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Abstract
Individualized resistance training (RT) is necessary to optimize training results. A model-based
optimization of loading schemes could provide valuable impulses for practitioners and com-
plement the predominant manual program design by customizing the loading schemes to the
trainee and the training goals. We compile a literature overview of model-based approaches used
to simulate or optimize the response to single RT sessions or to longterm RT plans in terms
of strength, power, muscle mass, or local muscular endurance by varying the loading scheme.
To the best of our knowledge, contributions employing a predictive model to algorithmically
optimize loading schemes for different training goals are nonexistent in the literature. Thus, we
propose to set up optimal control problems as follows. For the underlying dynamics, we use a
phenomenological model of the time course of maximum voluntary isometric contraction force.
Then, we provide mathematical formulations of key performance indicators for loading schemes
identified in sport science and use those as objective functionals or constraints. We then solve
those optimal control problems using previously obtained parameter estimates for the elbow
flexors. We discuss our choice of training goals, analyze the structure of the computed solu-
tions, and give evidence of their real-life feasibility. The proposed optimization methodology is
independent from the underlying model and can be transferred to more elaborate physiological
models once suitable ones become available.

KEYWORDS
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Introduction

Resistance training and model-based approaches

Resistance training (RT) is a popular choice among athletes, rehabilitation patients, or the gen-
eral public to improve physical performance. Benefits of RT include increased muscular strength
and endurance, improved body composition, or enhanced functional capacity and quality of life
[47]. To optimize results, individualized RT is necessary [20]. Therefore, training variables as
exercise selection, frequency, volume, or intensity are adjusted to the trainee and the training
goals. These adjustments are commonly performed by the trainee or a coach via trial-and-error
[18].

To complement such a manual decision-making, many research areas like chemical or me-
chanical engineering have adopted methods from scientific computing, e.g., modeling, simula-
tion, and optimization. For this reason, scientific computing is often considered to be the third
pillar of methodology in science next to theory and experiment [33]. Nevertheless, sport science
and exercise physiology are only slowly realizing the potential of model-based approaches [7].
In particular, applications covering loading schemes for resistance training are very limited. We
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refer to the literature overview in the next section to justify this claim.
A model-based optimization of loading schemes for RT could provide valuable impulses

for practitioners and complement the predominant manual program design. By calibrating the
model to the trainee, individual parameters are obtained. Then, optimized RT programs could
be computed specifically for this trainee, exercise, and training goal based on a key performance
indicator (KPI) accessible in the model. Furthermore, a comparison of effective loading schemes
in practice and algorithmically optimized loading schemes could help to identify the driving
stimuli for adaptations, e.g., the contributions of mechanical loading, metabolic stress, and
muscle damage to hypertrophic adaptations [39] or the effect of different mechanical stimuli on
strength and power adaptations [19]. Moreover, RT programs could be designed to induce the
same level of metabolic disturbances. This would allow to increase the comparability between
training approaches, e.g., between blood flow restriction training and conventional training.

Purpose

In this work, we provide a literature overview of model-based approaches used to simulate or
optimize the response to single RT sessions or to longterm RT plans in terms of strength,
power, muscle mass, or local muscular endurance by varying the loading scheme. To the best of
our knowledge, contributions employing a predictive model to algorithmically optimize loading
schemes for different training goals are nonexistent in the literature. Thus, we propose to set up
optimal control problems as follows. For the underlying dynamics, we use a phenomenological
model of the time course of maximum voluntary isometric contraction (MVIC) force. Then, we
provide mathematical formulations of key performance indicators for loading schemes identified
in sport science and use those as objective functionals or constraints. Those KPIs are the force-
time integral, the time-under-tension (TUT), the accumulated fatigue defined as loss of MVIC
force, and variants thereof. We then solve those optimal control problems using previously
obtained parameter estimates for the elbow flexors. Last, we discuss our results, point out
limitations, and give an outlook on further research.

Literature overview

In the following, we provide an overview of model-based approaches used to simulate or optimize
an individual’s response to single RT sessions or to longterm RT plans in terms of strength,
power, muscle mass, or local muscular endurance by varying the loading scheme. We do not
include work that is restricted to the biomechanical analysis of RT exercises, the description of
muscular fatigue during RT, or general models of the training-performance relationship without
a specific application to RT. We begin with defining prerequisites which are necessary for a
model to be used with our approach.

Model prerequisites

To enable a real-life application for practitioners, the model used should fulfill several criteria.
First, the inputs of the model, which correspond to the training plan of the trainee, have to be
interpretable for practitioners. As such, using quantities which reduce the dimensionality of the
training input [43] is not desirable. For example, using only volume load (defined as weight ×
repetitions × sets) [10] to describe the loading scheme of an RT session provides no information
about the intensity distribution and is therefore unsuitable. Second, the parameters of the
model should be identifiable through commonly available measurement procedures, e.g., force
measurements, to avoid an overly laborious model calibration. Third, due to the high number
of possible training inputs, the model should be suitable for high-dimensional optimization, i.e.,
for derivative-based optimization [24]. Fourth, the model should allow to incorporate real-life
constraints into the optimization problem, e.g., days or weeks off [38]. Last, the model should

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.044578doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044578
http://creativecommons.org/licenses/by/4.0/


be assessed for its predictive ability. We classify a model as predictive if it has been fit to a
subset of the available data and the resulting parameter estimates can be used to predict the
remaining data. We emphasize this, as the terminology is sometimes used differently and models
are already classified as predictive if they fit the whole dataset – a property we call descriptive.
However, overparameterization or other model deficiencies might diminish the model’s ability to
predict unknown datasets. Benzekry et al. [9], for example, demonstrated this issue illustratively
for tumor growth modeling. Furthermore, fit and prediction should be evaluated by suitable
measures [41] and should not be judged based on the plots alone, as those are heavily depending
on the chosen visualization.

Existing models

Banister et al. [8] introduced a systems model based on the assumption that each training load
induces a negative effect (fatigue) and a positive effect (fitness) on performance. As the original
paper can not be found easily, we refer to Calvert et al. [17] for a description of the model.
The ordinary differential equation (ODE) model has been adopted for various settings and
several modifications have been proposed. The model is commonly known as Banister model
or Fitness-Fatigue model and predominantly given in a time-discrete formulation. Busso et al.
[14, 15] fitted variants of the Banister model to data from Olympic weightlifters. The authors
used weighted weekly training volume as input and clean and jerk performance as output and
correlated the model components to different hormones. However, the predictive ability of the
model was not tested, i.e., the whole dataset was used for fitting the model. Model variants were
furthermore used by Philippe et al. [35] to describe the response of rats to resistance training.
In a subsequent work, the authors used exponential growth functions for this purpose [36]. In
both works, model prediction was not tested.

Mader [31, 32] developed an ODE model of the active adaptation and regulation of protein
synthesis on a cellular level. The model uses intensity of the functional activity as input and
gives protein mass as an indicator of functional capacity as the most important output. The
model is able to describe supercompensation as well as overtraining, which is demonstrated by
simulating different scenarios. An extended version of the model has been proposed by Ullmer
and Mader [46]. None of the variants were experimentally validated.

Gatti et al. [22] computed training plans for shoulder rehabilitation by determining the
optimal number of sets per exercise for increasing maximum isometric strength given a time
constraint. Two different objective functions were examined and compared to current practice.
No statements about training intensity were made.

Gacesa et al. [21] used a nonlinear dynamic system to separately fit fatigue data and muscular
growth data of the triceps brachii. The predictive ability of the model was not tested.

Arandjelović [2] introduced a model of neuromuscular adaption to resistance training. In
this model, the so-called capability profile of an athlete is modified depending on the execution
of an exercise. The author subsequently used simulations to examine the influence of using fixed
loads or accommodating loads on the training stimulus. Furthermore, the author proposed a
framework to calibrate the model from video data [5, 7]. The model was found to successfully
predict performance in the bench press and the squat. Resistance training can then be adjusted
via trial-and-error by inspecting the simulated adaptations. Additionally, Arandjelović used
the model to examine training strategies to overcome the sticking point of an arm curl [3],
to examine the influence of externally supplied momentum on the hypertrophy stimulus of a
shoulder lateral raise [6], and to examine different loading mechanisms of a Smith machine [4].
Although these three studies are mainly of biomechanical nature, we mention them here, as they
specifically aim at increasing force or muscle mass by a model-based examination of possible
adaptations.

Wisdom et al. [48] proposed ODE models of muscle adaptation to chronic overstretch, over-
load, understretch, and underload and compared those models to experimental data. The pre-
dictive ability of the models was not tested. Zhou et al. [50] used similar dynamics to describe
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hypertrophy and atrophy of a muscle fiber given as cross-sectional area with muscle activation
level as input. After fitting their model to experimental data, the authors simulated muscle
atrophy during a spaceflight and how different exercises could serve as countermeasures.

Torres et al. [44] extended an energy balance model to account for the hypertrophic effects
of resistance training and used the model for simulation studies. Moreover, the model was fit
to data from elderly subjects following a resistance training routine. Resistance training input
is described via a single scaling variable and has no direct interpretation in terms of volume,
intensity, or frequency.

Herold et al. [24] constructed and validated a model of the time course of maximum volun-
tary isometric contraction force. Exemplarily, the model was used to algorithmically maximize
the force-time integral (FTI) of an isometric RT session. We use this model as the foundation
of our work, as it is – to the best of our knowledge – the only one to be tested for its predictive
ability, suitable for derivative-based optimization, and directly interpretable for practitioners in
terms of RT input. However, as the model provides a phenomenological description of muscular
fatigue for different loading schemes, it does not directly link the RT input to a physiologi-
cal adaptation of the trainee. Additionally, there still exist research gaps concerning the exact
stimuli and mechanisms of muscular adaptation. To circumvent these issues, we provide math-
ematical formulations of KPIs for loading schemes identified in sport science and accessible in
the model. Those KPIs are the force-time integral, the time-under-tension, the accumulated
fatigue defined as loss of MVIC force, and variants thereof.

Materials and methods

In this section, we describe the model and the optimization problems. For readers with a focus
away from mathematical modeling, simulation, and optimization, we provide a short textual
summary and then invite them to directly proceed to the results section if desired.

Textual summary

Previous work [24] allows us to predict how MVIC force of a muscle group decreases and recovers
under isometric loading (Equation (1)). Using mathematical methods of optimal control, this
enables us to compute optimized isometric RT sessions (Equation (2)) with respect to different
trainings goals. These training goals are constructed from the force-time integral, time-under-
tension, or fatigue (Equations (3) to (6)).

Model

For our numerical experiments, we use a phenomenological model of the time course of maximum
voluntary isometric contraction force. We state the ordinary differential equation system and
give a short explanation of the components. For a detailed description of the model, we refer to
the original paper [24].

The model describes the current MVIC force capacity

hMVIC : [0, T ]→ [0, 1] (1a)

of a muscle (or muscle group) at joint level under an external isometric load

uabs : [0, T ]→ [0, 1] (1b)

on the time horizon [0, T ]. MVIC force capacity and external load are normalized to baseline
MVIC force and are thus dimensionless. Moreover, the ranges of functions specified in this
description are restricted to physiological meaningful values. The defining equations of the
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model are given as

d

dt
xslow(t) = p1(1− xslow(t))− p2uabs(t) (1c)

d

dt
xfast(t) = p3(1− uabs(t))

p4(1− xfast(t))− p5uabs(t) (1d)

hMVIC(t) = xslow(t)xfast(t), (1e)

where

x : [0, T ]→ [0, 1]2 (1f)

consists of two dimensionless state variables xfast and xslow. The model furthermore contains
five dimensionless parameters pi ∈ [0,∞) for i ∈ {1, . . . , 5} describing fatigue and recovery
properties. The initial conditions for the states are given by

x(0) = x0 ∈ [0, 1]2. (1g)

For an unfatigued muscle, one chooses x0 = (1, 1)>. To simulate MVIC efforts, it is favorable
to substitute

uabs(t) = urel(t)hMVIC(t) (1h)

and use

urel : [0, T ]→ [0, 1], (1i)

the load relative to the current force capacity, as input.
The model was validated with a comprehensive set of data from the elbow flexors [24]. We

use the corresponding parameter estimates in this work.

Optimal control problem

We use a multi-stage formulation on ns ≥ 2 stages – denoted by superscripts i ∈ {1, . . . , ns} –
to model the resistance training sessions [24]. To include metrics for the TUT, the FTI, and the
accumulated fatigue, we extend the model by three states tracking these quantities xTUT, xFTI,
and xfatigue. The general multi-stage optimal control problem can then be formulated as

max
xi(·),ui

abs(·),T i
Φ(xns(Tns)) (2a)

s.t. x1(0) = (1, 1)> (2b)

xi(0) = xi−1(T i−1) for i ∈ {2, . . . , ns} (2c)
ns∑
i=1

T i = CT (2d)

xns

TUT(Tns) ≤ CTUT (2e)

xns

FTI(T
ns) ≤ CFTI (2f)

and for i ∈ {1, 3, . . . , ns − 2, ns} and t ∈ [0, T i] :

d

dt
xislow(t) = p1(1− xislow(t))− p2u

i
abs(t) (2g)

d

dt
xifast(t) = p3(1− uiabs(t))

p4(1− xifast(t))− p5u
i
abs(t) (2h)
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d

dt
xiFTI(t) = uiabs(t) (2i)

d

dt
xiTUT(t) =

{
0 if uiabs(t) = 0

1 else
(2j)

d

dt
xifatigue(t) = 1− hiMVIC(t) (2k)

ulow ≤ uiabs(t) ≤ hiMVIC(t) (2l)

and for i ∈ {2, 4, . . . , ns − 3, ns − 1} and t ∈ [0, T i] :

d

dt
xislow(t) = p1(1− xislow(t)) (2m)

d

dt
xifast(t) = p3(1− xifast(t)) (2n)

d

dt
xiFTI(t) = 0 (2o)

d

dt
xiTUT(t) = 0 (2p)

d

dt
xifatigue(t) = 0, (2q)

with CT being the total time and CTUT and CFTI the upper bounds on the total time-under-
tension and the force-time integral. During odd numbered stages contractions with ulow ≤ uabs

are possible. Even numbered stages are considered rest periods. The duration T i of each stage is
being optimized. We adapt this optimal control problem to different scenarios in the following. If
not mentioned otherwise, all sessions last 20 min, allow nc = 25 possible contractions and have
no restrictions on FTI or TUT. This implies CT = 1200 s, ns = 49 and neglecting Constraints
(2e) and (2f). Table 1 gives an overview of the symbols used in the problem formulation.

Table 1. Overview of symbols used in the
multi-stage optimal control problem (2).

Symbol Interpretation

CT Total time
CFTI Upper bound on total FTI
CTUT Upper bound on total TUT
hiMVIC MVIC force
i Stage index
xiTUT Time-under-tension
xiFTI Force-time integral
xifatigue Accumulated fatigue

ns Number of stages
pj Parameters
Φ Objective functional
t Time
T i Stage duration
uiabs External force
ulow Lower bound on uabs
xifast State variable
xislow State variable

To solve the problems numerically, we employ a first-discretize-then-optimize strategy. We
use the optimal control software MUSCOD-II [28, 29], which originates from the work of Bock
and Plitt [11] and implements a direct multiple shooting approach.

In the following, we present how this general optimal control problem formulation (2) is
adapted to different sessions (labeled Session A to K). We refer to Table 2 for a concise overview.
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Table 2. Overview of sessions used in this work. If not mentioned otherwise, all sessions last 20 min and allow 25 possible

contractions.

Session Explanation Objective Constraints Modified equations

FTI-based
A Maximize FTI Φ(x) = xFTI ulow = 0 -
B70% Maximize FTI while ensuring a

minimum threshold intensity
Φ(x) = xFTI ulow = 0.7 -

B90% Maximize FTI while ensuring a
minimum threshold intensity

Φ(x) = xFTI ulow = 0.9 -

C Maximize FTI accumulated
above a minimum threshold
intensity

Φ(x) = xFTI ulow = 0 d
dt
xiFTI(t) = uiabs(t)− 0.8

D5 Maximize FTI while ensuring a
minimum threshold intensity
with 5 possible contractions

Φ(x) = xFTI ulow = 0.8 -

D50 Maximize FTI while ensuring a
minimum threshold intensity
with 50 possible contractions

Φ(x) = xFTI ulow = 0.8 -

E Maximize a weighted version
of FTI

Φ(x) = xFTI ulow = 0 d
dt
xiFTI(t) = (uiabs(t))

2

F Maximize a weighted version
of FTI

Φ(x) = xFTI ulow = 0.8 d
dt
xiFTI(t) = (uiabs(t)− 0.8)2

Fatigue-based
G Maximize fatigue Φ(x) = xfatigue ulow = 0 -
H Maximize fatigue while ensuring

a minimum threshold intensity
Φ(x) = xfatigue ulow = 0.8 -

I Minimize fatigue to reach a
certain FTI

Φ(x) = −xfatigue ulow = 0
CFTI = 150

-

TUT-based
J Maximize TUT while ensuring

a minimum threshold intensity
Φ(x) = xTUT ulow = 0.8 -

K Maximize a weighted version
of TUT

Φ(x) = xTUT ulow = 0.8 d
dt
xiTUT(t) =

{
0 if uiabs(t) = 0

t else

FTI-based goals

Resistance training volume is an important determinant of longterm adaptations [20]. For iso-
metric contractions, where no actual physical work is performed, the force-time integral is an
often used analogue of work [37]. Thus, for Session A, we maximize the FTI accumulated during
an RT session without imposing restrictions on the contraction intensity, i.e., Φ(x) = xFTI and
ulow = 0.

To increase maximum strength, high loads are recommended by some researchers, e.g., by
the American College of Sports Medicine [1]. Therefore, the model has previously been used to
compute an exemplary optimized RT session, which maximizes the FTI and ensures that the
contraction intensity is higher than a minimum threshold intensity of 80 % of baseline MVIC
force [24]. We adopt this example and examine how lowering or raising the minimum threshold
intensity influences the solution. For Session B70%, we set Φ(x) = xFTI and ulow = 0.7. For
Session B90%, we set Φ(x) = xFTI and ulow = 0.9.

As an alternative to the full FTI maximized in Session A, one can use the FTI accumulated
above the minimum threshold intensity as an indicator of effective training volume. For Session
C, we thus set ulow = 0 and replace Equation (2i) with

d

dt
xiFTI(t) = uiabs(t)− 0.8. (3)

A similar measure has been used by Burnley [13] when examining work capacity above critical
torque.

For Session D, we examine the influence of the number of possible contractions on Session
B and compute the solution for nc ∈ {5, 6, . . . , 49, 50} possible contractions. This allows to
investigate if more but expectedly shorter contractions allow to accumulate a higher FTI while
ensuring a minimum threshold intensity of ulow = 0.8 and if the additional possible contractions
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are actually realized in the solution.
Instead of choosing a minimum threshold intensity, we can emphasize higher loads by evalu-

ating a weighting function on the integrand of the FTI. For demonstration purposes, we choose a
quadratic weighting function for Session E. Therefore, we set Φ(x) = xFTI and replace Equation
(2i) with

d

dt
xiFTI(t) = (uiabs(t))

2. (4)

ulow is set to 0. A similar approach has been used by Arandjelović [6] to describe the hyper-
trophy stimulus of a resistance training set, although he used a sigmoid function, which can be
interpreted as a smoothing of the constraint ulow ≤ uabs used in Session B.

A similar weighting can be applied to Session C by replacing Equation (2i) with

d

dt
xiFTI(t) = (uiabs(t)− 0.8)2 (5)

and setting the objective functional to Φ(x) = xFTI for Session F. In contrast to Session C,
ulow = 0.8 is necessary here, as otherwise uabs = 0 would be the solution.

Fatigue-based goals

Effects of fatigue, e.g., metabolic stress or increased motor unit recruitment, have been at-
tributed to trigger and/or positively influence muscle hypertrophy [39]. We examine which
loading scheme maximizes fatigue, defined as the accumulated loss of MVIC force over time.
Thus, for Session G, we choose Φ(x) = xfatigue and ulow = 0.

For Session H, we maximize fatigue while ensuring a minimum threshold intensity of 80 %
of baseline MVIC force. Therefore, we choose Φ(x) = xfatigue and ulow = 0.8.

In contrast to maximizing fatigue, it might also be desired to accumulate a certain amount
of work while minimizing fatigue, e.g., during the tapering period before a competition. For
Session I, we exemplarily choose Φ(x) = −xfatigue and CFTI = 150 s.

TUT-based goals

Several authors have examined time-under-tension as a determinant of acute responses and
longterm adaptations to RT (e.g., Burd et al. [12] or Schott et al. [40]). Therefore, for Session
J, we maximize TUT while ensuring a minimum threshold intensity by choosing Φ(x) = xTUT

and ulow = 0.8.
Session J does not take into account the duration of the contractions used to accumulate

the total TUT. However, some author have reported different adaptations to short and long
duration contractions with greater hypertrophy occurring after long duration contractions [40].
Thus, to weight the duration of contractions quadratically, we replace Equation (2j) with

d

dt
xiTUT(t) =

{
0 if uiabs(t) = 0

t else
(6)

for Session K. All other settings are kept as in Session J.

Results

In the following, we provide the results of our computations. Here, we focus on the structure
of the computed solutions. For readers who skipped the methods section, we redescribe the
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scenarios without the mathematical details. We refer to Table 2 for a concise overview. If not
mentioned otherwise, all sessions last 20 min and allow 25 possible contractions.

FTI-based goals

Resistance training volume is an important determinant of longterm adaptations [20]. For iso-
metric contractions, where no actual physical work is performed, the force-time integral is an
often used analogue of work [37]. Thus, for Session A, we maximize the FTI accumulated during
an RT session without imposing restrictions on the contraction intensity. Figure 1a illustrates
the model response obtained by simulating Session A.

To increase maximum strength, high loads are recommended by some researchers, e.g., by
the American College of Sports Medicine [1]. Therefore, the model has previously been used to
compute an exemplary optimized RT session, which maximizes the FTI and ensures that the
contraction intensity is higher than a minimum threshold intensity of 80 % of baseline MVIC
force [24]. We adopt this example and examine how lowering or raising the minimum threshold
intensity to 70 % or 90 % of baseline MVIC force influences the structure of the solution. Figures
1b and 1c illustrate the model response obtained by simulating Sessions B70% and B90%.

For Session C, as an alternative to the full FTI maximized in Session A, one can use the
FTI accumulated above the minimum threshold intensity as an indicator of effective training
volume. A similar measure has been used by Burnley [13] when examining work capacity above
critical torque. Figure 1d illustrates the model response obtained by simulating Session C.

For Session D, we examine the influence of the number of possible contractions on Session B
and compute the solution for 5 to 50 possible contractions. This allows to investigate if more but
expectedly shorter contractions allow to accumulate a higher FTI while ensuring a minimum
threshold intensity of 80 % of baseline MVIC force and if the additional possible contractions
are actually realized in the solution. Figures 1e and 1f illustrate the model response obtained by
simulating Sessions D5 and D50. Figure 2 depicts the objective functional value in dependency of
the number of possible contractions. Figure 3 depicts the durations of contractions and rests in
dependency of the number of possible contractions. For all sessions, all 25 possible contractions
are realized.

Instead of choosing a minimum threshold intensity, we can emphasize higher loads by evalu-
ating a weighting function on the integrand of the FTI. For demonstration purposes, we choose
a quadratic weighting function for Session E. A similar approach has been used by Arandjelović
[6] to describe the hypertrophy stimulus of a resistance training set, although he used a sigmoid
function, which can be interpreted as a smoothing of the constraint used in Session B. Figure
1g illustrates the model response obtained by simulating Session E.

For Session F, a similar quadratic weighting function can be applied to Session C. Figure
1h illustrates the model response obtained by simulating Session F.

Fatigue-based goals

Effects of fatigue, e.g., metabolic stress or increased motor unit recruitment, have been at-
tributed to trigger and/or positively influence muscle hypertrophy [39]. For Session G, we ex-
amine which loading scheme maximizes fatigue, defined as the accumulated loss of MVIC force
over time. Figure 1i illustrates the model response obtained by simulating Session G.

For Session H, we maximize fatigue while ensuring a minimum threshold intensity of 80 %
of baseline MVIC force. Figure 1j illustrates the model response obtained by simulating Session
H.

In contrast to maximizing fatigue, it might also be desired to accumulate a certain amount of
work while minimizing fatigue, e.g., during the tapering period before a competition. For Session
I, we model such a scenario. Figure 1k illustrates the model response obtained by simulating
Session I.

9

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.044578doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044578
http://creativecommons.org/licenses/by/4.0/


0

0.2

0.4

0.6

0.8

1

n
o
rm

a
li
z
e
d

v
a
lu

e
(1

)

xslow

xfast

hMVIC

uabs

(a) Session A.

0

0.2

0.4

0.6

0.8

1

n
o
rm

a
li
z
e
d

v
a
lu

e
(1

)

(b) Session B70%.

0

0.2

0.4

0.6

0.8

1

n
o
rm

a
li
z
e
d

v
a
lu

e
(1

)

(c) Session B90%.

0

0.2

0.4

0.6

0.8

1

n
o
rm

a
li
z
e
d

v
a
lu

e
(1

)

(d) Session C.

0 200 400 600 800 1,000 1,200

0

0.2

0.4

0.6

0.8

1

time (s)

n
o
rm

a
li
z
e
d

v
a
lu

e
(1

)

0 200 400 600 800 1,000 1,200

time (s)

(e) Session D5.

Figure 1. Model response obtained by simulating Sessions A to D5. We refer to the text and Table 2 for an explanation

of the individual sessions. The left column depicts the model response. The absolute force input is illustrated in the right
column.
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Figure 1. continued Model response obtained by simulating Sessions D50 to H. We refer to the text and Table 2 for an
explanation of the individual sessions. The left column depicts the model response. The absolute force input is illustrated

in the right column.
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(l) Session J.
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Figure 1. continued Model response obtained by simulating Sessions I to K. We refer to the text and Table 2 for an

explanation of the individual sessions. The left column depicts the model response. The absolute force input is illustrated
in the right column.
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Figure 2. Dependency of the objective functional value on the number of possible contractions for Sessions D5 to D50.

Increasing the number of possible contractions increases the FTI of the computed solution.
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Figure 3. Dependency of the durations of contractions (a) and rests (b) on the number of possible contractions for
Sessions D5 to D50. The horizontal dashed lines illustrate the 1 s mark. Increasing the number of possible contractions

decreases the durations of contractions and rests of the computed solution.

TUT-based goals

Several authors have examined time-under-tension as a determinant of acute responses and
longterm adaptations to RT (e.g., Burd et al. [12] or Schott et al. [40]). Therefore, for Session
J, we maximize TUT while ensuring a minimum threshold intensity of 80 % of baseline MVIC
force. Figure 1l illustrates the model response obtained by simulating Session J.

Session J does not take into account the duration of the contractions used to accumulate
the total TUT. However, some author have reported different adaptations to short and long
duration contractions with greater hypertrophy occurring after long duration contractions [40].
Thus, we weight the durations of contractions quadratically for Session K. All other settings are
kept as in Session J. Figure 1m illustrates the model response obtained by simulating Session
K.

Durations of contractions and rests

Table 3 contains the minimum, the maximum, and the mean durations of the contractions and
rests for all sessions plotted. To a certain extent, this allows to examine the real-life feasibility
of the computed sessions.

Table 3. Minimum, maximum, and mean durations of contractions δc and rests

δr for all sessions plotted. To a certain extent, this data allows to examine the
real-life feasibility of the computed sessions.

Session min(δc) max(δc) mean(δc) min(δr) max(δr) mean(δr)

A 19.21 465.46 60.54 1.96 8.76 6.49
B70% 6.24 33.28 11.41 28.63 45.64 38.11
B90% 1.62 9.13 3.04 33.02 56.96 46.83
C 3.71 6.06 4.11 28.90 51.81 45.72
D5 14.94 20.00 17.14 184.96 376.31 278.57
D50 1.70 20.00 3.67 14.38 25.36 20.75
E 16.10 62.36 26.06 7.15 25.63 22.86
F 3.08 6.54 3.52 39.36 73.22 59.45
G 1200.00 1200.00 1200.00 0.00 0.00 0.00
H 4.30 21.76 6.97 20.57 54.54 42.74
I 6.51 12.05 7.25 30.09 48.14 42.45
J 3.69 21.76 6.99 30.57 51.91 42.72
K 5.81 21.76 12.01 42.10 126.68 95.97
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Discussion

Choice of training goals

In general, a model-based approach is limited by the predictive ability of the employed model
and the available numerical solution methods. As mentioned, the model of Herold et al. [24]
offers a phenomenological description of muscular fatigue for different loading schemes and does
not directly link the RT input to a physiological adaptation of the trainee. Thus, when choosing
the training goals, we are limited by key performance indicators accessible in the model. For
this reason, we use assumptions from sport science about optimal training as objectives and
constraints.

The three KPIs force-time integral, time-under-tension, and loss of MVIC force can read-
ily be used in the optimal control problem formulations. Furthermore, we employ variants of
these three KPIs to demonstrate how even slight modifications can change the structure of the
solution. This highlights how important it is for exercise physiologists and sport scientists to
identify the correct driving stimuli for adaptations in order to design optimized RT programs.
Suitable physiological models would allow a more thorough search, e.g., by incorporating the
build up of metabolites such as hydrogen ions and inorganic phosphate or by describing the
activation of different fiber types.

Structure of the computed RT sessions

While the resulting differences between the solutions might seem small at first, one should keep
in mind that these differences accumulate during the course of an RT plan over weeks and
months.

The results of Session D favor a higher number of contractions to accumulate more force-time
integral in this scenario. This is in line with the solutions of most other sessions, in which all 25
possible contractions are realized. However, this is not the case for the solutions of Sessions A,
F, G, and K. The results of Session A illustrate that the inclusion of rests is not beneficial during
the beginning and the end of the session for this setting. To enable high contraction intensities,
the solution of Session F consists of only 20 contractions. This is due to the fact that we weight
the contraction intensities proportionally more than in the solution of Session C, where all 25
contractions are realized. The solution of Session G describes a sustained MVIC effort, which is
caused by choosing the accumulated loss of MVIC force as training goal. The solution of Session
K only realizes 12 contractions in order to enable longer contraction durations compared to the
solution of Session J. This can be verified by comparing the mean contractions duration of
Session J and K, i.e., 6.99 s and 12.01 s (see Table 3).

Except for the solutions of Sessions H, J, and K, all solutions consist exclusively of MVIC
efforts. This was unexpected, as we anticipated that submaximal contractions might allow a
greater accumulation of training volume due to them inducing less fatigue. It would be interest-
ing to examine if such a behavior also occurs for dynamic constant external RT. The solution
of Session H exhibits an interesting behavior as the inclusion of a minimum threshold intensity
now favors submaximal contractions compared to the MVIC efforts of the solution of Session
G. This is possibly caused by the longer contraction durations, which then contribute more to
the accumulated fatigue. Session I exhibits the same behavior as the MVIC efforts reduce the
time necessary to accumulate the desired FTI. The same holds for the solutions of Sessions J
and K, where the submaximal contractions allow a greater time-under-tension. The submaximal
contractions are all hold until failure. In case this is not desired, this could be included into the
optimization problem as a constraint. If a minimum threshold intensity was chosen, the MVIC
efforts are hold until this intensity is reached (see in particular Session B). Sessions C and F
differ. Here, the contractions are terminated earlier as contractions with the minimum threshold
intensity do not contribute to the chosen training goal. Session E demonstrates how a focus can
be set on higher contraction durations without the use of a minimum threshold intensity.

As already noticed during the model development [24], the grouping of repetitions into
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sets is not supported by our results. Instead, the contractions are spread more evenly over the
whole time horizon to allow a greater accumulation of training volume, i.e., force-time integral.
This is a similar approach to variants of so-called cluster sets [45], which allow to increase
training volume by breaking up the traditional set-repetition structure. Here, the algorithmic
optimization of durations of contractions and rests provides a clear advantage over intuitive
planning.

Real-life feasibility of the computed RT sessions

To ensure the real-life feasibility of the computed RT sessions, several aspects have to be taken
into account. First, the duration of the contractions may not be too short, as the trainees need
time to develop MVIC force. Second, the duration of the submaximal contractions may not be
too long, as the concept of task failure or limited work capacity is currently not implemented
into the model [24]. Third, the rest periods between submaximal contractions may not be too
short, as the model also does not account for a regeneration of work capacity.

Kawakami et al. [26] examined 100 intermittent MVIC efforts lasting 1 s followed by 1 s
rest of the triceps surae muscles and reported no problems in executing this task. Table 3 and
Figure 3 show that our solutions do not propose durations shorter than 1 s for contractions and
rests. Although a different muscle group was used in the study of Kawakami et al. [26], their
data demonstrates that such short intermittent contractions might be possible in general.

Yoon et al. [49] examined endurance times for sustained isometric contractions of the elbow
flexors at 90 degrees joint angle and at 80 % of MVIC force. Although the experimental setup
differed slightly compared to that of the experiments used for the model validation [24] (forearm
horizontal versus forearm vertical to the ground), the mean endurance times of 25.0 s for men
and 24.3 s for women are consistent with the maximum duration of 21.76 s of our solutions for
Sessions H, J, and K (see Table 3). To the best of our knowledge, no prediction of endurance
time or work capacity exists for MVIC efforts. Caffier et al. [16], for example, examined MVIC
efforts of several muscle groups lasting 10 min and reported no task failure among the subjects.
Thus, it remains to be validated experimentally if the solutions of Session A, E, and G, which
contain sustained MVIC efforts of long durations, can be realized in practice.

Although several authors have examined the recovery of endurance times (see, for example,
the work of Stull and Kearney [42] or Kroon and Naeije [27]) and work capacity (see, for
example, the review by [25]), to the best of our knowledge, no model of their time course exists
that fulfills the prerequisites postulated for use in an optimization context [24]. Furthermore,
we are not aware of any experimental data that rejects the feasibility of the solutions of Sessions
H, J, and K due to too short rests. If this should be the case, lower bounds on the durations of
the rests could be incorporated into the optimal control problem.

Limitations and future research

Our work is not free of limitations and several directions of future research are possible.
As no fully suitable mathematical model for the more commonly used dynamic constant

external resistance (DCER) training is available, we are optimizing isometric RT sessions. Re-
search shows that the transfer from isometric RT to dynamic performance is questionable [34].
Therefore, we discourage direct transfer of our findings to DCER or other forms of training.
However, an extension of our approach to DCER training is straightforward once suitable models
become available. The same holds true for extensions to other indicators of muscle fatigue (e.g.,
power, contraction velocity, or muscular endurance), multiple exercises, or longterm planning.

Moreover, we are using parameters obtained from the elbow flexors, as so far those are
the only ones available. For this reason, a comparison between muscle groups or subjects is
not possible at the moment. It would be intriguing to calibrate the model to different muscle
groups and subjects and then examine how the resulting parameters affect the optimized RT
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sessions. Lievens et al. [30], for example, after analyzing fatigue and recovery patterns of MVIC
torque of the knee extensors, conclude that individualizing training might be important to
optimize performance. The authors used proton magnetic resonance spectroscopy to analyze
muscle fiber typology of the gastrocnemius and then classify the subjects into a slow- and a
fast-twitch group for which they expected different patterns. With a model-based approach, this
classification could be formulated as a parameter estimation problem for which the necessary
force measurements could be obtained in a single testing session [23]. Afterwards, RT sessions
could be optimized individually as proposed in this work.

Last, we acknowledge that the model is validated with data from laboratory studies. Thus,
we face the same problems as the original studies: the transfer from the laboratory to real-life
RT needs to be verified experimentally.

Conclusion

In this work, we demonstrate that a mathematical model-based approach could provide valuable
impulses for practitioners and complement the predominant manual program design of loading
schemes for RT. Although, the differences in the optimized sessions might seem small, one should
keep in mind that those accumulate during the course of an RT plan over weeks and months.

As our approach is independent of the underlying model, we encourage researchers to develop
and validate models, which are suitable for optimization and which connect the training input
directly to training goals such as increasing strength and power, hypertrophy, or increasing local
muscular endurance. This would extend the possibilities to set up the optimization problems
and might furthermore help to identify the driving mechanisms for longterm adaptations. Then,
we could exploit the full potential of our approach.
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[5] O. Arandjelović. Computer simulation based parameter selection for resistance exercise. arXiv
preprint arXiv:1306.4724, 2013.
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