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1*

1 Department of Soils and Agrifood Engineering, Université Laval, Québec City, Quebec, Canada, 2 Quebec

Research and Development Centre, Agriculture and Agri-Food Canada, Québec City, Quebec, Canada
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Abstract

Statistical modeling is commonly used to relate the performance of potato (Solanum tubero-

sum L.) to fertilizer requirements. Prescribing optimal nutrient doses is challenging because

of the involvement of many variables including weather, soils, land management, geno-

types, and severity of pests and diseases. Where sufficient data are available, machine

learning algorithms can be used to predict crop performance. The objective of this study

was to determine an optimal model predicting nitrogen, phosphorus and potassium require-

ments for high tuber yield and quality (size and specific gravity) as impacted by weather,

soils and land management variables. We exploited a data set of 273 field experiments con-

ducted from 1979 to 2017 in Quebec (Canada). We developed, evaluated and compared

predictions from a hierarchical Mitscherlich model, k-nearest neighbors, random forest, neu-

ral networks and Gaussian processes. Machine learning models returned R2 values of

0.49–0.59 for tuber marketable yield prediction, which were higher than the Mitscherlich

model R2 (0.37). The models were more likely to predict medium-size tubers (R2 = 0.60–

0.69) and tuber specific gravity (R2 = 0.58–0.67) than large-size tubers (R2 = 0.55–0.64) and

marketable yield. Response surfaces from the Mitscherlich model, neural networks and

Gaussian processes returned smooth responses that agreed more with actual evidence

than discontinuous curves derived from k-nearest neighbors and random forest models.

When conditioned to obtain optimal dosages from dose-response surfaces given constant

weather, soil and land management conditions, some disagreements occurred between

models. Due to their built-in ability to develop recommendations within a probabilistic risk-

assessment framework, Gaussian processes stood out as the most promising algorithm to

support decisions that minimize economic or agronomic risks.

1. Introduction

Modeling provides a quantitative understanding of how crop systems operate [1]. Site-spe-

cific simulations of fertilizer requirements to obtain high local potato yield and quality rely

on models’ ability to detect subtle variations in factors affecting plant growth and
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environment and to learn from the past to make predictions [2]. Several crop models have

been developed with different degrees of sophistication, scale, and representativeness [2].

Mechanistic models have been published for potato cropping systems [3, 4]. Semi-mecha-

nistic growth models could be used to downscale tuber yield assessment from regional to

field levels [5, 6]. Multilevel modeling can assist in selecting a set of relevant parameters that

impact tuber yield and fertilizer requirements, but can hardly predict site-specific nutrient

requirements [7].

Several variables can impact fertilization at optimum tuber yield: soil type and quality [8,

9], organic fertilizers [10, 11], preceding crops [12–16], weather conditions [17], irrigation

[18], timing, location and chemical form of the fertilizer applied [19], pests and diseases

[20] and genetic factors such as cultivar longevity and growth rate [21, 22]. Air temperature,

photoperiod, day length, intercepted radiation, water abundance, precipitations, root devel-

opment and crop management were reported to be the driving variables for potato growth

and development [8, 9, 23–26]. While the nitrogen (N) requirement of potato crops com-

pares with other high N-demanding crops, phosphorus (P) uptake depends largely on close

contact between roots and soil particles that, in turn, depends on soil texture, buffering

capacity and moisture content [27, 28]. Due to a shallow system of fine roots and small bio-

mass [29], especially in compacted soils [8, 9], potato is sensitive to nutrient and water

stresses [30].

The N, P and K (potassium) requirements are thought to be cultivar- and market-specific

[31–33]. Specific gravity (SG) is of particular concern for North-American processors [34, 35].

Other characteristics, such as tuber size and grade are also valued [34]. No model has yet

addressed K requirements accounting for interactions between genetics, environment and

management [36].

Growers tend to over-fertilize because of the potential economic loss from under-fertilizing

[37, 38]. While N can cause nitrate contamination [39–42] and P the eutrophication of surface

waters [43–45], K has no known deleterious effect on the quality of natural and drinking

water. Attempts have been made to synthesize the results of fertilizer experiments using meta-

analysis to derive N optima for specific soil texture and pH groups [46] or multilevel modeling

combining soil, climate indices and management variables [7]. Even where field trials could

identify nutrient optima [47], such optima cannot be generalized to conditions different from

those of particular experiments [48, 49].

Although experimental data grow continuously in size and quality, it is still beyond

researchers’ ability to integrate, analyze and make the best-informed decisions. Machine learn-

ing is an emerging technology that can aid in the discovery of rules and patterns in large sets of

data [50]. The technology bypasses intermediate processes otherwise explicitly explained by a

mechanistic modeling system and makes predictions directly based on input data [51].

Machine learning methods can combine fertilizer dosage, genetics, environmental and land

management variables to predict tuber yield and quality. Classical models such as Mitscherlich

are limited to plant-nutrient relationships [52].

We hypothesized that (1) genetics, environment and local land management practices are

the main drivers of fertilizer requirements, (2) k-nearest neighbors, random forest, neural net-

works and Gaussian processes are more accurate in predicting marketable yield than classical

Mitscherlich predictive models, and (3) the machine learning algorithms are equally able to

predict economic optimal or agronomic optimal fertilizer doses. The objective of this study

was to develop, evaluate and compare the performance of machine learning models in predict-

ing N, P and K requirements for potato.
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2. Methodology

2.1 Data set

The Quebec (Canada) potato data set is a collection of field fertilizer trials conducted from

1979 to 2015 between the US border (45th parallel) and the Northern limit of cultivation (49th

parallel). We added 17 trials conducted in 2016 and 2017. Fig 1 shows the location of experi-

mental sites.

The trials with maximum yield less than 28 Mg ha-1 were discarded to avoid extreme cases

of diseases, management failures or catastrophic weather events. The data set contains 4254–

5913 observations from 208–273 field trials, depending on the number of missing values

Fig 1. Location of experimental sites [53].

https://doi.org/10.1371/journal.pone.0230888.g001
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found in the target variable. Most experiments have been carried out from 1991 (Table 1). The

number of trials, the number of samples, minimum and maximum number of blocks and

treatments are given in S1 and S2 Tables according to the study year and the fertilizer tested.

There were 48 cultivars classified as early (65–70 days), early mid-season (70–90 days),

mid-season (90–110 days), mid-season late (110–130) or late maturity (130 days and more) as

suggested on the website of the Canadian Food Inspection Agency [54], with 4%, 13%, 62%,

12% and 9% of the samples respectively. The growing season lengths were provided by scout-

ing teams covering the period from seeding to harvest. The names of the cultivar maturity clas-

ses consigned in the data set do not strictly match those of the Canadian Food Inspection

Agency [54]. The preceding crop was categorized as in Parent et al. [7] as grasslands, legumes,

cereals, low-residue crops and high-residue crops (S3 Table). The data set also includes fertiliz-

ers other than N, P or K (classified as NA), fertilizer dosage and application method, seeding

density and date, harvest date, tuber marketable yield (excluding tubers < 2.5 cm in diameter),

tuber size distribution (small, medium, large) and specific gravity.

2.2 Experimental procedures

The experiments included four to six treatments arranged mostly in a randomized complete

block design with a minimum of three replications of each treatment (S1 Table). One trial con-

ducted in 1987 had two replications and 8% to 10% of the experiments were arranged as facto-

rial design combining N, P and K fertilizers. We also retained one trial were N, P and K were

fixed at their grower-optimum level (S2 Table). Each experimental unit consisted of four or six

rows measuring 6 or 8 m in length, with an average row spacing of 0.915 m and within-row

Table 1. Global structure of the machine learning modeling data sets.

A. Marketable yield model dataset

Period Number of trials Number of samples Percentage (%)

1979–1980 2 20 0.3

1981–1990 4 38 0.6

1991–2000 68 1768 29.9

2001–2010 113 2386 40.4

2011–2020 86 1701 28.8

Total 273 5913 100.0

B. Tuber-size balances model dataset

Period Number of trials Number of samples Percentage (%)

1971–1980 0 0 0.0

1981–1990 0 0 0.0

1991–2000 44 1196 26.2

2001–2010 81 1703 37.4

2011–2020 83 1658 36.4

Total 208 4557 100.0

C. Specific gravity model dataset

Period Number of trials Number of samples Percentage (%)

1971–1980 0 0 0.0

1981–1990 0 0 0.0

1991–2000 61 1474 34.6

2001–2010 70 1144 26.9

2011–2020 83 1636 38.5

Total 214 4254 100.0

https://doi.org/10.1371/journal.pone.0230888.t001
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spacing varying with cultivar. The potato seeds were planted in May (excepting June in the

Outaouais region) then harvested in September. Median plant density was 36000 plants ha-1 in

N trials, 33100 plants ha-1 in P trials, 36400 plants ha-1 in K trials, and 43700 plants ha-1 in fac-

torial NPK trials. The N doses varied from 0 to 260 kg N ha-1 with varying steps, and P was

applied at a dosage of 0 to 130 kg P ha-1 with varying steps. The K was applied at a dosage of 0

to 350 kg K ha-1 with varying steps. The P and K fertilizers could be converted to P2O5 and

K2O by multiplying P by 2.291 and K by 1.205. Nitrogen fertilizers were either entirely applied

at planting or split-applied between planting and hilling. Phosphorus fertilizers were banded at

planting. Potassium fertilizers were band-applied or split-applied before planting and at plant-

ing. No animal manure or compost had been applied in the spring and the preceding fall.

Other practices were managed uniformly by the grower.

At harvest, 3-m-long ridges in the middle two rows of each plot were dug and hand har-

vested. Tubers were divided into four categories as follows: culls, small (S), medium (M) or

large (L), depending on the smallest diameter size measured with a ruler. The size cut-offs var-

ied with cultivars and market. The marketable yield was calculated as total yield minus culls

(tubers < 25 mm in size). Tubers with external defects such as secondary growth and soft rot

were discarded. A representative sample of 20 medium-size tubers from each plot was used to

determine tuber specific gravity.

2.3 Soil characteristics

2.3.1 Basic soil composition. Composite soil samples from the 0–20 cm layer were col-

lected in the spring of the study year before planting to determine the initial soil physicochemi-

cal characteristics. Particle size distributions were measured as % clay (0–0.002 mm), % silt

(0.002–0.05 mm), and % sand (0.05–2 mm) by sedimentation [55] or laser diffraction [56].

Where soil textural classes were not recorded, central values computed for sand, silt, and clay

percentages (S4 Table) using the Quebec soil data set [57] were assigned as proxies.

Soil carbon concentration was determined using the Walkley-Black method [58] or Dumas

combustion (Leco Instrument, Saint-Louis, MO). The two methods are closely related as in Eq

1 [59]:

Dumas Cð%Þ ¼ 0:126þ 1:25�Walkley� Black Cð%Þ ð1Þ

Because soil particle-size distribution and organic matter content are compositional data,

they were transformed into isometric log-ratios (ilr) to avoid self-redundancy, non-normal

distribution and scale dependency [60]. The ilr transformation consists in log ratios of the geo-

metric means of hierarchically-arranged components and groups of components, and can be

interpreted as balances [61]. The hierarchical arrangement of components follows a balance

scheme where balances split groups of components sequentially until each group contains a

single part. Each balance is computed as in Eq 2:

ilrj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
rjsj

rj þ sj

s

ln
gðcþj Þ
gðc�j Þ

 !

ð2Þ

where for the jth balance in [1,. . ., D-1] (D is the length of the compositional vector), rj is the

number of parts on the left-hand side, sj is the number of parts on the right-hand side, cj
- is the

compositional vector at the left-hand side, cj
+ is the compositional vector at the right-hand

side, and g() is the geometric mean function. Hence, the textural components and carbon con-

tent were balanced as [Sand, Silt, Clay | C], [Clay | Sand, Silt] and [Silt | Sand]. We followed the

[denominator parts | numerator parts] notation [62].
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2.3.2 Soil pH. Soil pH was measured in water (1:1, v/v) or in a 0.01 M CaCl2 solution (1:1

v/v) [63]. The pHCaCl2 was converted into pHH2O where required, as in Eq 3 [64]:

pHwater ¼ 0:27þ 1:03 pHCaCl2 ð3Þ

2.3.3 Soil Mehlich-3 extractable P, K, Al, Mg and Ca. Soil P was extracted using the

Mehlich-3 method [65] or Bray-2 converted to P Mehlich-3 values using the Khiari et al. [43]

equation as in Eq 4:

PMehlich� 3ðmg kg � 1Þ ¼ � 34:6þ 0:86 �PBray� 2ðmg kg � 1Þ ð4Þ

Soil Al was extracted using the Mehlich-3 method or, where not available, from the typical

Al-Mehlich-3 value of soil series as reported by Tabi et al. [57]. Soil K, Ca and Mg were

extracted using the ammonium acetate method or its closely-related Mehlich-3 extractant

[66]. The P concentration was determined colorimetrically [67] or by inductively coupled

plasma (ICP). The K concentration was determined by flame emission or ICP, and Ca, Mg,

and Al concentrations were quantified by atomic absorption spectrometry or ICP.

Soil chemical compositions were partitioned into two simplexes S(P, Al) and S(K, Ca, Mg).

The ilr variables were [Fv | Al, P], [Al | P] on the one hand and [Fv, Mg, Ca | K], [Fv | Mg, Ca],

[Mg | Ca] on the other.

2.3.4 Soil profiles. The soils in our data set were classified according to the Canadian Soil

Classification Working Group [68] and ordered along a gleyzation-podzolization gradient

using tools of pedometrics [69]. Soil profile reflects the influence of subsoil on crop growth, in

particular its impact in regulating the availability of water [70]. The continuous expressions for

Quebec potato soil types defined by Leblanc et al. [69] and used by Parent et al. [7] i.e., poorly-

drained loam, poorly-drained sand and well-drained sand, were balanced as [Gleyed | Podzol-

ized] and [Loamy gleyed | Sandy gleyed].

2.4 Weather data

Weather data were collected from the Environment Canada information system [71] using

geographical coordinates for each site. The selected weather indexes were the cumulative pre-

cipitation–PPT, the Shannon Diversity Index for rainfall distribution–SDI [72], the mean tem-

perature, and the number of growing degree days–GDD.

The cumulative precipitation was computed as the sum of daily rainfall from planting to

harvest. The Shannon Diversity Index is the precipitation evenness or the fraction of daily

rainfall relative to the total rainfall in a given time period (in days). A SDI = 1 implies complete

evenness i.e., equal amounts of rainfall in each day of the period while a SDI = 0 implies com-

plete unevenness i.e., all rain in 1 day [72]. The mean temperature was computed from the

planting date to harvest date. The growing degree days index was computed using daily mean

temperatures and using 5˚C as baseline temperature (i.e., sum of daily mean temperatures

equal or superior to 5˚C only). Weather variables were computed as in (Table 2) for the period

Table 2. Equations to compute climatic indices.

Index Description Unit Formula

PPT Cumulative precipitations mm PPT ¼
Pn

i¼1
Rdi

SDI Shannon Diversity Index for rainfall Unitless SDI ¼
�
Pn

i¼1
½Pi lnðPiÞ�

lnðnÞ
Pi ¼

Rdi
PPT

T Mean temperature ˚C 1

n

Pn
i¼1

Tmi

GDD Growing degree-days ˚C GDD ¼
Pn

i¼1
Tmi with Tmi � 5

Rd is daily rainfall, n is the number of days and Tm is daily mean temperature.

https://doi.org/10.1371/journal.pone.0230888.t002
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between planting and harvest dates using the historical weather data of the past 5 years (from

the corresponding study year) at each site.

2.5 Selection of features

2.5.1 Predictive features. The study focused on potato yield-impacting factors reported

by Parent et al. [7]. Candidate variables were soil Mehlich-3 P, K, Mg, Ca, Al and Fe composi-

tion, soil pH, and soil profile classes expressed as balances across soil textural gradients and

across gleization-podzolization processes as in Leblanc et al. [69]. The length of the growing

season, the preceding crop categories, seeding density and N, P and K fertilizer dosages were

used as land management variables. The average 5-yr temperature (T), PTT, GDD and SDI

were used as weather features.

The importance of features can be assessed by assigning them a score based on how useful

they are at predicting a target variable. We assessed features importance using ExtraTreesRe-
gressor function from the scikit-learn Python package [73] on the training set of each target

variable.

2.5.2 Target variables. The data set is a collection of several experiments with specific

objectives. Target variables were total yield, yield fractions, and SG. We separated marketable

yield fractions with respect to tuber size as follows: large (L), medium (M) or small (S) size.

Because these three fractions must add up to 100% of the marketable yield, they were treated

as compositions. These compositional variables were transformed into isometric log-ratios of

large-size tubers divided by the geometric mean of small- and medium-size tubers [M, S | L],

and medium-size tubers divided by small-size tubers [S | M]. Since analysis of compositional

data based on log-ratios of parts is not suitable when zeros are present in a data set [74], we

proceeded by firstly imputing zero observations [75], reported mostly for large-size tubers.

The detection limit was fixed at 65%. Table 3 summarizes the variables used for modeling.

Tuber SG was determined by the weight-in-air to weight-in-water method [76] as in Eq 5:

SG ¼
Weight in air

Weight in air minus Weight in water
ð5Þ

2.6 Data preprocessing

The data were partially preprocessed in the R 3.6.2 statistical computing environment [77].

The tidyverse 1.3.0 package [78] was used for general data handling and visualization. The

compositions 1.40–3 package [79] functions helped to transform compositional data into iso-

metric log-ratios, and the robCompositions 2.2.0 package [80] helped to robustly impute miss-

ing values. The replacement of zeros in tuber sizes was performed using zCompositions 1.3.3–

1 package [75].

The data preprocessing continued in Python 3.8.1 software [81]. The data set used to model

tuber SG was cleaned of outliers using the Python SciPy package version 1.4.1 [82]. We used a

z-score i.e., a signed number of standard deviations by which the value of an observation or

data point is above the mean value of what is being measured on the multivariate data set. The

threshold of the score value was set at 3. The data were handled in Python using NumPy ver-

sion 1.17.5 [83] and pandas 1.0.0 [84] libraries. The matplotlib 3.1.3 package [85] was used for

data visualization.

All the quantitative variables were scaled and centered to obtain zero mean and unit vari-

ance. The categorical variables were encoded by declining their factors in binary columns,

each of which was denoted by 1 to specify the membership of the group of the column, and 0

otherwise.
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2.7 Training and testing data sets

Schemes for partitioning data into training and testing sets vary between studies. Fortin et al.

[6] used 60% for training and 40% for testing. Parizeau [86] suggested 50%, 20% and 30% for

training, validation and testing, respectively. Crisci et al. [87] used a 75%–25% split while

Chantre et al. [88] used a 82%–18% partition for training and testing, respectively. In this

paper, the corresponding total input/output data pairs were divided into 70% for training and

30% for testing and model accuracy assessment. Soman and Bobbie [89] found shorter learn-

ing times and highest accuracies with such split proportions. Moreover, self-contained and

representative data collection is an important step to ensure the sufficiency and integrity of the

training data [90]. Thereby, we partitioned the data set according to whether the tested ele-

ment was N, P K, factorial design or another element (Mg, Ca). Thereafter, data were split at

block level to avoid testing models on blocks comprising training samples.

Table 3. Variables used for modeling.

A. Predictive variables

Variable Type Description

N, P, K doses Numeric (kg ha-1) Fertilizer doses used during the experiments

Planting density Numeric (plants ha-1) The number of plants within 1 ha of area

Preceding crops Categorical Crop existing on the experimental site along the previous

season categorized as small grain, high-residue crop, legume,

grassland and low-residue crop (S5 Table)

Growing season length Numeric (days) Number of days between planting and harvest

Temperature Numeric (˚C) Average daily mean temperature from planting to harvest

(Table 2) computed with temperature data through the five

seasons preceding the season of the study

Precipitations Numeric (mm) Sum of daily rainfall from planting to harvest (Table 2)

computed with data through the five seasons preceding the

season of the study

Shannon diversity

index

Numeric (unitless) Precipitations evenness from planting to harvest (Table 2)

computed with data through the five seasons preceding the

season of the study

Number of growing

degree days

Numeric (˚C) Sum of daily mean temperature from planting to harvest

(Table 2) computed with temperature data through the five

seasons preceding the season of the study (5˚C as baseline)

Soil texture (0–20 cm)

and carbon

Numeric (unitless) Ilr coordinates: [Sand, Silt, Clay | C], [Clay | Sand, Silt] and [Silt

| Sand]

Soil types Numeric (unitless) Ilr coordinates representing drainage capacity: [Gleyed |

Podzolized] and [Loamy gleyed | Sandy gleyed]

Soil pH Numeric (unitless) Soil pH measured in water or expressed as pH in water

Soil chemical

composition

Numeric (unitless) P and its fixation agent Al, ilr coordinates: [Fv | Al, P], [Al | P]

Numeric (unitless) K, Ca and Mg, ilr coordinates: [Fv, Mg, Ca | K], [Fv | Mg, Ca],

[Mg | Ca]

B. Target variables

Variable Type Description

Marketable yield Numeric (Mg ha-1),

1Mg = 1000 kg

Sum of small-, medium- and large-size tuber weight

Yield ratios Numeric (unitless) Ilr coordinates of large-size against small- and medium-size

tuber weight [M, S | L], medium-size tubers against small-size

tuber weight [S | M]

Tuber specific gravity Numeric (unitless) Ratio of tuber weight-in-air to weight-in-water (Eq 5)

https://doi.org/10.1371/journal.pone.0230888.t003
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2.8 Training models

2.8.1 Machine learning algorithms. Four machine learning models were trained to derive

an optimal model: k-nearest neighbors (KNN), random forest (RF), neural networks (NN) and

Gaussian processes (GP). Model parameters were tuned using the random search with cross-

validation method (RandomSearchCV) of the scikit-learn library version v0.22.1 [73].

2.8.2 Mitscherlich model. We used a Mitscherlich-related 3D response surface for three

variables inspired by Dodds et al. [91] in the multilevel modeling scheme of Parent et al. [7].

The Mitscherlich-related multilevel response surface was used as a predictive model for com-

parison with machine learning algorithms. The model was trained using the following equa-

tion:

Y ¼ A xð1 � e� RNxðENþdoseN ÞÞxð1 � e� RPxðEPþdosePÞÞxð1 � e� RKxðEKþdoseK ÞÞ ð6Þ

where Y is the target variable i.e., marketable yield, A (for Asymptote) is the value of the target

variable toward which the curve converges at increasing dosage, E (for Environment) describes

the fertilizer-equivalent N (EN), P (EP) and K (EK) doses from the environment, and R (Rate) is

the steepness of the curve relating each fertilizer equivalent environmental supply to Asymp-
tote. The first-level parameters (A, E and R) were modeled as linear combinations of the pre-

dictors with random effect added to the intercept of the Asymptote. To make comparison with

preceding models, the model performances were computed without any random effect

(level = 0). The Mitscherlich multilevel model was fitted in R 3.6.2.

2.9 Evaluation of model performance

In all cases, the goodness-of-fit measure or predictive capacity of the developed models was

based on the coefficient of determination (R2), the mean absolute error (MAE) and the root-

mean-square error (RMSE). The R2 evaluates the proportion of variance in the target variable

explained by the model as in Eq 7:

R2 ¼ 1 �

Pn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yiÞ

2
ð7Þ

where yi is the observed target variable value, ŷi is the predicted target variable value, and �yi is

the mean of observed target variable. The best possible score of R2 is 1 (or 100%), but the score

may also be negative when the model is arbitrarily worse. Higher R2 values indicate less error

variance. A constant model that always predicts the expected value of y disregarding the input

features would yield a R2 score of 0 [73]. Typically, values greater than 0.5 are considered

acceptable [92]. The MAE is the average of the absolute differences between predictions and

observations as in Eq 8:

MAE ¼
1

n
Pn

i¼1
jyi � ŷi j: ð8Þ

The MAE attributes equal weight to individual errors and is less sensitive than R2 or RMSE

to large prediction errors. The RMSE is the square root of the average of squared differences

between predictions and observations computed as in Eq 9:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
Pn

i¼1
ðyi � ŷiÞ

2

r

: ð9Þ

The RMSE attributes high weight to large errors due to squaring. Both MAE and RMSE

indicate prediction errors in the units of variable of interest. Zero values indicate a perfect fit.
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Values less than half of the standard deviation of measured data were considered low [93]. The

trained models were used to predict optimal N, P and K doses using some left-out experimen-

tal sites data.

Economic or agronomic optimal doses

The optimal nutrient input is the one returning yield of high-quality tubers [32], where profit-

ability is maximized and the environmental footprint minimized [94, 95]. To compute the

optimal economic N, P, K doses at a given site, all the predictive features, but not N, P and K

doses, were held constant (fixed input data). The row of fixed input variables is stacked (repro-

duced) 1000 times to obtain a table with 1000 identical rows. We generated 1000 random

N-P-K combinations of doses from uniform distributions of plausible doses varying between

zero and 250 kg ha-1 for N, 110 kg ha-1 for P, 208 kg ha-1 for K. The table was altered in such a

way that only N-P-K dosage changed following the random combinations.

A fertilizer cost was computed for each N-P-K triplet. Unit fertilizer costs were set at $1.20

CDN kg-1 for N, $1.10 CDN kg-1 for P and $0.90 CDN kg-1 for K. Tuber price was set at $250

CDN Mg-1 (1 Mg = 1000 kg) as in Parent et al. [7]. No environmental footprint effect was used

because of a lack of reliable sources, although they could have been implemented as an increase

in the cost of unit dosage. The difference between fertilizer cost and tuber revenue provided

the marginal benefit from fertilizing. Economic optimal N-P-K dosage was reached where the

net return was maximum. For tuber size and SG, an agronomic optimal N-P-K fertilizer dos-

age was deducted where the target variable reached a maximum.

Our results are reproducible by using the codes, data and package requirements provided

in a GitHub repository at https://git.io/JvYxd.

2.11 Model interpretation data

We randomly selected four trials in the testing set for model interpretation (Table 4). The trials

showed soil pH levels ranging between the adequate limits of 5.2 to 6.2 for potato crops

according to the Centre de Référence en Agriculture et Agroalimentaire du Québec [96]. The

Table 4. Description of trials used for model analysis.

Trial 194� Trial 8804 Trial 412 Trial 320

Nutrient tested P N P K

Cultivar Superior FL 1533 Goldrush Krantz

Maturity class Early mid-season Mid-season Mid-season Mid-season

Growing season length (days) 102 131 108 112

Planting density (seeds ha-1) 36430 43716 36433 31226

Mean temperature (5 years) T˚C 16 18 16 18

Total rainfall (5 years) mm 378 359 363 448

Soil pH 5.5 5.5 5.8 6.1

Soil P (Mehlich 3) mg kg-1 23 175 46 349

Soil K (Mehlich 3) mg kg-1 83 265 72 200

Soil Al (Mehlich 3) mg kg-1 1580 1570 2839 1216

ISP1 (environmental index %) 1.4 11.1 1.6 28.7

Texture Sandy loam Fine sand Sandy loam Loam

Minimum dose (kg ha-1) 0 0 0 0

Maximum dose (kg ha-1) 300 200 200 300

� Trial n˚ 194 used for economic optimal and agronomic optimal doses computation. Al: aluminium, ISP: phosphorus saturation index

https://doi.org/10.1371/journal.pone.0230888.t004
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phosphorus saturation environmental index (P/Al)Mehlich3 classified the sites at extremely low

environmental risk for P trials (1.4% to 1.6%), medium risk for N trial (11.1%) and very high

risk for K trial (28.7%). Soil potassium levels showed extremely low (71.5 mg kg-1) and very

low (83.1 mg kg-1) levels for P trials, medium level for K trial and high level for N trial [97].

3. Results

Feature importance. The feature importance, computed using the ExtratreesRegressor
function, revealed that the N fertilizer dose was by far the most informative feature in the mar-

ketable yield prediction models, followed by soil type, air temperature, length of growing sea-

son and soil texture. To predict large-size tuber yield ([M, S | L] balance), the N dose remained

the most informative feature, followed by soil type and texture. Tuber planting density

exceeded other features for medium-size tubers ([S | M] balance), followed by N dose, soil ele-

ments (P and Al Mehlich-3) and soil type. For tuber SG, weather indices, i.e., Shannon diver-

sity index, total rainfall and temperature, returned the highest scores (Fig 2). Preceding crops

were not informative across target variables and were deleted before modeling.

3.2 Model tuning parameters

The tuning parameters varied within the models depending on target variables (Table 5). The

parameters were tuned during modeling using python random search method with 5-fold

cross-validation. For each target variable the corresponding training set was used.

The basic assumption in the KNN algorithm is that similar samples should return similar

output (class or value) [98]. The two parameters to tune are the distance function which deter-

mines the similarity, and the optimal number of neighbors (similar known observations, k) to

use for assigning the unknown output. The regressions were run with 19 nearest neighbors

(k = 19) for yield, tuber size [M, S | L] balance and SG prediction models. For the [S | M] bal-

ance prediction model, k was set at 18 neighbors. With uniform weights, all the points in each

neighborhood are weighted equally while with an inverse distance weight, closer neighbors

have a greater influence than neighbors which are further away.

The parameters of a RF include mainly the number of decision trees in the forest and the

number of features considered by each tree when splitting a node. The optimization procedure

set the number of trees in the forests to 92, 12, 17 and 19 for yield, tuber size [M, S | L] balance,

tuber size [S | M] balance and SG prediction models, respectively. The number of features con-

sidered for splitting at each leaf node were selected automatically.

A NN is characterized by its architecture, the training algorithm and the activation func-

tion. We used a multilayer perceptron in which neurons are organized in layers: an input layer

where data are fed into the system, one or more hidden layers where the learning takes place,

and an output layer where the decision/prediction is given [99]. We tuned the number of neu-

rons for one hidden layer, and the activation function. A hyperbolic tangent activation func-

tion was selected for all the target variables prediction models. The tuned numbers of the

hidden layer neurons were 100, 200, 100 and 200 for yield, tuber size [M, S | L] and [S | M] bal-

ances, and tuber SG respectively.

GPs are defined by a mean function m(x), a kernel or covariance function generating the

covariance matrix k(xi,xj) between pairs of random outputs. A white noise (σ2) can optionally

be added to the kernel [100]. The Matern kernel without white noise returned the lowest error

for each target variables. Different noise levels were found to be optimal: 0.195 for marketable

yield prediction model, 0.136 for tuber size [M, S | L] balance, 0.031 for [S | M] balance, and

0.932 for tuber SG. Because all the target variables were scaled and centered, mean functions m

(x) were null.
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3.3 Comparison between models

Model performance to predict marketable yield, tuber-size balances and tuber SG was assessed

using R2, MAE, RMSE, response curves shapes and economic optimal N-P-K dosage predic-

tions for each model. For all the models, the predictive accuracy level was not affected after dis-

carding the preceding crop classes.

Fig 2. Predictive features importance for modeling.

https://doi.org/10.1371/journal.pone.0230888.g002
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3.3.1 Goodness of fit. The model scores at training and testing for the different target var-

iables are presented in Fig 3. There was a large gap between training and testing scores. The

difference was lower for the Mitscherlich model, which also showed the lowest coefficient of

determination and the highest MAE and RMSE. Its R2 values were 0.35 and 0.37 at training

and testing, respectively. The R2 values of machine learning algorithm-based models ranged

between 0.78 (NN) and 0.92 (KNN) at training, and between 0.49 (NN) and 0.59 (RF) at test-

ing in predicting marketable yield. With the large-size tuber yield balance [M, S | L], the R2 val-

ues ranged between 0.72 (KNN) and 0.87 (RF) at training, and between 0.55 (KNN) and 0.64

(GP) at testing. The medium- versus small-size tuber [S | M] balance and SG prediction mod-

els were the most informative, as shown by the highest R2 values at both training and testing.

The R2 values ranged between 0.83 (NN) and 0.93 (KNN) at training and between 0.62 (RF)

and 0.69 (KNN) at testing in predicting small-size tuber balance, while for SG, they ranged

between 0.72 (KNN) and 0.94 (RF), then between 0.58 (KNN) and 0.67 (RF) at training and

testing, respectively. In general, model MAE and RMSE were slightly higher when R2 values

were low. The practically-similar magnitudes between RMSE and MAE meant that all the indi-

vidual differences between predictions and observations had equal weight.

3.3.2 Response curves. The marketable yield response curves are plotted in Fig 4 for each

model with respect to the tested nutrient. There were disagreements between models. The

Mitscherlich, NN and GP models generated smooth response curves, while the KNN and RF

models generated stepped curves. The marketable yield was non-responsive to P application in

the RF model. There was also no effect of K fertilization on the yield shown by the Mitscherlich

Table 5. Tuned model parameters.

A. Data used to tune parameters

Target variable Yield [M, S | L] [S | M] SG

Number of samples 5913 4557 4557 3180�

Training set 4139 3203 3203 2242

Testing set 1774 1354 1354 938

B. k-nearest neighbors

Target variable Yield [M, S | L] [S | M] SG

K 19 19 17 19

Distance Euclidean Euclidean Euclidean Euclidean

Weight Inverse distance Uniform Inverse distance Uniform

C. Random forest

Target variable Yield [M, S | L] [S | M] SG

Number of trees 92 12 17 19

Number of features ‘auto’ ‘auto’ ‘auto’ ‘auto’

D. Neural networks

Target variable Yield [M, S | L] [S | M] SG

Input layer size 20 20 20 20

Hidden layers size 100 200 100 200

E. Gaussian process

Target variable Yield [M, S | L] [S | M] SG

Kernel Matern Matern Matern Matern

Noise level (alpha) 0.195 0.136 0.031 0.932

� The total number of samples (3180) differs from that of this target variable in Table 1 because 1074 outliers have been excluded during the process.

https://doi.org/10.1371/journal.pone.0230888.t005
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and RF models. All models for the P trial somewhat underestimated marketable yield while

response curves followed data for N.

The Mitscherlich model was excluded for the analysis of other target variables. Figs 5–7

show how each model fits responses of tuber size balances ([M, S | L] and [S | M]), and SG,

respectively, with respect to N, P or K dosage. The NN and GP models generated smooth

curves, while the KNN and RF models generated stepped curves. The [M, S | L] balance (Fig 5)

showed increasing response to N fertilization across models, while response was globally poor

for P and K. For the [S | M] balance, responses increased with increasing fertilizer doses, except

for P and K trials data fitted with GP model (Fig 6). There was also poor response for K trial

Fig 3. Comparison of models goodness of fit using R2, MAE and RMSE.

https://doi.org/10.1371/journal.pone.0230888.g003
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Fig 4. Examples of potato yield response to N, P or K fertilization using different models.

https://doi.org/10.1371/journal.pone.0230888.g004
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with SG (Fig 7). The SG response decreased from zero K levels and increased then decreased

as P dosage increased. For N trials, SG slightly increased then decreased as N dose increased in

the RF model, but was non-responsive with the other models.

3.3.3 Predictions. The fertilizer recommendations and output predictions varied with the

model and the target (Fig 8). The Mitscherlich and NN models predicted negligible economic

optimal K doses (11 and 12 kg ha-1 respectively) in marketable yield prediction models, while

the site Mehlich-3 K level was classified as very low (83.1 mg kg-1) according to local standards

[96]. The RF model suggested the highest cumulative agronomic optimum fertilizer doses,

although its outputs were not the highest. With the tuber size [M, S | L] balance prediction

model, practicable doses were recommended only by the GP model for P (107 kg ha-1) and the

RF model for K (185 kg ha-1), a scheme that is almost similar to the [S | M] balance prediction

models. For this output, the GP model recommended only 17 kg P ha-1, while N and K were

impracticable (1 kg ha-1 and 4 kg ha-1, respectively). Despite the extremely low environmental

risk for P and the low level of soil K, some models predicted negligible doses of P and K mainly

for tuber size balances.

3.4 Probabilistic predictions

In addition to point estimates shown by each model, the GP model can return posterior sam-

ples. Each sample is a function from which we can compute an economic optimal (marketable

yield) or agronomic optimal (size balances or SG) fertilizer dose. Figs 9–12 present the results

of 1000 generated samples for each target variable for the selected N, P and K trials. The aver-

age GP curve is shown as a black line, with its optimal dosage as a black dot. Five sampled GP

curves are plotted as grey lines, with their optimal doses as grey dots. The probability distribu-

tions of the 1000 optimal doses are shown under the respective response curves. The figures

show that predicted means of optimal dosage (black dot) did not always correspond to the

most likely dosage (highest histogram bar) computed after running the sampling process.

With yield prediction models (Fig 9), the mean economic optimal dose corresponded to the

probabilistic prediction only for the N trial (250 kg N ha-1). For the tuber size [M, S | L] balance

(Fig 10), the probabilistic prediction was equal to the mean GP prediction for P trial i.e., 87 kg

P ha-1, while N and K trials returned equal predictions with the [S | M] balance prediction

models with 0.0 kg ha-1 and 0.70 kg ha-1, respectively (Fig 11). For tuber SG prediction models,

none of the probabilistic recommendation matched the mean GP optimal dosage (Fig 12).

4. Discussion

4.1 Selection of features

Fertilization trials were conducted over a time span of four decades (1979–2017). Although

agricultural practices, soil conditions and analytical techniques have undergone substantial

changes over time, Valkama et al. [101] has shown that the differences between old and recent

experiments in yield responses are not statistically important. Moreover, where the analytical

techniques for the same element differed, correlation equations were available to converting to

one technique before data analysis. It is the case for soil carbon converted from Walkley-Black

to Leco CNS (Eq 1), soil pH processed with CaCl2 converted to pH water (Eq 3), and P-Bray-2

converted to P-Mehlich-3 (Eq 4). Since there were similarities in experimental procedures and

ability to uniformly convert measurement methods, we found that the data set could be used

for machine learning.

The feature selection function selects a subset of variables for a learning algorithm to focus

attention on the subset, especially when dealing with a large number of explanatory variables.

The model-based approach incorporates the correlation structure between predictors and

PLOS ONE Precision fertilization of potato in Eastern Canada

PLOS ONE | https://doi.org/10.1371/journal.pone.0230888 August 7, 2020 16 / 32

https://doi.org/10.1371/journal.pone.0230888


Fig 5. Examples of potato tuber size [M, S | L] balance response to N, P or K fertilization using different models.

https://doi.org/10.1371/journal.pone.0230888.g005
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Fig 6. Examples of potato tuber size [S | M] balance response to N, P or K fertilization using different models.

https://doi.org/10.1371/journal.pone.0230888.g006
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Fig 7. Examples of potato tuber SG response to N, P or K fertilization using different models.

https://doi.org/10.1371/journal.pone.0230888.g007
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provides scores that indicate how useful or valuable each feature is in model building. Features

with low or no importance could be removed without affecting model performance [73]. The

preceding crops categories i.e., grassland, small grains, legumes, low-residue crops and high-

residue crops, as categorized by Parent et al. [7], returned zero (for tuber SG) or faintest scores

(for other target variables) and were thus removed despite a substantial body of literature on

the advantages of crop rotation to the next crop. Nonetheless, Zebarth et al. [102] stated that

the amount of nitrogen mineralized from organic matter during the growing season cannot be

predicted accurately. Torma et al. [103] found that the N supplied by soil and crop residues

(maize, potato, silage maize, soybean, sunflower, winter rape, winter wheat) ranged from 20 to

Fig 8. Economic or agronomic optimal doses and output predictions at optimal dosages for each model with a random selected test trial

(N˚ 194).

https://doi.org/10.1371/journal.pone.0230888.g008
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132 kg ha-1, while the phosphorus ranged from 2 to 24 kg ha-1 and potassium from 13 to 218

kg ha-1. Rangarajan [104] stated that nutrient availability to the next crop depends on whether

the entire plant or only the root system is left in the field, and on how environmental condi-

tions govern the rate of organic matter decomposition.

Fig 9. Examples of optimal economic N, P, K doses distribution with Gaussian processes using marketable yield for selected trials.

https://doi.org/10.1371/journal.pone.0230888.g009

Fig 10. Examples of agronomic optimal N, P, K doses distribution with Gaussian processes using tuber size [M, S | L] balance for selected trials.

https://doi.org/10.1371/journal.pone.0230888.g010
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For marketable yield and tuber size balances prediction models, the N dose was the most

informative feature, probably because of its close relation to photosynthesis [105]. Applied in

excess, it delays tuber maturity, stimulates foliage production, increases plant susceptibility to

Fig 11. Examples of agronomic optimal N, P, K doses distribution with Gaussian processes using tuber size [S | M] balance for selected trials.

https://doi.org/10.1371/journal.pone.0230888.g011

Fig 12. Examples of agronomic optimal N, P, K doses distribution with Gaussian processes using tuber SG for selected trials.

https://doi.org/10.1371/journal.pone.0230888.g012
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diseases and reduces tuber SG [106]. Crop yield is also determined by environmental condi-

tions driving the physical, chemical and biological reactions [107] that are important in empir-

ical or mechanistic models [4, 7–9, 108].

The selection process retained soil profile characteristics and weather events as major fea-

tures. Levy and Veilleux [109] reported the effects of air and soil temperatures on potato

growth mechanisms and tuber yield. Leblanc et al. [69] pointed out soil drainage conditions

for loamy-gleyed profiles (poorly-drained loam), sandy-gleyed profiles (poorly-drained sand)

and sandy-podzolized profiles (well-drained). Soil compaction has a negative impact on root

extension and water movement i.e., the reduction of nutrient uptake potential leading to a

severe reduction of tuber yield [8]. Xu et al. [110] developed pedotransfer functions for potato

grown on light-textured soils that could be useful in future models.

Dry matter production of potato crops is determined by the length of the growth cycle

[111], which turned out to be a valuable feature. Camire et al. [112] stated that long growing

season favors high-yielding late-season cultivars. Rex [113] found a close relationship between

delayed harvest date and total yield, main-size marketable tubers and SG.

Seeding density was the most informative feature of the medium- to small-size tubers bal-

ance. Seeding density differentiates the number of tubers harvested, the weight of the tubers

and the size distribution; higher plant densities promote higher yields in small and medium

sizes [113–115].

The feature selection algorithm showed the impact of weather indices on tuber SG. The

Shannon diversity index, total rainfall and temperature yielded the highest scores in a decreas-

ing order. Al Soboh et al. [116] reviewed the factors affecting SG loss in crops of crisping

potato and stressed that irrigation during early growth stages increases tuber dry matter con-

tent. Specific gravity could be reduced substantially if heavy rain occurred at the end of the sea-

son before harvest. They stated that potatoes grown during a period of increasing day length,

temperature and light intensity produce tubers of high SG. In this study, GDD considered

only daily mean temperatures higher than or equal to 5˚C as used by Parent et al. [7]. Moulin

et al. [117] used a baseline of 7˚C and 30˚C as upper limit. Moreover, the general trend of SG

response curves with respect to fertilization supported the results of Belanger et al. [118],

Zebarth et al. [19] and Laboski and Kelling [119]. Excessive application doses of N and K along

with high soil levels of either nutrient may reduce SG. Phosphorous application may increase

tuber solids when soil test P levels are low. Specific gravity was not influenced by the relatively

high levels of N and P used by Dubetz and Bole [120], while Maier et al. [121] found contrasted

effects between trials.

The relative importance of a variable in a model is related to its effect on the output through

its gradient in the data set. Hence the predominance of N doses, and P and K doses to some

extent, could have been caused by the origin of the data set, which is a collection of fertilizer

trials, where large gradients of doses are found by design. This study did not address fertilizer

source and timing of application. While Marouani et al. [122] found equivalency of ammo-

nium nitrate (33.5% N), urea (46% N), NP fertilizer (33% N– 14% P2O5) and NPK fertilizer

(27%N– 5% P2O5−5% K2O), Petropoulos et al. [123] found that the form of the fertilizer

(ammonium sulfate, ammonium sulfate + zeolite, manure, slow release N fertilizer with urease

inhibitor) and the cultivar (Kennebec and Spunta) may affect yield and chemical composition

of potato tubers, affecting the end use of the product. Flis [124] reported that the peculiarities

of potato cultivar, plant root structure, and timing of nutrient uptake impact on the selection

of a site-specific fertilization regime. Trehan et al. [125] showed that some cultivars exhibit

strong symptoms of N, P and K deficiencies compared to others. Potato cultivars may sustain

leaf development and nutrient uptake while maintaining maximum tuber growth rates to

reach higher final tuber yields with contrasting nutrient requirements [126]. Differential
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effects of cultivar and fertilizer on tuber yield have also been reported by Daoui et al. [127]. In

a previous study, Coulibali et al. [128] found that genetic traits were not compelling to set

apart clusters of cultivar based on N, P, K, Mg and Ca compositions of diagnostic leaves. The

cultivar effect was thus excluded from the present study to keep models parsimonious. In our

analysis, we focused on the gradients of N, P and K doses while keeping the other site-specific

factors constant. Nevertheless, predictive features such as biotic factors (length of growing sea-

son, preceding crop, and seeding density), could also be predicted and optimized by the mod-

els with respect to tuber yield and quality.

4.2 Comparison of models

The performance of a predictive model is evaluated at testing or with unseen data set. The good-

ness of fit refers to how closely the model-predicted values match the true or observed values.

Overfitting occurs where models perform well at training and badly at testing, while underfitting

characterizes a model performing badly in both training and testing. Except for the Mitscherlich

model, the model scores at testing showed discrepancies with training, reflecting problems of over-

fitting. The differences between R2 values were highest for the marketable yield prediction models

(Fig 3), reaching 0.40 with KNN. Based on those gaps, one could argue that our models did not

generalize well from training to testing data. However, we used a robust approach by comparing

different algorithms, tuning the hyperparameters and tuning the models using 5-fold cross-valida-

tion. The R2 values at testing varied with respect to target variables but were practically similar

between models. The models estimated the proportions of medium- and small-size tubers ([S | M]

balance) more accurately than those of large-size tubers ([M, S | L] balance), probably because of

the high number of zero weight values among large-size tubers (21%) compared to tubers of small

(0.06%) and medium (0.4%) size, at the early stage of our analysis. Imputing zeros to deal with

measures where the large size was completely absent [74] improved the prediction quality of this

fraction. Except for the Mitscherlich model in predicting yield, the R2 values at testing were greater

than 0.50 and could be considered acceptable according to Moriasi et al. [92] for complex systems.

The Mitscherlich model returned a lower coefficient of determination in tuber yield predic-

tion and was discarded for quality analysis (tuber size balances and SG). The KNN, RF, NN

and GP algorithms more accurately approximated the unknown functions explaining tuber

yield given the predictive features. However, it was difficult to select the best model since

scores were practically similar. Cerrato and Blackmer [129] and several others [130–134]

described similar ambiguities using classical statistical models.

Figs 4–7 indicated that the calibration and generalization procedures returned smooth

response curves for the Mitscherlich, NN and GP models for all the target variables. Except for the

low R2 value of the former, the NN and GP models appeared more suitable for making inferences.

The prediction of optimum fertilizer doses and optimum or maximum outputs showed

some disagreements for the case presented (Fig 8). There should be a single economic optimal

dose or agronomic optimal dose at each site each year. Some models were more consistent

than others in deriving optimal doses depending on the target variable. At extremely low pre-

dicted N, P or K doses, it could be challenging to manage the fertilization program at low eco-

nomic risk for producers, who generally consider that the cost of over-fertilization is low

compared to the cost of under-fertilization [37, 38]. The probabilistic prediction capability of

Gaussian processes may help to determine credible dosage.

4.3 Probabilistic predictions

Sampling from a Gaussian process looks like rolling a die, returning a different function each

time. Figs 9–12 showed only five possible functions for each target variable. By sampling the
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process numerous times, we generated a distribution of economic or agronomic optimal fertil-

izer doses as those shown by the histograms of the figures. The distributions often show fre-

quent optima at the edges to the NPK grid, i.e., at dose of 0 or 250 kg ha-1. This phenomenon

emerges from sampling continuously increasing or decreasing GP samples, which are more

frequent when the sample is close to patterns in data where the response to fertilizer is flat. A

zero-fertilizer recommendation could be interpreted as a soil sufficiently fertile to supply the

crop, or a soil poorly responsive due to other constraints [135] such as pests and diseases [20,

136] or weed damage [137]. Nevertheless, we covered a wide range of factors that may impact

potato crop growth and yield without falling into mechanistic modeling. Fertilizer doses more

than 250 kg ha-1 may be excessive, since the maximum limits according to local standards are

175 kg ha-1 for N, 87 kg ha-1 for P and 199 kg ha-1 for K [96].

To face predictions falling at the edges, the optimal fertilizer dosage could be selected within

a range of conditional expectation as processed by Khiari et al. [43] when defining P optimal

dose for acid coarse-textured soils. The xth conditional expectation dose is the optimal dose

that produces optimal yield x% of the time. For example, the 60th percentile would be the sam-

pled optimal dose that produces optimal yield 60% of the time for a given site. Khiari et al. [43]

assessed the 50th and 80th percentiles. The mean (50%), the median or any other percentile

dose could be computed to support decision-making. For example, the mean GP and the prob-

ability distribution processes returned the upper bound of the simulation dosage (i.e., 250 kg

N ha-1) as the economic optimal dose for the N trial with the marketable yield prediction

model (Fig 9). The conditional expectation percentiles showed that a lower dose (i.e., 223 kg N

ha-1) could be recommended, producing optimal yield 55% of the time. At the 60th percentile

or more, the full dose i.e., 250 kg N ha-1 must be applied.

5. Conclusion

This study assessed machine learning techniques as an alternative for potato fertilizer recom-

mendations at local scale usually handled by statistical models or meta-analysis at regional

scale. A large collection of field trial data provided information to fit machine learning models

with specific traits of cultivars, soil properties, weather indexes, and N, P and K fertilizers dos-

age used as predictive features. Five models, Mitscherlich, KNN, RF, NN and GP, were evalu-

ated against optimal economic N, P and K doses derived from yield, or against optimal

agronomic N, P and K doses derived from tuber size and SG. The models trained using

machine learning algorithms outperformed the Mitscherlich tri-variate response predictive

model. The marketable yield prediction coefficient (R2) varied between 0.49 and 0.59, while

the Mitscherlich model returned 0.37. The large-size tuber balance was predicted with a coeffi-

cient varying between 0.55 and 0.64. The R2 varied between 0.60 and 0.69 in predicting

medium-size tuber balance, and between 0.58 and 0.67 for SG. The N, P and K optimal doses

could be recommended with respect to marketable yield, tuber size or SG using the NN and

GP models, which appeared to be the most suitable for making inferences. Response surfaces

were obtained by conditioning the models using N-P-K doses generated from uniform distri-

butions under constant weather conditions, soil properties and land management factors. The

GP model stood up by its probabilistic framework in risk estimation for potato fertilizer rec-

ommendation in Quebec conditions.

As large amounts of data are being assembled into observational data sets, machine learning

models may surrogate statistical models in making fertilizer recommendations in the context

of precision agriculture. To assess model performance under real-world situations, it was an

effective strategy to combine historical weather data since accurate future weather data cover-

ing the growing season are unavailable. We also focused on using easily-available features
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collected from routine analyses as predictors instead of mechanistic processes models. Any

biotic factor other than fertilizer, e.g., length of growing season or planting density, could be

optimized with our model. Improvement will require more data from many more diverse

environments and management scenarios. With more experiment data, the training and test-

ing division could be performed at trial level to improve the model predictive ability. More-

over, since the data for this analysis were collected from small research plots, validation at

production-scale fields is needed for decision making.
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Resources: Serge-Étienne Parent.

Software: Zonlehoua Coulibali, Serge-Étienne Parent.

Supervision: Serge-Étienne Parent.
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