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ABSTRACT

Motivation: microRNAs (miRNAs) are important gene regulators and they are involved in many
biological processes, including cancer progression. Therefore, correctly identifying miRNA-mRNA
interactions is a crucial task. To this end, a huge number of computational methods has been
developed, but they mainly use the data at one snapshot and ignore the dynamics of a biological
process. The recent development of single cell data and the booming of the exploration of cell
trajectories using “pseudo-time” concept have inspired us to develop a pseudo-time based method to
infer the miRNA-mRNA relationships characterising a biological process by taking into account the
temporal aspect of the process.
Results: We have developed a novel approach, called pseudo-time causality (PTC), to find the
causal relationships between miRNAs and mRNAs during a biological process. We have applied the
proposed method to both single cell and bulk sequencing datasets for Epithelia to Mesenchymal
Transition (EMT), a key process in cancer metastasis. The evaluation results show that our method
significantly outperforms existing methods in finding miRNA-mRNA interactions in both single cell
and bulk data. The results suggest that utilising the pseudo-temporal information from the data helps
reveal the gene regulation in a biological process much better than using the static information.
Availability: R scripts and datasets can be found at https://github.com/AndresMCB/PTC

Keywords Biological networks · Gene regulation · Prediction ·Molecular dynamics · Cancer

1 Introduction

Identifying the regulatory relationships between microRNAs (miRNAs) and messenger RNAs (mRNAs) characterising
a biological process is a crucial task. For example, Gregory et al.[1] have found that miR200c regulates ZEB1
during Epithelial to Messenchymal Transition (EMT), a key process in cancer metastasis, and therefore miR200c and
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its interaction with ZEB1 can be used for the treatment for cancer metastasis. Understanding the miRNA-mRNA
interactions that characterise different biological processes will give insights into the biology of diseases and help with
the design of treatments of the diseases.

There has been a huge number of computational methods developed to find miRNA-mRNA relationships from data. The
first wave of methods looked into the negative correlation in expression levels of miRNAs and mRNAs, as the majority
of miRNAs down-regulate their target mRNAs (see [2] for a review). The second wave of methods argued for the causal
relationships between miRNAs and mRNAs and aimed to exclude the spurious relationships between miRNAs and their
target mRNAs found from data [3, 4]. The third and current wave of research is focused on the relationships between
miRNAs and mRNAs in relation to other types of molecules, e.g. long non-coding RNAs. An example of this category
is the miRNA sponge interaction networks for which researchers investigate the competition between different RNAs,
including mRNAs, lncRNAs, and pseudo-genes, in fighting for a place for binding with miRNAs [5, 6].

Most of the current computational methods for miRNA-mRNA interaction discovery use the data generated at one
specific snapshot of a biological process and ignore the dynamics or the temporal aspect of biological processes. For
example, several works [7, 8] aim to find the miRNA-mRNA interactions by analyzing gene expression data obtained
from cancerous tumors. In these works, data employed was collected from different patients at one single time point
during their disease. Other works [9, 10, 11] use genetic information, like gene expression, in two different time
points or conditions, in order to contrast the findings at different biological states, e.g. cancer vs normal; Epithelial vs
Mesenchymal.

However, ideally, we would like to understand what is happening during a biological process, e.g. how genes interact
with each other during the process when cells transform from normal stage to invasive stage. Time series data collected
during a biological process can be used to infer the miRNA-mRNA interactions characterising the process [12, 13], but
this dynamic analysis is rarely done in practice. Given a biological process of interest, one needs to collect expression
data for both miRNAs and mRNAs at different time points of the process. Due to the costs of the experiments, there
are very few such datasets available. Therefore, we have to resort to other types of data and develop novel methods to
examine the miRNA-mRNA interactions during a biological process.

Recent development in single cell sequencing and the concept of pseudo-time have opened the door for developing
novel methods for revealing what is happening during biological processes [14]. Single cell sequencing technique
quantifies gene expression profiles of transcripts in individual cells. Meanwhile, the pseudo-time approach utilises the
expression of the markers of a biological process to order the cells along the progress of the biological process.

Inspired by the pseudo-time concept [14], in this paper we develop a novel approach, called the pseudo-time causality
(PTC) based approach, to elucidate the miRNA-mRNA interactions during biological processes, using gene expression
data with the expression profiles of matched miRNAs and mRNAs in the same cells or samples. Given a biological
process, PTC firstly transforms the matched miRNA and mRNA single cell gene expression data to pseudo-time data
using the marker genes of the biological process. PTC relies on the causal invariance property [15, 16] to find the causal
relationships between miRNAs and mRNAs from the pseudo-time data. We have applied PTC to the single cell dataset
from [17] and the bulk data from [18] (please refer to sections 3.1 and 3.5 for a detailed description). In both cases,
VIM, an EMT marker, is used to define the pseudo-time.

The results have shown that PTC significantly outperforms the benchmark methods in identifying experimentally
confirmed miRNA-mRNA interactions using either single cell or bulk data. The results suggest that the temporal
information during a biological process is useful for revealing the miRNA-mRNA interactions characterising the
biological process.

2 Methods

2.1 Problem definition and method outline

Based on the premise that a biological process can be characterised by miRNA-mRNA interactions, it becomes necessary
to develop a method capable of inferring those interactions from data obtained during the biological process, ideally
from time-series data obtained from experiments carried out during the biological process of interest. Unfortunately,
collecting time-series experimental data is costly and sometimes unfeasible. Because of that, most of the current
experimental data is static data obtained in few times points during a biological process.

PTC relies on the assumption that a biological process, like cancer progression, is governed by an underlying causal
mechanism throughout. This presumption defines the two main research problems to be solved in this paper. Firstly,
temporal data from different time points during the process is required in order to infer the miRNA-mRNA relationships
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characterising the process. Secondly, since miRNA-mRNA relationships are considered causal, a way to test causality
during the biological process is also required.

PTC solves the temporal data requirement by performing a pseudotime analysis and transforming static data (in our case,
miRNA/mRNA gene expression) to their pseudotime ordered version. In order to determine the causal relationships
between miRNAs and mRNAs, our method presumes that the relationship between a mRNA (the target) and a set of
miRNAs (the regulators) can be modeled as a linear system where the effect or response variable corresponds to the
gene expression of the mRNA and the cause or predictor variables correspond to the expressions set of miRNAs.

Figure 1: Summary of the developed method, PTC (Pseudo-Time Causality). PTC comprises three phases: (1)
Pseudotime analysis. miRNA-mRNA static gene expression is processed to create time series data following a
pseudotime order. In our experiments, VIM was selected as the biomarker to create the pseudotime. (2): Gene selection.
MAD and TargetScan 7.0 (conserved sites predictions) are employed to determine a set of miRNAs as plausible
predictors of each of the k genes. (3) Identification of miRNA-mRNA regulatory relationships. Violations to the
invariance property are assessed to find the causal parents (predictors) of each gene.

As shown in Figure 1, the overall procedure of our proposed method, PTC, consists of three phases:

• Phase 1: Pseudotime analysis. PTC takes a (static) gene expression dataset containing samples of matched
miRNAs and mRNAs gene expression and converts the dataset into a time series dataset. The conversion is
done through a pseudotime analysis to reorder the samples according to the pseudotime established using a
well recognised EMT marker, VIM (details are in Section 2.3).

• Phase 2: Gene selection. This phase consists of two steps, a pre-selection process and a process to define the
set of plausible predictors or causes for a mRNA. In the first step, the top ranked miRNAs and mRNAs based
on their gene expression median absolute deviation (MAD) are selected.
In the second step, for each of the selected mRNAs, a further analysis is carried out to determine those miRNAs
that can biologically interact with the mRNA, and only the miRNAs that can target the mRNA as predicted by
TargetScan [19] are kept as the plausible predictors or causes of the mRNA.

• Phase 3: Identification of miRNA-mRNA. In this phase, PTC employs the decoupled test [16] to determine
whether the set of plausible predictor miRNAs of a mRNA obtained in Phase 2 are the real causes or regulators
of the mRNA or not. To determine the causal relationships, PTC tests if the "causal invariance" property is
violated by the relationships during the biological process by using the time series data obtained above with
the gene selection in Phase 2 (Details are in Section 2.4).
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2.2 Pseudotime Analysis

Since most gene expression datasets contain only a snapshot of the expression of genes, it becomes necessary to make a
data transformation for temporal analysis. Our method relies on the assumption that dynamic causation can be inferred
from the underlying dynamic in temporal data. In general, it is desired to find those mRNAs whose gene expression
changes progressively with time, and use these genes as pseudo temporal units to model the different trajectories during
cancer progression of all genes in the genomic data.

In our experiments, the biological process selected is the EMT process. We use VIM to define the pseudotime as VIM
is a well-known EMT marker (Puchinskaya, 2019; Shu et al., 2019). During epithelial-mesenchymal transition (EMT),
the gene expression level of VIM increases [20]. This implies that the ascending ordering of the expression of VIM in
an EMT dataset provides us a pseudotime of EMT, called VIM-Time in this paper. Hence to convert the static matched
mRNA and miRNA samples into temporal data, in our method we sort the matched mRNA and miRNA samples based
on the VIM-Time, i.e. we sort the input data matrix in ascending order of the column containing VIM’s expression
values. As a result, changes of gene expression of all genes were described as a progression in terms of VIM-time. This
data transformation incorporates a temporal dimension to the data that PTC uses to identify causal relationships during
the EMT process.

2.3 Gene selection

A comprehensive analysis to determine all parents of a response variable by testing the invariance property, could
require evaluating all possible combinations of the plausible predictors. Peters et al. proposed to determine the set
of true causes of a variable as the intersection of all sets that do not violate the invariance property [15]. Finding the
intersection set could imply to test a huge number of combinations. This can easily be unfeasible if the number of
plausible predictors is big. For example, if an mRNA has 30 plausible predictors, in Phase 3, in the worst case, for this
single mRNA we will need conduct over a billion tests since there are 230 possible combinations for 30 miRNAs.

Taking this fact into consideration, in our method the gene selection phase includes a heuristic procedure to reduce the
number of predictors for each gene. First, a subset of miRNAs and a subset of mRNAs are selected during the first step
of this phase. This selection is based on the hypothesis that miRNAs and mRNAs with most expression variability are
more likely related with regulation processes in cancer. For PTC, we choose to use Median Absolute Deviation (MAD)
as the measure for gene expression variability. This selection was performed using the function "FSbyMAD" from the
"CancerSubtypes" R package [21]. In our experiments, parameters for "FSbyMAD" were: cut.type = "topk", value = 30
when selecting miRNA and 1500 when selecting mRNA, replicating the selection process described in [18].

After the above selection step based on MAD, PTC employs a heuristic to further reduce the set of plausible predictors
for each mRNA, to the set of miRNAs that can bind that gene as predicted by TargetScan 7.0. The set of plausible
predictors of each gene is restricted to a tractable size for the testing in Phase 3.

2.4 Identification of miRNA-mRNA regulatory relationships

It has been shown that causal relationships have an "invariance" property, that is, for a causal structure, the conditional
distribution of a variable (called a target or effect variable in this case) given all its direct causes remains the same under
interventions on any other variables in the structure except the response variable. This "property" has been discussed in
literature under different names like "autonomy" "stability" or "modularity" [22, 23, 24, 25, 15].

This property of invariance can be exploited to determine whether a set of plausible predictors is the set of direct causes
of a response variable. In general terms, given a set of plausible predictors and one response variable, violations to the
invariance property can be assessed using data obtained from different environments (which may be associated with
interventions on different variables as described above). If a set of plausible predictors violates the invariance property
across different environments, it can be inferred that the set of plausible predictors contains variables which are not
direct causes of the response variable.

2.4.1 Testing violation to the invariance property

In phase 3, our method determines the existence of a causal link between a set of miRNAs (parents) and a mRNA by
assessing violations to the invariance, adapting the definition of "invariant set" given in [16] as follows:

Definition 2.1 (Invariant set). Given a column vector Y := ((Yt)
T )t∈{1,..,n}, containing the gene expression for

n temporally ordered samples of the mRNA considered as the response variable of interest, and a matrix X :=
((X1

t )
T , ..., (Xd

t )
T )t∈{1,...,n}, containing the gene expression for n temporally ordered samples of the d miRNAs
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considered as plausible predictors of the mRNA, after the phase 2 of PTC. Furthermore, considering that for any set
S ⊆ {1, ..., d}, the matrix XS contains only the columns of X indexed by S. S is an "invariant set" with respect to
(Y,X) if there are parameters µ ∈ R, β ∈ (R \ {0})|S|×1 and σ ∈ R>0 such that:

∀t ∈ {1, .., n} : Yt = µ+XS
t β + εtεt ⊥⊥ XS

t and ε1, ..., εn
iid∼ N (0, σ2) (1)

Where β is the vector of regression coefficients, µ is the regression independent term, and ε1, ..., εn are independent
and identically distributed random noises, following a normal distribution with mean 0 and standard deviation σ.

Based on the above definition of an invariant set, if S does not violate the invariance property, ∀t ∈
{1, .., n}, µ, β and σ2 remain the same. This feature allows the use of m adjacent time points, with m < n, to create
segments time series and use them as environments, instead of data from different experimental settings. It is important
to note that the segments of the time series that simulate a single environment must have the same number of time
points, and they must be synchronized.

PTC searches for the following violations in the models of Y (as in Eqn. 1) inferred from different segments of the
time series: (i) notable differences between the vectors of regression coefficients (β) and/or (ii) differences in the noise
variance (σ2). For experiments in Section 3, we divide the time series in two similar long segments to compare and
assess differences in the invariant set models.

The decoupled test [16], so named because it test the two violations described above independently, is employed to
verify if a set of miRNAs commit any of the violations to the invariance described above. To conduct the test we use the
function seqICP.s from the seqICP R package [16], with a significance level α = 0.02. The output of this test is the
lowest of the p-values obtained after testing the two violations described above. In our experiments, a p-value < 0.02
implies at least one violation to the invariance property.

2.4.2 Identifying miRNAs regulating a mRNA

For each mRNA of interest (Y) and its set of plausible predictor miRNAs obtained during Phase 2, PTC conducts
the above described invariance property test on each subset of the set of plausible predictors to find all the subsets of
miRNAs that do not violate the invariance property. Then PTC outputs the union of all the subsets which possess the
invariance property (denoted as S∗), as the set of direct causes or regulators of Y. The decision of using the union of all
subsets of plausible predictors which do not violate the invariance property is based on the fact that PTC only admits as
plausible predictors those miRNAs that can biologically target the gene.

To make PTC more efficient, the test of invariance property starts with the testing on the largest subset of the d
plausible predictors, i.e. {1, .., d}, then we test the subsets of size (d-1) and so on, and finally the subsets of size 1. If
S′ ⊆ {1, 2, ..., d} is tested to satisfy the invariance property, then all subsets of S′ are not tested, since PTC outputs
the union of all subsets of {1, 2, ..., d} satisfying the invariance property. For example, assume that a gene has three
plausible predictors, {1, 2, 3}. In this instance, the tests would be conducted in the following order: {1,2,3} {1,2} {1,3}
{2,3} {1} {2} {3}. If {1,3} is tested not to violate the invariance property, then all of its subsets, i.e. {1} and {3} will
not be tested.

The final output of PTC contains all the identified miRNA-mRNA pairs and their ranking scores. We use the TargetScan
7.0 Context++ scores for all conserved miRNA sites and the score of each miRNA-mRNA pair was calculated as the
average of all context scores of that pair across all conserved sites. Since context scores are negative numbers, the more
negative the average is, the higher the rank the miRNA-mRNA pair has in our method.

The performance of PTC is measured by the percentage of miRNA-mRNA relationships inferred by PTC that have been
confirmed experimentally. For the evaluation, a collection of confirmed interactions has been assembled by combining
information from several databases, including miR-Tarbase 6.1 [26], Tarbase 7.0 [27] and miRWalk 2.0 [28]. An
inferred interaction is considered as experimentally confirmed if it can be found in at least one of the above databases.
The performance of PTC is also compared against traditional miRNA-mRNA interaction inference methods, including
Pearson [29] and Lasso [30], by checking the proportion of confirmed interactions predicted by them. "GO biological
processes" and "KEGG pathways" analyses were performed on the miRNA-mRNA causal relationships determined by
PTC to assess their relevance to cancer and EMT.
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Figure 2: Regulatory relationships discovered by PTC. In red, experimentally confirmed interactions. In blue, all other
predicted interactions. Strength of the causal link is represented by color intensity, with darkest color representing the
stronger links.

3 Results and discussion

3.1 Identified miRNA-mRNA interactions in EMT with single cell data

The technique of quantifying the expression of miRNAs and mRNAs in single cells at the same time is still in its
infancy, as single cell techniques normally destroy the cell when measuring the gene expression and thus is hard to
measure the miRNA expression at the same time. Currently, only one work [17] provides matched miRNA and mRNA
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expression for single cells, but with very limited number of cells (20 cells). Gene Expression in this data set comes
from single human acute myeloid leukemia cells.

We apply PTC to this single cell dataset [17] to find miRNA-mRNA interactions in EMT. This dataset provides a total
of 20 cells that were each split into halves in order to obtain paired miRNA - mRNA gene expression data (miRNA
expression from one half cell and mRNA expression from the another half of the same cell). In this research only 19
cells that have all paired entries were employed, with cell number 6 excluded from the analysis since it does not have
paired miRNA-mRNA gene expression. After processing (please see Supplementary Material, Section 1), our data set
has 2822 miRNAs and 23141 mRNAs from 19 single cells.

From the above processed dataset, PTC has predicted 569 miRNA-mRNA interactions as visualised in Figure 2.
Experimentally verified interactions are shown in red. All other inferred regulatory relationships are represented in blue,
and their strength is indicated by color intensity. The darker the link the stronger the predicted interaction is.

The number of genes predicted to be regulated by a miRNA is indicated by the size of the miRNA node, i.e. a larger sized
miRNA node has more predicted targets. "hsa-miR-16-5p", "hsa-miR-182-5p", "hsa-miR-30d-5p", "hsa-miR-27a-3p"
and "hsa-miR-27b-3p" were identified as the most influential nodes, with 55, 47, 46, 40 and 40 inferred regulatory
relationships, respectively. Several studies have linked these miRNAs to different types of cancer. "hsa-miR-16-5p"
appears to have a significant role in chronic lymphocytic leukemia [31] and periocular Sebaceous Gland Carcinoma [32].
"hsa-miR-182-5p" has been related with colorectal cancer [33], drug resistance in breast cancer cell lines [34], Epithelial
Ovarian Cancer [35] and lung adenocarcinoma [36]. "hsa-miR-30d-5p" has been linked with nonmuscle invasive
bladder cancer [37], while "hsa-miR-27a-3p" with Spinal Cord Glioma Progression, intrahepatic cholangiocellular
carcinoma [38]. Finally, "hsa-miR-27b-3p" has been related to tumor suppression in lung cancer [39] and gastric cancer
[40].

3.2 A significant number of interactions discovered by PTC has been experimentally confirmed

Among the 569 miRNA-mRNA regulatory relationships discovered by PTC, 294 pairs are experimentally confirmed
interactions. For each group of top interactions predicted (following to the rank explained in Section 2.4.2), the ratio of
confirmed interactions increases as follows (Table 1): 121 out of 200 (60.5%), 93 out of 150 (62%), 65 out of 100
(65%), and 37 out of 50 (74%).

Table 1: Summary of performance results for PTC, Pearson and Lasso. Comparison of confirmed interactions in the top
k lists inferred by each method are listed.

PTC
Top Confirmed Percentage
200 121 60.5%
150 93 62%
100 65 65%
50 37 74%

Pearson
Confirmed Percentage
25 12.5%
21 14%
16 16%
10 20%

Lasso
Confirmed Percentage
28 14%
21 14%
14 14%
8 16%

For comparison purposes, this data set was analyzed with Pearson and Lasso methods from the miRLAB R package
[41]. These two methods are commonly used for inferring regulatory relationships. Inferred interactions by this two
methods were verified using the databases of confirmed interactions described previously. The performance of PTC is
significantly better than the Pearson and Lasso methods (see Table 1).

3.3 PTC identifies interactions relevant to EMT

Since PTC is based on the idea that there are miRNA-mRNA regulatory relationships that characterize a biological
process (EMT process in our experiments), a search was performed to detect relevant interactions during EMT that were
inferred by our method. In order to determine if a miRNA-mRNA discovered by PTC is EMT related, we assembled a
list of EMT miRNAs/mRNAs that have been experimentally confirmed as relevant in the EMT process (please refer to
Table S1A. Generic EMT signature for tumour [42], and Table S1. MicroRNAs associated with epithelial-mesenchymal
plasticity, [43]). In our experiments a miRNA/mRNA is considered EMT relevant if it can be found in the list explained
above.

The numbers of EMT miRNAs in the top 200, 150, 100 and 50 miRNA-mRNA interactions discovered by PTC are
12, 11, 10 and 9, respectively. A significant number of the miRNA-mRNA interactions discovered by PTC involve
these EMT miRNAs. The percentage of relationships inferred by PTC that involve those EMT miRNA biomarkers
across the tops lists are: 44.5% (89 out of 200), 44% (66 out of 150), 46% (46 out of 100), and 44% (22 out of 50).
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The inferred pairs containing EMT miRNAs are also highly ranked by our method. It makes sense that the number
of EMT miRNAs in inferred pairs by our method is high and persistent because of the fact that our method employs
the temporal information during the process of EMT to determine the causal regulatory relationships during the EMT
process in cancer.

PTC is able to discover EMT related miRNA-mRNA interactions that other methods fail to discover. For example, the
experimentally confirmed interaction (hsa-miR-16-5p - VAMP8) was discovered by PTC. The classical correlation-
based methods Pearson and Lasso failed to detect this relationship because of its low correlation and "non-significant"
p-value. This suggests that, thanks to the fact that PTC uses temporal information during the process, it is able to
detect causal relationships correlation methods are unable to identify. Figure 3 shows the gene expression of the pair
(hsa-miR-16-5p - VAMP8) following the VIM-Time order. An apparent correlation can be observed in some areas of
the graph (e.g. VIM-Time between 5 and 10) and some areas show little correlation (e.g. VIM-Time from 10 to 15).

Figure 3: PTC can infer EMT miRNA- EMT mRNA that are not discovered by correlation methods. In the figure, gene
expression for hsa-miR-16-5p (red) - VAMP8 (blue) following VIMtime order are shown. Correlation between this two
expression is 0.04591796 (Pearson’s product-moment correlation, p.value 0.8519262). This regulatory pair is rejected
by Pearson but discovered by our method. This regulatory relationship has been experimentally confirmed.

We have also conducted "GO biological processes" and "KEGG pathways" analyses for the miRNAs and genes in
interactions discovered by PTC to examine their relevance to cancer and EMT. These analyses were performed by
using the Enrichr web tool [44]. A large number of mRNAs present in the regulatory pairs identified by our method
are associated with KEGG pathways and GO biological processes related to EMT process and cancer (please refer to
Supplementary Material, Section 2).

3.4 PTC is stable with different pseudotimes

In order to test the stability of PTC with respect to the pseudotime transformations, we also used the Wanderlust
algorithm [14] to identify EMT pseudotime. Wanderlust outcome is a pseudotime based on pre-defined EMT markers
from 315 general EMT markers in cancers [42]. In the single cell mRNA data employed in this research, there are 145
of those EMT markers. Thus, we estimate pseudotime by running Wanderlust on these 145 EMT markers.

There are four key parameters in Wanderlust: the number of nearest neighbors k, the shared nearest neighbour snn,
the number of neighbors selected for each node in a k-nearest neighbors graph l and the number of l-out-of-k-nearest
neighbors graphs ng. In our experiments, the parameter k was set to 4 to maintain a reasonable proportion between the
number of cells (19) and the number of neighbors per node. Parameters l and ng must be a positive integer lower than
k. They both were set to 2 since it is the median of the possible options, i.e. {1, 2, 3}. Because all other parameters
were fixed, parameter snn requires to be set to 0.

The performance of PTC when Wanderlust pseudotime was employed is very similar to the PTC when VIM-Time
was used. 570 miRNA-mRNA relationships were identified when using Wanderlust, in comparison to 569 when using
VIM-Time. Confirmed interactions among the top miRNA-mRNA interactions discovered are also similar as shown
below: top 200: 122 (Wanderlust) vs 121 (VIM-Time), top 150: 94 (Wanderlust) vs 93 (VIM-Time), top 100: 65
(Wanderlust) vs 65 (VIM-Time), 37 (Wanderlust) vs 37 (VIM-Time).

Only the experimentally confirmed pair (hsa-miR-10a-5p - H3F3B), inferred by PTC when VIM-Time was used, could
not be detected when Wanderlust was employed. Analogously, only the pairs (hsa-miR-27a-3p - ID3), (hsa-miR-27b-3p
- ID3), detected by PTC when Wanderlust was used, were not detected when VIM-Time was employed. The above
results suggest that PTC is robust and stable to different EMT pseudotime data transformations.
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3.5 PTC performs better than benchmark methods in bulk gene expression data

Since most methods for inferring gene regulatory relationships use bulk data, and in order to analyze the performance
of PTC with this kind of data, a benchmark with bulk data was performed. PTC was tested using the bulk miRNA and
mRNA expression data employed in [18]. This data set contains 518 miRNAs and 17403 mRNAs from 503 tumor
samples, downloaded from "The Cancer Genome Atlas Research Network" (TCGA) (https://www.cancer.gov/tcga)
- BRCA project. The methods selected for comparison were Pearson [29], Lasso [30], idaFast [3], jointIDA_direct
[45], and the methods based on Invariant Causal Prediction (ICP) (hiddenICP, hiddenICP pam50, Borda hiddenICP,
Borda hiddenICP Pam50), proposed in [18]. The first four methods were selected because they are widely used in gene
regulatory inference. ICP based methods were selected because they also use causal invariance property, but with static
data.

With this bulk data set a total of 293 miRNA-mRNA regulatory relationships were identified by our method. For all
methods, the top 200, 150, 100 and 50 inferred regulatory relationships were selected for analysis. For all the methods
but PTC, the original research of [18] provides a rank for each interaction inferred by each method, which was used in
our analysis for determining the top lists for those 8 methods compared. PTC uses it own ranking system, based on the
average of the TargetScan 7.0 Context++ scores for all conserved miRNA sites of inferred miRNA-mRNA pairs across
all conserved sites (Section 2.4.2). Figure 4 shows the amount of experimentally confirmed miRNA-mRNA interactions
inferred by each method, verified using the collection of experimentally confirmed miRNA-mRNA interactions as
described in Section 2.5.

Figure 4: Confirmed interactions found by our method in comparison with confirmed interactions found by the other
methods analyzed.

Table 2: Summary of performance of PTC using the bulk dataset, in comparison with the best two non-causal methods,
the best (average) method based on static ICP and PTC. Performance was measured as the number and percentage of
experimentally confirmed interactions in each top list. The number of confirmed EMT miRNA and mRNA markers
inferred by each method is given in columns miR_EMT and mR_EMT respectively.

Pearson
Top Confirmed Percentage miR_EMT mR_EMT
200 5 2.5% 4 8
150 5 3.333% 4 6
100 4 4% 4 4
50 0 0% 3 1

Lasso
Top Confirmed Percentage miR_EMT mR_EMT
200 5 2.5% 6 4
150 5 3.333% 5 3
100 4 4% 2 2
50 0 0% 1 1

Hidden ICP pam50
200 1 0.5% 5 4
150 1 0.667% 3 4
100 1 1% 3 3
50 1 2% 3 1

PTC
200 25 12.5% 10 2
150 22 14.667% 10 1
100 13 13% 9 1
50 9 18% 8 0

Note:Pearson and Lasso are the two methods no based in ICP with the best performance over all tops. Hidden ICP
pam50 version was selected as the best (average) performance because of the fact it has confirmed predictions in all

tops

To provide the time series data required by PTC, the expression values of VIM in the bulk dataset were ordered and
used as reference (VIM-Time) to sort the expression values of all other genes, and in this way we approximate the
data set used in [18] to a pseudotime data set. Even with bulk data, which is a compendium of static data from a large
number of patients rather than sequential data, PTC outperforms the other methods in all top lists (top 200, 150, 100
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and 50). As shown in Table 2, PTC is able to detect 25 confirmed interactions among the top 200 (≈ 12.5%). Pearson
and Lasso are the runner-up methods with 5 confirmed interactions (2.5%).

Based on the hypothesis that the ranking of inferred miRNA-mRNA interactions by each method represents a measure
of the strength of correlation/causal effect, the top 200, 150 100 and 50 interactions discovered by each method were
analyzed, expecting an increase of the percentage of confirmed interactions. In general, the percentage of confirmed
regulatory relationships increased when fewer miRNA-mRNA pairs are considered in the top. Our method was able to
infer confirmed miRNA-mRNA relationship in all the top lists with a rate of at least 12.5%.

Pearson and Lasso have shown the second best performance in top 200, 150 and 100, but none of the top 50 interactions
discovered by the two methods were experimentally confirmed (based on the databases used). The static version of
Hidden ICP with pam50 was able to determine at least one confirmed relationship in all the top lists. In any case none
of the other analyzed methods were able to obtain a percentage of confirmed interactions higher than 4%.
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Figure 5: Intersection of the confirmed interactions predicted in top 200 by each method when using the bulk data [18].
The vertical axis represents the size of the intersection. Points below the horizontal axis indicate that the corresponding
bar belongs to the method shown on its left. Multiple points under a bar represent the intersected methods. E.g the 25
confirmed pairs from PTC are represented as one point under the bar of 23 units long and 2 points (intersections with
other methods) under the two bars of 1 unit long. Visualization made using Intervene [46]

As an additional measurement of performance, the miRNAs and mRNAs found in the inferred regulatory relationships
were analyzed to verify which of them are confirmed EMT markers. Pearson, Lasso and PTC were able to detect
regulatory relationships involving 10 miRNAs that are confirmed as EMT miRNAs. Unlike the other methods, PTC
persistently identifies relationships containing those EMT miRNAs, assigning them a high score. Because of that,
relationships containing these 10 EMT miRNAs can be found in the top 200 and 150 lists of PTC, as shown in Table
2.The intersections of confirmed interactions inferred by all methods were also investigated. As shown in Figure 5,
PTC was able to infer two regulatory relationships that were also inferred by at least one of the other methods. A total
of 23 confirmed interactions were detected exclusively by our method.

4 Conclusion

In this paper we have presented PTC, a new approach for discovering causal miRNA-mRNA relationships characterising
biological processes. Our method assumes that if a set of miRNAs are regulatory agents for the genes that drive a
biological process, then the causal relationships between such miRNAs and mRNAs are invariant throughout the process.
Based on this assumption, PTC performs a data transformation by means of a pseudotime analysis to create temporal
ordered data, and in this way identify the invariance of the causal relationships during the biological process of interest.

In PTC, the pseudotime analysis phase warranties that violations to the invariance property are correctly and efficiently
assessed since the test is performed on temporally ordered gene expression data. Additionally, rejecting the miRNA-
mRNA pairs that are not able to biologically interact, thus they cannot have a causal relationship, help PTC to determine
whether a miRNA-mRNA invariant relationship corresponds to a causal link throughout the process.

Experiments with the data used imply the superior performance of our method. Our method outperformed all other
analyzed methods in terms of the number confirmed regulatory interactions that were predicted for each method. The
results of our tests suggest that making use of the temporal information of biological processes provides additional
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information that significantly improves the inference of regulatory relationships. The increase in the number of
confirmed relationships that were inferred by our algorithm suggests that the combination of TargetScan 7.0-based
heuristics and invariance property is a powerful and effective tool for uncovering causal relationships characterising a
biological process.
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