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Abstract— Channel selection or electrode placement for
neural decoding is a commonly encountered problem in
electroencephalography (EEG). Since evaluating all possi-
ble channel combinations is usually infeasible, one usually
has to settle for heuristic methods or convex approxima-
tions without optimality guarantees. To date, it remains
unclear how large the gap is between the selection made by
these approximate methods and the truly optimal selection.
The goal of this paper is to quantify this optimality gap for
several state-of-the-art channel selection methods in the
context of least-squares based neural decoding. To this
end, we reformulate the channel selection problem as a
mixed-integer quadratic program (MIQP), which allows the
use of efficient MIQP solvers to find the optimal chan-
nel combination in a feasible computation time for up to
100 candidate channels. As this reveals the exact solution
to the combinatorialproblem, it allows to quantify the perfor-
mance losses when using state-of-the-art sub-optimal (yet
faster) channel selection methods. In a context of auditory
attention decoding, we find that a greedy channel selection
based on the utility metric does not show a significant opti-
mality gap compared to optimal channel selection, whereas
other state-of-the-art greedy or l1-norm penalized methods
do show a significant loss in performance. Furthermore,
we demonstrate that the MIQP formulation also provides
a natural way to incorporate topology constraints in the
selection, e.g., for electrode placement in neuro-sensor net-
works with galvanic separation constraints. Furthermore,
a combination of this utility-based greedy selection with
an MIQP solver allows to perform a topology constrained
electrode placement,even in large scale problems with more
than 100 candidate positions.
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I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a popular
non-invasive technology to record macro-scale electro-

physiological activity in the brain. Most high-end EEG sys-
tems record from 20 up to 256 scalp electrodes [1], [2].
While using a large number of electrodes allows to record
at a high spatial resolution, such high-density recordings also
come with several disadvantages; they require more expensive
equipment, they lead to longer set-up times, they require more
data storage/processing, and the higher dimensionality may
cause overfitting in data-driven algorithms. Furthermore, when
making the transition towards wearable EEG applications with
devices that measure EEG during daily-life activities [3]–[8]
[9], [10], a low channel count is important for miniaturization
and to minimize power and bandwidth requirements [10], [11].
Therefore, there is a need for efficient and robust data-driven
channel selection or electrode placement methods to reduce
the number of EEG channels while having minimal impact on
the application performance. In this paper, we focus on the
channel selection problem for least-squares (LS) based neural
decoding. For illustrative purposes, we tackle and analyze the
channel selection problem in the context of speech decod-
ing, in particular in an auditory attention decoding (AAD)
task [1]. However, we keep the methodology sufficiently
generic, thereby making it applicable to any LS-based neural
decoding task.

EEG channel selection is a combinatorial problem of which
the complexity increases exponentially with the number of
channels, thereby making an exhaustive search over all pos-
sible channel combinations infeasible. For example, finding
the best combination of 8 channels from a pool of 64 EEG
channels requires evaluating more than 4 × 109 possible
combinations. If one can evaluate1 a single combination in
0.01 second, it would take 1.4 years to go over all combi-
nations. That is why channel selection is typically tackled
by suboptimal heuristic methods that can be computed in a
realistic time frame.

1An evaluation involves training an optimal decoder for the given selection,
and testing the performance of the resulting decoder.
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EEG channel selection methods are broadly classified
into two categories, namely, filtering methods and wrapper
methods [12]. Filtering methods rely on the use of distance,
information or correlation measures independent of the prob-
lem’s objective function to select the best subset of EEG
channels [12], [13]. Wrapper methods, on the other hand, try
to explicitly optimize the problem’s objective function while
performing channel selection, which is why they typically
perform better than filtering methods.

Therefore, in this paper, we focus on widely used wrapper
methods for channel selection in LS-based neural decoding.
Typical wrapper methods for LS decoding solve the channel
selection problem with approximate convex relaxation tech-
niques such as the least absolute shrinkage and selection oper-
ator (LASSO) [14], or heuristic techniques such as an iterative
greedy elimination based on, e.g., decoder weights [15]–[17]
or LS-based channel utility [9], [18]. In [9], the greedy channel
selection using the LS-utility metric was found to perform
the best in terms of AAD performance compared to other
suboptimal strategies but the performance gap compared to
the truly optimal channel selection, from hereon referred to as
the optimality gap, remains unknown.

In this paper we propose a globally optimal channel selec-
tion method by reformulating the channel selection problem to
a mixed-integer quadratic program (MIQP), thereby allowing it
to be solved by state-of-the-art MIQP solvers to find the exact
solution of the combinatorial problem. While the computation
time for solving the MIQP is still very high (too high for
practical use), it is at least practically feasible as opposed to
a brute-force exhaustive search. The resulting optimal channel
selection allows to quantify the optimality gap of the afore-
mentioned sub-optimal techniques in a specific application.
In the context of an AAD task, we demonstrate that, unlike
(group)-LASSO or decoder weight-based greedy selection,
the greedy method based on the LS-utility metric does not
perform significantly worse than the optimal MIQP-based
channel selection, while improving 3-4 orders of magnitude
in computation time.

While channel selection can be done post-hoc to reduce
the dimensionality of the data, it can also be used for elec-
trode placement in a context of wearable EEG. Considerable
research is ongoing to make wearable miniature-EEG (mini-
EEG) devices which allow to record EEG 24/7 in daily-
life activities [3]–[8]. Although these mini-EEG devices only
cover small skin areas due to their far-driven miniaturization,
the concept of neuro-sensor networks enables the simultaneous
use of multiple such mini-EEG devices connected wirelessly
thereby increasing the spatial resolution [10], [19]. Such a
collection of wirelessly interconnected mini-EEG devices is
also known as wireless EEG sensor networks (WESNs). In this
case, it is essential to find the best scalp locations to place these
mini-EEG devices (or ‘nodes’), where each node consists of
at least two closely spaced electrodes to locally record EEG.
In [9], [14], WESN nodes were emulated by first generating
a highly redundant set of candidate nodes by re-referencing
high-density cap-EEG electrodes with neighboring electrodes
followed by node selection. However, no topological con-
straints were imposed during node selection, which may result

in practically infeasible WESN topologies [9]. For example,
since the nodes correspond to physically separated mini-EEG
devices, which are galvanically separated from each other
(not connected by a wire), the selected WESN nodes are
not allowed to share electrode locations. Hence, there is a
need to include such constraints in channel and node selection
methodologies and explore their impact on neural decoding
performance. To this end, we show how such topological
constraints can be incorporated in the aforementioned MIQP
formulation. This also allows to analyze the impact of such
a galvanic separation by solving the MIQP with and without
such constraints.

Although the proposed MIQP-based optimal selection
method allows to solve the full combinatorial problem in a
feasible time, it again becomes practically infeasible when the
number of channels/nodes to be selected is large (>10) or if
the total number of candidate channels/nodes is large (>100).
Therefore, we also propose a hybrid method to perform
node selection by combining the greedy utility-based channel
selection with an MIQP solver, where the former initially
reduces the candidate set of channels/nodes to a smaller set
that can then be processed by an MIQP solver in a reasonable
amount of time. The resulting combination yields a practical
method for channel/node selection with topology constraints.
For the case of AAD, we show that the inclusion of this greedy
‘preprocessing’ does not create a significant optimality gap
compared to a globally optimal selection.

The outline of the paper is as follows. In Section II,
we review the the channel selection problem for LS-based
neural decoding, and reformulate it as a (constrained) MIQP.
In Section III we describe the experimental setup used in
this work, and the performance evaluation strategy used to
compare different channel selection methods. In Section IV,
we report the results of the comparative analysis in terms
of AAD performance and computation time. We discuss the
results in Section V and we draw conclusions in Section VI.

Note on terminology: The following terminology will be
used consistently in the remainder of this paper. A channel
is an EEG signal that originates from a single electrode pair
over which the scalp potential is measured. A node represents
a group of (at least two) closely spaced EEG electrodes such as
those included in a wireless mini-EEG sensor device, emulated
here as a group of nearby cap-EEG electrodes. In all our
experiments reported in this paper, we only consider single-
channel nodes consisting of a single electrode pair although
all results can be extended to multi-channel nodes with more
than 2 electrodes [9].

II. CHANNEL OR NODE SELECTION

FOR NEURAL DECODING

A. Least-Squares Based Neural Decoding

Several studies have established that the neural responses
of a subject measured as multi-channel EEG can be decoded
to reconstruct certain features of the stimulus. For speech
decoding in particular, it has been found that least-squares
based linear regression models allow to reconstruct different
representations of the auditory speech stimulus such as the
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speech envelope [1], [2], [15], the spectrogram, phonetic
features [20], etc. Moreover, neural decoding of EEG to speech
envelopes has been used in auditory attention decoding (AAD)
algorithms which allow to determine to which speaker a
subject is attending when listening to a mixture of speakers in
a so-called cocktail party scenario [1], [2], [15].

The neural decoding problem consists of finding a spatio-
temporal decoder ŵ which linearly combines the EEG data to
reconstruct the stimulus d in least squares (LS) sense:

ŵ = arg min
w

1

2
||Aw − d||22 (1)

where A is a T × QC matrix containing T time samples
of the C EEG channels and Q − 1 non-causal time-lagged
copies of each channel in its columns. Each channel and its
Q − 1 time-lagged copies are assumed to be grouped in
adjacent columns in the matrix A. The time-lagged copies are
added to cope with time delays and convolutive responses [1],
[2], [15]. The problems where time-lagged copies are not used
can be considered as a special case of (1) where Q = 1.

In addition, in (1), d is a T -dimensional vector containing
T time samples of a relevant representation of the stimulus
which in the case of speech can be represented by the speech
envelope, the spectrogram or even low level representations
like phonemes [20]. In the present work, we address the
problem of decoding the speech envelope.

The solution of (1) is given by

ŵ = R−1r (2)

where R = AT A and r = AT d. If required, a diagonal loading
term can be added to R as a regularization mechanism [1],
although it was shown in [2] that this is not necessary (and
to be avoided) in case sufficient training data is available to
populate R.

The problem of selecting the best N(< C) channels
which minimizes (1) is a combinatorial problem. Different
approximate approaches have been proposed to solve this
problem, for example, convex relaxations like (group-)LASSO
[14] or greedy methods with iterative elimination of
channels [9], [15]–[17].

B. Greedy Channel Selection

Assuming the Q time-lagged copies of each EEG channel
are in adjacent columns in the matrix A, we can define the
following partitioning for the spatio-temporal decoder ŵ:

ŵ =

⎡
⎢⎢⎢⎣

ŵ1
ŵ2
...

ŵC

⎤
⎥⎥⎥⎦ (3)

with the subvectors ŵk ∈ R
Q ∀ k ∈ {1, . . . , C}, the decoder

coefficients corresponding to k-th channel and its Q copies.
In [15]–[17], the EEG channels are iteratively removed one
by one in a greedy fashion by every time deleting the channel
k for which the l2-norm ||ŵk|| is the smallest. After each
iteration, the optimal decoder is recomputed based on the
remaining channels until the desired number of N channels

is reached. In the remaining of this paper, we will refer to
this method as the decoder magnitude-based (DMB) greedy
method or DMB-G.

However, in [21] it was argued that the magnitude of
the entries in the decoder ŵ do not necessarily reflect the
importance of the corresponding channel as it is scaling
dependent and it does not properly take interactions across
channels into account. Instead, it was argued to quantify the
importance or ‘utility’ of a channel k by the increase in the
least squared error (LSE) if channel k were to be removed and
the decoder would be fully re-optimized. In [21] an efficient
computation for this utility metric was proposed, and it was
shown in [9] that it outperforms the DMB metric in a greedy
channel selection procedure. We will refer to this method as
the utility-based (UB) greedy channel selection method.2 or
UB-G, which we will briefly review below as it will be part
of the hybrid method proposed in Section II-D.3.

Since the matrix A in (1) contains Q time-lagged copies of
C-channel EEG in its columns, the removal of an EEG single
channel corresponds to the removal of a group of Q columns
from A. The utility of a group of columns of A, referred to
as the group-utility, is defined as:

min
w−k

||A−kw−k − d||22 − min
w

||Aw − d||22 (4)

where A−k is the matrix A with the Q columns corresponding
to channel k removed. It has been shown that this group-utility,
can be computed efficiently based on ŵ without having to
compute the new optimal decoder ŵ−k for each channel k [21].
In UB-G, this group-utility metric is used to iteratively elim-
inate channels with the least group-utility to select the ‘best’
N channels. To this end, assume without loss of generality
(w.l.o.g.) that the channel k and its time-lagged copies for
which we compute the group-utility corresponds to the last Q
columns of A.

Defining the block partitioning of R−1 in (2) as:

R−1 =
�

X Y
YT Z

	
(5)

where Z is a Q × Q matrix corresponding to the Q time lags
associated with channel k. The group-utility of channel k can
be efficiently computed as [9], [21]:

Uk = ŵT
k Z−1ŵk (6)

where ŵk contains the last Q entries of ŵ. It can be shown
that (6) leads to the exact same quantity as defined in (4) [21]
without the need to recompute (2), which would involve a
large matrix inversion for each candidate channel removal.

To select N (out of C) channels of EEG data used in
the neural decoding problem (1), UB-G uses the algorithm
illustrated in Fig. 1. First, the group-utility of each of the C
channels is computed using (6) followed by the removal of
the channel with the least group-utility. After this removal, ŵ
is recomputed using (2) but now with the (C − 1) channel
EEG data. The new group-utilities of each channel in the
new (C − 1) channel set are re-computed from (6), again

2An open-source MATLAB and Python based implementation of this
method is available on https://github.com/mabhijithn/channelselect
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Fig. 1. Utility-based greedy (UB-G) channel selection algorithm.

followed by removal of the channel with the least group-
utility. The procedure is repeated until only N channels
remain.

C. Optimal Channel Selection

While UB-G outperforms other state-of-the-art channel
selection methods [9], it still leads to sub-optimal solutions
to the channel selection problem due to its greedy approach
(as not all possible combinations of N channels are consid-
ered). As such, other combinations of N channels may lead
to even lower squared errors. The optimality gap between
UB-G channel selection and the optimal selection that truly
minimizes the LS cost remains unknown since it requires
investigating all possible channel combinations, which is com-
putationally infeasible. In this section, we propose a feasible
method to find this global optimum of the channel selection
problem.

We introduce a boolean vector z of length C defined as
z = [z1 . . . , zC ]T with zk ∈ {0, 1} ∀ k ∈ {1, . . . , C}, which
contains selection variables for each channel. Now, modifying
the optimization problem in (1) with the newly introduced
variable z, the channel selection problem can be equivalently
formulated as:

min
w,z

1

2
||Aw − d||22 (7a)

subject to
C


k=1

zk ≤ N (7b)

||wk||∞ ≤ Mzk k = 1, . . . , C (7c)

z ∈ {0, 1}C . (7d)

where wk is the subvector defined in (3), M is a sufficiently
large 3 positive integer and || · ||∞ is the l∞ norm.4

The constraint in (7b) ensures that at most N entries of z
assumes the value of 1, thereby selecting N channels. The
constraint (7c) imposes that the entries of z act like selection
variables for the columns of A. A value of 0 at zk forces all
entries of wk to be 0, thereby removing the Q columns of A
corresponding to channel k from the problem. On the other
hand, a value of 1 at zk gives the freedom for all entries of
wk to assume non-zero values, thereby selecting Q columns
of A corresponding to channel k.

The optimization problem of the kind in (7a)-(7d) is
an instance of a so-called mixed-integer quadratic pro-
gram (MIQP). With the help of solvers like CPLEX [22],
Gurobi [23], etc. the MIQP (7a)-(7d) can be solved to opti-
mality for moderate values of C (< 100) and for small values
of N(< 10), in feasible time. In the experiments in this paper,
we used the Gurobi solver [23] to solve (7a)-(7d). From this
solution, we considered the channels which correspond to non-
zero entries of z as the optimal channels. We will refer to this
optimal channel selection method as OCS in the sequel.

D. Node Placement With Galvanic
Separation Constraints

In neuro-sensor networks such as WESNs, the selection
of EEG channels usually has to satisfy certain topological
constraints. For example, the N nodes of a WESN correspond
to stand-alone mini-EEG sensors which are not connected by a
wire, i.e., they are galvanically separated. This means that the
N selected nodes are not allowed to share the same electrodes.
In this subsection, we describe how such constraints can be
included in the OCS method.

1) WESN Emulation: We use the procedure of [9] to emulate
candidate WESN nodes from a 64-channel standard cap EEG
recording. Without loss of generality, we only address the case
of a WESN made up of single-channel nodes, i.e., each node
consists of two electrodes separated by a short distance. These
nodes are selected from a set of candidate nodes created by
pairing each electrode of the C-electrode cap with each of
its nearby electrodes that are at a distance of at most r cm,
where r is the desired maximum span between the electrodes
within a single WESN node. Using this criteria, a set of
P candidate single-channel node locations and orientations
were generated from the original C electrodes. Since each
node then corresponds to a single electrode-pair, it contributes
a single channel of EEG. Hence, the node selection or
node placement problem while constructing a WESN can
be viewed as a channel selection problem as described in
Section II-A, where C is replaced by P (note that in practice
P � C , which means the set of candidate nodes is highly
redundant).

3 M should be chosen larger than the entry with the maximal absolute value
in the final solution ŵ, which is unknown before solving (7a)-(7d). In practice,
if the magnitude of one of the entries in the final solution ŵ is equal or close
to M, this means M has been set to a too small value, in which case the
procedure has to be restarted with a larger M.

4||w||∞ = max |wk |mk=1 where w = [w1 . . . , wm ]T
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2) OCS Method for Galvanically Separated Node
selection(OCS-GS): The OCS method described in Section II-
C can be used to find optimal node locations for WESNs
by selecting N nodes from P candidate nodes. The problem
formulation (7a)-(7d) can perform optimal node selection by
replacing A with AP where now AP contains Q time-delayed
copies of EEG signals from each of the P nodes in its
columns. Assume E ⊂ {1, . . . , P} × {1, . . . , P} is the set
that contains all ordered pairs of nodes sharing an electrode,
i.e., all node pairs that are galvanically connected. To select
galvanically separated nodes, the problem given in (7a)-(7d)
is modified as below:

min
w,z

1

2
||APw − d||22 (8a)

subject to
P


k=1

zk ≤ N (8b)

||wk||∞ ≤ Mzk k = 1, . . . , P (8c)

zi + z j ≤ 1 ∀(i, j) ∈ E (8d)

z ∈ {0, 1}P . (8e)

Here, the constraint (8d) ensures that if node i and j share an
electrode, only one of them will be selected. The optimization
problem (8a)-(8e) is again an MIQP, which can be solved with
the Gurobi solver [23]. We will refer to this modified optimal
node selection method with galvanic separation constraint as
OCS-GS.

3) Hybrid Method for Galvanically Separated Node Selection:
In the previous section, we described an optimal node selection
method for optimal node placement with galvanic separa-
tion constraints. However, the computational time required to
obtain these optimal node selections is generally too high for
practical purposes due to large values of P (compared to C).
In this section, we propose a hybrid node selection strategy
involving greedy components to perform node selection with
galvanic separation constraints with more reasonable compu-
tation times.

Note that the set of P candidate nodes is a redundant set,
which will make the matrix R in (2) rank deficient, thereby
hampering the computation of (2)-(6) in the DMB-G and
UB-G method. For the case of DMB-G, a pseudo-inverse can
be used in (2). For the UB-G method, an extension of the
utility metric for such rank-deficient problems is proposed
in [21] based on a minimum-norm criterion, which was also
used in [9] for the node selection problem. We will use a
similar fix when we apply UB-G, and we refer to [9] or [21]
for further details. The gLASSO and the MIQP solvers do
not explicitly compute R or its inverse, and therefore do not
require a fix when the latter is singular.

We first apply UB-G to prune the P candidate nodes to
K nodes with N � K < P , where N is the number of
nodes to be selected and where K is a value which is small
enough such that OCS or OCS-GS can be computed in a
reasonable amount of time. The pruning stage is followed
by node selection from the K remaining candidate nodes
with galvanic separation constraints using the OCS-GS method
in (8a)-(8e). The pruning stage is applied to reduce the
number of candidates on which OCS or OCS-GS is computed.

Meanwhile, the use of OCS-GS for node selection ensures
that the solution is near-optimal while the galvanic separation
constraints are satisfied. We refer to this method as ‘hybrid’
in the remaining of the paper.

III. EXPERIMENTAL SET-UP

A. Description of EEG Dataset

The dataset used for the experiments reported in this
paper, originally described in [2], consists of 64-channel EEG
recorded using a BioSemi ActiveTwo system from 16 subjects
who sat through three experiments within a single recording
session. During each experiment, the subjects listened to two
simultaneous children stories narrated by two different male
speakers coming from two distinct spatial locations (left and
right of the subject), and were asked to attend to only one of
them while ignoring the other. The first two experiments each
included four presentations of different six-minute story parts
(the unattended speaker from the first experiment becomes the
attended speaker in the second experiment and vice versa).
This results in 2 ×4 ×6 = 48 minutes of EEG data. The third
experiment consisted of four shorter presentations of the first
two-minutes of the same four story parts. These presentations
were repeated three times, to build a set of recordings of
repetitions, thereby adding 24 extra minutes of EEG data to
obtain 72 minutes of EEG data in total per subject. A version
of this dataset is available online along with a more detailed
description [24]. During preprocessing we re-referenced the
EEG data to the Cz electrode.

In Section II-D.1, we briefly described the procedure for
WESN emulation, originally used in [9]. We created the
candidate two-electrode single-channel nodes for WESNs with
a maximum distance of r = 5cm between the electrodes.
This corresponds to the configuration used in [9] ensuring
that a large number of candidate node locations and orien-
tations are generated but at the same time the electrodes of
each pair have a reasonably short distance between them to
emulate a miniaturized EEG-sensor node. This resulted in
P = 209 candidate nodes with an average inter-electrode
distance of 3.7 cm.

B. AAD Performance Evaluation

For validation of the different channel selection algorithms
described in this paper, we used the AAD procedure from [2].
First, we estimated a subject-dependent linear spatio-temporal
decoder ŵ based on (1) where d contains the envelope of the
attended speaker. We filtered both the EEG data and the speech
envelope using a bandpass filter between 1 − 9Hz and we
followed it by downsampling both to 20Hz. In the comparison
between UB-G and OCS on the standard cap-EEG channel
selection, we used the value of Q = 6, which corresponds to
time delays up to 250ms for both channel selection as well
as performance evaluation. It has been shown that the time
delays up to 250ms are the most effective for reconstructing
envelopes using EEG for the sake of attention decoding
[1], [2]. Within these delays, the delays between 140ms and
200ms have been shown to be the most discriminative to
decode auditory attention to speech [1], [25]. We selected the
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Fig. 2. OCS compared to all the approximate methods, namely gLASSO, DMB-G and UB-G, with respect to (a) the decoding accuracy (b) the mean
attended correlation. The black dots represent outliers, values beyond 1.5 × IQR (inter quartile range) from the quartiles.

lower value of Q in this case to solve the MIQP-based optimal
node selection in feasible time, as reducing Q leads to a lower
number of total variables in the node selection problem. For
the hybrid method, a larger value of Q is possible, but we also
set it to Q = 2 in order to compare and quantify the potential
optimality gap with OCS and OCS-GS.

We use a leave-one-trial-out cross-validation scheme,
in which the data is split in L trials of 60s. We used each
trial once as a test trial. When testing on trial l, we compute
(1) on the entire EEG recording after cutting out trial l from
A and d, to find the decoder ŵl for test trial l. The decoder ŵl

is used to reconstruct the attended speech envelope for trial l
using:

d̂l = Alŵl (9)

Once the attended speech envelope has been estimated,
we found the Pearson correlation coefficients between d̂l and
the attended and unattended speech envelopes in trial l as ra

and ru respectively. We considered a trial to be successfully
decoded if ra > ru . We used the percentage of successfully
decoded trials as the AAD performance measure (analyzed per
subject). Similar to [18], we also report the mean attended
correlation coefficients ra (averaged across trials within a
subject). The mean attended correlation is larger when the
reconstruction in (1) is better.

IV. RESULTS

A. AAD Performance Analysis

1) Channel Selection in Standard Cap EEG: We com-
pared the optimal channel selection (OCS) method to three
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Fig. 3. Heatmap topoplots illustrating the scalp locations of the best Cz-ref channels selected by the OCS and UB-G methods across all subjects.
The color bar indicates the percentage of 16 subjects selecting an electrode.

different approximate EEG channel selection strategies for
least-squares based neural decoding, namely group-LASSO
(gLASSO).5 [14], and a greedy selection based on either
decoder magnitude (DMB-G) [15], [16] or group-utility
(UB-G) [9], [21], to select N = 1, 2, . . . , 8 standard cap-
EEG channels in an AAD task. The decoding accuracy and
mean attended correlation across subjects are plotted in Fig. 2a
and Fig. 2b respectively. Note that running OCS for values of
N ≥ 10 takes an unacceptably long time, which is why we
exclude these cases from the analysis. However, it is noted
that the performance of the OCS-based selected channels for
N = 8 is close to the performance with all 63 channels, so
the OCS is expected to reach the full-channel performance
for N ≥ 10. We compared each of the approximate methods
to OCS using linear mixed-effects (LME) models with the
number of channels (N) and the two methods (OCS and an
approximate method) as fixed effects, and subjects as random
effect. We used the software R (version 3.6.2), and the R pack-
age ‘nlme version 3.1-144’ [27] for fitting the linear mixed
effect models. All the linear mixed effect models in this work
were fitted by maximizing the restricted log-likelihood, and
the residuals were checked for normality to ensure a good fit.
When we compared DMB-G and gLASSO to OCS, we found
these approximate methods to be significantly different from
OCS with p− values < 0.001 for both decoding accuracy
and attended correlation comparisons. However, when we
compared UB-G to OCS there was no significant difference in
decoding accuracies (p = 0.63) and mean attended correlation

5In the experiments in this paper, we used the implementation of gLASSO
from [26]

(p = 0.16) between the two methods. In Fig. 3, the distri-
bution of the best Cz-ref channels selected by the OCS and
UB-G method across 16 subjects are shown in the form of a
heatmap topoplot.

2) Node Selection in WESNs With Galvanic Separation
Constraints: Next, we used OCS and its modified version
of OCS-GS in (8a)-(8e) to investigate the impact of gal-
vanic separation of nodes of a WESN on AAD performance.
Fig. 4 demonstrates this comparison. Please note that here
the comparison is not between two methods (in both cases
we performed an optimal selection based on an MIQP)
but between the two scenarios, namely node selection with
galvanic separation (GS) constraints and without galvanic
separation (NGS) constraints. Due to the size of the MIQP
with P = 209 candidate channels, we could only find solutions
in a feasible computation time for N ≤ 6 selected channels
and for Q = 2 (see also Section III-B). For N = 5, we had to
exclude four subjects and for N = 6, we had to exclude five
subjects, as the solver could not find an optimal solution for
these subjects due to numerical issues. For all the other cases
of N , all 16 subjects have been included in the comparisons.

Fig. 4 demonstrates that the galvanic isolation between
nodes of a WESN has no negative impact on AAD per-
formance, which we also confirmed using statistical tests.
We used Wilcoxon signed rank tests6 with and without Holm-
Bonferroni correction to compare the decoding accuracies and
attended correlation for each value of N . We observed no

6LME model based statistical analysis is not used in all of the comparisons
in the remaining of this paper since the check for normality of the residuals
failed in all comparisons, implying a bad fit of the model.
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Fig. 4. Optimal WESN node selection with galvanic separation (GS) and without galvanic separation (NGS) constraints: OCS-GS as in (8a)-(8e)
was used in the former and OCS as in (7a)-(7d) was used in the latter. In both cases Q = 2 with sample delays 150ms and 200ms. The black dots
represent outliers, values beyond 1.5 × IQR from the quartiles. .

TABLE I
p−VALUES OF PAIRWISE COMPARISONS OF AAD

PERFORMANCES,DECODING ACCURACY (DEC.ACC) AND

ATTENDED CORRELATION (ATT. CORR.), USING A

WILCOXON SIGNED RANK TEST WITH AND WITHOUT

HOLM-BONFERRONI (HB) CORRECTION

significant differences between the two scenarios with respect
to decoding accuracies and attended correlation. The Wilcoxon
signed rank test p−values and Holm-Bonferroni corrected
p-values are provided in Table I.

We used the hybrid method proposed in Section II-D.3 to
perform node selection with galvanic separation constraints.
The pruning stage of the hybrid method pruned P = 209
candidate nodes to K = 64 candidate nodes. We applied the
OCS-GS method to select N nodes from this set of K can-
didate nodes with galvanic separation constraints. In order to

evaluate a possible optimality gap between the hybrid and the
OCS-GS methods, we compared the AAD performance and
the mean attended correlation across subjects between both
methods for WESN node selection with galvanic separation
constraints. The results are shown in Fig. 5, which suggest
that the hybrid method performs very similar to the optimal
methods, both in terms of decoding accuracies (Fig. 5a) and
mean attended correlation (Fig. 5b). A Wilcoxon signed rank
test, with and without Holm-Bonferroni corrections, failed to
reject the null hypothesis when comparing both node selection
methods with galvanic separation constraints. The p−values
can be found in Table I.

Since we now established that the hybrid method performs
equally well as the OCS-GS method, we can use the hybrid
method to re-investigate the impact of galvanic separation of
nodes. The hybrid method now allows to select more channels
(up to N = 8) and to include all sample delays in the decoder
up to 250ms (Q = 6). The results are shown in Fig. 6.
The figures seem to indicate little to no effect of galvanic
separation on AAD performance, which confirms the earlier
analysis in Fig. 5 for Q = 2 and N ≤ 6. A Wilcoxon
signed rank test without Holm-Bonferroni corrections, failed
to reject the null hypothesis in all but one case of N = 2
for attended correlation ( p = 0.03). However, with Holm-
Bonferroni correction, the Wilcoxon signed rank test did not
show a significant difference for this case. All the p−values
can be found in Table I.

B. Computation Time Analysis

In Fig. 7, we show a comparison of the computation times to
select N = 1, 2 . . . , 6 WESN nodes(out of P = 209) without
galvanic separation using OCS, Hybrid (where the OCS-GS
step is replaced with an OCS step for fairness) and UB-G.
The computations were carried out using MATLAB R2018b
on an Intel® Xeon® CPU clocked at 2.50GHz. The expected
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Fig. 5. Galvanically separated node selection: Optimal node selection with galvanic separation constraints (OCS-GS) compared to hybrid node
selection with galvanic separation constraints with respect to (a) the decoding accuracy (%) (b) the mean attended correlation. Q = 2 with sample
delays 150ms and 200ms. The black dots represent outliers, values beyond 1.5 × IQR, from the quartiles.

Fig. 6. Galvanically separated node selection: Hybrid node selection with galvanic separation constraints compared to UB-G node selection without
galvanic separation constraints with respect to (a) the decoding accuracy (%) (b) the mean attended correlation. Q = 6 with sample delays 0ms and
250ms. The black dots represent outliers, values beyond 1.5 × IQR, from the quartiles.

computation time when performing an exhaustive search over
all possible channel combinations for optimal selection is also
plotted. A computation time of 0.01 seconds was assumed for
evaluating one combination, which is the actual time taken on
an Intel® Xeon® CPU clocked at 2.50GHz using MATLAB
R2018b. Compared to the exhaustive search, the OCS method
clearly finds optimal solutions in computationally feasible time
for small values of N . Nevertheless, the computation time of
OCS, and the hybrid method increases exponentially with N
(linearly on a logarithmic scale as in Fig. 7). However, for
N > 3, the hybrid method’s computation time is smaller than
OCS by at least an order of magnitude. The hybrid method

prunes the P = 209 candidate nodes to a set of only K = 64
before applying OCS. In addition, we can clearly observe the
advantage of UB-G over the other two methods. UB-G is much
faster and its computation time does not increase with N due
to the greedy implementation.

V. DISCUSSION

The first goal of this paper was to find exact solutions to
the EEG channel selection problem for least-squares based
neural decoding in a feasible time (as opposed to an exhaustive
search over all possible combinations) thereby allowing
us to quantify the potential optimality gap of three
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Fig. 7. Log-plot of computation time comparison: OCS, Hybrid and UB-G, were used to select N = 1,2, . . . ,6 WESN nodes without galvanic
separation. The error bars denote the 25 − 75 percentile across subjects. The expected computation time when an exhaustive search over all
possible channel combinations is also plotted. The y-axis labels on the right provide a perspective for the computation times of exhaustive search.

state-of-the-art approximate channel selection methods. To this
end, we proposed an OCS method based on an MIQP formu-
lation of the channel selection problem of which the solution
is guaranteed to be the truly optimal selection of channels in
least squares sense. Fig. 2a and Fig. 2b suggest that, among
the approximate methods, UB-G is the only one which does
not have a clear optimality gap with the OCS. Moreover,
statistical tests seem to indicate no significant difference
between the UB-G and OCS methods as detailed in Section IV
whereas both the other approximate methods, namely DMB-G
[15]–[17] and gLASSO [14], perform significantly worse than
OCS. We note that this result of statistical testing only implies
lack of sufficient evidence to reject the null-hypothesis, i.e., it
does not guarantee the null-hypothesis to be true. Nevertheless,
the large p values suggest that -in case there would be a
optimality gap- it is at least very small compared to the natural
spread across different subjects. In addition, the distribution
of the electrodes selected by the OCS and UB-G methods,
as shown in Fig. 3, also indicate that both methods tend to
select electrodes from similar scalp locations in the majority
of the subjects.

The results shown in Fig. 2a and Fig. 2b confirm the results
in [9], where the advantage of UB-G over other approximate
methods was already observed, yet a comparison with the opti-
mal channel combination was not possible due to the infeasible
computation time to test all possible channel combinations.
Due to the MIQP formulation proposed in Section II, we
were able to circumvent that problem, at least for values
up to N = 8. As a reference, assuming 0.01 seconds for
evaluating one combination, an exhaustive search over all
channel combinations to find the best 8 channels from 64
would require 1.4 years. The lack of a significant optimality
gap adds further support for using greedy selection using the
LS-utility metric as a proxy for optimal selection. Further-
more, due to the algebraic trick provided in [21] resulting in
the expression (6), the computation of the LS-utility metric
is sufficiently cheap to be used in practice, as illustrated
in Fig. 7.

While our initial analysis focused on channel selection in
standard cap EEG, we also investigated the node selection
problem in WESNs. WESNs are envisaged to use a multitude
of mini-EEG devices thereby increasing spatial resolution and
scalp coverage with full flexibility due to the absence of wires
between the EEG sensor devices. Due to this absence of
wires, the individual EEG sensor devices are supposed to be
galvanically separated. To find the ideal locations for such
individual mini-EEG devices in a WESN context and to study
the impact of galvanic separation, the second goal of the paper
was to perform node selection with the inclusion of topological
constraints. In [14], the inclusion of topological constraints
was explored but in an approximate group-LASSO framework
using a heuristic. In Section II-D we modified the OCS method
to include topological constraints in the LS optimization
problem itself, again in the form of an MIQP. We used this
approach, referred to as OCS-GS, to select an optimal set of N
galvanically separated nodes to form a WESN. Furthermore,
the impact of galvanic separation in WESNs was analyzed and
in Fig. 4 and Fig. 6 it is shown that WESNs using galvanically
separated nodes and WESNs constructed using nodes without
galvanic separation constraint perform similarly. The statistical
analysis reported in Table I also demonstrates this. These
results are promising and reassuring to further investigate the
use of WESNs for AAD, as they show that the absence of
wires across the EEG sensors, thereby effectively decoupling
their EEG content, does not affect the decoding performance
when fusing the EEG activity across the different sensors.

However, a major problem of the topology-constrained
MIQP in (8a)-(8e) is that it requires long computation times.
As observed in Section IV-B, the optimal selection requires
hours to complete for N > 3, with the time requirements
increasing exponentially with the number of channels to be
selected. On the other hand, the faster UB-G method does
not allow to take topological constraints into account. Thus,
we proposed a hybrid approach in Section II-D.3 which utilizes
the best features of both greedy (UB-G) and optimal (OCS)
channel selection methods to result in a compromise in terms
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of computation time and optimality while also allowing to
include topological constraints as in the OCS-GS method.
We used the hybrid technique to perform node selection
with galvanic separation constraints and this was compared
with OCS-GS. The results shown in Fig. 5 demonstrate that
despite the initial greedy pruning of candidate nodes the
hybrid method obtains performances similar to direct optimal
node selection based on OCS-GS. Since finding optimal node
locations is a one-time exercise, the hybrid method offers a
feasible alternative to find good node locations for constructing
WESNs.

VI. CONCLUSION

In this paper, we proposed an MIQP-based channel selection
method which performs optimal channel selection for EEG
in a least-squares based neural decoder design. We used this
optimal channel selection method to investigate the optimality
gap of state-of-the-art approximate channel selection methods
compared to an optimal selection. We found the greedy method
based on the LS-utility metric to perform similar to the optimal
channel selection in an AAD task for standard cap EEG
channels but requiring considerably less computation time,
thereby providing a practical solution for the channel selection
problem. We also used a topology-constrained modification
of the MIQP to solve a WESN node selection problem with
galvanic separation constraints. We showed that the galvanic
separation constraints do not appear to have a significant
impact on the AAD performance. Finally, to reduce the
computation time but still include topological constraints and
obtain near-optimal channel selection results, we proposed a
hybrid approach of MIQP-based channel selection with greedy
utility-based pruning, which showed no significant optimality
gap with the optimization of the full MIQP.
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