’ from CRAN [37]), and UMAP (available 194 

as umap from CRAN [38]), respectively. Both the run.tsne and run.umap functions accept a data.table and 195 

set of column names for DR as input, and return the data.table with new columns containing tSNE or 196 

UMAP coordinates for each cell. We also provide a function for running Principal Component Analysis 197 

(PCA), a linear DR approach, using the run.pca function, acting as a wrapper around prcomp (available in 198 

the ‘stats’ package from CRAN [39]). The input data for run.pca can either be individual cells (to find cell 199 

markers that contribute to the variance), or individual samples/patients with summary data (such as median 200 

fluorescence intensity (MFI), cell counts or proportions). The output of run.pca is similar to run.tsne and 201 

run.umap, though additional outputs can be generated, including scree and contribution plots for detailed 202 

assessment of the source of variance in the dataset. 203 

Plotting and visualization 204 

Plotting of cellular data was implemented in the make.colour.plot function, serving as a wrapper around 205 

ggplot2 [40]. The dataset, and desired columns to use as X and Y axis are taken as input. By default, each 206 

plotted cell is colored by relative plot density. Where desired, each cell can be colored by the level of 207 

expression of a specified marker (column), or color by some factor (e.g. cluster, sample, or group etc). To 208 

reduce the effect of outlier datapoints on the color scale, minimum and maximum thresholds are applied by 209 

default as 0.01 (1
st
 percentile) and 0.995 (99.5

th
 percentile) respectively, so that datapoints with values 210 

below or above these thresholds are colored at the minimum or maximum respectively. These can be 211 

modified where required. In cases where a subset of the dataset is being plotted (e.g. separate samples or 212 

groups, etc) the limits of the X, Y, and color parameters can be set by the complete dataset, allowing for 213 

the plots to be compared directly. By default, plots will automatically be saved to the current working 214 

directory, allowing for the rapid generation of plots. This plotting functionality is extended in the 215 

make.multi.plot function, which arranges multiple plots consisting of set of colored plots (e.g. for examining 216 

marker expression) or set of sample group divisions (e.g. for comparing changes between groups).  217 
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Aggregation and summary data 218 

A number of analysis steps require the aggregation or summary of data, either by sample, by cluster, or by 219 

both. To facilitate this, we implemented two functions – do.aggregate and write.sumtables. The 220 

do.aggregate function takes advantage of the fast aggregation function of data.table, providing the mean 221 

or median level of expression of each marker per cluster/population. This is helpful for plotting expression 222 

heatmaps, allowing for the interpretation of cluster/population identities. For every population in each 223 

sample, the write.sumtables function will calculate the percentage of each population as a percentage of 224 

cells in each sample (as well as cell counts for each population per sample if a total count of cells per sample 225 

is provided). Additionally, for all specified cellular markers, the median expression level, as well as the 226 

percentage of each population that expresses the marker are calculated for each population in every sample. 227 

These summarized data.tables are saved to disk as CSV files, in the format of samples (rows) vs features 228 

(columns), which can then be used for quantitative and statistical analysis, either in the same workflow, or 229 

in a separate pipeline.  230 

Heatmaps 231 

To facilitate the generation of heatmaps for examining marker expression on populations, or for comparing 232 

populations across samples, we implemented ‘make.pheatmap’ as a wrapper around the pheatmap function 233 

from pheatmap [41]. In make.pheatmap, the user must specify the dataset, the column that contains values 234 

to be used as the heatmap rows (e.g. sample or cluster identity), and the columns to be plotted as heatmap 235 

columns. This can be used to examine expression of marker (columns) on each cluster (rows), or can be 236 

used on z-score transformed data plotting immune features (columns) vs samples (rows), to reveal data 237 

variance for each cellular feature being measured. 238 

Group and volcano plots 239 

To facilitate quantitative and statistical analysis, we implemented functions to create graphs 240 

(make.autograph) and volcano plots (make.volcano.plot). Graphs are constructed using the ggplot2 R 241 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.22.349563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.349563
http://creativecommons.org/licenses/by-nc-nd/4.0/


package, and integrate pairwise statistical comparisons between groups using functionality from the ggpubr 242 

R package [42]. Pairwise comparisons between pairs of groups are performed using either Wilcox test 243 

(equivalent to a Mann-Whitney test), or a t-test. Overall group variance is assessed using a Kruskal Wallace 244 

test, or a one-way ANOVA. Volcano plots were generated using the EnchancedVolcano package from 245 

Bioconductor [43], and customized to work seamlessly with data.table data structures. Initially the relative 246 

-fold change of values in each immune parameter between two groups are calculated, along with the p-247 

value of that change. Each immune parameter can then be plotted as fold change vs p-value, allowing for a 248 

rapid assessment of changes with strong and significant effects between groups. 249 

Classification 250 

Following batch alignment, the transfer of population labels from one dataset to another was implemented 251 

via two functions: run.train.knn.classifier and run.knn.classifier. The run.train.knn.classifier function uses 252 

the caret [44] package to train a k-nearest neighbor (kNN) classifier [42] using the labelled dataset, allowing 253 

for the identification of the two most closely-matched cells across each dataset. It first normalizes each 254 

feature (marker) of the dataset to a range between 0 and 1 using the preprocess function of caret. This is to 255 

ensure a uniform distribution of values across all features. Thereafter it trains the KNN classifier using the 256 

n-fold cross-validation (n-fold CV) technique. The n-fold CV technique splits the data into n 257 

complementary subsets and uses n-1 of those to train the classifier (training data), and the remaining one to 258 

test the effectiveness of the trained classifier (testing data). This process is repeated n times, whereby in 259 

each iteration different subsets of data are used for training and testing data. For n-fold CV, the overall 260 

quality of the classifier is computed as the average quality obtained for all n rounds of training and testing. 261 

The run.knn.classifier function then runs a kNN classifier provided by FNN R package [45] on a data.table 262 

without cellular population labels, returning the data.table with a new column of population labels added. 263 

 264 

RESULTS 265 
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Spectre facilitates comprehensive end-to-end integration and analysis of large high-dimensional 266 

cytometry datasets 267 

Spectre was developed to facilitate rapid and flexible analysis of large and complex cytometry datasets 268 

across multiple batches or experiments. Specifically, Spectre facilitates data pre-processing (Figure 1A), 269 

alignment of data from multiple batches/experiments (Figure 1B), clustering (Figure 1C), dimensionality 270 

reduction and visualization (Figure 1C), manual or automated population classification and labelling 271 

(Figure 1C), as well as extensive plotting and graphing options for qualitative and quantitative statistical 272 

analyses (Figure 1D). Key to this process is strategic selection, implementation, and customization of high-273 

performance computational tools; and the development of wrapper functions around these tools, enabling 274 

them to operate on and produce the same data format for input and output, respectively. This allows for 275 

multiple analysis and plotting/graphing tools to be seamlessly weaved together into single analysis 276 

workflows, where functions can be used throughout the stages of the workflow, drastically increasing ease 277 

of use. Moreover, this modularity and flexibility allows these workflows to be adapted to meet different 278 

experimental requirements or analytical approaches. Spectre can be used on data generated by a variety of 279 

single-cell technologies, including flow, spectral, and mass cytometry (Figure 1E). In addition, following 280 

some additional pre-processing, Spectre can also be used for the analysis of data generated by scRNAseq 281 

or HD imaging technologies such as IMC. (Figure 1E). 282 

Data management and pre-processing 283 

Critical to our approach is the use of the data.table data structure and operations, in place of prevalent 284 

FCS/flowFrame objects or other data structures. The data.table format is an enhancement of base R’s 285 

data.frame, a table-like structure commonly used to store data. This enhancement allows for fast and 286 

efficient aggregation and manipulation of data through the use of concise flexible syntax and low-level 287 

parallelism [34] (Supp. Figure 1). Using Spectre, all samples in the analysis are merged into a single 288 

data.table, with relevant sample, group, and batch information stored in separate columns. As a result, each 289 
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Figure 1. Spectre analysis overview 

An overview of Spectre’s analysis workflow. A) Data preparation steps including sample, group, and batch 

annotation, in addition to ArcSinh transformation. B) Batch alignment using CytoNorm. C) Clustering and 

dimensionality reduction, along with marker expression plotting and expression heatmaps. D) 

Quantification and statistical analysis through z-score/fold-change heatmaps and grouped dot plots. E) 

Application of Spectre’s analysis workflow to data generated by different technologies, including analyzing 

a split murine spleen sample by flow cytometry, spectral cytometry, and mass cytometry. Also shown are 

unrelated PBMC data analyzed by single-cell RNA sequencing (scRNAseq) acquired from 10X genomics, 

via the Seurat webpage (https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html) and imaging data generated 

by Imaging Mass Cytometry (IMC). 
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row contains all the information relevant for a particular cell, making data manipulation and filtering with 290 

data.table simple and fast.  291 

A key initial step in computational analysis is the transformation of cellular expression data. Biologically 292 

meaningful results are most easily interpreted through plotting cellular expression on a logarithmic scale. 293 

Because of potentially misleading visual artifacts for signals at the low end of the logarithmic scale, the 294 

logicle/bi-exponential scale was developed, where the high end of the scale is logarithmic and the low end 295 

of the scale is converted into a linear scale, and the scale then returns to logarithmic at values below the 296 

linear component (Supplementary Figure 2A) [46, 47]. Critically, this allows for the compression of low-297 

end data points with high spreading error, autofluorescence, or noise into a linear space around zero, which 298 

can be tailored for the requirements of each channel (Supplementary Figure 2B). For computational analysis 299 

to meaningfully manage biological data, a similar compression of low-end data needs to be performed. In 300 

cytometry, this is commonly performed using the ArcSinh 301 

(http://mathworld.wolfram.com/InverseHyperbolicSine.html) transformation [48]. The data values are 302 

transformed into a linearized format, where compression of low-end values is determined using a specified 303 

co-factor to determine the extent of compression around zero (Supplementary Figure 2B).  304 

Using Spectre, ArcSinh transformation was applied to data from each channel/marker individually, using 305 

different co-factors, allowing for highly customizable data transformations. For flow, spectral, and mass 306 

cytometry data, we tested various co-factor values across multiple channels (Supplementary Figure 3-4). 307 

Overall, we found that a co-factor of 5 to 15, was suitable for all mass cytometry channels. However, in our 308 

experience, we found a range between 100 to 10,000 to be suitable for different channels in conventional 309 

or spectral flow cytometry data.  310 

Because low-end data compression through ArcSinh transformations may still result in significant spread 311 

of the negative population around zero, we reasoned that this could be reduced by converting any values 312 

that occur below zero, to zero, effectively reducing the contribution of noise below zero. This was 313 

implemented in the do.noise.reduce function, where a minimum threshold can be set, where all values 314 
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below that value will be converted to that value (Supplementary Figure 5). Additionally, we developed a 315 

function for re-distributing (aka ‘normalizing’) ArcSinh data between two new values, usually 0 and 1. This 316 

prevents markers with extremely high expression levels from exerting greater influence over clustering and 317 

DR results, when compared to other markers. This was implemented in the do.normalise function 318 

(Supplementary Figure 5). Although we have demonstrated the utility of the do.noise.reduce and 319 

do.normalise functions in Supplementary Figure 5, they were not used for the rest of the data presented in 320 

this paper. 321 

Integrating data from multiple batches or experiments into a single feature space 322 

When samples are prepared, stained or run in multiple batches, technical batch-effects can occur, usually 323 

consisting of shifts in signal intensity in one or more markers. Because of this, data clustered together with 324 

uncorrected batch effects may separate samples based on the batch they belong to, a confounding factor 325 

that substantially hinders aggregated analysis of datasets from multiple batches or experiments. To provide 326 

a comprehensive and adaptable batch alignment and data integration approach, we expanded on the 327 

functionality of CytoNorm within Spectre. Users specify reference control samples that Spectre uses to 328 

determine the alignment conversions. Typically, these are aliquots of a single ‘healthy’ patient sample that 329 

are run with each batch of samples. These reference samples should span the full range of the data seeking 330 

to be aligned. Where marker expression data is absent on the reference controls (e.g. absence of activation 331 

markers on cells from healthy donors), alignment is not feasible, but the original expression data for those 332 

markers can still be analyzed. In cases where multiple aliquots of a single control sample are not available, 333 

multiple control samples of the same type (e.g., healthy mouse BM) that are run with each batch can be 334 

used as the next best. Finally, it is also possible to use all samples from each batch as ‘reference’ controls, 335 

taking the entire range of marker expression from each batch into account. However, these later approaches 336 

should be used with caution, as any biological differences between the samples used for reference will be 337 

interpreted as technical variation due to batch effects. To execute this alignment process in Spectre, user-338 

indicated reference samples are extracted from the combined data.table (Figure 2A) and clustered using 339 
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Figure 2. Batch alignment using CytoNorm 

Batch alignment process using CytoNorm. A) Reference samples acquired with each batch are extracted 

from the data.table, and B) clustered using FlowSOM. Metacluster-specific quantile conversion models are 

then calculated. C) Cells from all samples/batches are mapped to the FlowSOM grid, and assigned to their 

nearest metacluster. Cells are then aligned using the metacluster-specific quantile conversion models D) 

Two sets of BM samples with synthetic batch effects introduced in a population-specific manner. E) 

CytoNorm alignment was performed using a metacluster-specific alignment process (fine alignment). F) 

Two sets of BM samples generated with slightly different panels, but targeting the same cellular markers, 

resulting in significant batch effects. G) CytoNorm is initially performed on the whole dataset (coarse 

alignment) by mapping the entire dataset into a single metacluster, where H) subsequent FlowSOM 

clustering allowed for further metacluster-specific alignment (fine alignment).  
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FlowSOM. For each resulting metacluster, quantile conversion coefficients between each batch for each 340 

marker are calculated (Figure 2B). Cells from the full dataset are then mapped to the FlowSOM grid, and 341 

each cell is assigned to its nearest metacluster (Figure 2C). Quantile conversion is then applied to the cells 342 

in each metacluster, unifying cells from each batch into a single feature space, while preserving biological 343 

differences between experimental groups (Figure 2C).  344 

To verify the robustness of this process, we applied batch alignment to a set of mock- or WNV-infected 345 

BM samples, where synthetic data manipulations were introduced in a population-specific manner to half 346 

the samples, to mimic population-specific batch effects. One healthy BM sample from each ‘batch’ were 347 

selected as a reference controls, aggregated together, and plotted using UMAP, revealing subsets of 348 

neutrophils, eosinophils, monocytes, B cells, T/NK cells and progenitors. Batch-specific differences in their 349 

distributions were evident in the UMAP plots (Figure 2D). When FlowSOM was run, consistent populations 350 

from each batch were captured within the same metacluster, despite the presence of batch effects. As such, 351 

metacluster-specific alignment with CytoNorm was able to adequately integrate the cells from each 352 

population into a unified dataset (Figure 2E). 353 

To test this process on datasets with more substantial batch-effects, we applied batch alignment to two sets 354 

of mock- or WNV-infected BM samples, prepared and acquired months apart, using slightly different 355 

panels. After matching column names between the two datasets, the disparity of these two datasets was 356 

apparent upon plotting with UMAP (Figure 2F). In this scenario, the batch effects were so significant that 357 

cells from the same population in each batch did not map to the same metacluster, thus preventing 358 

alignment. To address this, we initially performed a ‘coarse’ alignment by mapping all cells from each 359 

batch into a single metacluster, and performing quantile alignment on the entire dataset. This corrected the 360 

majority of batch effects, though some metacluster-specific effects were still evident (Figure 2G, inset). 361 

Nevertheless, the resulting data was sufficiently aligned so that populations from each batch could now be 362 

mapped into consistent metaclusters (Figure 2G), allowing for a more fine-tuned alignment (Figure 2H) 363 
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that corrected residual metacluster-specific batch effects (Figure 2H, inset) and unified the dataset into a 364 

single feature space. 365 

Clustering and dimensionality reduction strategies 366 

A critical analytical step in HD cytometry is the comprehensive identification of cellular populations, 367 

including those that are well-established and those that are yet to be characterized. This is particularly 368 

relevant when comparing between experimental groups (e.g., diseased patients compared to healthy 369 

controls). Clustering and dimensionality reduction are powerful techniques for identifying cell populations 370 

and contrasting them between groups. Clustering tools collect phenotypically similar cells into groups 371 

(clusters) in a data-driven fashion (i.e., cells are grouped together based on the similarity of their marker 372 

expression). The output of many clustering approaches are plotted as a collection of nodes, where each 373 

node represents a cluster that contains a number of cells. These nodes are typically connected by a form of 374 

minimum spanning tree (MST) [5] and colored by mean or median marker expression of the cells within 375 

each cluster. However, verifying the phenotypic heterogeneity (or homogeneity) of cells captured within a 376 

cluster is difficult when looking at the data at the cluster level. An alternative approach is to compress 377 

cellular data onto two dimensions using non-linear dimensionality reduction tools such as t-SNE [7, 8] and 378 

UMAP [9], and to visualize these on a scatter plot, coloring each cell by marker expression level or 379 

cluster/metacluster ID.  380 

Spectre supports clustering and DR by providing a wrapper function for FlowSOM, t-SNE, and UMAP. 381 

These functions accept and return data in the data.table format. Whilst clustering tools such as FlowSOM 382 

scale well to large datasets [49], DR approaches such as t-SNE and UMAP do not; as they incur lengthy 383 

computing time, excessive memory usage, and significant crowding effects that inhibit their utility 384 

(Supplementary Figure 6). Whilst some improvements to runtime (flt-SNE [50]) and plot crowding (opt-385 

SNE [51]) have been made, scalability and plot crowding limitations persist. As DR tools are primarily 386 

used to visualize cellular data and clustering results, we propose plotting only a subset of the clustered data, 387 

which addresses scalability and retains legibility. By using proportional subsampling from each sample, the 388 
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relative number of cells from each cluster in each sample can be preserved in a smaller dataset, allowing 389 

for interpretable analysis via DR. Putative cellular populations amongst the clusters can then be identified, 390 

and annotated in both the subsampled DR dataset, as well as the whole clustered dataset. The whole 391 

annotated dataset can subsequently be used in downstream quantification and statistical analysis.  392 

To demonstrate this strategy, we applied clustering and DR to a dataset of brain cells from mock- or WNV-393 

infected mice (Figure 3A). The whole dataset was clustered using FlowSOM (Figure 3B), and the clustered 394 

data were proportionally subsampled for plotting with UMAP (Figure 3C). In this case, the number of cells 395 

extracted from each sample were in proportion to the total cells recovered from each brain, ensuring that 396 

DR plots accurately reflected sample composition (Figure 3D). By examining expression heatmaps (Figure 397 

3E) and colored DR plots (Figure 3F) we manually determined cluster population identities, and these 398 

annotations were applied to both the subsampled and full datasets. 399 

The choice of markers used to inform the generation of clusters/DR results is dependent on the overall goal 400 

of analysis. Cellular markers may be broadly categorized into two groups: static (stably expressed) or 401 

dynamic (changing expression). Typically, statically expressed markers are helpful for identifying 402 

consistent cell types (e.g. T cells, B cells, etc.), whereas dynamic markers are helpful for identifying reactive 403 

cellular states (e.g. activated, resting, etc.). When seeking to discover novel cellular populations or states, 404 

incorporating all cellular markers may be of benefit, as both stable cell types and dynamic cellular states 405 

will be captured in separate clusters. However, a more selective approach may also be desired, such as using 406 

statically expressed markers to capture known populations within clusters, and then examining those stable 407 

populations for dynamic changes in activation status. Along with domain-specific knowledge about the 408 

expression patterns of various markers, it is possible to identify markers that contribute most to the level of 409 

variance across a given dataset. To do this we can using principal component analysis (PCA), (Figure 3G-410 

H) to determine the relative contribution of each cellular marker to the overall variance of the dataset. 411 

Multi-level immune profiling 412 
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Figure 3. Clustering and dimensionality reduction using Spectre 

A) A dataset of cells isolated from mock- or WNV-infected CNS were used to demonstrate clustering and 

DR in Spectre. B) FlowSOM clustering was performed on the full dataset, which was C) then subsampled 

and plotted using UMAP. D) Parsing the dataset by each experimental group reveals substantial changes to 

immune populations. E-F) An examination of marker expression on each cluster allows for a user-

determined annotation into biological relevant cell types. G) Analysis using PCA allows for visualization 

of the data variance, and H) the relative contribution of markers to the first two principle components. 
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Many populations of interest, such as hematopoietic stem cells (HSC) in the BM, are of very low frequency 413 

within individual samples. As such, representation of these rare subsets may be extremely sparse on DR 414 

plots, relative to more abundant populations. Moreover, more nuanced clustering and analyses of such 415 

populations are often desired, but the global data structures provided by more abundant subsets of cells may 416 

dominate the analysis. To address this, we extended our analysis approach to enable the exploration of data 417 

at multiple levels. Upon clustering the complete dataset, clusters representing rare or novel populations can 418 

be isolated and re-clustered independent of other populations and thereafter annotated in greater detail. 419 

Expanding on this approach, multiple lineages can be split and profiled independently, then re-merged, 420 

retaining detailed cluster annotations for combined plotting and quantitative analysis. This process is 421 

conceptually similar to hierarchical approaches such as hierarchical-SNE (h-SNE,  [52]), but accommodates 422 

a more bespoke tailoring of the analytical process.  423 

To demonstrate this, we examined a dataset of BM HSCs generated by mass cytometry. Clusters containing 424 

HSC and progenitors (denoted by CD117 expression) (Figure 4A) were extracted from the full dataset, and 425 

subjected to independent clustering and DR (Figure 4B). This independent analysis allowed for a more 426 

detailed assessment of low frequency subsets (Figure 4C) that were not easily assessed in the plots from 427 

the full dataset.  428 

Automated cellular classification and label transfer between aligned datasets 429 

A crucial application of computational analysis is discovery – defining novel subsets and/or investigating 430 

experimental changes in novel subsets or states in new diseases, tissues, or experimental conditions. 431 

Analytical approaches to this often depend heavily on unsupervised techniques, such as clustering and DR. 432 

Such analyses culminate in an annotated datasets in which each cell is manually assigned a population label 433 

by the user. Alternatively, other studies seek to apply a more repetitive analytical process, using semi-434 

supervised tools, such as automatic gating, to replicate a method of population identification over a large 435 

number of samples. While effective, many of these tools rely on some form of gating strategy and forgo the 436 

use of any unsupervised techniques to expedite gating, thereby limiting the possible identification of new 437 
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Figure 4. Multi-level analysis for profiling of rare populations 

A) A UMAP plot (left) where clusters representing stem cell and progenitor subsets were identified via 

CD117 expression. Through cross-referencing against FlowSOM clusters (right), these cells were B) 

subjected to new clustering, subsampling, and plotting using UMAP. C) Expression color plots reveal low 

frequency cellular subsets that were difficult to otherwise detect on the full UMAP plot. 
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or complex/overlapping populations. In contrast, machine learning-based approaches provide the 438 

opportunity for automated transfer of cellular labels from an annotated dataset to a novel dataset, following 439 

alignment of the datasets into a single feature space (as demonstrated in Figure 2). To facilitate this, we 440 

provided functions within Spectre to train and run classifiers, a type of machine learning approach designed 441 

to predict the class of given data points. As opposed to clustering, which groups cells together based on 442 

marker expression, classifiers assign cells a label based on ‘training’ data. This training data could be 443 

previously gated, clustered, or annotated and is used by the classifier to determine how given features 444 

(marker expression) relates to a class (cluster or cell phenotype).  445 

Inspired in part by Seurat’s mutual nearest neighbors approach for data integration [19, 20], we reasoned 446 

that a simple nearest neighbors approach could facilitate rapid label transfer between datasets. In Spectre, 447 

we implemented a k-Nearest Neighbor (kNN) classifier, which classifies unlabeled cells based on the label 448 

of their K
th
 nearest neighbor within the training dataset. To determine the accuracy of the kNN classifier, 449 

we divided a labelled dataset into two halves (Supplementary Figure 7A) - one half retained cellular labels 450 

and served as the ‘training’ dataset, and the other half had their cellular labels hidden, and served as the 451 

validation dataset. The kNN model was trained on the labelled data and applied to the unlabeled data 452 

(Supplementary Figure 7B), to compare against their original cellular labels (Supplementary Figure 7C). 453 

Generally, a kNN classification scheme with k = 1 tended to predict cellular labels between datasets with 454 

high accuracy (> 98.6%), although we found that increasing k here marginally increased this accuracy to 455 

over 98.9% in this case (Supplementary Figure 7D). 456 

To demonstrate the kNN classification process in an experimental context, we aligned two datasets of BM 457 

cells using CytoNorm (shown in Figure 2D-E), where the first dataset (batch A) contained labelled cells, 458 

and the second dataset (batch B) did not (Figure 5A). Following alignment, the data was split into the 459 

labeled and unlabeled datasets (Figure 5B), where the kNN classifier was trained on the labelled cells (batch 460 

A) and applied to unlabeled cells (batch B) with k = 1 (Figure 5C). When we compared the predicted cellular 461 

labels to manually annotated cellular labels, we found the classifier was able to accurately transfer cellular 462 
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Figure 5
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Figure 5. Cellular classification and label transfer  

A) A dataset of two batches of BM cells, following alignment with CytoNorm. One batch contains 

annotated clusters, and the other does not. B) The dataset is split into each batch (labeled and unlabeled), 

and a kNN classifier trained on the labelled dataset with k = 1. C) The kNN classifier was then applied to 

the unlabeled dataset, D) resulting in an accurate transfer of cellular labels between datasets. 
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labels between the two datasets (Figure 5D). Merging of the two datasets the resulted in a fully annotated 463 

dataset (Figure 5E). 464 

Quantitative and statistical analysis 465 

The endpoint of most analytical workflows is to make quantitative and statistical comparisons between 466 

experimental groups. Many components in this workflow can be automated to simplify the processing steps 467 

and reduce the time taken to generate relevant statistics and plots. To facilitate this, we have developed a 468 

series of functions to summarize a dataset rapidly at either the cluster or cellular population level, resulting 469 

in a series of summary tables. For each population in each sample, these tables summarize the proportion 470 

of cells, total cell counts, marker expression levels, and proportion of cells that are ‘positive’ for each 471 

cellular marker, which can then be used to generate quantitative plots. The generation of grouped scatter or 472 

violin plots (Figure 6A) provide a simple method to assess changes of a single feature (e.g. number of 473 

infiltrating macrophages per brain) between experimental groups, including grouped or pairwise statistical 474 

comparisons. However, more global statistical analyses are often desired. The generation of z-score 475 

heatmaps (Figure 6B) provide an overview of relative changes between samples, with optional clustering 476 

on samples (rows) or features (columns) based on similarity. Additionally, the result of pairwise 477 

comparisons between groups can be indicated for each heatmap column, revealing statistical significance 478 

for uncorrected or false discovery rate (FDR)-corrected p-values. Furthermore, PCA plots (Figure 6C) and 479 

volcano plots (Figure 6D) provide a further global view of how these immune features differentiate samples 480 

within the experimental context. 481 

 482 

DISCUSSION 483 

Challenges in cytometric analysis 484 
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Figure 6. Quantification and statistical analysis 

Quantitative and statistical analysis of CNS samples. A) Grouped dot plots with underlying violin plots 

indicating the relative cells per sample for each population in the dataset. Pairwise statistical analysis for 

non-parametric data was performed using a Mann-Whiteny/Wilcox test, where p < 0.05 was considered 

significant. Importantly, data for each plot were not adjusted for multiple comparisons. B) The z-score for 

each column of data was calculated, and plotted using the make.pheatmap function. Each row represents a 

sample, and each column represents a measured immune feature. Rows and columns were clustered using 

euclidean distance. Pairwise comparisons between experimental groups were calculated using a Mann 

Whiteny/Wilcox test, and the significance results plotted as significant (p < 0.05) or non-significant (p > 

0.05) for each column. To adjust for multiple comparisons, p-value results were corrected using a FDR 

correction, and results plotted as significant (p < 0.05) or non-significant (p > 0.05) for each column. C) 

PCA results show the distribution of each sample, and D) volcano plots show the relative fold-change 

increase or decrease of each immune feature (X axis), and the inverse p-value of each change (Y axis).  
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Historically, analysis of cytometry data involves a manual process of identifying cells, usually through 485 

drawing a gate on cells plotted with one marker vs another. As the number of features that can be measured 486 

on cells has continued to increase, the process of gating alone has become untenable for comprehensive 487 

analysis of large and complex datasets. This is in part due to the sheer number of gates that need to be drawn 488 

to fully parse a dataset, and in part due to the bias that is introduced by selectively including/excluding cells 489 

using one or two markers at a time sequentially. As a result, a number of computationally-driven approaches 490 

to data analysis have been developed, including automated gating, clustering, DR, and classification. These 491 

enable automated, data-driven data processing that may be performed in an unsupervised or semi-492 

supervised fashion. However, these approaches come with their own limitations, including operational 493 

constraints, such as the number of cells that can be analyzed, given the available computational resources, 494 

the possibility of inaccurate identification of specific biologically-relevant populations in the dataset, and a 495 

lack of reproducibility between analytical runs (particularly when applying to new datasets). Critically, 496 

many analysis tools are developed as standalone packages that operate on specific data formats. This limits 497 

the interoperability of tools, especially when attempting to combine tools developed in different fields (such 498 

as cytometry and scRNAseq). As a solution, we developed Spectre: an adaptable and easy-to-use package 499 

for analyzing high-dimensional cytometry data. Spectre enhances existing computational tools through 500 

strategic implementation and customization of high-performance computational tools, and provision of 501 

wrapper functions to simplify and improve their flexibility and interoperability. This package expanded on 502 

many of the key aspects of the CAPX workflow [32] that has been utilized in a number of studies [53-57]. 503 

As the foundation for data in Spectre, data.table allows for easy handling of large datasets 504 

Many cytometry or single-cell analysis tools operate on custom data formats, such as the flowFrame [35], 505 

SingleCellExperiment [21], or Seurat objects [19]. Each custom data format may contain numerous 506 

elements, made up of both base R and custom data formats. Typically, primary cellular expression data is 507 

stored in a table or matrix, and separate elements contain metadata for each cell (cell number, sample, 508 

group, etc.,) or feature (marker names, parameters names, voltages, gene numbers, etc). Importantly, 509 
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manipulated data (such as ArcSinh transformations or normalization) may be contained within the primary 510 

data table/matrix, or structured separately. The complexity of these custom formats, and the significant 511 

differences in structure between them, results in difficulties in converting one data format to another. While 512 

custom data formats may be convertible into other formats, including conversion to one of R’s base data 513 

formats, these conversions are non-trivial, and often result in the loss of important metadata. Of note, 514 

cytometry data is typically structured with rows representing cells, and columns representing cellular 515 

features, though this is transposed in scRNAseq data.  516 

The foundation of Spectre is built upon the data.table package, which enhances R’s base data.frame format. 517 

The efficiency of data.table in performing basic data manipulation operations, such as filtering, ordering, 518 

importing, and exporting, makes it suitable for processing large HD cytometry datasets. While there are R 519 

packages which operate on data.frame formats (e.g. dplyr [58]), our simple benchmarking measurements 520 

show data.table to be faster when handling large datasets (Supp. Figure 1). The simple tabular format allows 521 

for interoperability between Spectre, basic R functions, and other functions from cytometry or single-cell-522 

specific packages, by storing all the relevant information for each cell in a single, high-performance table. 523 

Here, columns desired for use with each function can be easily specified, and new columns that are added 524 

as a result of analysis are easily identifiable through the use of regular expression patterns (such as 525 

“CD4_asinh”, “CD4_aligned”, etc.). Column metadata in this context is less relevant for processing and 526 

analysis, but can still be imported and managed with the main data should the user choose to do so. By 527 

designing all our functions to operate on this simple data.table structure, we remove the requirements for 528 

users to convert their data into specific formats for different functions, greatly improving usability. 529 

Usage flexibility 530 

We have demonstrated the use of Spectre through various workflows. While they each illustrate an 531 

approach to analysis, they are flexible in such a way that functions can be run in any order, and can be 532 

replaced with others (including those that are not built into Spectre). For instance, it is possible to run a DR 533 

tool on the dataset before clustering, or replacing Spectre’s run kNN classifier function with another 534 
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function (like a Decision Tree classifier [59]). Additionally, most of Spectre’s functions are designed such 535 

that they do not rely on each other to operate. A function may simply be executed on its own without having 536 

to run others beforehand. Some functions require data to be in a particular layout with appropriate 537 

calculations (e.g. calculating MFI across samples for heatmap creation with make.pheatmap), but this can 538 

be achieved either with (using write.sumtables) or without (using other functions or manual creation) 539 

Spectre. In addition, Spectre’s functions are equipped with parameters that allow users to customize how 540 

they operate. The majority of these parameters come with a set of default values that are based on the 541 

original implementation of the tools. The capacity to run Spectre’s functions with either default or custom 542 

parameter values make Spectre both simple and customizable . 543 

Docker for accessibility 544 

Spectre provides wrapper functions to many existing computational tools, and thus require users to install 545 

the corresponding R packages before using them. Inadvertently, this creates a cycle of package 546 

dependencies as these packages often rely on other existing R packages. Managing such dependencies has 547 

proven to be a challenge even to advanced analysts, as there exists a myriad of ways to install, remove, and 548 

update packages (e.g. CRAN, Bioconductor [60], devtools [61]). Moreover, some packages rely on users 549 

to have other softwares (e.g. Xcode in Mac, Rtools in Windows) or compilers available on their computer. 550 

This may pose as a major hurdle for those who are not familiar with R. To address this, we made Spectre 551 

available as a Docker image. The image is a prepared environment loaded with RStudio for users to interact 552 

with R code (write and run) and all the libraries required by Spectre. By downloading the Docker image 553 

and launching it as a self-contained computing environment, users will be able to run their analysis without 554 

going through the complicated setup process. While Docker introduces an additional layer between user’s 555 

physical computing resources and the analytical tools, previous work by IBM indicates the performance 556 

degradation to be negligible [62]. 557 

Versatility of application 558 
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The structure of all forms of cytometry data, including flow, spectral or mass, are inherently similar: each 559 

row is an individual cell, whilst each column is an individual marker or feature measured on those cells. 560 

The values in such a table indicate the signal intensity for each individual marker within the panel on each 561 

cell. Thus, Spectre can be used on datasets generated by both flow (including spectral) and mass cytometry, 562 

following compensation (or spectral unmixing), and initial cleanup gating. As a result, Spectre can also be 563 

used on other forms of cellular data, such single-cell RNA seq data, following some additional pre-564 

processing steps. Additionally, Spectre can be used to analyze HD imaging data, such as that generated by 565 

IMC, once cellular segmentation has been performed. 566 

 567 

DATA AVAILABILITY 568 

Spectre code and demonstration data used in this paper are available at 569 

https://github.com/immunedynamics/spectre.  570 
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FIGURE LEGENDS 713 

Figure 1. Spectre analysis overview 714 

An overview of Spectre’s analysis workflow. A) Data preparation steps including sample, group, and batch 715 

annotation, in addition to ArcSinh transformation. B) Batch alignment using CytoNorm. C) Clustering and 716 

dimensionality reduction, along with marker expression plotting and expression heatmaps. D) 717 

Quantification and statistical analysis through z-score/fold-change heatmaps and grouped dot plots. E) 718 

Application of Spectre’s analysis workflow to data generated by different technologies, including analyzing 719 

a split murine spleen sample by flow cytometry, spectral cytometry, and mass cytometry. Also shown are 720 

unrelated PBMC data analyzed by single-cell RNA sequencing (scRNAseq) acquired from 10X genomics, 721 

via the Seurat webpage (https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html) and imaging data generated 722 

by Imaging Mass Cytometry (IMC). 723 

Figure 2. Batch alignment using CytoNorm 724 

Batch alignment process using CytoNorm. A) Reference samples acquired with each batch are extracted 725 

from the data.table, and B) clustered using FlowSOM. Metacluster-specific quantile conversion models are 726 

then calculated. C) Cells from all samples/batches are mapped to the FlowSOM grid, and assigned to their 727 

nearest metacluster. Cells are then aligned using the metacluster-specific quantile conversion models D) 728 

Two sets of BM samples with synthetic batch effects introduced in a population-specific manner. E) 729 

CytoNorm alignment was performed using a metacluster-specific alignment process (fine alignment). F) 730 

Two sets of BM samples generated with slightly different panels, but targeting the same cellular markers, 731 

resulting in significant batch effects. G) CytoNorm is initially performed on the whole dataset (coarse 732 

alignment) by mapping the entire dataset into a single metacluster, where H) subsequent FlowSOM 733 

clustering allowed for further metacluster-specific alignment (fine alignment).  734 

Figure 3. Clustering and dimensionality reduction using Spectre 735 
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A) A dataset of cells isolated from mock- or WNV-infected CNS were used to demonstrate clustering and 736 

DR in Spectre. B) FlowSOM clustering was performed on the full dataset, which was C) then subsampled 737 

and plotted using UMAP. D) Parsing the dataset by each experimental group reveals substantial changes to 738 

immune populations. E-F) An examination of marker expression on each cluster allows for a user-739 

determined annotation into biological relevant cell types. G) Analysis using PCA allows for visualization 740 

of the data variance, and H) the relative contribution of markers to the first two principle components. 741 

Figure 4. Multi-level analysis for profiling of rare populations 742 

A) A UMAP plot (left) where clusters representing stem cell and progenitor subsets were identified via 743 

CD117 expression. Through cross-referencing against FlowSOM clusters (right), these cells were B) 744 

subjected to new clustering, subsampling, and plotting using UMAP. C) Expression color plots reveal low 745 

frequency cellular subsets that were difficult to otherwise detect on the full UMAP plot. 746 

Figure 5. Cellular classification and label transfer  747 

A) A dataset of two batches of BM cells, following alignment with CytoNorm. One batch contains 748 

annotated clusters, and the other does not. B) The dataset is split into each batch (labeled and unlabeled), 749 

and a kNN classifier trained on the labelled dataset with k = 1. C) The kNN classifier was then applied to 750 

the unlabeled dataset, D) resulting in an accurate transfer of cellular labels between datasets. 751 

Figure 6. Quantification and statistical analysis 752 

Quantitative and statistical analysis of CNS samples. A) Grouped dot plots with underlying violin plots 753 

indicating the relative cells per sample for each population in the dataset. Pairwise statistical analysis for 754 

non-parametric data was performed using a Mann-Whiteny/Wilcox test, where p < 0.05 was considered 755 

significant. Importantly, data for each plot were not adjusted for multiple comparisons. B) The z-score for 756 

each column of data was calculated, and plotted using the make.pheatmap function. Each row represents a 757 

sample, and each column represents a measured immune feature. Rows and columns were clustered using 758 

euclidean distance. Pairwise comparisons between experimental groups were calculated using a Mann 759 
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Whiteny/Wilcox test, and the significance results plotted as significant (p < 0.05) or non-significant (p > 760 

0.05) for each column. To adjust for multiple comparisons, p-value results were corrected using a FDR 761 

correction, and results plotted as significant (p < 0.05) or non-significant (p > 0.05) for each column. C) 762 

PCA results show the distribution of each sample, and D) volcano plots show the relative fold-change 763 

increase or decrease of each immune feature (X axis), and the inverse p-value of each change (Y axis).  764 
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Supplementary Figure 1. Data processing speeds 781 

A) Benchmarking of files reading/writing with data.table or base R functions. B) Benchmarking of common 782 

data operations using data.table or Dplyr. 12,108,595 cells with approx. 25 dimensions were analyzed on a 783 

virtual windows machine with 16 GB of RAM. 784 

Supplementary Figure 2. Data visualization and ArcSinh transformation  785 

A) Brief comparison of plot visualization options as implemented in FlowJo, with the axis set as linear 786 

(with default maximum values), linear (with adjusted maximums), logarithmic, or bi-exponential/logicle. 787 

B) Direct comparison of raw data using a bi-exponential/logicle axis with data subject to ArcSinh 788 

transformation and plotted on a linear axis.  789 

Supplementary Figure 3. ArcSinh transformation of mass cytometry data 790 

A) Plots of raw data in FlowJo with various width basis (WB) settings for the x-axis (168Er CD8a). 791 

Minimum x-axis value for each plot was adjusted to the highest possible value, within the restrictions 792 

imposed by FlowJo. Y-axis width basis was fixed at –100. Both x- and y-axis positive decades were set at 793 

4.75. B) Plots of ArcSinh transformed data from R with various co-factors used for the marker on the x-794 

axis. Y-axis co-factor was fixed at 10. 795 

Supplementary Figure 4. ArcSinh transformation of conventional and spectral cytometry data 796 

Plots of data generated by a conventional (A-B) and spectral (C-D) flow cytometry system. The 797 

conventional flow cytometry system was a 10-laser BD LSR-II, and the spectral flow cytometry system 798 

was a 5-laser Cytek Aurora. A) Plots with of conventional flow cytometry raw data in FlowJo with various 799 

width basis (WB) settings for the x-axis (BUV805 CD8a). Minimum x-axis value for each plot was adjusted 800 

to the highest possible value, within the restrictions imposed by FlowJo. Y-axis width basis was fixed at –801 

100. Both x- and y-axis positive decades were set at 4.29. B) Plots of ArcSinh transformed data from R 802 

with various co-factors used for the marker on the x-axis. Y-axis co-factor was fixed at 1000. C) Plots of 803 
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spectral cytometry raw data in FlowJo with various width basis (WB) settings for the x-axis (BUV805 804 

CD8a). Minimum x-axis value for each plot was adjusted to the highest possible value, within the 805 

restrictions imposed by FlowJo. Y-axis width basis was fixed at –631. Both x- and y-axis positive decades 806 

were set at 5.68. D) Plots of ArcSinh transformed data from R with various co-factors used for the marker 807 

on the x-axis. Y-axis co-factor was fixed at 5000. 808 

Supplementary Figure 5. ArcSinh, normalized, and noise reduced data 809 

Transformations and manipulations performed on conventional flow cytometry data. A) Raw data plot of 810 

FITC Ly6C vs BUV805 CD8a. B) ArcSinh transformed data (a-axis) using a co-factor (CF) of 1000. C) 811 

ArcSinh transformed data (x-axis) redistributed between 0 and 1 using the do.normalise function. D) 812 

ArcSinh transformed data (a-axis) with data points below 0 changed to 0 using the do.noise.reduce function, 813 

to reduce the distribution of negative cells below zero.  814 

Supplementary Figure 6. Dimensionality reduction crowding and computation time 815 

A-B) Plots of tSNE analysis performed with different numbers of total cells, colored by relative density, or 816 

cell type. C) Computation time for tSNE on different sized datasets, plotted on a logarithmic scale. 817 

Supplementary Figure 7. Evaluating kNN classification accuracy 818 

A) A single labelled dataset was split into halves – one half retaining population labels (training data) and 819 

one half having population labels hidden (validation data). B) A kNN model was trained on the training 820 

data and applied to the validation data. C) Comparison of the original labels on the training data and the 821 

predicted labels on the validation data. D) A graph showing the accuracy for the kNN classifier for different 822 

values of k. 823 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.22.349563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.349563
http://creativecommons.org/licenses/by-nc-nd/4.0/

