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Epigenetic modulation reveals differentiation state
specificity of oncogene addiction
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Hyperactivation of the MAPK signaling pathway motivates the clinical use of MAPK inhibitors

for BRAF-mutant melanomas. Heterogeneity in differentiation state due to epigenetic plas-

ticity, however, results in cell-to-cell variability in the state of MAPK dependency, diminishing

the efficacy of MAPK inhibitors. To identify key regulators of such variability, we screen 276

epigenetic-modifying compounds, individually or combined with MAPK inhibitors, across

genetically diverse and isogenic populations of melanoma cells. Following single-cell analysis

and multivariate modeling, we identify three classes of epigenetic inhibitors that target dis-

tinct epigenetic states associated with either one of the lysine-specific histone demethylases

Kdm1a or Kdm4b, or BET bromodomain proteins. While melanocytes remain insensitive, the

anti-tumor efficacy of each inhibitor is predicted based on melanoma cells’ differentiation

state and MAPK activity. Our systems pharmacology approach highlights a path toward

identifying actionable epigenetic factors that extend the BRAF oncogene addiction paradigm

on the basis of tumor cell differentiation state.
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Therapeutic inhibition of oncogenic signaling often leads to
variable responses due to cell-to-cell heterogeneity in the
state of oncogene dependency1. Heterogeneity may result

from secondary genetic mutations, or may be caused by epige-
netic differences associated with a cell’s developmental lineage or
differentiation state2–10. An example of such epigenetic hetero-
geneity is observed in BRAF-mutated melanomas, causing frac-
tional responses to Braf/Mek-targeted therapies11–23. Numerous
studies have associated fluctuations in the state of MAPK
dependency to melanoma differentiation state plasticity6,18,24–27.
Such plasticity spans a spectrum, ranging from a pigmented
melanocytic phenotype associated with transcriptional regulators
Sox10 and Mitf28, to a neural crest-like state that expresses
Ngfr12,29, to an undifferentiated state characterized by high
expression of receptor tyrosine kinases such as Axl19,30. Mela-
noma tumors consist of a mixture of these phenotypes at variable
single-cell frequencies25. Although the consequences of such
heterogeneities for drug resistance are widely recognized, there is
still little known about actionable epigenetic factors that may link
heterogeneity in the state of MAPK dependency to plasticity in
differentiation state. A system-wide exploration of these factors
may reveal novel opportunities for epigenetic treatments that will
minimize the emergence of drug resistance. In principle, identi-
fying epigenetic treatments that promote cellular requirement for
MAPK signaling may enhance the efficacy of Braf/Mek inhibitors
when used in combination12,31–33. Alternatively, treatments that
target synthetic lethal partners of the BRAF oncogene may serve
as a strategy to kill intrinsically drug-resistant cells34.

In this paper, we take a systems pharmacology approach to test
the hypothesis that heterogeneity in the state of MAPK depen-
dency may result from a subset of key epigenetic variations across
tumor cells of heterogeneous differentiation states. To identify the
regulators of such variations, we use a library of 276 small-
molecule epigenetic modulators in BRAF-mutant melanoma cell
lines that cover a wide spectrum of differentiation states. We
evaluate the effect of each epigenetic modulator (individually and
in combination with Braf/Mek inhibitors) on cell survival, pro-
liferation, differentiation state, and MAPK activity. Integrating
multiplexed single-cell analysis with multivariate modeling and
genetic experiments, we identify three classes of small molecules
that target seemingly distinct epigenetic states in melanoma cells.
These states include: (i) a lysine demethylase 1A (Kdm1a)-
dependent state, predominantly observed in undifferentiated cells,
that is efficiently inhibitable by the reversible Kdm1a inhibitor
SP2509, (ii) a lysine demethylase 4B (Kdm4b)-dependent state,
associated with neural crest-like cells, that is sensitive to JIB-04 (a
pan-inhibitor of Jumonji histone demethylases), and (iii) a state
induced by BET bromodomain inhibitors such as OTX015 (Bir-
abresib), which enhances cells’ requirement for MAPK signaling.
Single-cell analysis shows that these states might co-exist in dif-
ferent combinations and frequencies, highlighting mutual epige-
netic vulnerabilities among genetically diverse melanoma cell
populations. Importantly, non-transformed primary melanocytes
are not sensitive to these inhibitors. These results, therefore,
provide a path for identifying actionable epigenetic factors that
may extend the BRAF oncogene addiction paradigm on the basis
of tumor cell differentiation state.

Results
Single-cell analysis uncovers heterogeneities in differentiation,
proliferation, and signaling states. To elucidate single-cell het-
erogeneities in differentiation state and their variations across
melanoma cell populations, we utilized high-throughput, multi-
plex immunofluorescence microscopy. We exposed a panel of 16
BRAFV600E/D melanoma cell lines and a batch of non-

transformed human primary epidermal melanocytes to the Braf
inhibitor vemurafenib (at 100 nM), alone or in combination with
the Mek inhibitor trametinib (at 10 nM). For the purpose of
comparison, we also included an NRASQ61K-mutated variant of
the A375 cell line, representing a common mechanism of
acquired resistance to Braf/Mek inhibitors35. All cells were fixed
following 3–5 days of treatment and protein levels of three vali-
dated differentiation state markers, Mitf, Ngfr, and Axl (Supple-
mentary Fig. 1), were quantified at a single-cell level
(Supplementary Figs. 2, 3). To visualize baseline and treatment-
induced variations in all three markers, we performed t-dis-
tributed stochastic neighbor embedding (t-SNE) analysis on a
total population of 6069 randomly selected cells from all of the
102 tested conditions, covering the entire panel of cell lines, drugs
and timepoints (Fig. 1a, Supplementary Fig. 4a, b). Single-cell
analysis revealed a continuum of differentiation states ranging
from MitfHigh to NgfrHigh to AxlHigh cells. We then used the t-
SNE map as a reference to visualize differentiation state variations
in isogenic cell populations from each cell line (Fig. 1b, Supple-
mentary Fig. 4c, d). We also quantified the extent of heterogeneity
in each marker by computing the Fano factor, a standardized
measure of dispersion of probability distribution (Supplementary
Fig. 5). To assess the combined effect of heterogeneity in all three
differentiation markers, we determined the average cell-to-cell
distance in each cell population (Supplementary Fig. 6). All clonal
cell lines exhibited a high degree of heterogeneity in at least one of
the differentiation markers and most cell lines expressed sub-
stantial plasticity following exposure to Braf/Mek inhibitors.
Interestingly, non-transformed melanocytes also exhibited het-
erogeneity at a level comparable to melanoma cell lines, sug-
gesting that plasticity in differentiation state is not unique to
cancer cells.

Because proliferation of BRAF-mutant cells is attributed to their
aberrant MAPK signaling, we asked whether heterogeneity in
differentiation state was associated with potentially distinct
patterns in MAPK signaling. We thus multiplexed single-cell
immunofluorescence measurements of p-ErkT202/Y204, Ki67 (a
proliferation marker), and p-S6S235/S236 (a marker of TORC1
activity that is upregulated in MAPK inhibitor-tolerant cells36) in
the same group of cell lines exposed to the same Braf/Mek
inhibitors for 3–5 days (Supplementary Figs. 7, 8). Fano factor, cell-
to-cell distance, and t-SNE analysis also revealed substantial
variability in MAPK signaling (Fig. 1c, d, Supplementary Figs. 9,
10). While vemurafenib led to partial inhibition of MAPK signaling
relative to drug-naive cells, the combination of vemurafenib and
trametinib suppressed the pathway more strongly and drove a
larger proportion of cells toward a fully inhibited (p-ErkLow/p-
S6Low/Ki67Low) state (Fig. 1d). The fraction of fully inhibited cells,
however, varied among cell lines. We hypothesized that such
variability in MAPK signaling would explain differences in the
overall MAPK inhibitor sensitivity and might be related to
heterogeneity in melanoma differentiation state.

To compare the overall Braf/Mek inhibitor sensitivity among
cell lines, we computed drug-induced normalized growth rates
(a.k.a. DIP rates37) by normalizing the average net growth rate of
each cell line in the presence of each drug to that in DMSO-
treated cells (Fig. 1e, f and Supplementary Fig. 11a). By
correlating normalized growth rates to the state of MAPK
signaling across 16 cell lines, we identified a strong correlation
between the fraction of fully inhibited (p-ErkLow/p-S6Low/
Ki67Low) cells and the overall sensitivity to Braf/Mek inhibitors
(Pearson’s r=−0.65, P= 4.3 × 10–9) (Supplementary Fig. 11b
and Fig. 1g; top left panel). We next extended the systematic
correlation analysis to the diversity of differentiation states. We
discovered that upon Braf/Mek inhibition, predominantly
undifferentiated (AxlHigh) cell lines generated the smallest
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Fig. 1 Single-cell analysis uncovers heterogeneities in melanoma differentiation, proliferation, and MAPK signaling states across a wide range of Braf/
Mek inhibitor sensitivity. a, b Single-cell protein levels of three melanoma differentiation state markers, Mitf, Ngfr, and Axl, measured by multiplexed
immunofluorescence microscopy and overlaid on t-SNE plots. Cells were exposed to either vehicle (DMSO), Braf inhibitor (vemurafenib at 100 nM), or the
combination of Braf and Mek inhibitors (vemurafenib at 100 nM and trametinib at 10 nM) for 3 and 5 days. Cells for each experimental condition were
randomly selected from the pool of two biologically independent replicates. Single-cell t-SNE maps for all cell lines combined (a) and projections of
variation within each individual cell line (b) are shown. c, d Single-cell protein levels of p-ErkT202/Y204, p-S6S235/S236, and Ki67, measured by multiplexed
immunofluorescence microscopy and overlaid on t-SNE plots. Treatment conditions are the same as in (a, b). Single-cell t-SNE maps for all cell lines
combined (c) and projections of variation within each individual cell line (d) are shown. e Average net growth rates calculated from measurements of live
cell count (across at least two biologically independent replicates) at three timepoints (including 0, 3, and 5 days) following exposure to DMSO,
vemurafenib (at 100 nM) or vemurafenib (at 100 nM) plus trametinib (at 10 nM). f Drug-induced normalized growth rates (a.k.a. DIP rates) calculated by
dividing the average net growth rate for drug-treated cells to that for DMSO-treated cells in each cell line. Normalized growth rates <0 indicate a net cell
loss (i.e., drug-induced cytotoxicity), a value of 0 represent no change in viable cell number (i.e., cytostasis), a value >0 indicates a net cell gain, and a value
of 1 represents no drug effect as cells grow at the same rate as in the DMSO condition. g Two-sided Pearson’s correlation analysis between the fraction of
p-ErkLow/p-S6Low/Ki67Low cells (referred to as fully inhibited cells) and drug-induced normalized growth rate (top left), the fraction of undifferentiated
(NgfrLow/AxlHigh) cells (top right), the fraction of neural crest-like (NgfrHigh/AxlLow) cells (bottom left), and the fraction of melanocytic (MitfHigh) cells
(bottom right) across 16 melanoma cell lines treated with Braf/Mek inhibitors for 3 and 5 days. Source data are provided as a Source data file.
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populations of fully inhibited cells (Supplementary Fig. 11b and
Fig. 1g; top right panel). Braf/Mek inhibitor resistance in these
cells was associated with a high frequency of proliferating
(Ki67High) cells exhibiting incomplete inhibition of the MAPK
pathway. In contrast, populations of neural crest-like (NgfrHigh/
AxlLow) cells or differentiated (MitfHigh) cells exhibited sub-
stantial co-inhibition of p-Erk, p-S6, and Ki67 (Supplementary
Fig. 11b and Fig. 1g; bottom panels). Drug adaptation in these
populations was, therefore, associated with an overall reduced
requirement for MAPK signaling.

Together, these analyses revealed a spectrum of heterogeneities
in melanoma differentiation state that corresponded to two
previously described but distinct ways through which cells may
tolerate the effect of Braf/Mek inhibition: (1) incomplete
inhibition of the MAPK pathway (as seen in AxlHigh cells), and
(2) reduced requirement for MAPK signaling (as seen predomi-
nantly in NgfrHigh/AxlLow cells).

A chemical screen identifies epigenetic modulators of pheno-
typic heterogeneity. To systematically search for epigenetic fac-
tors that may link heterogeneity in melanoma differentiation state
to MAPK dependency, we performed a multi-stage phenotypic
screen using a library of 276 epigenetic-modifying compounds.
Each compound was used to modulate either a key epigenetic
writer, eraser or reader, or a related protein, after which pheno-
typic responses in the presence or absence of Braf/Mek inhibitors
were investigated. For the first stage of the screen, we selected
COLO858 and MMACSF cell lines which show distinct patterns
of differentiation states (Fig. 2a). Cells from both cell lines were
initially exposed to two different doses (0.2 and 1 μM) of each of
the 276 epigenetic compounds or vehicle (DMSO) for 24 h.
Vemurafenib alone (at 100 nM), vemurafenib in combination
with trametinib (at 10 nM), or vehicle (DMSO), was then added
and cells were grown for a further 72 or 120 h prior to fixation
(Fig. 2b and Supplementary Tables 1, 2). To differentiate the
impact of epigenetic compounds, the growth rates for cells treated
with each compound were compared to cells treated without any
epigenetic treatment. Statistical analysis identified 58 compounds
that led to a significant decrease in normalized growth rate in at
least one of the tested conditions (Supplementary Figs. 12, 13).

To infer potential variations in the mechanisms of action of the
epigenetic compounds, we co-stained cells for p-ErkT202/Y204, p-
RbS807/S811, and Mitf, quantifying changes induced by each of the
58 compounds in MAPK signaling, cell cycle progression, and
differentiation state, respectively. Unsupervised clustering of the
normalized responses revealed remarkable similarities among
classes of compounds with common nominal epigenetic targets,
suggesting that these responses are most likely the consequence of
their on-target effects (Fig. 2c and Supplementary Fig. 14a). Each
class of compounds induced responses that were either cell line-
or MAPK inhibitor-specific, or common between both cell lines,
or independent of MAPK inhibitor condition. For example,
CUDC-907 (Fimepinostat), Quisinostat, Panobinostat, Dacino-
stat, and Trichostatin A were identified as a cluster of histone
deacetylase (HDAC) inhibitors (labeled as group 1 in Fig. 2c) that
significantly reduced growth rate in both COLO858 and
MMACSF cells to similar degrees and independent of the MAPK
inhibitor conditions (Supplementary Fig. 14b). In contrast,
Kdm1a inhibitors inhibited net growth rate selectively in
COLO858 cells, and they showed a higher efficacy in the absence
of Braf/Mek inhibitors.

Correlated patterns of melanoma responses to mechanistically
distinct epigenetic inhibitors. To identify potential relationships
between the efficacy of each class of epigenetic compounds, we

analyzed their effects across a more diverse group of cell lines.
Thus, in the second stage of the screen, we focused on seven
epigenetic inhibitors representing the most effective classes
(including HDAC inhibitors CUDC-907 and Givinostat, pan-
Jmj-KDM inhibitor JIB-04, Tankyrase inhibitor AZ6102, BET
inhibitors I-BET762 and OTX015, and Kdm1a inhibitor SP2509)
and a group of eight cell lines representing a wider spectrum of
differentiation states (Fig. 3a, b). By testing each compound in
non-transformed human primary melanocytes, we chose effective
concentrations of each inhibitor that had little to no effect on
healthy cells (Supplementary Fig. 15). To quantify the benefit
resulting from combining each of the epigenetic inhibitors with
vemurafenib and trametinib, we computed the deviation from
Bliss independence (DBI), a metric that compares the observed
cellular response to the combination treatment with that expected
given independent action for the two individual treatments38.
We found that the HDAC inhibitor CUDC-907 induced sub-
stantial tumor cell killing in all of 8 melanoma cell lines and
exhibited additive (independent) to synergistic responses when
combined with vemurafenib and trametinib in 6 cell lines
(Fig. 3b, c). Treatment with the other 6 epigenetic compounds
uncovered more heterogeneous patterns of response across cell
lines and MAPK inhibitor conditions. For example, BET
inhibitors OTX015 and I-BET762 were not effective in any of the
cell lines when used as a single agent, but they induced strong
cytotoxic and synergistic responses in combination with vemur-
afenib and trametinib in the majority of cell lines. SP2509, on the
other hand, was effective in 5 cell lines, while exhibiting antag-
onism in combination with vemurafenib and trametinib in all
cell lines.

To systematically explore potential relationships between
patterns of responses to epigenetic inhibitors, we computed all
pairwise correlations between the efficacy of seven epigenetic
compounds across the eight cell lines (Fig. 3d). As expected, the
efficacy of two BET inhibitors, OTX015 and I-BET762, was
strongly correlated (Pearson’s r= 0.99, P < 10−4). In addition, the
efficacy of BET inhibitors and the pan-Jmj-KDM inhibitor JIB-04
was positively correlated when cells were co-treated with
vemurafenib plus trametinib (r= 0.85, P < 10−3). In contrast, a
negative correlation was observed between the efficacies of JIB-04
and SP2509. We thus asked whether such correlations would be
maintained if these compounds were assayed across a larger panel
of cell lines. By expanding the analysis to a total of 16 cell lines,
we confirmed the statistical significance of the negative correla-
tion between responses to SP2509 and JIB-04 (Fig. 4a). In more
than half of the cell lines tested, 5 days of treatment with SP2509
induced substantial cell killing (Fig. 4b and Supplementary
Fig. 16a). SP2509 sensitivity correlated with sensitivity to SP2577
(seclidemstat; a clinical formulation of SP2509), which also
suppressed melanoma cell growth (when used at a daily dose of
80 mg kg−1) in corresponding melanoma xenografts (Supple-
mentary Fig. 16b-d). Interestingly, however, cell lines with the
highest level of resistance to SP2509 and SP2577 were sensitive to
JIB-04, showing a range of responses from cytostatic to cytotoxic
(Fig. 4a–c, Supplementary Fig. 16a). The triple combination of
JIB-04, vemurafenib, and trametinib led to additive (independent)
to synergistic cell killing in most JIB-04-sensitive cell lines,
whereas the combination of SP2509 with Braf/Mek inhibitors was
antagonistic in all SP2509-sensitive cell lines (Fig. 4c). When
combined with vemurafenib and trametinib, both BET inhibitors
OTX015 and I-BET762 also induced synergistic cell killing in
most of the JIB-04-sensitive cell lines, while having minimal
effects when used as a single agent. To determine if the epigenetic
inhibitor effects persisted with long-term exposure, we extended
the duration of growth inhibition assays. We found that the
optimal epigenetic treatments identified for three of the MAPK
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inhibitor-resistant cell lines were highly efficacious, resulting in
reduction of up to 1000-fold in live cell count over a period of
20 days (Fig. 4d).

Together, our multi-stage epigenetic screen and systematic
correlation analysis identified a set of seemingly distinct
epigenetic states whose inhibition, either by the Kdm1a inhibitor

SP2509, or by the pan-Jmj-KDM inhibitor JIB-04 or BET
inhibitors (when used in combination with Braf/Mek inhibitors),
led to tumor cell killing in a melanoma cell line-specific manner.
Next, we asked whether such cell line-specific patterns of
response may be linked to heterogeneity in MAPK signaling,
proliferation, and differentiation states.
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Multivariate modeling identifies predictors of epigenetic
inhibitor efficacy. To determine whether molecular markers of
differentiation state, MAPK activity, or other phenotypic markers
could predict the differential efficacy of epigenetic treatments, we
measured both baseline levels and treatment-induced variations
in Mitf, Ngfr, Axl, Sox10, p-ErkT202/Y204, p-S6S235/S236, and Ki67
across eight melanoma cell lines. Given the possible contribution
of epigenetic histone modifications in DNA damage repair39, we
also included phosphorylated Histone p-H2A.XS139 (a marker of
DNA damage response) in our analysis. Multiplexed immuno-
fluorescence measurements revealed how multiple protein mar-
kers were up- or downregulated depending on the cell line,
MAPK inhibitor condition, and epigenetic treatment (Fig. 5a).
We then used partial least square regression (PLSR) analysis40 to
generate models that linked epigenetic treatment-induced chan-
ges in growth rates (response variables) to input vectors that
combined baseline and treatment-induced changes in signaling
and phenotypic data. Models were evaluated using leave-one-out
cross-validation (Supplementary Fig. 17a). Overall, PLSR models
built for JIB-04, SP2509, I-BET762, and OTX015 proved
remarkably accurate with an average Pearson’s correlation coef-
ficient of 0.85 ± 0.06 between the measured and predicted
responses (Fig. 5b and Supplementary Fig. 17b).

To identify those measurements that are predictive of treatment
efficacy, we computed the variable importance in the projection
(VIP) scores for each PLSR model41 (Fig. 5c and Supplementary
Fig. 17c). Among the most important determinants of treatment
efficacy were the baseline differentiation state markers Axl and
Ngfr as well as measurements of MAPK activity, including p-Erk,
p-S6, and Ki67. Informed by the PLSR results, single-cell analysis
across the entire panel of cell lines showed that SP2509 was most
effective in inhibiting NgfrLow/AxlHigh populations of cells (Fig. 5d;
left panels). In contrast, NgfrHigh/AxlLow populations were
sensitive to the triple combination of JIB-04, vemurafenib, and
trametinib (Fig. 5d; right panels). In addition, BET inhibitors I-
BET762 and OTX015 (when combined with Braf/Mek inhibitors)
enhanced tumor cell killing most significantly in populations of
MitfLow/AxlLow cells (Supplementary Fig. 17d). Interestingly,
global changes in differentiation state markers induced by 5 days
of treatment with neither of the epigenetic compounds were
identified as statistically significant by PLSR models. Single-cell
analysis of SP2509-sensitive cells (e.g., A375 and A375-
NRASQ61K), however, revealed partial downregulation of Axl
and upregulation of Mitf following treatment with SP2509, which
is in agreement with the possibility that AxlHigh/MitfLow cells
are being selectively eliminated by SP2509 (Supplementary
Fig. 18a). In contrast, for cell lines that were sensitive to the
combination of JIB-04, vemurafenib, and trametinib (e.g.,

MMACSF and WM115), we observed partial reduction of the
frequency of NgfrHigh cells when they were treated with the triple-
drug combination in comparison with cells treated with
vemurafenib and trametinib only (Supplementary Fig. 18b, c).

Together, these data reveal how correlated patterns of
responses to SP2509, JIB-04, and BET inhibitors are linked to
the state of MAPK signaling and differentiation state. Cells in
undifferentiated and neural crest-like states represent two
different forms of MAPK inhibitor tolerance observed at variable
frequencies across most melanoma tumors. Their selective
sensitivity to the identified epigenetic inhibitors, therefore,
supports the hypothesis that there are epigenetic features
associated with melanoma differentiation state that may be
linked to their state of Braf/MAPK dependency.

Kdm4b and Znf217 protein levels predict differentiation state-
specific sensitivity to JIB-04 and SP2509. We sought to utilize
our knowledge of interactions between JIB-04 and SP2509 and
their protein targets to better understand the origins of their
selective efficacy in melanoma cells. JIB-04 is known as a pan-
inhibitor of Jmj-KDMs, suppressing the activities of Kdm4a,
Kdm4b, Kdm5a, and Kdm5b, all with IC50’s < 0.5 μM42. We thus
asked which of the Jmj-KDM proteins targeted by JIB-04 might
explain its inhibitory effect on melanoma cells. We first depleted
each of Kdm4a, Kdm4b, Kdm5a, and Kdm5a proteins in two JIB-
04-sensitive cell lines (WM115 and WM902B) and one JIB-04-
resistant cell line (A2058) using four target-specific siRNAs
combined into a single pool (Supplementary Fig. 19). Only
depletion of Kdm4b in WM115 and WM902B cells led to a sta-
tistically significant decrease in live cell count and enhanced cells’
sensitivity to the combination of vemurafenib and trametinib
(Fig. 6a). To rule out the possibility of off-targeting by
KDM4B siRNAs, we then examined the effects of three con-
stituent KDM4B siRNAs independently. All individual siRNAs
reduced Kdm4b expression and cell viability in both WM115 and
WM902B, while having no impact on Kdm4a expression in these
cell lines (Supplementary Fig. 20a, b). A2508 cells, on the other
hand, were sensitive to KDM1A knockout by CRISPR using three
independent sgRNAs (Fig. 6b and Supplementary Fig. 20c), which
correlated with their sensitivity to SP2509.

We then asked whether the selective efficacy of SP2509 and
JIB-04 might be explained by the differentiation state-specific
expression of their epigenetic targets. We used mass
spectrometry-based proteomics data for BRAF-mutant melanoma
lines in the Cancer Cell Line Encyclopedia (CCLE)43 to evaluate
possible correlations between the expression of each epigenetic
target and the relative expression of Ngfr and Axl. Since SP2509
acts by blocking Kdm1a interaction with its coactivator Znf21744,

Fig. 2 A chemical screen identifies epigenetic modulators of phenotypic heterogeneity. a t-SNE maps comparing single-cell heterogeneity in
differentiation state (Mitf, Ngfr, and Axl) and MAPK signaling (p-ErkT202/Y204, p-S6S235/S236, and Ki67) within two BRAFV600E melanoma cell lines,
MMACSF and COLO858, following exposure to vehicle (DMSO), vemurafenib (at 100 nM), alone or in combination with trametinib (at 10 nM), for 72 and
120 h. b Log2-normalized changes in live cell count following exposure of COLO858 and MMACSF cells to either DMSO, vemurafenib (at 100 nM), or
vemurafenib (at 100 nM) plus trametinib (at 10 nM), for a period of 120 h. Cells were pretreated for 24 h with either DMSO (top panels) or two different
doses (0.2 and 1 μM) of each of the 276 epigenetic-modifying compounds (bottom panels). Data for treatments without epigenetic modifiers (top panels)
are presented as mean values ± s.d. calculated across n= 276 biologically independent samples examined over 25 independent experiments. Data for
treatments with epigenetic modifiers (bottom panels) are presented as the average of n= 2 biologically independent samples. c A schematic
representation of the overall procedure of data collection, processing (normalization), integration, and hierarchical clustering using measurements of
cellular grow rate, Mitf, p-RbS807/S811, and p-ErkT202/Y204 at indicated treatment conditions and timepoints in MMACSF and COLO858 cells.
Unsupervised clustering analysis was performed on data collected for 58 epigenetic compounds that led to a statistically significant decrease in normalized
growth rate (when used either as a single agent, or in combination with Braf/Mek inhibitors) in either or both cell lines. Prior to clustering, data collected
for cells treated with each epigenetic compound and MAPK inhibitor condition (i.e., DMSO, vemurafenib, or vemurafenib plus trametinib) were normalized
to cells treated without any epigenetic compound and the same MAPK inhibitor condition. Groups of compounds with similar nominal epigenetic targets
are listed on the right side. Source data are provided as a Source data file.
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we also included this protein in our analysis. While Kdm1a
protein levels did not significantly correlate with melanoma
differentiation state (Supplementary Fig. 21a), Znf217 was among
the top 4% proteins that correlated with the expression of Axl
relative to Ngfr (Fig. 6c; left panels). In addition, levels of Kdm4b
(but not other JIB-04 targets) were among the top 0.6% proteins
whose expression was significantly greater in melanoma cell lines
that expressed higher levels of Ngfr relative to Axl (Fig. 6c; right
panels, and Supplementary Fig. 21b). These data suggest that the
relative levels of Kdm4b and Znf217 proteins and differentiation
markers Ngfr and Axl may predict the selective sensitivity of
melanoma cells to JIB-04 and SP2509.

To independently test this hypothesis, we first profiled the
levels of all four proteins across our original panel of 16

melanoma cell lines plus an additional group of 5 cell lines by
immunofluorescence microscopy (Supplementary Fig. 22a-d).
Following single-cell analysis, we performed correlation analyses
similar to those performed using the mass spectrometry data
from CCLE. Our analysis confirmed significant pairwise correla-
tions between the fractions of NgfrLow/AxlHigh cells and
Znf217High cells on one hand and the fractions of NgfrHigh/
AxlLow cells and Kdm4bHigh cells on the other hand (Fig. 6d; top
panels). As expected, the sensitivity of melanoma cell lines to
SP2509 and the combination of JIB-04, vemurafenib, and
trametinib were also correlated with the fractions of Znf217High

and Kdm4bHigh cells, respectively (Fig. 6d; bottom panels). To
further validate the predictivity of these protein markers, we
divided the panel of 21 cell lines into a test set of 14 cell lines and

Fig. 3 Patterns of melanoma responses to mechanistically distinct epigenetic inhibitors. a Epigenetic compounds (and their nominal protein targets)
used in the second stage of the epigenetic compound screen. b Measurements of normalized growth rate induced by each epigenetic inhibitor, when used
either as a single agent (left), in combination with vemurafenib (middle), or in combination with vemurafenib plus trametinib (right), across eight different
BRAF-mutant melanoma cell lines and non-transformed primary melanocytes. Treatment doses for different compounds are as follows: Givinostat
(200 nM), CUDC-907 (20 nM), JIB-04 (200 nM), AZ6102 (1 μM), I-BET-762 (1 μM), OTX015 (0.2 μM), SP2509 (1 μM). Cells were pretreated with the
indicated epigenetic compounds for 24 h and then treated for a period of 3–5 days with either DMSO, vemurafenib (at 100 nM), or the combination of
vemurafenib (at 100 nM) and trametinib (at 10 nM). c Deviation from Bliss Independence (DBI) values was computed across diverse epigenetic inhibitor
treatments in combination with vemurafenib plus trametinib. DBI= 1 represents an independent (additive) effect equal to what is expected for the
combination of drugs that act independently, DBI < 1 represents a combined effect stronger than expected for an independent combination (i.e.,
synergism), and DBI > 1 represents a combined effect weaker than expected for an independent combination (i.e., antagonism). d Two-sided Pearson’s
correlation between the effects (i.e., normalized growth rates) of mechanistically distinct epigenetic inhibitors (used individually or in combination with
vemurafenib or vemurafenib plus trametinib) evaluated across eight BRAF-mutant melanoma cell lines. Source data are provided as a Source data file.
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a validation set of 7 cell lines. We then used the training set to
develop multi-linear regression (MLR) models of treatment
efficacy for SP2509 and JIB-04 using protein levels of Ngfr, Axl,
Kdm4b, and Znf217. The trained models predicted SP2509 and
JIB-04 efficacy in the validation set with high accuracy (Fig. 6e,
Supplementary Fig. 22e). Together, these data demonstrate that
the sensitivity of BRAF-mutant melanoma cells to SP2509 and
JIB-04 can be predicted based on their differentiation state (Ngfr
versus Axl) and the relative levels of Znf217 and Kdm4b proteins.

Discussion
Lineage-specific epigenetic mechanisms and their reprograming
following oncogene inhibition can generate drug-tolerant states
that diminish the efficacy of cancer-targeted therapies45. In

BRAF-mutant melanomas, comparable states tolerant of MAPK
inhibition have been associated with variations in differentiation
state. Through high-throughput profiling of human melanoma
cell lines, we uncovered recurrent patterns of differentiation state
heterogeneity that are comparable to those previously seen in
patient tumors25. We found that a melanoma cell’s ability to
tolerate Braf/Mek inhibitors was associated with its differentiation
state. Responses of undifferentiated cells were associated with
incomplete inhibition of the MAPK pathway, whereas MAPK-
inhibited neural crest-like cells adapted to treatment by reducing
their requirement for MAPK signaling.

To identify epigenetic features linked to melanoma differ-
entiation states and MAPK dependency, we performed an epi-
genetic compound screen and identified three classes of
compounds that target distinct melanoma cell states associated

Fig. 4 Correlated patterns of sensitivity to pharmacological inhibition of Kdm1a, Jmj-KDMs, and BET proteins across 16 BRAF-mutant melanoma cell
lines. a Two-sided Pearson’s correlation between the effects (i.e., normalized growth rates) of Kdm1a inhibitor SP2509 (at 1 μM), Jmj-KDM inhibitor JIB-04
(at 200 nM), BET inhibitors OTX015 (at 200 nM), and I-BET762 (at 1 μM), used individually or in combination with vemurafenib (at 100 nM) plus
trametinib (at 10 nM) and evaluated across 16 BRAF-mutant melanoma cell lines. b Log2-normalized changes in live cell count following exposure of seven
selected melanoma cell lines and non-transformed primary melanocytes to different drugs at indicated doses for a period of 5 days. MMACSF, WM115, and
WM902B cell lines represent cell lines that exhibit high sensitivity to the combination of JIB-04 or BET inhibitors with Braf/Mek inhibitors, while being
resistant to SP2509. A2058, A375, and A375(NRASQ61K) represent cell lines that are highly sensitive to SP2509. HS294T cells show partial sensitivity to
either of the compounds. Data are presented as the average of n= 6 biologically independent samples (in case of MMACSF, WM115, HS294T, A2058,
A375, A375(NRASQ61K) and primary melanocytes), or the average of n= 2 biologically independent samples (in case of WM902B). c Measurements of
normalized growth rate (left) and deviation from Bliss independence (DBI) values computed across diverse epigenetic inhibitor treatments in combination
with vemurafenib plus trametinib. Experimental conditions and the analysis approach are the same as in Fig. 3. d Log2-normalized changes in live cell count
following exposure of three selected melanoma cell lines to different drugs at indicated doses for a period of 20 days. Data are presented as mean values ±
s.d. across n= 4 biologically independent samples. Source data are provided as a Source data file.
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with either one of the lysine-specific histone demethylases Kdm1a
or Kdm4b, or BET proteins. While the survival of non-trans-
formed melanocytes remained unaffected by these compounds,
their cytotoxic efficacy in melanoma cells depended on their state
of MAPK activity and their baseline (drug-naive) differentiation
state. The Kdm1a inhibitor SP2509 was most effective in inhi-
biting undifferentiated populations of cells that were intrinsically
insensitive to Braf/Mek inhibitors, whereas the combination of
SP2509 with Braf/Mek inhibitors led to antagonistic interactions.
This is consistent with a recent finding regarding the role that
Kdm1a may play in disabling BRAFV600E oncogene-induced
senescence34. Kdm1a inhibition may, therefore, require MAPK
signaling to restore senescence in NgfrLow/AxlHigh cells. In con-
trast, NgfrHigh/AxlLow populations of cells exhibited additive to

synergistic responses to the combination of Kdm4b and Braf/Mek
inhibition. BET inhibitors had minimal effect on melanoma cells
when used as a single agent but led to tumor cell killing when
combined with Braf/Mek inhibitors. Together, our systematic
studies extend previous findings about the potential of each of the
epigenetic regulators, Kdm1a, Jmj-KDMs, and BET proteins, as
therapeutic vulnerabilities in melanomas20,34,46 in two com-
plementary ways. First, by associating these vulnerabilities to the
patterns of single-cell heterogeneity in differentiation state, we
explain how they may vary from one tumor to another. Second,
by linking epigenetic vulnerabilities to the state of Braf/MAPK
dependency, we determine whether each epigenetic inhibitor
reaches its maximal efficacy when used as a single agent or when
combined with Braf/Mek inhibitors.

SKMEL28 MMACSF COLO858HS294T WM115 A2058 A375 A375-
NRASQ61K

r = 0.78
P = 2×10-2

r = 0.89
P = 4×10-6

r = -0.59, P = 0.02

< Median

> Median

P = 0.02r = -0.72, P = 0.002

< Median

> Median

P = 0.02

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21784-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1536 | https://doi.org/10.1038/s41467-021-21784-2 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cell-to-cell heterogeneity in the state of oncogene dependency
poses a general challenge to the use of cancer-targeted therapies.
Our systems pharmacology approach provides a promising ave-
nue toward the identification of actionable epigenetic factors that
may extend the oncogene addiction paradigm on the basis of
tumor cell differentiation state. We demonstrate the utility of this
approach in BRAF-mutant melanomas by using JIB-04 and
SP2509, as investigational tools, to block epigenetically diverse
populations of MAPK inhibitor-tolerant cells. We show that the
relative baseline levels of Kdm4b and Znf217 (a Kdm1a coacti-
vator), determine differentiation state-specific sensitivity of mel-
anoma cells to their corresponding inhibitors. In cell lines that
were highly sensitive to SP2509, 3 to 5 days of treatment with
SP2509 reduced the fraction of AxlHigh/MitfLow cells in the tumor
cell population. In contrast, in cell lines that were sensitive to the
combination of JIB-04 and Braf/Mek inhibitors, the frequency of
NgfrHigh cells was only partially reduced following treatment with
the triple-drug combination. A possible explanation for not
observing drastic changes in differentiation state markers after
epigenetic inhibitor treatments may be that the measured Ngfr
and Axl proteins are surrogate markers which, although con-
firmed to be statistically associated with melanoma differentiation
states, are not causally linked to melanoma cell survival12,19.
Therefore, additional studies are required to identify key down-
stream targets of histone demethylases and their interactions with
melanoma differentiation state that make them selectively sensi-
tive to each epigenetic inhibitor. This may be accomplished via a
combination of transcriptomic, proteomic, and epigenomic pro-
filing of melanoma cells of diverse differentiation states following
treatment with each inhibitor in the absence or presence of
MAPK inhibitors. The identification of Kdm4b and Znf217/
Kdm1a, whose knockdown phenocopies the epigenetic inhibitors’
effects, will facilitate such mechanistic studies, e.g., through
rationally designed chromatin immunoprecipitation coupled with
sequencing (ChIP-seq) experiments.

Our data add to a growing body of research18,47–50 showing
that even genetically homogenous populations of tumor cells
consist of subpopulations at diverse differentiation states that are
also different with respect to their state of oncogene dependency.
Stochastic fluctuations in the levels of key proteins from pathways
that have crosstalk with the oncogenic pathway and differentia-
tion state-specific epigenetic modifications represent possibly

related mechanisms that lead to diverse states of drug toler-
ance2,51,52. A quantitative understanding of the key drivers of
such phenotypically consequential epigenetic states at a single-cell
level and uncovering how they are linked to signaling networks
that function in feedback regulation of oncogenic signaling, are
likely key steps to improving the effectiveness and durability of
response to oncogene-targeted therapies.

Methods
Cell lines and reagents. BRAF-mutant melanoma cell lines used in this study were
obtained from the following sources: COLO858 (from ECACC), RVH421 (from
DSMZ), A375, A375(NRASQ61K), C32, A2058, WM115, SKMEL28, HS294T,
WM1552C, HS695T, RPMI7951, SKMEL5, A101D, IGR39, and human adult
primary epidermal melanocytes (all from ATCC), LOXIMV1 (from DCTD Tumor
Repository, National Cancer Institute), MMACSF (RIKEN BioResource Center),
WM902B and WM2664 (from Wistar Institute), UACC62 and SKMEL19 (from
the Cancer Cell Line Encyclopedia). All of the cell lines have been periodically
subjected to re-confirmation by short tandem repeat (STR) profiling by ATCC and
mycoplasma testing by MycoAlertTM PLUS mycoplasma detection Kit (Lonza).
A375, A375(NRASQ61K), A2058, HS294T, A101D, and IGR39 cells were grown in
DMEM with 4.5 g L−1 glucose (Corning, Cat# 10-013-CV) supplemented with 5%
fetal bovine serum (FBS). RPMI7951, SKMEL5, and HS695T cells were grown in
EMEM (Corning, Cat# 10-009-CV) supplemented with 5% FBS. C32, MMACSF,
SKMEL28, and WM115 cells were grown in DMEM/F12 (Gibco, Cat# 11330-032)
supplemented with 1% sodium pyruvate (Invitrogen) and 5% FBS. COLO858,
LOXIMVI, RVH421, SKMEL19, UACC62, WM1552C, and WM902B cells were
grown in RPMI 1640 (Corning, Cat# 10-040-CV) supplemented with 1% sodium
pyruvate and 5% FBS. Primary epidermal melanocytes were grown in Dermal Cell
Basal Medium (ATCC, Cat# PCS-200-030) supplemented with Adult Melanocyte
Growth Kit (ATCC, Cat# PCS-200-042). We added penicillin (50 UmL−1) and
streptomycin (50 μg mL−1) to all growth media.

Small-molecule inhibitors, including a library of 276 epigenetic-modifying
compounds, chemicals used in the follow-up cell-based assays (Givinostat, CUDC-
907, JIB-04, AZ6102, I-BET-762, OTX015, and SP2509), as well as vemurafenib
and trametinib were all purchased from Selleck Chemicals. SP2577 was purchased
from MedChem Express. The complete list of compounds used in this study, their
catalog numbers and purity, as evaluated by HPLC and MS analysis, are presented
in Supplementary Table 1. Compounds used for cell-based studies were dissolved
in the appropriate vehicle (either DMSO or water) at a stock concentration of
10 mM. The vehicle for SP2577 used for in vivo studies is described below.

The following primary monoclonal antibodies (mAb, clone name) and
polyclonal antibodies (pAb) with specified animal sources, catalog numbers,
research resource identifiers (RRID), and dilution ratios, were used in
immunofluorescence staining assays: Mitf (mouse mAb, clone D5, Abcam, Cat#
ab3201, AB_303601, 1:800), p-ErkT202/Y204 (rabbit mAb, clone D13.14.4E, Cell
Signaling Technology, Cat# 4370, AB_2315112, 1:800), Ki67 (mouse mAb, clone
8D5, Cell Signaling Technology, Cat# 9449, AB_2715512, 1:1200), Axl (goat pAb,
R&D Systems, Cat# AF154, AB_354852, 1:400), p-RbS807/S811 (goat pAb, Santa
Cruz Biotechnology, Cat# sc-16670, AB_655250, 1:400), Ngfr (rabbit mAb, clone

Fig. 5 Multivariate modeling identifies differentiation state-specific predictors of epigenetic inhibitor efficacy. a Baseline and treatment-induced
changes in protein measurements of melanoma differentiation state markers (Ngfr, Axl, Mitf, Sox10), MAPK signaling protein modifications
(p-ErkT202/Y204, p-S6S235/S236), a proliferation marker (Ki67), and a DNA damage response marker (p-H2A.XS139), across eight melanoma cell lines
following treatment with the indicated epigenetic compounds, either individually or in combination with vemurafenib, or vemurafenib plus trametinib.
Treatment doses for different compounds are as follows: Givinostat (200 nM), CUDC-907 (20 nM), JIB-04 (200 nM), AZ6102 (1 μM), I-BET-762 (1 μM),
OTX015 (0.2 μM), SP2509 (1 μM), vemurafenib (100 nM), trametinib (10 nM). Protein data shown for each condition represent mean values across three
timepoints and two biologically independent samples and are then z-scored across all cell lines and treatment conditions. b Two-sided Pearson’s
correlation between responses (normalized growth rates) to SP2509 (left) or JIB-04 in combination with vemurafenib and trametinib (right), measured for
each of the eight melanoma cell lines (x-axis) and corresponding responses predicted by partial least square regression (PLSR) modeling following leave-
one-out cross-validation (y-axis). c PLSR-derived variable importance in the projection (VIP) scores, highlighting combinations of protein measurements at
the baseline (shown in red), following epigenetic inhibitor treatment (shown in blue), or the ratio of change induced by each epigenetic compound (shown
in black), that are predictive of efficacy for SP2509 (left) and JIB-04 in combination with vemurafenib and trametinib (right). The sign of VIP score shows
whether the change in variable correlated negatively or positively with the treatment-induced response. Only VIP scores of greater than 1 or smaller
than −1 with a statistically significant Pearson’s correlation (P < 0.05) are highlighted. d Two-sided Pearson’s correlation analysis between the baseline
fractions of NgfrLow/AxlHigh cells and measurements of normalized growth rate in response to SP2509 when used as a single agent (left), and between the
baseline fractions of NgfrHigh/AxlLow cells and response to JIB-04 in combination with vemurafenib and trametinib (right), across 16 BRAF-mutant
melanoma cell lines. The significance of differences between normalized growth rates was also evaluated based on two-sided Mann–Whitney U-test. For
this test, 16 cell lines were divided into two groups of eight based on whether the measured variable had a value above or below the median. Data for each
group were then presented using box-and-whisker plots, on which the central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to 1.5× the interquartile range as a measure of variance, and datapoints outside the range
are plotted individually with asterisks. Source data are provided as a Source data file.
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D4B3, Cell Signaling Technology, Cat# 8238, AB_10839265, 1:1600), p-S6S235/S236

(rabbit mAb, clone D57.2.2E, Cell Signaling Technology, Cat# 4851, AB_10695457,
1:400), Sox10 (mouse mAb, clone SOX10/991, Abcam, Cat# ab212843,
AB_2889150, 1:1200), p-H2A.XS139 (rabbit mAb, clone EP854(2)Y, Abcam, Cat#
ab195188, AB_2889151, 1:700), Kdm1a (rabbit mAb, clone C69G12, Cell Signaling
Technology, Cat# 2184, AB_2070132, 1:1600), Kdm4a (rabbit mAb, clone C37E5,
Cell Signaling Technology, Cat# 5328, AB_10828595, 1:100), Kdm4b (rabbit mAb,
clone D7E6, Cell Signaling Technology, Cat# 8639, AB_11140642, 1:100), Kdm5a
(rabbit mAb, clone EPR18651, Abcam, Cat# ab194286, AB_2889152, 1:1600),
Kdm5a (rabbit mAb, clone EPR12704, Abcam, Cat# ab181089, AB_2889153,
1:100), and Znf217 (rabbit pAb, Thermo Fisher Scientific, Cat# 720352,
AB_2716919, 1:200). The following secondary antibodies with specified sources
and catalog numbers were used at a 1:2000 dilution: anti-rabbit Alexa Fluor 488
(Thermo Fisher, Cat# A21206, AB_2535792), anti-mouse Alexa Fluor 647
(Thermo Fisher, Cat# A31571, AB_162542), anti-goat Alexa Fluor 568 (Thermo
Fisher, Cat# A11057, AB_2534104), anti-mouse Alexa Fluor 568 (Thermo Fisher,
Cat# A10037, AB_2534013), and anti-rabbit Alexa Fluor 647 (Thermo Fisher, Cat#
A31573, AB_2536183).

Immunofluorescence staining, quantitation, and analysis. Cells in 96-well plates
were fixed in either 4% paraformaldehyde (PFA) for 20 min at room temperature
or 100% ice-cold methanol for 15 min at −20 °C. Cells were then washed with PBS,
permeabilized in methanol (in cases where they were fixed with 4% PFA) for
10 min at −20 °C, rewashed with PBS, and blocked using Odyssey blocking buffer
(LI-COR Biosciences) for 1 h at room temperature. Cells were incubated overnight
(~16 h) at 4 °C with primary antibodies in Odyssey blocking buffer. The following
day, cells were washed three times with PBS supplemented with 0.1% Tween-20
(Sigma-Aldrich) (PBS-T) and incubated for 1 h at room temperature with the
secondary rabbit, goat, or mouse antibodies. Cells were then washed twice with
PBS-T, once in PBS, and then incubated with Hoechst 33342 (Thermo Fisher, Cat#
H3570, 1:20,000) for 20 min at room temperature. Cells were washed twice with
PBS and imaged with a ×10 objective using the ImageXpress Micro Confocal High-
Content Imaging System (Molecular Devices) or the Operetta CLS High-Content
Imaging System (Perkin Elmer). A total of nine sites were imaged per well.
Background subtraction was performed with ImageJ. Image segmentation and
quantification of signal intensities in the whole cell, nucleus, cytoplasm, or the
nucleus/cytoplasm (N/C) ratio were performed with CellProfiler53. Population-
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average and single-cell data were analyzed using MATLAB 2019b. By generating
histograms of single-cell data across a variety of conditions for each protein (X),
including positive and negative controls, we identified an appropriate binary gate,
based on which the percentage of XHigh versus XLow cells in each condition was
quantified.

Single-cell analysis and dimensionality reduction. To visualize single-cell het-
erogeneities in a two-dimensional space, we used a population of 6069 cells
assembled following random selection of 60 individual cells (or fewer in the case of
the highly drug-sensitive C32 cell line, for which <60 cells survived following
treatments with the combination of vemurafenib and trametinib) from each of the
102 tested conditions, covering the entire panel of 17 cell lines, 3 drugs (DMSO,
vemurafenib alone, and vemurafenib plus trametinib) and 2 timepoints. Log-
transformed single-cell data for multiplexed measurements of differentiation state
markers, Mitf, Ngfr and Axl, and for multiplexed measurements of MAPK sig-
naling, p-ErkT202/Y204, p-S6S235/S236, and Ki67, were processed by z-scoring (for
each protein measurement) across all 6069 cells, followed by principal component
analysis (PCA) using the MATLAB built-in function pca. Eighty percent of the
variance in the differentiation state single-cell data and 92.5% of the variance in
MAPK single-cell data were captured by the first two principal components (PCs).
We thus performed t-distributed stochastic neighbor embedding (t-SNE) analysis
on the scores from the first two PCs of each of the single-cell datasets by applying
the built-in tsne function in MATLAB 2019b. We used the barneshut algorithm,
learning rate of 1000 for the optimization process, a maximum number of opti-
mization iterations of 2000, perplexity of 480, and exaggeration factor of 4. To
analyze the baseline state and treatment-induced changes in the single-cell behavior
of each cell line, we used the t-SNE map overlaid with the projection of z-scored
single-cell measurements (color-coded between blue and red) for that cell line
while showing data for other cell lines in gray.

To compare baseline and treatment-induced heterogeneities in the expression
of each protein, we evaluated Fano factor (a.k.a. index of dispersion) by computing
the variance-to-mean ratio for single-cell measurements across each population of
cells. To compare single-cell heterogeneity in multiple differentiation state markers
(Mitf, Ngfr, and Axl) simultaneously, we determined the average cell-to-cell
distance by computing the pairwise Euclidean distance among individual cells
(after z-scoring the data for each protein marker), and the mean of all possible
pairwise distances was reported for each population of cells.

Measurements of growth rate, drug sensitivity, and combination effectiveness.
Growth rate inhibition assays were performed in 96-well clear bottom black plates
(Corning, Cat# 3904). Cells were counted using a TC20 automated cell counter (Bio-
Rad Laboratories) and seeded in 200 µl of full growth media at a density of
1200–5000 cells per well, depending on the baseline proliferation rate of each cell
line. Using a D300e Digital Dispenser, cells were treated the next day with small-
molecule compounds at reported doses or vehicle (DMSO). Measurements of live
cell count across multiple timepoints were then used to calculate the net growth rate
for each treatment condition. To measure the number of surviving cells at each
timepoint, cells were fixed in 4% paraformaldehyde for 20min at room temperature.
Cells were washed twice with PBS and incubated with Hoechst 33342 (Thermo
Fisher, Cat# H3570, 1:20,000) for 20min at room temperature. Cells were washed
again with PBS and imaged with a ×10 objective using an ImageXpress Micro
Confocal High-Content Imaging System (Molecular Devices) or an Operetta CLS

High-Content Imaging System (Perkin Elmer). A total of nine sites were imaged per
well. Nuclear segmentation and cell counting was performed using CellProfiler53.

The net growth rate for cells treated with individual compounds (including
MAPK inhibitors or epigenetic inhibitors), or their combination, or vehicle, was
calculated from time-dependent changes in live cell count according to the
following equation:

μ ¼
ln Nt2

Nt1

� �

t2 � t1
ð1Þ

where Nt1 and Nt2 represent the number of cells measured at timepoints t= t1 and
t= t2, respectively, and μ describes the net growth rate of cells during the time
period between t1 and t2. Average net growth rates for each treatment condition
were calculated as the mean of growth rates measured across multiple consecutive
timepoints. To compare drug sensitivity among cell lines while correcting for
differences in their baseline proliferation rates, drug-induced normalized growth
rates (a.k.a. DIP rates37) were computed as follows:

Normalized growth rate DIPð Þ ¼ μdrug
μDMSO

ð2Þ

As shown above, normalized growth rate for cells treated with a specific drug is
calculated by normalizing the average net growth rate measured for drug-treated
cells (μdrug) to that measured for vehicle (DMSO)-treated cells (μDMSO). Normalized
growth rates <0 indicate a net cell loss (i.e., cytotoxicity), a value of 0 represents no
change in viable cell number (i.e., cytostasis), a value >0 indicates a net cell gain (i.e.,
population growth), and a value of 1 represents cell growth at the same rate as in
vehicle-treated (control) cells.

To quantify the benefit resulting from combining two drugs, e.g., an epigenetic
inhibitor (A) with a MAPK inhibitor (B), we evaluated their interactions based on
the Bliss independence model38. We first calculated the fraction of cells affected by
each treatment as follows:

fa ¼
1� DIP

1�minðDIPÞ ð3Þ

where min(DIP) represents the minimum of DIP values reported across all cell
lines and drug treatment conditions in this study. Using fa, we overcome the Bliss
metric limitation for the analysis of unbounded drug effects such as the normalized
growth rates54, while highlighting combined interactions that influence drug
efficacy, a parameter that is affected (more obviously than potency) by cell-to-cell
heterogeneity and the presence of small subpopulations of drug-tolerant cells55. We
then used measurements of fa for individual and combination treatments to
compute the deviation from Bliss Independence (DBI) as follows:

DBI ¼ fa Að Þ þ fa Bð Þ � fa Að ÞfaðBÞ
faðAþ BÞ ð4Þ

where fa(A) and fa(B) represent the fraction of cells affected by each drug
separately, and fa(A+ B) represents that of the combination treatment (A plus B).
Based on this definition, the calculated DBI compares the observed response to that
expected given independent action for the two individual treatments. DBI= 1
represents an independent (additive) effect equal to what is expected for the
combination of drugs that act independently, DBI < 1 represents a combined effect
stronger than expected for an independent combination (i.e., synergism), and DBI
> 1 represents a combined effect weaker than expected for an independent
combination (i.e., antagonism).

Fig. 6 Kdm4b and Znf217 protein levels predict differentiation state-specific sensitivity to JIB-04 and SP2509. a Relative cell viability in WM115 cells
(left), WM902B cells (middle), and A2058 cells (right) following treatment with indicated doses of the combination of vemurafenib and trametinib or
vehicle (DMSO) in the presence of pools of four siRNAs targeting either KDM4A, KDM4B, KDM5A, or KDM5B for 96 h. Viability data for each treatment
condition were normalized to cells treated with DMSO and the non-targeting (control) siRNA. Data are presented as mean values ± s.d. calculated across
n= 3 biologically independent experiments. Statistical significance was determined by two-sided t test. b Relative cell viability in Cas9-positive A2058 cells
following treatment with three different types of KDM1A lentiviral single guide RNA (sgRNA) for 96 h. Viability data were normalized to cells treated with
non-targeting (control) sgRNA. Data are presented as mean values ± s.d. calculated across n= 4 biologically independent experiments. Statistical
significance was determined by two-sided t test. c Two-sided Pearson’s correlation analysis of variations in the difference between Ngfr and Axl protein
levels and Znf217 (left panels) or Kdm4b (right panels) in comparison with the rest of the measured proteome (shown as histograms) across BRAF-mutant
melanoma cell lines. Protein data are extracted from the Cancer Cell Line Encyclopedia (CCLE) proteomics database (measured by multiplexed mass
spectrometry) and z-scored across all of BRAF-mutant melanoma cell lines present in the database. d Two-sided Pearson’s correlation between the
baseline fractions of Znf217High cells and Kdm4bHigh cells and the fractions of NgfrLow/AxlHigh cells (top left), the fractions of NgfrHigh/AxlLow cells (top
right), sensitivity to SP2509 at 1 μM (bottom left), and sensitivity to the combination of JIB-04 (at 0.2 μM), vemurafenib (at 100 nM) and trametinib (at 10
nM) (bottom right), as evaluated by normalized growth rates following 5 days of treatment. Protein data were measured by immunofluorescence
microscopy, quantified following single-cell analysis, and averaged across n= 3 biologically independent samples. e Two-sided Pearson’s correlation
between responses (normalized growth rates) to SP2509 (top) or JIB-04 in combination with vemurafenib and trametinib (bottom), measured for each of
the 21 melanoma cell lines (x-axis) and corresponding responses fitted by multi-linear regression (MLR) analysis of 14 cell lines (training set; shown in
gray) or responses predicted by the trained models for the remaining seven cell lines (validation set; shown in blue or red). Source data are provided as a
Source data file.
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Epigenetic compound screen. COLO858 and MMACSF cells were counted using
a TC20 automated cell counter (Bio-Rad Laboratories) and seeded in 96-well clear
bottom black plates at a density of 2000 and 3000 cells per well (excluding 36 wells
at the edges), respectively. Using the HP D300e Digital Dispenser, cells were treated
the next day with either vehicle (DMSO or water) or two different doses (0.2 and 1
µM) of each of the 276 compounds in an epigenetic compound library. After 24 h,
cells were either fixed or treated with vemurafenib alone (at 100 nM), or vemur-
afenib (at 100 nM) plus trametinib (at 10 nM), or vehicle (DMSO). Cells were then
grown for a further 72 or 120 h prior to fixation. All experimental conditions with
an epigenetic compound treatment (at each dose and timepoint) were tested in two
replicates. Experimental conditions that did not include an epigenetic compound
treatment (i.e., treatments with only vehicle, vemurafenib, or vemurafenib in
combination with trametinib) were repeated in all 96-well plates during the
entire period of compound screening, creating a total of 276 replicates that were
used to evaluate plate-to-plate and day-to-day experimental robustness. To dif-
ferentiate the impact of epigenetic compounds on each cell line at different states of
MAPK signaling, the growth rates for cells treated with each dose of an epigenetic
compound were compared with growth rates for cells treated without any epige-
netic compound, following 72 h and 120 h of exposure to each of the MAPK
inhibitor treatment conditions (i.e., DMSO, vemurafenib, and vemurafenib plus
trametinib). Significant epigenetic compounds were defined as those that led to a
statistically significant decrease in normalized growth rate (with an effect size of at
least 0.5 day−1) in at least one of the tested conditions (i.e., cell lines, timepoints, or
MAPK inhibitor conditions). Statistical significance was evaluated as P < 0.05 based
on two-sample t-test following correction for multiple comparisons using the
Dunn–Sidak method. Additional details about the epigenetic compound screen are
available in Supplementary Table 2.

Hierarchical clustering. To infer potential variations in the mechanisms of action
of the selected group of 58 epigenetic compounds, treatment-induced changes in
growth rate, p-ErkT202/Y204, p-RbS807/S811, and Mitf across different cell lines and
MAPK inhibitor conditions were integrated into a matrix for unsupervised clus-
tering. Growth rates for epigenetic inhibitor conditions were averaged across three
timepoints and two doses of the inhibitor and their differences relative to the time-
averaged growth rate in the absence of any epigenetic compound were used for
each MAPK inhibitor treatment condition (i.e., DMSO, vemurafenib, and
vemurafenib plus trametinib). For p-ErkT202/Y204, p-RbS807/S811, and Mitf, log-
transformed signal intensities (from quantitative immunofluorescence microscopy)
were averaged across three timepoints and two doses of the inhibitor and their
differences relative to the corresponding MAPK inhibitor condition in the absence
of any epigenetic compound were used. Unsupervised hierarchical clustering of the
integrated data was then carried out using MATLAB 2018b with the Correlation
distance metric and the Complete (farthest distance) algorithm for computing the
distance between clusters.

Partial least square regression (PLSR) analysis. We used PLSR analysis17,40,56

to generate models that linked epigenetic treatment-induced changes in normalized
growth rates to baseline and treatment-induced changes in signaling and pheno-
typic data. By combining data for each epigenetic inhibitor across eight cell lines,
we generated one model to predict responses to each epigenetic inhibitor, when
used either individually or in combination with Braf/Mek inhibitors. Response
variables for each model were defined as normalized growth rates (averaged across
3–5 days of treatment) in the absence or presence of that compound (together with
either DMSO, vemurafenib alone, or vemurafenib in combination with trametinib)
across the eight cell lines. Input vectors were constructed by combining mea-
surements of a total of eight proteins (including signaling proteins, differentiation
state and phenotypic markers) at the baseline (i.e., either DMSO, vemurafenib
alone, or vemurafenib in combination with trametinib), following epigenetic
inhibitor treatment (together with either DMSO, vemurafenib alone, or vemur-
afenib in combination with trametinib), and their changes induced by the epige-
netic inhibitor which were computed by taking the ratio of the two sets of
measurements. All protein measurements were performed by quantitative immu-
nofluorescence microscopy, log-transformed, and averaged cross three timepoints
(including 24 h after epigenetic inhibitor or DMSO treatment, followed by 72 and
120 h of MAPK inhibitor or DMSO treatment). The data were then z-scored across
all conditions and cell lines prior to the application of PLSR analysis using the
built-in MATLAB function plsregress.

To evaluate the predictability of the linear relationship between the input and
output variables in each model, we used leave-one-out cross-validation. The
goodness of fit for each model was calculated using R2. Prediction accuracy was
evaluated by Q2 and the P values generated from pairwise Pearson’s correlations
between the measured and predicted responses following cross-validation. For the
assessment of relative variable importance in each PLSR model, the information
content of each variable was assessed by its variable importance in the projection
(VIP)41.

Multi-linear regression (MLR) analysis. To statistically test the hypothesis that
the relative levels of Kdm4b, Znf217, and differentiation state markers Ngfr and
Axl can predict the selective sensitivity of melanoma cells to JIB-04 and SP2509, we

performed MLR analysis using the entire panel of 21 cell lines, which were divided
into a test set of 14 (to tarin models) and a validation set of 7 cell lines (to evaluate
the model performance). To group the cell lines into training and validation sets,
we first sorted the 21 cell lines based on their sensitivity to each compound.
Beginning from the most sensitive or resistant cell line, we picked 2 cell lines for the
training set and 1 cell line for the validation set, then another 2 cell lines for the
training set and 1 cell line for the validation set, etc. We then used the training set
to develop MLR models of treatment efficacy for SP2509 and JIB-04 using protein
levels of Ngfr, Axl, Kdm4b, and Znf217 measured by quantitative immuno-
fluorescence microscopy. Response variables were defined as normalized growth
rates (averaged across 3–5 days of treatment) in the presence of either SP2509 (at
1 µM) or the combination of JIB-04 (at 0.2 µM), vemurafenib (at 100 nM), and
trametinib (at 10 nM). Input vectors were constructed by combining baseline
(drug-naive) measurements of the fractions of NgfrHigh, AxlHigh, Kdm4bHigh, and
Znf217High cells in each cell line. We then used the built-in MATLAB function
regress to return a vector of coefficient estimates for an MLR of the responses to
each treatment condition. These coefficients were then used to predict the
responses of the validation cell lines to each treatment using an input vector
generated for those cell lines. To evaluate the predictability of the models, we
evaluated the relationship between the measured and predicted responses for the
validation set of cell lines using Pearson’s correlation analysis. The goodness of fit
for each model was calculated using R2 of measured versus fitted responses for
models generated using all 21 cell lines.

Gene knockdown by siRNA. In the first round of siRNA-mediated knockdown
experiments, WM115, WM902B, and A2058 cells were seeded in 200 µl of
antibiotic-free growth media in 96-well clear bottom black plates at seeding den-
sities of 3500, 4000, and 1700 cells per well, respectively. After 24 h, cells were
transfected using the DharmaFECT 1 transfection reagent (GE Dharmacon T-
2001-01) with Dharmacon’s ON-TARGETplus Human SMARTpool siRNAs,
including four target-specific siRNAs combined into a single pool to increase the
likelihood of effective gene silencing. The SMARTpool siRNAs included KDM4A
(L-004292-00-0005), KDM4B (L-004290-00-0005), KDM5A (L-003297-02-0005),
KDM5B (L-009899-00-0005), or non-targeting control (D-001810-10-05) and were
used at 25 nM. To rule out the possibility of off-targeting by KDM4B siRNAs, we
then examined separately the effects of three constituent ON-TARGETplus
KDM4B siRNAs (J-004290-08-0005, J-004290-09-0005, J-004290-11-0005) at
25 nM. To evaluate the effect of Braf/Mek inhibition in cells in which either of the
proteins were knocked down, WM115 and WM902B cells were further treated with
vemurafenib (at 100 nM) plus trametinib (at 10 nM) or DMSO 48 h following
siRNA addition. After another 48 h, cells were fixed and analyzed using quanti-
tative immunofluorescence microscopy.

Gene knockout by CRISPR-Cas9. A2058 cells were seeded in a 24-well plate at a
seeding density of 30,000 cells per well for 24 h. The next day, cells were treated at
MOI of 0.3 with the pre-designed Edit-R lentiviral Cas9 nuclease (Dharmacon, Cat#
VCAS10124). Polybrene (at 8 μg/ml) was added to enhance the efficiency of the viral
infection. Following an incubation period of 72 h with the lentivirus, Cas9-lentiviral-
treated cells were selected with blasticidin over a period of 1.5 weeks. Surviving
A2058 Cas9-positive cells were subsequently infected with either non-targeting
control (Dharmacon, Cat# VSGC10216) or three independent KDM1A lentiviral
sgRNAs (Dharmacon, Cat# VSGH10142-246522030, VSGH10142-246999191, and
VSGH10142-246522028). The efficiency of KDM1A knockout and the consequential
changes in cell viability were measured via immunostaining for the Kdm1a protein at
96 h, followed by quantitative immunofluorescence microscopy.

siRNA and sgRNA sequences. All siRNA and sgRNA sequences can be found in
Supplementary Table 3.

In vivo xenograft assays. All mouse experiments were carried out in accordance
with procedures approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of Michigan. Athymic, 5–6 weeks old female nude
(NU/J) mice were purchased from The Jackson Laboratory. Mice were housed
under standard animal housing protocol at the University of Michigan Unit for
Laboratory Animal Care (ULAM) in special containment rooms in individual non-
ventilated cages at an ambient temperature of 74°F with a humidity of 30–70% and
the light-dark cycle of 12 h each. For xenograft tumor injections, mice were first
anesthetized using 3% vaporized isoflurane. 2.5 × 106 cells from either of the
melanoma cell lines A375 or WM2664 suspended in 200 μl of growth factor-
reduced Matrigel (Thermo Fisher, CB-40230C) in PBS (1:1) were injected sub-
cutaneously in the right flank of each mouse. Tumor xenografts were monitored
three times a week with digital calipers. Once the tumors were palpable and the
mean volume across all tumors reached a volume of ~170 mm3, the mice were
randomly allocated to two treatment groups of 5 mice per group. SP2577 (at a daily
dose of 80 mg kg−1) or vehicle (20% DMSO, 20% Cremophor EL, plus 60% sterile
water) was then administered to each mouse via I.P. injection of a solution of
200 μl. Mouse body weight, tumor volume, and general health were monitored
three times a week for 12 days. At the endpoint of the study, mice were euthanized
by CO2 asphyxiation and bilateral pneumothorax.
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Statistics and reproducibility. No statistical method was used to predetermine
sample sizes. Sample sizes were chosen based on similar studies in the relevant
literature. The experiments were not randomized. The investigators were not
blinded to allocation during experiments and outcome assessment. All data with
error bars were presented as mean values ± s.d. or mean values ± s.e.m. as indicated
in figure legends using indicated numbers of biologically independent replicates.
The significance of pairwise correlations among drug response data were evaluated
based on P values associated with the corresponding two-sided Pearson’s corre-
lation analysis (r= correlation coefficient). The statistical significance of the effects
of epigenetic compounds (in the first stage of the screen) was evaluated based on
P < 0.05 generated from two-sided t-test following correction for multiple com-
parisons using the Dunn–Sidak method. To identify the statistical significance of
differences between mean or median of measurements within two different groups,
P values from two-sided t test or two-sided Mann–Whitney U-test were used,
respectively. Statistical significance of the difference in % change in tumor size in
mouse experiments was determined by two-way analysis of variance (ANOVA).
Statistical analyses were performed using MATLAB 2018b and 2019b.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated in this study are included in this published article and its
supplementary information files. Because of the large number and size of raw
immunofluorescence microscopy images associated with this study, all relevant image files
will be made available by hard drive upon reasonable request to the corresponding author.
The Cancer Cell Line Encyclopedia (CCLE) mass spectrometry-based proteomics data
analyzed in this study were downloaded from the depmap project portal (https://depmap.
org/portal/download/). Source data are provided with this paper.

Code availability
All statistical analyses and programming were performed in MTALAB 2018b and 2019b
using built-in functions and parameters as described in detail in “Methods”. Custom
MATLAB scripts for the analysis of drug response, drug combination interactions based
on the Bliss Independence model, t-SNE, PLSR, and MLR analysis are available on
GitHub at the following address: https://github.com/fallahi-sichani-lab/
epigeneticModulationAnalysis.
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