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Abstract:   
Effective therapies for COVID-19 are urgently needed. Presently there are more than 800 

COVID-19 clinical trials globally, many with drug combinations, resulting in an empirical process 

with an enormous number of possible combinations. To identify the most promising potential 

therapies, we developed a biophysical model for the SARS-CoV-2 viral cycle and performed a 

sensitivity analysis for individual model parameters and all possible pairwise parameter changes 

(162 = 256 possibilities). We found that model-predicted virion production is fairly insensitive to 

changes in most viral entry, assembly, and release parameters, but highly sensitive to some 

viral transcription and translation parameters. Furthermore, we found a cooperative benefit to 

pairwise targeting of transcription and translation, predicting that combined targeting of these 

processes will be especially effective in inhibiting viral production. 

 

Main Text: 
The ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) has resulted in more than 4 million confirmed cases and 300,000 deaths 

worldwide (1). The most common symptoms of the illness caused by SARS-CoV-2, COVID-19, 

include fever, cough and fatigue (2). The clinical presentation can range from asymptomatic to 

fatal, with severe cases rapidly progressing to pneumonia, acute respiratory distress syndrome 

(ARDS), and organ failure (3). There is currently no vaccine for the disease, and development 

could take 12 to 18 months (4). Therefore, there exists a critical need for effective therapeutic 

interventions to minimize the transmission and severity of SARS-CoV-2.  

 

Despite increased expenditures on research and development, less than one out of every ten 

therapeutic drugs that enter phase I clinical trials eventually gains FDA approval (5). To 

accelerate the development process for COVID-19, the initial focus has been on repurposing 

approved drugs and biologics. However, owing to the large number of possible therapeutics, 

and the need for rapid testing, there has not been extensive preclinical testing on SARS-CoV-2 

specifically.  While these therapeutics have been deployed in combinations of two, three, or four 

in more than 800 clinical trials globally (6), it is not clear which drugs, possibly in combination 

with others, would, in principle, be most effective.  For other RNA viruses, such as HIV, single 

therapies have not been successful as a result of the virus’ ability to rapidly evolve and develop 

resistance to antivirals (7), thus driving the need for combination therapies (8).  With more than 

100 distinct agents currently in trials to treat COVID-19, even a two drug combination has over 
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10,000 possible combinations that could be tried, raising the question of how to rationally focus 

clinical trials on the single agents and combinations that are most likely to be effective. 

 

Biophysical modeling has the potential to help rationally guide the development of therapeutic 

interventions for SARS-CoV-2 by identifying key model parameters for effective targeting. In 

addition, modeling can potentially be used to identify combination therapies, predict clinical trial 

outcomes, stratify patients, and identify potential source(s) of variable patient-to-patient 

outcomes. Here we present a biophysical model for the SARS-CoV-2 viral cycle and identify the 

single and combination parameters with the highest sensitivity, representing the ideal targets for 

therapeutic intervention to inhibit virus production. 

 
The biophysical model of the SARS-CoV-2 viral life cycle was constructed based on SARS-CoV 

literature that included processes underlying viral entry, genome transcription, genome 

translation, virion assembly, and virion release (Fig. 1; reviewed in (9, 10)). Mass action and 

chemical rate equations were used to mathematically describe the system using an approach 

similar to that taken previously to model the life cycle of other viral systems (reviewed in (11); 

see  Materials and Methods), and the resulting series of ordinary differential equations solved 

numerically. As an initial condition we assumed that a single virion was bound to the surface of 

an individual cell, which was then internalized to initiate the replication cycle. As data specific to 

the viral cycle to SARS-CoV-2 are limited, we primarily used experimental observations from 

SARS-CoV to inform model assumptions and parameterization (Table 1).  We assume that it is 

reasonable to use SARS-CoV data based on the high degree of genomic similarity between the 

two viruses (12–14). Using the base parameter values, the model reproduces viral production 

on a timescale and of a quantity consistent with experimental observations (Fig. 2). Importantly, 

the model reproduces a number of experimental observations without parameter adjustment 

(Fig. 2B); for example, the model naturally predicts that ~10% of the RNA will be negative sense 

(Fig. 2).  Based on this, we conclude that the model provides a suitable tool to identify points of 

interest for therapeutic intervention, i.e. those parameters and the associated subprocesses that 

are particularly sensitive to perturbation. 

 

To assess these points of interest in the viral cycle, we performed a sensitivity analysis for each 

parameter by systematically increasing and decreasing their values from baseline by up to three 

orders of magnitude (1000-fold) while holding all other parameters constant (Fig. 3).  

Parameters specific to virion stoichiometry or RNA segment length were ignored in this analysis 
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as they are likely difficult to target clinically.  Using the viral cycle time tcycle, defined as the time 

to produce 1000 virions, as a readout of viral replication rate, we examined viral production as a 

function of individual parameter values.  We found that parameter perturbation resulted in a 

variety of responses, ranging from insensitive to highly sensitive (Fig. 3A-C).  As seen in Figure 

3D, viral production was most sensitive to perturbation of many, but not all, parameters related 

to genome transcription and translation.  While two parameters specific to viral packaging were 

able to eliminate viral production, the majority of parameters related to viral entry, packaging, 

and release were comparably insensitive to changes from the base values (Fig. 3D).  While it is 

theoretically possible to inhibit viral production via targeting of the insensitive parameters, it is 

necessary to achieve a high level of inhibition compared to those that exhibit high sensitivity 

(Fig. S1).  For example, parameters specific to viral entry and packaging required 100-1000x 

level of inhibition in order to influence viral production (Figs. 3D and S1A, C), while parameters 

specific to replication completely inhibited viral production after only a 10x effect (Figs. 3D and 

S1B).  Based on these observations, we conclude that transcription and translation represent 

high sensitivity targets for therapeutic inhibition. 

 

Due to the ability to rapidly evolve, viral diseases are often treated with combination therapies.  

While an exhaustive combinatorial analysis is difficult or impossible to conduct experimentally 

due to time and resource limitations, it can quickly be implemented in silico.  To identify potential 

combinations that could cooperate to inhibit viral production in the model, we performed a 

pairwise sensitivity analysis of the model parameters.  Parameter pairs were either coordinately 

increased or decreased from their base value and then scored based on the results (see 

Materials and Methods).  To score parameter combinations we defined a sensitivity (S) and 

range (R) value (Fig. 4A), similar to our previous approach for another biophysical model (15).  

The sensitivity S is a measure of how viral production scales with changes to the base 

parameter values, while R is a measure of the magnitude of perturbation necessary to produce 

a maximal effect.  Ideally, interventional therapies would have a strong effect (large S) with 

minimal perturbation (small R).  Therefore, we scored parameter pairs by dividing the resulting S 

value by the value of R (S/R).  As seen in Figures 4B and S2, several parameter combinations 

completely eliminated viral production with only a <10-fold effect.  Similar to the single 

parameter sensitivity analysis, parameters related to transcription and translation once again 

emerged as the highest sensitivity targets; the highest scores were parameter combinations 

specific to the host ribosomes and the viral RNA-dependent RNA polymerase (RdRp).  One 

other noteworthy pair that completely eliminated viral production was the half-life of the 
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structural proteins (hSP), which comprise the mature virion, and the rate at which those proteins 

are translocated from the cytoplasm to the endoplasmic reticulum (kCyto-ER). While the majority of 

high scoring combinations were simply the result of pairing with an already high sensitivity 

parameter (𝑘!"#$%&' ), several combinations resulted in cooperating effects between the two 

parameters (Fig. 4C).  As seen in Figure 4C, the greatest amount of cooperativity occurred 

when combining parameters specific to transcription and translation together.  Based on these 

results, we conclude combination targeting of transcription and translation can lead to enhanced 

effects on viral production, beyond targeting each individually. 

 

Overall, our modeling of the SARS-CoV-2 life cycle, parameterized using published SARS-CoV 

literature, shows that theoretically there are opportunities for therapeutic interventions that 

significantly inhibit the viral cycle. In particular, the sensitivity analysis identified several 

parameters in the middle of the viral cycle, specific to genome transcription and translation, that 

present the best opportunities for inhibiting viral production. By comparison, parameters specific 

to viral entry, virion assembly, and virion release were less sensitive and therefore are less 

promising as targets for inhibiting viral production.  The model further identifies potential 

combination targets that would cooperatively inhibit viral production.  For example, the 

combined effects of targeting both the stepping rate of the host ribosome, 𝑘!"#$%&' , and the binding 

rate of RdRp, 𝑘()
%*%$,	 may halt the viral cycle even with modest 10X effects.  Such a pairwise 

analysis would be difficult to exhaustively test experimentally, especially in the clinic, since there 

are 162 = 256 possible combinations.  

 

In addition to identifying novel target opportunities within the viral cycle, biophysical modeling 

may also provide insight into current and emerging therapeutic approaches.  Several existing 

antiviral drugs are being evaluated for their efficacy in treating COVID-19 (16).  It is interesting 

to note that remdesivir, which was recently approved for emergency use in the U.S. and Japan, 

acts to disrupt genome transcription by interfering with the viral RdRp (17, 18), and thus is one 

example of a therapeutic intervention that interferes with an area of high sensitivity identified by 

the model. By contrast, hydroxychloroquine, which inhibits viral entry by increasing endosomal 

pH and affecting terminal glycosylation of the ACE2 receptor (19), is predicted by the model to 

be less likely to be effective since drugs that act on viral entry would require exceptionally high 

suppression to achieve appreciable effects on viral production.  Viral entry inhibitors have been 

used to treat HIV (20) and influenza (21), therefore it may yet be feasible to target viral entry.  
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Additionally, we note that therapeutics predicted to be less effective in the viral cycle model, 

may have potent effects elsewhere in disease progression, e.g. in the immune response.  Thus, 

ineffectiveness in inhibiting viral production does not preclude therapeutic effectiveness overall. 

 

Finally, the recent host-virus protein interaction map reported by Gordon et al. (22) identified two 

classes of SARS-CoV-2 targeting opportunities: 1) inhibitors of protein translation and 2) 

regulators of Sigma1 and Sigma2 receptors. Based on our modeling, we predict that therapeutic 

targeting of the Sigma1 and 2 receptors is not likely to be effective as it would presumably 

interfere with the virion assembly and release steps, which are relatively insensitive (Fig. 3D). 

By contrast, we predict that targeting protein translation is more likely to be effective due to the 

high sensitivity of viral cycle time to translation-associated parameters (Fig. 3D).  Everything 

else being equal, the model predicts that transcription inhibition combined with translation 

inhibition would be an especially effective combination (Fig. 4B-C).  Altogether, our model 

provides a framework for understanding viral cycle dynamics and identifying the therapeutic 

opportunities that are most likely to be effective in inhibiting viral production. 
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Materials and Methods: 
The system of ODEs describing the viral cycle was solved using the ode15s solver in Matlab 

(R2019a; The Mathworks, Natick, MA).   

Viral entry 

Upon initialization the model is assumed to have a single viral particle (SARS-CoV-2) bound to 

angiotensin-converting enzyme 2 (ACE2) on the cell membrane (SCoV2-ACE2).  SARS-CoV-2 

is internalized into endosomes as the spike protein is cleaved by transmembrane protease, 

serine 2 (TMPRSS2) at a first order-rate (kTMP).   

 *[!,(-./0,1.]
*"

= −𝑘345[𝑆𝐶𝑜𝑉2 − 𝐴𝐶𝐸2]          (Eq. 1) 

This reaction and other proteolytic reactions in the model are simplified to the product of a first-

order rate constant 𝑘 and the concentration of the enzyme ([E]) where k	=	(kcat/KM)[E]SS.  This 

assumption is true when the substrate concentration is much less than the Michaelis-Menten 

constant value, [S]	<<	KM	.  For each reaction we assumed a catalytic efficiency (kcat/KM) equal to 

150,000 M-1s-1, the median value for a range of enzymes (23). The steady-state concentration of 

the enzyme, [E]SS, was estimated using the baseline parameter values in Table 1.  Endosomal 

SARS-CoV-2 is then released and the genomic RNA uncoated with the first-order rates kRel and 

kUC, respectively.  
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*[#)*(!,(-.]
*"

= 𝑘345[𝑆𝐶𝑜𝑉2 − 𝐴𝐶𝐸2] − 𝑘%#6[𝑒𝑛𝑑𝑜𝑆𝐶𝑜𝑉2]  (Eq. 2) 

*[78%90]
*"

= 𝑘%#6[𝑒𝑛𝑑𝑜𝑆𝐶𝑜𝑉2] − 𝑘:,[𝑐𝑔𝑅𝑁𝐴]   (Eq. 3) 

Transcription and translation 

After the full-length genomic RNA (gRNA) is released and uncoated, host ribosomes bind to 

open reading frames to begin translation of pp1a and pp1ab.   In each instance, transcription 

and translation is modeled as a multistep process (Figure 1 of the main text; inset), similar to 

that outlined in (24).   

i. Initial binding of the enzyme (Ribosome or RNA-dependent RNA polymerase) to its 

respective substrate (RNA) is assumed to be irreversible and is the product of the 

second-order association rate (kon) and the concentrations of the enzyme and its 

substrate. 

ii. The enzyme completes the primer sequence at rate kPrime, which is determined by the 

stepping rate of the respective enzyme (kStep) and the length of the primer sequence (l); 

kPrime	=	kStep/l.  This first step is fast (~0.5-1 s), and once completed the substrate is 

released such that multiple enzymes can bind to a single strand of RNA. The actively 

polymerizing translation or transcription complex (T-SE) then continues through the 

elongation process. 

iii. For each active T-SE, the rate of termination (kTerm) is proportional to the length (l) of the 

sequence and the stepping rate; kTerm	=	kStep/l.  Upon termination, the enzyme unbinds 

from the substrate and the product is released. 

 

For the specific example of translating pp1a/1ab by the host ribosomes, this multistep process 

results in the following equations 

  *[%&'/8%90]
*"

= 𝑘()%&'[𝑅𝑖𝑏][𝑔𝑅𝑁𝐴] − 𝑘5;&<#%&' [𝑅𝑖𝑏 − 𝑔𝑅𝑁𝐴]                   (Eq. 4) 

*[3/%&'8%90]
*"

= 𝑘5;&<#%&' [𝑅𝑖𝑏 − 𝑔𝑅𝑁𝐴] − 𝑘3#;<%&' [𝑇 − 𝑅𝑖𝑏𝑔𝑅𝑁𝐴]                  (Eq. 5) 

𝑘5;&<#%&' = 𝑘!"#$%&' /𝑙5;&<#%&'             (Eq. 6) 

𝑘3#;<%&' = 𝑘!"#$%&' /𝑙$$=           (Eq. 7) 

Additionally, the polypeptides pp1a/1ab are then cleaved at first-order rate kCleav	to release the 

non-structural proteins making up the replicase-transcriptase complex, specifically the RNA-

dependent RNA polymerase (RdRp), and is degraded with a half-life of hpp1. 
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*[$$=]
*"

= 𝑘3#;<%&' [𝑇 − 𝑅𝑖𝑏𝑔𝑅𝑁𝐴] − ;𝑘,6#>? +
@A	(.)
E!!"

= [𝑝𝑝1]           (Eq. 8) 

 

The multistep process outlined above repeats for production of negative-sense RNA (nRNA) 

templates,  
*[%*%$/8%90]

*"
= 𝑘()

%*%$[𝑅𝑑𝑅𝑝][𝑔𝑅𝑁𝐴] − 𝑘5;&<#
%*%$ [𝑅𝑑𝑅𝑝 − 𝑔𝑅𝑁𝐴]    (Eq. 9) 

*[3/%*%$8%90]
*"

= 𝑘5;&<#
%*%$ [𝑅𝑑𝑅𝑝 − 𝑔𝑅𝑁𝐴] − 𝑘3#;<

%*%$[𝑇 − 𝑅𝑑𝑅𝑝𝑔𝑅𝑁𝐴]       (Eq. 10) 

𝑘5;&<#
%*%$ = 𝑘!"#$

%*%$/𝑙5;&<#
%*%$         (Eq. 11) 

𝑘3#;<
%*%$ = 𝑘!"#$

%*%$/𝑙8%90                  (Eq. 12) 

The resulting nRNA templates are then used to transcribe the full-length gRNA and sub-

genomic RNA (sgRNA) encoding the structural proteins.  Additionally, nRNA is degraded with a 

half-life of hnRNA  
*[)%90]

*" = 𝑘3#;<
%*%$[𝑇 − 𝑅𝑑𝑅𝑝𝑔𝑅𝑁𝐴] − @𝑘()

%*%$[𝑅𝑑𝑅𝑝] + @A	(.)
E#$%&

A [𝑛𝑅𝑁𝐴] + 𝑘5;&<#
%*%$ [𝑅𝑑𝑅𝑝 − 𝑛𝑅𝑁𝐴] 

(Eq. 13) 
*[%*%$/)%90]

*"
= 𝑘()

%*%$[𝑅𝑑𝑅𝑝][𝑛𝑅𝑁𝐴] − 𝑘5;&<#
%*%$ [𝑅𝑑𝑅𝑝 − 𝑛𝑅𝑁𝐴]        (Eq. 14) 

*[3/%*%$)%90]
*" = 𝑘5;&<#

%*%$ [𝑅𝑑𝑅𝑝 − 𝑛𝑅𝑁𝐴] − 𝜌C𝑘3#;<
%*%$[𝑇 − 𝑅𝑑𝑅𝑝𝑛𝑅𝑁𝐴]D −⋯ 

(1 − 𝜌)C𝑘3#;<,G8
%*%$ [𝑇 − 𝑅𝑑𝑅𝑝𝑛𝑅𝑁𝐴]D       (Eq. 15) 

*{%*%$]
*" = 𝑘,6#>?[𝑝𝑝1] − ;𝑘()

%*%$[𝑔𝑅𝑁𝐴] + 𝑘()
%*%$[𝑛𝑅𝑁𝐴] + @A	(.)

E$'$!
= [𝑅𝑑𝑅𝑝]+. .. 

𝑘3#;<
%*%$[𝑇 − 𝑅𝑑𝑅𝑝𝑔𝑅𝑁𝐴] + 𝜌C𝑘3#;<

%*%$[𝑇 − 𝑅𝑑𝑅𝑝𝑛𝑅𝑁𝐴]D + (1 − 𝜌)C𝑘3#;<,G8
%*%$ [𝑇 − 𝑅𝑑𝑅𝑝𝑛𝑅𝑁𝐴]D                    

(Eq. 16) 

Here, r is the fraction of transcription complexes producing full-length gRNA as opposed to 

sgRNA.  sgRNA is produced at a faster rate due to the shorter sequence length such that  

𝑘3#;<,G8
%*%$ = 𝑘!"#$

%*%$/𝑙G8%90    (Eq. 17) 

Where lsgRNA is the average length of sgRNA coding the structural proteins, which is weighted by 

the relative length and stoichiometry of each protein.  This then completes the cycle for 

replicating the full-length gRNA.  An additional term is added for the coating of the genome with 

nucleocapsid (N) protein in preparation for encapsulation in the mature virion, where kNCap is the 

second-order rate of producing nucleocapsids. 
*[8%90]

*"
= 𝑘:,[𝑐𝑔𝑅𝑁𝐴] − ;𝑘()%&'[𝑅𝑖𝑏] + 𝑎(𝑘9,>$[𝑁]) +

@A	(.)
E($%&

= [𝑔𝑅𝑁𝐴] + 𝑘5;&<#%&' [𝑅𝑖𝑏 − 𝑔𝑅𝑁𝐴]+. ..  

𝑘5;&<#
%*%$ [𝑅𝑑𝑅𝑝 − 𝑔𝑅𝑁𝐴] + 𝜌C𝑘3#;<

%*%$[𝑇 − 𝑅𝑑𝑅𝑝𝑛𝑅𝑁𝐴]D        (Eq. 18) 
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The final multistep process is the translation of sgRNA by host ribosomes to produce the 

structural proteins making up the mature virion, the spike (S), envelope (E), membrane (M), and 

nucleocapsid protein (N).  Additionally, sgRNA is degraded with the same half-life as gRNA 

(hgRNA). 
*[G8%90]

*" = (1 − 𝜌)C𝑘3#;<,G8
%*%$ [𝑇 − 𝑅𝑑𝑅𝑝𝑛𝑅𝑁𝐴D − ;𝑘()%&'[𝑅𝑖𝑏] +

@A	(.)
E($%&

= [𝑠𝑔𝑅𝑁𝐴] +⋯ 

𝑘5;&<#%&' [𝑅𝑖𝑏 − 𝑠𝑔𝑅𝑁𝐴]        (Eq. 19) 
*[%&'/G8%90]

*"
= 𝑘()%&'[𝑅𝑖𝑏][𝑠𝑔𝑅𝑁𝐴] − 𝑘5;&<#%&' [𝑅𝑖𝑏 − 𝑠𝑔𝑅𝑁𝐴]             (Eq. 20) 

*[3/%&'G8%90]
*" = 𝑘5;&<#%&' [𝑅𝑖𝑏 − 𝑠𝑔𝑅𝑁𝐴] − 𝜆C𝑘3#;<,!14%&' [𝑇 − 𝑅𝑖𝑏𝑠𝑔𝑅𝑁𝐴]D −⋯ 

(1 − 𝜆)C𝑘3#;<,9%&' [𝑇 − 𝑅𝑖𝑏𝑠𝑔𝑅𝑁𝐴]D      (Eq. 21) 
*[9]
*"

= (1 − 𝜆)C𝑘3#;<,9%&' [𝑇 − 𝑅𝑖𝑏𝑠𝑔𝑅𝑁𝐴]D − 𝑏C𝑘9,>$[𝑁][𝑔𝑅𝑁𝐴]D −
@A(.)
E)*

[𝑁]    (Eq. 22) 

*[%&']
*" = −𝑘()%&'[𝑅𝑖𝑏]([𝑔𝑅𝑁𝐴] + [𝑠𝑔𝑅𝑁𝐴]) + 𝑘3#;<%&' [𝑇 − 𝑅𝑖𝑏𝑔𝑅𝑁𝐴] +⋯ 

𝜆C𝑘3#;<,!14%&' [𝑇 − 𝑅𝑖𝑏𝑠𝑔𝑅𝑁𝐴]D + (1 − 𝜆)C𝑘3#;<,9%&' [𝑇 − 𝑅𝑖𝑏𝑠𝑔𝑅𝑁𝐴]D       (Eq. 23) 

where 

𝑘3#;<,!14%&' = 𝑘!"#$%&' /𝑙!14            (Eq. 24) 

𝑘3#;<,9%&' = 𝑘!"#$%&' /𝑙9            (Eq. 25) 

In the above equations, 𝜆 is the ratio of producing S, E, or M proteins relative to N protein.  The 

value of l is determined by the stoichiometries of each.  Furthermore, the translation rate of S, 

E, or M protein is assumed to be proportional to the final stoichiometry in the mature virion, and 

therefore they can be lumped together, simplifying the handling equations.   

Virion assembly and release 

S, E, and M proteins are polymerized in the cytoplasm but are then translocated through the 

endoplasmic reticulum (ER) and ER-golgi intermediate complex (ERGIC) at first-order rates   

kCyt-ER and kER-ERGIC, respectively. 
*[!14+,-.]

*"
= 𝜆C𝑘3#;<,!14%&' [𝑇 − 𝑅𝑖𝑏𝑠𝑔𝑅𝑁𝐴]D − @𝑘,I"/1% +

@A	(.)
E)*

A [𝑆𝐸𝑀7I"(]   (Eq. 26) 

*[!14/$]
*"

= 𝑘,I"/1%[𝑆𝐸𝑀7I"(] − 𝑘1%/1%JK,[𝑆𝐸𝑀1%]    (Eq. 27) 

Budding from the ERGIC at rate kBud forms the mature virion from the encapsulation of 

nucleocapsids.  Mature virions are then released via exocytosis at first-order rate kExo. 
*[!14/$012]

*"
= 𝑘1%/1%JK,[𝑆𝐸𝑀1%] − 𝑐(𝑘LM*[𝑆𝐸𝑀1%JK,][𝑁𝐶𝑎𝑝]) (Eq. 28) 
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*[9,>$]
*"

= 𝑘9,>$[𝑁][𝑔𝑅𝑁𝐴] − 𝑑(𝑘LM*[𝑆𝐸𝑀1%JK,][𝑁𝐶𝑎𝑝])        (Eq. 29) 

*[-&;]
*"

= 𝑘LM*[𝑆𝐸𝑀1%JK,][𝑁𝐶𝑎𝑝] − 𝑘1N([𝑉𝑖𝑟]           (Eq. 30) 

 

Sensitivity analysis 

To initially assess model sensitivity, we used the viral cycle time tcycle, defined as the time to 

produce 1000 virions, as a measure of viral production; the longer the cycle time, the lower the 

viral production.  For single parameter changes (Figure 3 in the main text), individual 

parameters were adjusted via multiplication by a scaling constant (c), which was assigned 

values between 0.001 and 1000 on a logarithmic scale.   

𝑝 = 𝑐𝑝O              (Eq. 31) 

where p0 is the baseline value of the specific parameter.   

 

Pairwise sensitivity analysis was performed using a similar approach to that described in (15), 

where a sensitivity (S) and range (R) value were assigned based on how model output scales 

with changes in parameter values.  To perform the pairwise analysis, we defined viral 

production level by  

𝑣$ 	= 	
"+,+34,6
"+,+34,78

     (Eq. 32) 

where tcycle,0 is the baseline cycle time and tcycle,ij is the cycle time resulting after perturbation of 

the paired parameters.  Parameter combinations were scaled using a constant (c), which was 

assigned values between 0.1 and 1 on a logarithmic scale.  Both parameters were scaled down 

by multiplication with the constant 

𝑝& = 𝑐𝑝&,O                (Eq. 33) 

𝑝P = 𝑐𝑝P,O              (Eq. 34) 

or scaled up by dividing by the same constant value. 

𝑝& =
$7,6
7

                (Eq. 35) 

𝑝P =
$8,6
7

              (Eq. 36) 

 

A sensitivity value was assigned by measuring the change in viral production as a function of 

the change in the parameter values. 

𝑆 = *	?!
* @QR(7)

     (Eq. 37) 
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Thus, S is the slope of the plot of vp versus log(c) (Figure 5A in the main text).  Assigning values 

using Eqs. S30 and S35 resulted in positive values for parameters that inhibited viral production, 

increasing cycle time, and negative values for parameter changes that promoted viral 

production, decreasing cycle time.  The R values were defined as the scale value between the 

maximum and minimum viral production level. 

𝑅 = log(𝑐(𝑣$,<>N)) − log @𝑐C𝑣$,<&)DA = log ;
7S?!,9:;T
7S?!,97#T

=                     (Eq. 38) 

A minimum of a 10% change in viral production was required to assign a value, such that if vp,max	

–	vp,min	£		0.1, then 𝑅 = 1.  We scored pairwise combinations by multiplying the sensitivity value 

by the reciprocal of the range value. 
!
%
= *	?!

* @QR(7)
⋅ =

@QRU
+<=!,9:;>

+?=!,97#@
V
≈ ?!,9:;/?!,97#	

@QR(7(?!,9:;))/@QR(7(?!,97#))
⋅ =
@QR(7(?!,9:;))/@QR(7(?!,97#))

= *	?!
*A@QR	(7)

 (Eq. 39) 

Doing so assured higher scores were assigned to those combinations exhibiting high sensitivity 

over a small range of values, the ideal characteristic for targets of therapeutic intervention.  

Individually, some parameters are insensitive while others are highly sensitive (Figure 3A-C in 

the main text).  Therefore, we sought to assess whether high-scoring pairwise combinations 

were simply the combined effects of two sensitive parameters or if there was some amount of 

cooperativity occurring when both were targeted.  We approximated parameter cooperativity as 

the difference between the pairwise score and the sum of the individual scores according to  

𝐶 = [𝑆 𝑅⁄ ]&P − C[𝑆 𝑅⁄ ]& + [𝑆 𝑅⁄ ]PD        (Eq. 40) 

Thus, cooperative pairs will have a positive value according to Eq. 40, while those that are anti-

cooperative will have a negative value. 

Modeling small molecule inhibitors 

To simulate the effects of a small molecule inhibitor on individual parameters we scaled 

individual parameters (p) according to a Hill-function  

𝑝 = 𝑝O −
$6[W]
XBY[W]

    (Eq. 41) 

where p0	is the baseline value, [D]is the concentration of the theoretical small molecule inhibitor, 

and KD	is the dissociation constant, or the affinity, of the inhibitor for its target parameter.  

Simulated values for KD	are indicated in Figure 4 of the main text.  Inhibitor concentrations were 

varied between 0.01 and 100 μM on a logarithmic scale.   For each case, viral production was 

estimated according to Eq. 32 above.  Levels of inhibition at each concentration come from the 

Hill-function in Eq. 41 and are equal to p/p0	for a given inhibitor concentration and KD	value. 
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Figures: 

 
 
 
 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.05.22.111237doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.111237
http://creativecommons.org/licenses/by-nd/4.0/


 16 

 
Figure 1 - Model for the viral cycle of SARS-CoV-2.  A single SARS-CoV-2 virion bound to 

the membrane of a target cell is internalized via TMPRSS2-mediated cleavage of the spike 

protein (1) followed by endosomal release (2) and uncoating (3) of the viral genome.  Once the 

full-length genome is internalized, host ribosomes bind to open reading frames to translate the 

polypeptides pp1a and pp1ab (4).  Part of pp1a/1ab encodes the main protease (Mpro) involved 

in cleaving the polypeptides into the non-structural proteins that make up the replicase-

transcriptase complex involved in replicating the virus, including the RNA-dependent RNA 

polymerase (RdRp) (5).  (6) The RdRp first creates negative-sense RNA (nRNA) templates from 

the positive-sense genomic RNA (gRNA), which are then used to replicate the full-length gRNA 

as well as sub-genomic messenger RNAs (sgRNA) (7) encoding the structural proteins 

necessary to build the mature virion.  (8) sgRNA is translated by the host ribosomes to make the 

structural spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins.  (9) Multiple N 

proteins bind to the gRNA to package the nucleocapsids.  (10) While initially translated in the 

cytoplasm, S, E, and M proteins are translocated through the endoplasmic-reticulum (ER) and 

ER-Golgi intermediate complex (ERGIC), where buds from the ERGIC eventually encapsulate 

nucleocapsids to form the mature virion (11).  (12) Mature virions are then released into the 

surrounding tissue through exocytosis.  Inset: detailed diagram of steps in transcription and 

translation.  (i) Initially the RdRp or ribosome (enzyme) binds to the primer region of the 

respective RNA segment (substrate).  (ii) Once the primer segment is completed, the substrate 

is released such that it is available for binding to the primer region by another enzyme.  

Meanwhile, the initial enzyme continues with elongation steps, polymerizing the reaction 

product.  (iii) Upon complete polymerization of the product (RNA segment or protein), 

transcription/translation is terminated, and the enzyme and resulting product are released.  

Figure is annotated with example therapeutics to show their approximate point of influence on 

the viral cycle (16, 22, 25, 26).  Examples are not exhaustive.  Color of the text indicates the 

part of the viral cycle each example is associated with.   
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Figure 2 - Baseline parameter values reproduce viral replication consistent with previous 
observations. A) Viral production as a function of time for the baseline parameters shown in 

Table 1.  B)  Concentration as a function of simulated time is shown for multiple species within 

the model.  Specific species of interest are indicated within each subpanel.  Color corresponds 

to the point of the viral cycle indicated in Figure 1.  Letters indicate examples of model output 

that is consistent with experimental observations.  Black text indicates those observations used 

to fit model parameters, while those in gray are observations that naturally occur as outputs of 

the model without parameter adjustment. 
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Figure 3 - Sensitivity analysis reveals parameter targets of high interest. (A-C) Examples 

of insensitive (A), moderate sensitivity (B), and high sensitivity (C) parameters are shown.  

Inset: fold-change in parameter value relative to the baseline value.  Color of the parameter text 

represents the point of the viral cycle indicated in Figure 1.  D) Viral cycle time, estimated as the 

time to produce 1000 virions is shown as a function of varying parameter values.  From left to 

right, parameters are sorted in the order in which they occur in the viral cycle.  Black squares 

indicate parameter values where the model did not produce 1000 virions within 48 hrs.  Figure is 

annotated with example therapeutics from Figure 1 to show their approximate point of influence 

on the model parameters.  Examples are not exhaustive.  NAF - nafamostat; HXQ - 

hydroxychloroquine; ZOT - zotatifin ; TN4 - ternatin-4; 11a/11b - compounds 11a and 11b; REM 

- remdesivir; FAV - favipiravir. 
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Figure 4 - Pairwise sensitivity analysis reveals combinations of high interest.  A) Example 

output used to score sensitivity (S) and range (R) is shown.  S is estimated as the slope of the 

normalized viral production (p) versus the logarithm of the scaling parameter (c).  As a result of 

the analysis approach, viral inhibition (as shown here) results in a positive slope, or S value, 

while promotion of viral production results in a negative S value.  R is the difference between the 

scaling parameter values where maximum and minimum viral production occur. B) Pairwise 

scoring of sensitivity and range (S/R).  Gray boxes indicate the diagonal where only a single 

parameter is scaled.  Relative to the diagonal, the upper-right region is where both parameter 

values were increased, while the lower-left region is where both parameter values were 

decreased.  Bold boxes indicate parameter combinations that eliminated viral production (pmin = 

0).  C)  Cooperative parameter effects are estimated by the difference between the combined 

effect ([S/R]ij) and the sum of the individual effects ([S/R]i	+	[S/R]j).  Since increasing parameter 

values (upper-right) did not result in viral inhibition (B), this region was omitted.  Positive values 

(red) resulted when the combined effect was stronger than the sum of the individual effects.  

Negative values (blue) resulted when the combined effect was weaker than the individual 

effects.  Gray and bold boxes are the same as in B. 
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Tables: 
Table 1- Model parameters 

Parameter Definition Value Source 

𝑘CDE TMPRSS2-mediated cleavage of viral 
spike protein 0.0043 s-1 

Estimated using catalytic 
efficiency of 150,000 M-1s-1 

(23) and assuming 2000 
TMPRSS2 enzymes per cell 

𝑘FGH 
Release of internalized virion from 
endosome 0.005 s-1 Fit to observations in (27)  

𝑘IJ Uncoating of genomic RNA 0.005 s-1 Fit to observations in (27)  

𝑘KLFMN Binding rate of host ribosomes to viral 
RNA 0.5 μM-1s-1 

Estimated using typical 
bimolecular association rate 

of ~106 M-1s-1 (28) and a 10% 
efficiency of initiation (24) 

𝑘OPGQFMN  Stepping rate of host ribosomes 6 aa/s Fit using total number of 
virions per cycle (29)  

𝑘JHGRS Proteolytic cleavage of pp1a and 1ab 0.021 s-1 

Estimated using catalytic 
efficiency of 150,000 M-1s-1 

(23) and steady-state 
concentration of pp1a/1ab 

ℎQQT Half-life of pp1a and 1ab polypeptide 1 hr Approximated from (30)  

𝑘KL
FUFQ Binding rate of RNA-dependent RNA 

polymerase 0.09 μM-1s-1 Fit to data in (31)  

ℎFUFQ Half-life of RNA-dependent RNA 
polymerase 2 hr Fit to viral cycle time (32) 

𝑘OPGQ
FUFQ Stepping rate of RNA-dependent RNA 

polymerase 20 nt/s Fit to data in (31) 

𝑘VJRQ Nucleocapsid packaging rate 0.00001 μM-1s-1 Fit to observations in (32, 33) 

𝑘WXU Budding rate from ERGIC 0.01 μM-1s-1 Fit to observations in (33)  

ℎOE Half-life of structural proteins 30 min (34) 

ℎYFVZ Half-life of positive-sense RNA, 
genomic and sub-genomic 1 hr Approximated from (30) 

ℎLFVZ Half-life of negative-sense RNA 5 min Unstable compared to 
positive-sense RNA (35)  

𝑘J[P\]F Translocation from cytoplasm to ER 0.002 s-1 Fit to observations in (32)  

𝑘]F\]F^_J Translocation from ER to ERGIC 0.002 s-1 Fit to observations in (32)  

𝑘]`K Exocytosis of mature virions 0.0002 s-1 
~ 1 hr to release half of the 
material through exocytosis 

(36) 
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𝜌 Production ratio of genomic RNA:sub-
genomic RNA 0.75 Model-fit 

𝜆 Translation ratio of structural proteins 
(SEM:N) 0.7 (12)  

𝑎 genomic-RNA per nucleocapsid 1 (12) 

𝑏 Nucleocapsid protein (N) per 
nucleocapsid 500 (12) 

𝑐 Spike (S), envelope (E), and 
membrane (M) protein per virion 2320 (12) 

𝑑 Nucleocapsids per virion 2 Approximated based on virion 
size (12) 

𝑙EaMbGaFMN  Primer length for protein translation 3 aa Model-fit based on stepping 
rate, primer step £ 1 s 

𝑙EaMbGa
FUFQ  Primer length for transcription 20 nt Model-fit based on stepping 

rate, primer step £ 1 s 

𝑙YFVZ Length of the full genome 30,000 nt (13, 14)  

𝑙cYFVZ Average length of sub-genomic RNA 1120 nt (14) 

𝑙QQT Length of pp1a and pp1ab segment 6600 aa (13) 

𝑙O]D Average length of the S, E, and M 
structural proteins 354 aa (12, 14)  

𝑙V Length of N structural protein 420 aa (12, 14) 

[𝑅𝑖𝑏]d 
Total ribosome concentration in the 
cell 5 μM 

Fit to the total number of 
virions (29), constrained 
approximating ~106 total 
ribosomes and a host cell 

volume of ~1000 μm3 (30, 37) 
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