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ABSTRACT 

Background: The transmissibility of SARS-CoV-2 determines both the ability of the virus to invade a 

population and the strength of intervention that would be required to contain or eliminate the spread of 

infection. The basic reproduction number, R0, provides a quantitative measure of the transmission 

potential of a pathogen.  

Objective: Conduct a scoping review of the available literature providing estimates of R0 for SARS-

CoV-2, provide an overview of the drivers of variation in R0 estimates and the considerations taken in 

the calculation of the parameter. 

Design: Scoping review of available literature between the 01 December 2019 and 07 May 2020. 

Data sources: Both peer-reviewed and pre-print articles were searched for on PubMed, Google 

Scholar, MedRxiv and BioRxiv. 

Selection criteria: Studies were selected for review if (i) the estimation of R0 for SARS-CoV-2 

represented either the initial stages of the outbreak or the initial stages of the outbreak prior to the 

onset of widespread population restriction (“lockdown”), (ii) the exact dates of the study period were 

provided and (iii) the study provided primary estimates of R0. 

Results: A total of 20 R0 for SARS-CoV-2 estimates were extracted from 15 studies. There was 

substantial variation in the estimates reported. Estimates derived from mathematical models fell within 

a wider range of 1.94-6.94 than statistical models which fell between the range of 2.2 to 4.4. Several 

studies made assumptions about the length of the infectious period which ranged from 5.8-20 days and 

the serial interval which ranged from 4.41-14 days. For a given set of parameters a longer duration of 

infectiousness or a longer serial interval equates to a higher R0. Several studies took measures to 

minimise bias in early case reporting, to account for the potential occurrence of super-spreading 

events, and to account for early sub-exponential epidemic growth. 

Conclusions: The variation in reported estimates of R0 reflects the complex nature of the parameter 

itself, including the context (i.e. social/spatial structure), the methodology used to estimate the 

parameter, and model assumptions. R0 is a fundamental parameter in the study of infectious disease 

dynamics, however it provides limited practical applicability outside of the context in which it was 

estimated, and should be calculated and interpreted with this in mind. 
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STRENGTHS AND LIMITATIONS OF THE SCOPING REVIEW 

• This study provides an overview of basic reproduction number estimates for SARS-CoV-2 

across a range of settings, a fundamental parameter in gauging the transmissibility of an 

emerging infectious disease. 

• The key drivers of variation in R0 estimates and considerations in the calculation of the 

parameter highlighted across the reviewed studies are discussed. 

• This evidence may be used to help inform modelling studies and intervention strategies. 

• Given the need for rapid dissemination of information on a newly emerging infectious disease, 

several of the reviewed papers were in the pre-print phase yet to be peer-reviewed. 

 

INTRODUCTION 

On 31 December 2019 a series of cases of pneumonia of unknown cause were notified to the World 

Health Organization (WHO). The Coronaviridae Study Group (CSG) of the International Committee 

of Taxonomy of Viruses designated this novel virus as SARS-CoV-2, the etiologic agent of 

coronavirus disease 2019 (COVID-19)[1]. While the origin of COVID-19 in humans has been 

attributed to spillover from an unknown wildlife source, human-human transmission has been 

responsible for the rapid spread of SARS-CoV-2 across the globe. On 11 March 2020, the WHO 

characterised COVID-19 as a pandemic[2]. 

An understanding of the transmissibility of a newly emerging infectious disease is required to 

determine the ability of a pathogen to spread and establish within a population along with the strength 

of mitigation required to contain or eliminate infection[3]. The basic reproduction number, R0, is an 

indicator of the transmissibility of an infectious agent, defined as the expected number of new 

infections that are generated, on average, by a single infected individual, over the course of its 

infectious period, in an otherwise uninfected population[4]. It is a threshold parameter: with a value 

above one, an infection can spread and persist within a population, below one infection cannot be 

sustained. R0 depends on the average contact rate between susceptible and infectious individuals (or 

infectious material of infectious individuals) per unit time, the (dimensionless) probability that the 

contact leads to infection and the average duration (time) of the infectious period[3]. The effective 

reproduction number, R, is a dynamic parameter that can chronicle the time-dependent (Rt) variation 

in transmission as a result of, for example; the intrinsic decline in the proportion of susceptibles (e.g. 

infection and natural immunity) and, extrinsic effects of intervention on effective contact rates (e.g. 

social distancing), the probability that upon contact infection occurs (e.g. face masks) or the effective 

duration of infectiousness (e.g. self-isolation)[5]. It is an important parameter for monitoring the 
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effectiveness of control measures and determining whether further measures are required. For the 

purpose of this review, we focus primarily on the basic reproduction number, R0.  

The aim of this study was to conduct a scoping review of the available literature providing estimates 

on the basic reproduction number of SARS-CoV-2, to gain an understanding of the transmissibility of 

the virus and to aid the parameterisation of COVID-19 epidemiological models. R0 is a complex 

parameter of which the calculation and interpretation requires significant consideration. As such, we 

discuss and aim to disentangle several relevant concepts highlighted across the reviewed papers 

including the context, methodological differences, the relationship between R0 and the generation 

time/serial interval, the relationship between R0 and the infectious period, managing surveillance bias, 

individual variation in transmission and exponential epidemic growth. 

 

MATERIALS AND METHODS 

Search methodology, initial screening and categorisation:  

A survey of the literature between 01 December 2019 and 07 May 2020 for all countries was 

implemented, as part of a larger research project characterising key parameters of COVID-19[6–10]. 

The following search strategy was used. Publications listed in the electronic databases PubMed, 

Google Scholar, MedRxiv and BioRxiv were searched with the following keywords: (“Novel 

coronavirus” OR “SARS‐CoV‐2” OR “2019-nCoV” OR “COVID-19”) AND “reproduction number”. 

The dynamic curated PubMed database “LitCovid” was also monitored, in addition to national and 

international government reports. No restrictions on language or publication status were imposed so 

long as an English abstract was available. On the 23 July 2020, pre-print studies were checked for 

changes in publication status and any subsequent changes in estimates (Supplementary Table 1.). 

Articles were evaluated for data relating to the aim of this review, and all relevant publications were 

considered for possible inclusion. Bibliographies within these publications were also searched for 

additional resources. This study is reported in compliance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses – Extension for Scoping Reviews (PRISMA-ScR) 

checklist[11]. 

Study appraisal and selection for review:  

Studies were selected for review if they met the following criteria: (i) the estimation of R0 represented 

either the initial stages of the outbreak or the initial stages of the outbreak prior to the onset of 

widespread population restriction (“lockdown”), (ii) the exact dates of the study period were provided, 

and (iii) the study provided primary estimates of R0. A period prior to lockdown was selected as a 

compulsory requirement to ensure estimates provided were calculated under the realisation of an 

entirely susceptible population and any imposed disturbance on effective contact rates or infectious 
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periods were minimised, as per the definition of R0. Study selection was undertaken by the first author. 

Parameter estimates for R0 and confidence intervals (where provided) were recorded and assessed. The 

study period, location of the study, methodology and model assumptions were also extracted.  

 

RESULTS 

Study appraisal and selection for review:  

There were 33 studies available for appraisal as of 07 May 2020 (Fig. 1).  

• 14 papers were removed as the study period extended into a period of lockdown[12–25].  

• 1 paper was excluded as the study period was not clearly defined[26].  

• 1 paper estimated R0 through phylogenetic analysis of 52 full genomes of viral strains sampled 

across different countries[27]. As this paper did not deal with a single population with defined 

study periods, it was not considered for review. 

• 2 papers were excluded as they only considered the time-dependent reproduction 

number[28,29].  

Following the removal of these papers, 15 papers were further evaluated, with estimates on the basic 

reproduction number provided in Table 1. Across these studies, estimates of R0 are provided for 

populations within China (n = 6 studies), Italy (n = 3 studies), Iran (n = 2 studies), the Republic of 

Korea (n = 1 study), France (n = 1 study), the United Kingdom (n = 1 study), Spain (n = 1 study) and 

onboard the Diamond Princess cruise ship (n = 1 study).  

 

Figure 1. Flowchart for the studies included in the scoping review. 
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Overall findings:  

From the 15 studies included, a total of 20 R0 estimates were reported, ranging from 1.94 to 6.94 

(Table 1). R0 estimates varied both within countries, (for example, estimates in China, ranged between 

1.94 and 4.71), and between countries (for example, an R0 of 2.2 was reported for Spain, 3.2 for 

France and 6.94 for the UK) (Fig. 2).  

Seven studies deployed statistical models and eight mathematical models (see Supplementary Table 2 

for further methodological details). There were 2 types of statistical frameworks and 4 types of 

mathematical frameworks used across the studies. Overall, there were 10 types of inference methods 

used, 2 of which (Markov Chain Monte Carlo (MCMC) and Maximum Likelihood Estimation (MLE)) 

were used within both statistical and mathematical frameworks while 5 types of inference methods 

were used exclusively within statistical frameworks and three within mathematical frameworks. 

Assumptions surrounding the duration of the infectious period and the serial interval were present 

across several of the studies. Assumptions about the length of the infectious period ranged between 5.8 

to 20 days and assumptions on the serial interval ranged between 4.4 to 14 days. Three studies applied 

methods to control for surveillance bias in case reporting[30–32], the potential occurrence of 

individual variation in transmission was included in two studies[30,33], and one study accounted for 

sub-exponential growth in the early stages of the outbreak[34]. 

 

Table 1. Estimates of the basic reproduction number, R0, provided by the 15 reviewed studies. 

Location 

Study 

Period 

R0 

Estimate 

95% 

CI Framework Inference method Assumptions Study 

Rep. of 

Korea 

31/01/20-

05/03/20 

 

2.6 2.3-

2.9 

Stochastic 

simulations of early 

outbreak trajectories 

Maximum Likelihood 

Estimation  

Assume exponential growth 

started on 31/02/20. Assume 

a mean serial interval of 4.5 

days (SD: 3.1 days) 

Zhuang et 

al.[33] 

Rep. of 

Korea 

05/02/20-

05/03/20 

3.2 2.9-

3.5 

Stochastic 

simulations of early 

outbreak trajectories 

Maximum Likelihood 

Estimation 

Assume exponential growth 

started on 05/02/20. Assume 

a mean serial interval of 4.5 

days (SD: 3.1 days) 

Zhuang et 

al.[33] 

China Up to 

18/01/20 

2.2 1.4-

3.8 

Stochastic 

simulations of early 

outbreak trajectories 

Approximate Bayesian 

Computation 

Assume a mean generation 

time between 7-14 days 

Riou and 

Althaus.[30] 

Wuhan, 

China 

07/12/19-

01/01/20 

3.58 - Network 

transmission model 

Next Generation Matrix Assume an infectious period 

of 5.8 days 

Chen et 

al.[35] 

Wuhan, 

China 

10/12/19-

03/01/20 

1.94 1.83-

2.06 

SIR transmission 

model 

Next Generation Matrix - Wu et 

al.[36] 

Wuhan, 

China 

10/12/19-

04/01/20 

2.2 1.4-

3.9 

Exponential Growth 

Model 

R0 derived from the 

growth rate of the 

Assume a mean serial 

interval of 8.4 days (SD: 3.8 

days) 

Li et al.[37] 
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exponential curve and 

the serial interval 

Wuhan, 

China 

12/12/19-

22/01/20 

4.71 4.50-

4.92 

SEIJR transmission 

model 

Markov Chain Monte 

Carlo 

Assume an infectious period 

of 6 days [mean time from 

symptom onset to isolation] 

Shen et 

al.[38] 

China 01/01/20-

22/02/20 

3.11 2.39-

4.13 

SEIR transmission 

model 

Maximum Likelihood 

Estimation 

- Read at 

al.[39] 

Iran 19/02/20-

01/03/20 

4.4 3.9-

4.9 

Generalised Growth 

Model 

Renewal process Assume a mean serial 

interval of 4.41 days (SD: 

3.17 days) 

Muniz-

Rodriguez et 

al.[34] 

Iran 19/02/20-

01/03/20 

3.50 1.28-

8.14 

Exponential Growth 

Model 

Epidemic Doubling Time Assume a mean serial 

interval of 4.41 days (SD: 

3.17 days) 

Muniz-

Rodriguez et 

al.[34] 

Iran 21/02/20-

25/02/20 

4.86 - SIR transmission 

model 

R0 derived from 

transmission rate and 

recovery rate parameters 

Assume an infectious period 

of 9 days 

Sahafizadeh 

and 

Sartoli.[40] 

Lombardy, 

Italy 

15/01/20-

19/02/20 

3.1 2.9-

3.2 

Stochastic 

simulations of early 

outbreak trajectories 

Markov Chain Monte 

Carlo 

Assume a mean serial 

interval of 5.1 days (SD: 3.4 

days) 

Cereda et 

al.[41] 

Italy 05/02/20-

05/03/20 

2.6 2.3-

2.9 

Stochastic 

simulations of early 

outbreak trajectories 

Maximum Likelihood 

Estimation 

Assume exponential growth 

started on 05/02/20. Assume 

a mean serial interval of 4.5 

days (SD: 3.1 days) 

Zhuang et 

al.[33] 

Italy 10/02/20-

05/03/20 

3.3 3.0-

3.6 

Stochastic 

simulations of early 

outbreak trajectories 

Maximum Likelihood 

Estimation 

Assume exponential growth 

started on 10/02/20. Assume 

a mean serial interval of 4.5 

days (SD: 3.1 days) 

Zhuang et 

al.[33] 

Italy 19/02/20-

08/03/20 

2.76 - Exponential Growth 

Model 

R0 derived from the 

growth rate of the 

exponential curve and 

the infectious period 

Assume an infectious period 

of 15 days 

Remuzzi and 

Remuzzi.[42

] 

Italy 19/02/20-

08/03/20 

3.25 - Exponential Growth 

Model 

R0 derived from the 

growth rate of the 

exponential curve and 

the infectious period 

Assume an infectious period 

of 20 days 

Remuzzi and 

Remuzzi.[42

] 

France 29/02/20-

17/03/20 

3.2 3.1-

3.3 

SIR transmission 

model 

Markov Chain Monte 

Carlo 

Assume an infectious period 

of 10 days 

Roques et 

al.[32] 

UK 18/03/20-

24/04/20 

6.94 6.52-

7.39 

SEIR transmission 

model 

Markov Chain Monte 

Carlo 

- Dropkin.[31] 

Spain 26/02/20-

11/03/20 

2.22 ± 

1.21 

SD 

SEIR transmission 

model 

Sequential Monte Carlo Assume an infectious period 

of 8 days (± 2 days) for 

symptomatic infections and 

12 days (±  2 days) for 

asymptomatic infections 

Garcia-

Iglesias and 

Juez.[43] 

Diamond 

Princess 

Cruise Ship 

01/02/20-

17/02/20 

2.28 2.06-

2.52 

Stochastic 

simulations of early 

outbreak trajectories 

Maximum Likelihood 

Estimation 

Assume a mean serial 

interval of 7.5 days (SD: 3.4 

days) 

Zhang et 

al.[44] 

SIR = Susceptible-Infected-Exposed 

SEIJR = Susceptible-Exposed-Infected-Isolated/Treated-Removed 

SEIR = Susceptible-Exposed-Infected-Removed 

SD = Standard Deviation 
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Figure 2. Relationship between start and end dates of the study period and estimated R0 across region 

and model. 

 

DISCUSSION 

In this review we found a total of 20 reported R0 estimates from 15 studies which ranged from 1.94 to 

6.94. There was substantial variation in estimates both within and between countries. We found 12 

values of R0 were estimated within statistical frameworks and 8 values were estimated within 

mathematical frameworks. The duration of the infectious period and the serial interval were common 

assumptions ranging in value across several studies. We identified three key potential drivers of 

variation in reported estimates of R0 including: i) the complex nature of R0 itself, in that it is context 

specific, ii) methodological differences and iii) the model assumptions (including the duration of the 

infectious period and serial interval). Further we discuss how studies sought to minimise surveillance 

bias, the importance of individual variation in transmission, and the occurrence of exponential growth 

at the early stages of an outbreak. 
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Drivers of variation: 

i) Context 

A key component of R0 is the effective contact rate (a function of the average contact rate and 

probability that contact leads to infection), which can vary over space or time. Traditional 

epidemiological models assume homogeneous mixing of individuals, where equal contact rates are 

assumed between individuals within a population. Applying this simplifying assumption allows for 

more tractable modelling and analysis but in reality heterogeneities in contact patterns are introduced 

by, for example; population density and social organisation[45]. In density dependent systems, 

transmission increases linearly with population density, and a threshold density is required for 

infection to persist[46]. For example; density dependent infections are more likely to propagate and 

persist in urban settings compared to rural. Social structure also plays an important role in infection 

transmission, where infectious individuals are more likely to infect members of the same social 

group[47]. R0 is therefore considered a function of the factors capable of influencing contact rates 

along with the biological components of the pathogen (e.g. the probability that contact leads to 

infection and the length of the infectious period)[48]. R0 provides limited practical applicability 

outside of the context in which it was estimated; therefore, R0 for one geographical/social setting may 

not be applicable to that of another[49]. Even within the same region variation in estimates occur. To 

illustrate, 4 estimates were reported for Wuhan, which ranged from 1.94-4.71.  

ii) Methodological differences 

Statistical and mathematical models in epidemiology play a fundamental role in providing an 

understanding of transmission dynamics and evaluating the effectiveness of control strategies. 

Statistical methods to estimate R0 which rely on incidence data and are generally in the form of either 

descriptive non-dynamical models or stochastic models. At the early phase of an epidemic, the number 

of new infections per unit time increases exponentially and R0 can be estimated in descriptive non-

dynamical models, for example exponential growth models, from the empirically observed growth rate 

p of the epidemic curve[50,51]. In contrast, stochastic models, for example branching process models, 

simulate early outbreak trajectories based on the generation concept whereby each infected individual i 

is associated with a generation time TG. At the end of TG, a random number Ni of new infections 

(‘offspring’) have been generated, where R0 is the offspring mean[52–54]. Furthermore, where data on 

chains of transmission (i.e. who infected whom) are available, the number of secondary infections 

generated by each infected individual can be simply counted. In the current study values of R0 

estimated by means of statistical methods fell within the range of 2.2-4.4.  

Fitting mechanistic models to epidemic data can provide useful insights about transmission dynamics. 

These models are capable of describing the unobservable mechanism of transmission between 
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individuals whereby dynamics at the population level are composed of the sum of individual-level 

processes of which the observed data are generated. Furthermore, they provide a suitable framework to 

study the effects of control measures on the spread of infection[52,55,56]. R0 can be calculated 

directly from model parameters or coupled with statistical techniques[57]. In the current study, R0 

values estimated by mathematical models fell within the range of 1.94 to 6.94, a substantially wider 

range compared to that of estimates generated within statistical frameworks. Transmission models 

range in complexity depending on the types of questions addressed, subject to trade-off between 

structuring the model to conform with biological reality and the ability to sensibly parameterise and 

generalise the system[58]. As such the wider variation across these models may be attributed to model 

structure or assumptions, along with the context in which R0 was estimated.  

Several studies deployed a set of ordinary differential equations to model disease 

spread[31,32,35,36,38–40,43]. Parsimonious models may be robust to difficulties in model 

parameterisation associated with limited data availability[32,40]. However, as a consequence, they 

lack the ability to capture more realistic dynamics such as pre- and asymptomatic transmission, 

susceptibility to different levels of clinical severity in infection, or age-related infection dynamics. In 

contrast, a reservoir-people transmission network model simulating the spread of infection captured 

spill-over from a wildlife reservoir and human-human transmission as well as incorporating variation 

in transmission between symptomatic and asymptomatic infected individuals[35]. Although this model 

describes the detailed process of infection spread associated with SARS-COV-2, model 

parameterisation is heavily dependent on limited data sourced from the literature, unreliable mobility 

data, and assumptions surrounding the proportion and relative transmissibility of asymptomatic 

infection. Complex models may provide a good fit to the data, however, any relationship with the 

underlying process may not necessarily be interpretable. Further, complex models may overfit the data 

and thus; generalise poorly. In general, parsimonious models are preferred to complex ones and 

models should not contain more than the minimum necessary assumptions[59]. While model structure 

may, in part, account for variation in R0 estimates, even within models with similar structure variation 

in estimates occur, reflecting differences in the context or model assumptions. 

iii) Model assumptions 

On the relationship between R0 and the duration of the infectious period: The infectious period, the 

time between the end of the pre-infectious period to when an individual can no longer pass on 

infection, is a key component determining R0. It is a clinical characteristic which does not necessarily 

differ across settings. With a newly emerging infectious disease it is often difficult to quantify the 

duration of the infectious period where relatively little is known in relation to the occurrence or 

relative occurrence of events such as asymptomatic, pre-symptomatic and symptomatic infectiousness. 

As such, several studies made assumptions about the duration of the infectious period which ranged 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.28.20163535doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.28.20163535
http://creativecommons.org/licenses/by/4.0/


from 5.8 to 20 days. One study derived R0 from the growth rate of the epidemic curve and the duration 

of the infectious period which was assumed to be either 15 or 20 days[42]. For a given growth rate, an 

infectious period of 20 days resulted in a higher R0 (R0 = 3.25) than a shorter infectious period of 15 

days (R0 = 2.76). A longer infectious period relates to a longer time for potential transmission 

opportunities to occur. The inverse of the average duration of infectiousness is the recovery rate (that 

is, how quickly an individual exists a state of infectiousness) and so a shorter infectious period will 

result in individuals exiting the infectious state at a faster rate than that of a longer infectious period. 

Therefore, for a given set of parameters, a longer duration of infectiousness equates to a higher 

expected R0 than that associated with a shorter infectious period. 

On the relationship between R0 and the generation time/serial interval: Several studies rely on the 

distribution of the generation time or its proxy the serial interval (time between the infection events or 

symptom onset of primary and secondary cases, respectively) in the estimation of R0[30,34,37,41,44]. 

The serial interval is a context-specific parameter that is sensitive to factors such as contact patterns. 

For example, if transmission following symptom onset is reduced due to isolation of symptomatic 

individuals, there may be relatively more pre-symptomatic transmission events and shorter serial 

intervals[9]. Ideally, the serial interval should be estimated from the corresponding population of 

interest. However, in reality this may not always be feasible, particularly at the early stages of an 

outbreak where data may be limited in availability. When there is a scarcity of data, studies often make 

assumptions about the distribution of the serial interval. This included assuming a serial interval 

distribution based on previous reports[34], and exploring a range of parameter combinations that 

include the distribution of the serial interval[30]. Two studies directly estimated the distribution of the 

serial interval by fitting a gamma distribution to data from the population under study[37,41]. One 

study investigated the sensitivity of the time-dependent reproduction number, Rt, to the serial interval 

and showing that although Rt followed the same trend across values of the serial interval, a longer 

serial interval resulted in a higher Rt estimate[41]. For a given rate of epidemic growth, a higher R will 

require fewer (so longer) generations of transmission chains to realise the same population of infection 

spread that would occur with a lower R (i.e. a shorter generation interval equates to faster transmission 

at the individual level)[60].  

 

Minimising surveillance bias: 

There are several challenges associated with incidence data at the early epidemic stages of a newly 

emerging infectious disease. Case reporting is often unstable during this period due to lack of 

knowledge or awareness of, or confusion with, case definitions, which can limit the ability of health 

officials to identify infected individuals. Further, during the early stages of an epidemic, diagnostic 

facilities are often lacking in quality and/or quantity. These factors may contribute to unreliable or 
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incomplete data limiting the ability to accurately characterise important parameters, such as R0, with 

high levels of precision early in an outbreak. If the rate of reporting remains stable over time, estimates 

of the reproduction number would be unaffected by underreporting[61]. However, as awareness 

increases, case definitions change and diagnostic facilities improve, variations in reporting over time 

may lead to erroneous interpretations of the reproduction number. Several of the reviewed studies took 

measures to minimise surveillance bias, including smoothing case and death data with a moving 

average over 5 days[32], gaining an indirect estimate of epidemic size through cases identified outside 

of the study population[30], and relying on hospital death data[31], which may be more stable than 

case reporting. These methods provide alternatives to relying on unreliable or unstable surveillance 

data at the early stages of an outbreak. 

 

Individual variation in transmission: 

Superspreading events (SSEs) describe situations where a small proportion of infectious individuals 

account for more than the expected number of transmission events. As R0 describes a population-

average of the number of secondary cases generated by a primary case, individual-level variation in 

transmission is not expressed. Greater levels of individual heterogeneity in transmission lead to a less 

frequent occurrence of outbreaks, however outbreaks that do occur, have a tendency to occur 

explosively[62,63]. Several cases of COVID-19 SSEs have been identified[64–66]. While SSEs often 

remain rare events, they can have important implications for the epidemic trajectory and control 

efforts[30]. Following the approach described by Lloyd-Smith et al., (2005)[62], in the estimation of 

R0, two studies incorporated a dispersion parameter, k, that measures the likelihood of occurrence of 

SSEs[30,33]. The lower the value of k, the greater the level of individual heterogeneity in 

transmission. Both studies indicated that homogenous patterns of transmission events were more 

likely, although suggested that the potential for SSEs to occur should not be discounted[30]. These 

results are inconsistent with a study modelling overdispersion in transmission of COVID-19, which 

suggested that approximately 10% of infectious individuals were responsible for 80% of secondary 

transmissions where R0 values ranged between 2 and 3[67]. Overdispersed transmission (high 

individual-level variation) has important implications for control measures, for example if 

transmission is highly overdispersed control efforts would be most effective by targeting situations 

where SSEs are likely to occur. 
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Exponential growth: 

At the early stages of an epidemic, while the depletion of susceptibles is negligible the number of new 

cases per unit time grows exponentially. The growth rate of the exponential curve measures how 

quickly infection spreads and can be used to estimate R0. However, if the initial growth phase is 

slower than exponential (i.e. sub-exponential growth), R0 estimates from exponential growth models 

may be inflated. The generalised growth model is capable of explicitly accounting for a sub-

exponential growth phase[68,69]. One study applied this framework incorporating a scaling factor (the 

deceleration of growth parameter[68]) to account for the sub-exponential growth phase[34]. Although 

the effect of different scaling factor values on R0 was not explored, it is expected that the further that 

epidemic growth is from exponential, the lower R0 would be[68]. Consideration should therefore be 

given as to whether the early stage of the epidemic is truly growing exponentially when applying 

exponential growth models to estimate R0.  

 

CONCLUSION 

We found 20 reported R0 estimates which ranged from 1.94 to 6.95. We identified several key drivers 

of variation in estimates including the context (i.e. social/geographic structure), methodology (i.e. 

mathematical vs statistical frameworks and model structure) and model assumptions (i.e. duration of 

the infectious period and serial interval). Notably, there was a wider variation in estimates generated 

within a mathematical framework (1.94-6.94) compared to a statistical framework, which fell within a 

narrower range of 2.2 to 4.4. However, variation across estimates is unlikely to be a result of a single 

driver in variation rather estimates differ across drivers or combinations of drivers. Here we have 

highlighted key potential sources of variation in R0 and attempted to disentangle the effects these 

drivers have on the estimates generated. Further, we identified several key considerations accounted 

for, including: approaches to minimise bias introduced by unstable case reporting, the importance of 

individual variation in transmission and the early epidemic characterisation of exponential or sub-

exponential growth. R0 is a fundamental parameter in the study of infectious disease dynamics 

however the calculation and interpretation is not a straightforward exercise and careful consideration is 

required for both. Although this review details the some of these considerations, we have by no means 

exhausted all potential drivers of variation and we have not discussed all of the complexities 

associated with R0. However, we have discussed the key considerations that occurred within the 

reviewed studies in the context of COVID-19 and the theory is widely applicable across the board of 

infectious diseases which may help inform future studies attempting to calculate R0. 
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SUPPLEMENTARY MATERIAL 

Supplementary Table 1: All studies initially reviewed (extracted up to 07 May 2020) in the pre-print 

phase were revisited on 23 July 2020 to check for updates in publication status and/or changes in 

reported estimates. 5 pre-print studies remain in the pre-print phase without changes to estimates of 

R0.(1–5)  1 pre-print study was subsequently peer-reviewed with no changes to the initial estimate.(6) 

2 pre-print studies were subsequently peer-reviewed with changes to the initial reported estimates – in 

both cases there were changes to the study period and thus, data informing the analyses.(7,8) One 

study initially provided estimates for both the Republic of Korea and France, the peer-reviewed 

version did not contain the Rep. of Korea analysis and there was a change in the estimate reported for 

France (initially assumed an infectious period of 20 days, subsequently reduced to 10 days).(9) 

Supplementary Table 2: Studies were categorised into 2 frameworks based on the modelling 

approach: 1) mathematical models and 2) statistical models. Mathematical models were either in the 

form of compartmental epidemic models (e.g. Susceptible-Infectious-Recovered models) or network 

models (e.g. Reservoir-Human and Human-Human models). Statistical frameworks included those of 

epidemic growth models (e.g. exponential/generalised growth models) and stochastic simulations of 

early outbreak trajectories (e.g. branching process models). The inference method refers to the method 

of calculation of R0. Several approaches were used to calculate R0, for example; directly obtaining the 

parameter from models (e.g. Maximum Likelihood Estimation (MLE) of the mean (R0) of the 

offspring distribution) or deriving R0 from model parameters (e.g. the transmission rate parameter 

divided by the recovery rate parameter or 1 + growth rate X serial interval). 

 

Supplementary Table 1. Initial and updated estimates of the basic reproduction number, R0.  

Paper Initial R0 

Estimate 

Initial 

95% CI 

Initial Status Updated R0 

Estimate 

Updated 

95% CI 

Updated 

Status 

Comments 

Garcia-Iglesias 

and Juez.(1) 

2.22 ± 1.21 SD Pre-print 2.22 ± 1.21 SD Pre-print No changes to initial estimates 

Read et al.(2) 3.11 2.39-4.13 Pre-print 3.11 2.39-4.13 Pre-print No changes to initial estimates 

Shen et al.(3) 4.71 4.50-4.92 Pre-print 4.71 4.50-4.92 Pre-print No changes to initial estimates 

Cereda et al.(4) 3.1 2.9-3.2 Pre-print 3.1 2.9-3.2 Pre-print No changes to initial estimates 

Sahafizadeh and 

Sartoli.(5) 

4.86 - Pre-print 4.86 - Pre-print No changes to initial estimates 

Zhuang et al.(6) 2.6 2.3-2.9 

Pre-print 

2.6 2.3-2.9 

Peer-reviewed No changes to initial estimates 

3.2 2.9-3.5 3.2 2.9-3.5 

2.6 2.3-2.9 2.6 2.3-2.9 

3.3 3.0-3.6 3.3 3.0-3.6 

Muniz-Rodriguez 

et al.(8) 

3.6 3.2-4.2 

Pre-print 

4.4 3.9-4.9 

Peer-reviewed 
Data updated from 19 Feb - 29 Feb to 19 

Feb - 01 Mar 3.58 1.29-8.46 3.5 1.28-8.14 

Dropkin.(7) 5.81 5.08-6.98 Pre-print 6.94 6.52-7.39 Peer-reviewed Data updated from 28 Feb - 23 Mar to 18 
Mar - 24 Apr 

Roques et al.(9) 2.6 - Pre-print - - - Korean analysis excluded. 

4.8 - Pre-print 3.2 3.1-3.3 Peer-reviewed Initial estimate based on infectious period 
of 20 days, current estimate based on 

infectious period of 10 days. 
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Supplementary Table 2. Summary of the framework and inference method adopted across the 15 reviewed studies. 

Study Framework Inference method 

Zhuang et 

al.(6) 

Statistical framework: Cases generated by a primary case 

followed a Negative-Binomial distribution with mean R0 and 

dispersion parameter k, representing the likelihood of 

superspreading events occurring. Values reported for Republic 

of Korea and Italy across different starting points of 

exponential growth. 

Mean R0 and dispersion parameter k obtained by means of maximum 

likelihood estimation (MLE). 

Riou and 

Althaus.(10) 

Statistical framework: Number of secondary cases generated 

by a primary case followed a Negative-Binomial distribution 

with mean R0 and dispersion parameter k, representing the 

likelihood of superspreading events occurring. 

Approximate Bayesian computation (ABC) to estimate the posterior 

distributions of the parameters that led to the expected outbreak trajectories. 

Chen et 

al.(11) 

Mathematical framework: Reservoir-people transmission 

network model. Includes spill-over from a wildlife reservoir 

as well as human-human transmission. 

Next Generation Matrix (NGM) describing transmission across 

symptomatic persons, asymptomatic persons and a reservoir host. 

Wu et al.(12) Mathematical framework: Susceptible-Infected-Recovered 

(SIR) transmission model. 

NGM describing the transmission possibilities across 9 age cohorts. 

Li et al.(13) Statistical framework: Epidemic curve derived from 

transmission model fitted through renewal equations. 

R0 estimated using the epidemic curve and distribution of the serial interval. 

Shen et al.(3) Mathematical framework: SEIJR model where the J 

compartment represents individuals who have been isolated 

and received treatment. 

MCMC Metropolis-Hastings sampling to obtain estimates of the model 

parameters. R0 calculated as the transmission rate parameter divided by the 

rate of identification and isolation of infectious individuals. 

Read et al.(2) Mathematical framework: SEIR metapopulation model 

simulating transmission between and within major Chinese 

cities. 

The transmission rate parameter was obtained by means of maximum 

likelihood estimation and R0 was calculated R0 was calculated as the 

transmission rate divided by the recovery rate. 

Muniz-

Rodriguez et 

al.(8) 

Statistical framework:  

Method 1: Fit daily incidence to a generalised growth model 

(GGM). 

 

R0 obtained via a renewal equation informed by 1) the daily reported 

incidence characterised by a generation growth model and 2) the distribution 

of the serial interval. 

Method 2: Epidemic doubling time obtained from the 

cumulative curve of daily reported cases to estimate the 

epidemic growth rate (ln(2)/doubling time). 

Given the growth rate and a gamma-distributed serial interval, R0 was 

calculated as 1 + growth rate x serial interval. 

Sahafizadeh 

and Sartoli.(5) 

Mathematical framework: SIR transmission model. Tuned the transmission rate and the recovery rate parameters  to get the best 

fit plot on the reported data. R0 was calculated as the transmission rate 

divided by the recovery rate. 

Cereda et 

al.(4) 

Statistical framework: Daily incidence approximated via a 

Poisson process following a renewal equation with parameters 

R(t) and φ(s). Where R(t) is the reproduction number at time t 

and φ(s) is the distribution of the generation time at time s. 

Based on the observed timeseries, the posterior distribution of the R(t) was 

obtained by MCMC Metropolis-Hastings sampling and R0 was estimated as 

R(t) during the early exponential growth phase of the epidemic. 

Remuzzi and 

Remuzzi.(14) 

Statistical framework: Fitted daily incidence to exponential 

growth model (EGM). 

R0 obtained from the growth rate of the exponential curve and the duration 

of the infectious period which was assumed to range from 15 to 20 days. 

Actual calculation of R0 used is unclear. 

Roques et 

al.(9) 

Mathematical framework: Susceptible-Infectious-

Recovered (SIR)- compartmental model. 

MCMC to estimate the posterior distribution of the transmission rate 

parameter, a partial parameter of the maximum likelihood estimator applied 

to the SIR model. R0 was calculated as the transmission rate divided by the 

recovery rate (inverse of the assumed infectious period).  

Dropkin.(7) Mathematical framework: Susceptible-Exposed-Infected-

Removed (SEIR) compartmental model. With 3 infected 

compartments representing the progression of clinical severity 

(mild, severe, critical). 

𝑅0 = 𝑁
1

𝑝1 + 𝛾1
(𝛽1

𝑝1
𝑝2 + 𝛾2

(𝛽2 + 𝛽3
𝑝2

𝜇 + 𝛾3
) 

 

Where N is the total population size, pi is the rate of progression from 

compartment Ii to compartment Ii+1, γi is recovery rate from compartment Ii,  

βi is the transmission rate parameter for compartment Ii, µ is the death rate 

for individuals in the critical compartment. 

Parameters estimated via Metropolis-Hastings sampling. 

Garcia-

Iglesias and 

Juez.(1) 

Mathematical framework: SEIR compartmental model. Sequential Monte Carlo simulations ran over different values of R0. 

Estimated outcomes compared to reported cases to calculate the most 

probable R0. 

Zhang et 

al.(15) 

Statistical framework: Daily incidence approximated via a 

branching process with a Poisson likelihood.  

R0 obtained via MLE based on an assumed distribution of the serial interval 

and incidence data. 
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