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SUMMARY 

Mitochondrial dysfunction is linked to pathogenesis of Parkinson’s disease (PD). 

However, individual-mitochondria-based analyses do not show a uniform feature in PD 

patients. Since mitochondria interact with each other, we hypothesize that PD-related 

features might exist in topological patterns of mitochondria-mitochondria interaction 

networks (MINs). Here we showed that MINs form non-classical scale-free supernetworks 

in colonic ganglia both from healthy controls and PD patients, however, altered 

topological patterns are observed in PD patients. These patterns highly correlate with PD 

clinical scores and a machine-learning approach based on the MIN features accurately 

distinguish between patients and controls with an area-under-curve value of 0.989. The 

MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD 

patients also display specific changes. CRISPR/CAS9-based genome correction of alpha-

synuclein point mutations reverses the changes in MINs of mDANs. Our MIN network 

analysis opens a new dimension for a deeper characterization of various complex 

diseases with mitochondrial dysregulation. 
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INTRODUCTION 

Network-biology approaches are successfully employed for a better understanding of complex 

diseases that are caused by interactions between genetic and/or environmental factors 1-6. 

Small- and macro-molecules such as genes, proteins and/or metabolites interact with each 

other and form networks with certain common underlying organization principles in sharp 

contrast to random networks. All these molecular networks seem to obey to a general scale-free 

power-law distribution principle7, although the definition of power-law distribution might require 

fine adjustment8. Mitochondria, the key organelle regulating cellular metabolism and generating 

cellular energy, constantly interact with each other, i.e., via the fusion and fission processes. 

Therefore, they form perpetually changing networks. Nevertheless, it remains unclear whether 

such organelle interactions form random networks or also well-organized structures obeying to 

universal principles. Answering this question could open basic new research avenues in 

neurodegeneration as mitochondrial dysfunction is connected to several neurodegenerative 

diseases, such as Huntington diseases, Alzheimer’s diseases and Parkinson’s disease (PD) 9-12. 

Therefore, we here took advantage of the availability of various PD-derived tissues and 

analyzed in all of them whether a functional impairment of mitochondria is associated with any 
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specific topological patterns or features of large-scale mitochondria-mitochondria interaction 

networks (MINs). 

RESULTS 

To obtain more precise information on mitochondria-mitochondria interactions, we used high-

resolution 3D mitochondrial immunofluorescence images in colon ascendens (left) and 

descendens (right) ganglia collected from idiopathic PD patients and healthy controls 13. We 

extracted network adjacency matrixes of mitochondria-mitochondria interactions from all ganglia 

neurons in such a way that mitochondria were represented as nodes, with an undirected link 

being present if an interaction is observed between a pair of nodes at the imaging moment. We 

performed various types of network analyses (up to 19 different network structure metrics) in 

this work. In a second step, the same network analysis was applied to midbrain dopaminergic 

neurons (mDANs) differentiated from induced-pluripotent stem cells (iPSCs) derived from skin 

fibroblasts of genetic PD patients and the corresponding healthy controls. We analyzed the 

MINs in the samples from patients with heterozygous point mutations, namely in the alpha-

synuclein (SNCA) gene14,15, in the PD-associated gene RHOT1 encoding a mitochondrial outer 

membrane GTPase16,17 (Miro1), or in the gene encoding the vacuolar protein sorting-associated 

protein 35 (VPS35)18,19. We compared the patients’ samples with that from age- and gender-

matched healthy controls as well as mutation-corrected isogenic controls. For the mDANs 

derived from VPS35-mutated samples, we also analyzed under different culture conditions (with 

or without anti-oxidants). 

MINs in enteric ganglia neurons form non-classical scale-free supernetworks and are 

composed of larger subnetworks 

As we hypothesized that the universal scale-free principle 20 would also apply to mitochondria-

mitochondria interaction networks, we first analyzed whether mitochondria form such a network 
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within ganglia. We found that in the MINs, the probability p(k) that a node interacts with k other 

nodes did not follow a power law 7 (i.e., p(k)~k� ) (Fig.1a). This result indicates that MINs did not 

self-organize into standard scale-free networks. The inability of MINs to form scale-free 

networks was independent from the subject groups (PD patients or healthy controls) and from 

the sample origins (left- or right-side biopsies) (Fig.1a). Within the ganglia, the mitochondria 

formed various sizes of (>16 thousands per group) and types of connected 

subnetworks/components with different numbers of mitochondria (nodes) and interactions 

(Fig.1b). We therefore checked whether the size of these subnetworks is organized according 

to a scale-free principle. Interestingly, the overall mitochondria interactions formed a non-classic 

modular scale-free network, where the probability P(s) that one subnetwork with at least s 

nodes indeed decays as a power law, following P(s)~ks (Fig.1c,d). Unexpectedly, however, the 

MINs from PD patients were more frequently composed of larger subnetworks than the MINs 

from healthy controls (P-value =10-17, see the Methods, Fig.1c-e). This difference between 

healthy controls and PD patients was more evident in the MINs from ganglia out of the 

right/ascending colon biopsies than that in the left/descending colon (P-value =10-25, Fig.1d,e), 

possibly due to the assumed rostrocaudal disease progression within the gastrointestinal tract 

21. 

Alteration in network topological features of MINs from enteric ganglia neurons of PD 

To systematically explore the topological properties of the MINs, we calculated various other 

topological/graphic metrics22, such as network max degree, diameter, efficiency, average 

shortest path length (ASPL), modularity, assortativity, transitivity, information content and small 

worldness (For the definition of different network property metrics, please refer to Materials and 

Methods) 23. We first focused on three network metrics with obvious biological meaning and 

implications. The three parameters including such as network diameter, efficiency and ASPL 

represent one group of closely related metrics, which all essentially signify how efficiently the 
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energy and information can be transferred and distributed among different nodes/mitochondria 

within enteric ganglia neurons. The longer the ASPL within a given MIN subnetwork, the less 

efficiently the MIN subnetwork transfers the energy from one node to another node. Among 

various analyzed metrics, we only observed marginal differences for transitivity (demonstrating 

density of triangles), information content (assessing the presence of regular meso-scale 

structures) 24 and small worldness (S-W) between the global MINs from PD patients compared 

to healthy controls (Fig.1f and Supplementary Fig.1). As no topological difference was 

substantial in the meso-scale properties, we searched for network feature differences at a 

micro-scale level. Interestingly, for the components with the number of nodes equal to or larger 

than (≥) 24, we noticed that the average Z-scores of the efficiency were much lower in PD than 

in healthy controls, whereas that of ASPL were much longer in PD (Fig. 2a). In line with this 

notion, the normalized network diameter for the larger components was much larger in PD than 

in healthy controls (Fig. 2a). These results may explain why PD patients have dysfunctional 

ganglia neurons 25. The observed lower network efficiency and accordingly increased ASPL in 

MINs might have important implications, i.e., energy and information within enteric ganglia 

neurons are possibly produced, shared and distributed less competently in the ganglia neurons 

of PD patients relative to healthy controls. In another hand, similar to that of the power grid 26, 

these network topological features of the MINs may also serve as a protective compensatory 

mechanism in PD patients. More investigation is required to distinguish between the possible 

compensatory mechanisms and the pathogenesis causing mechanisms. 

 

Network motifs are recurrent conserved building-blocks composed of a small number of nodes 

that are often associated with certain functions27. Without consideration of the network 

component size, there was no clear difference in the Z-scores of various types of analyzed 

motifs between PD patients and healthy controls (for Z-score see Methods, Fig. 2b-e, 

Supplementary Fig.2). Notably, for the components with the number of nodes ≥ 24, we noticed 
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that the partially-connected V-shape 3-node motifs existed less frequently in PD patients than in 

healthy controls (Fig. 2d). This observation seemed to be generally applicable, as it also held 

true for the partially connected paw-like 4-node motifs (Fig. 2e). We also checked other types of 

MIN motifs and found the fully-connected triangle 3-node motifs possessed much higher Z-

score in PD than in healthy controls for large components (size>=24, Fig. 2d). This observation 

was not evident for more-connected 4-node motifs possibly because of the decreased overall 

frequency of such complex motifs in MINs and randomized networks (Supplementary Fig.2). In 

the mitochondria interacting ‘social’ networks of PD, ‘dysfunctional’ mitochondria relative to 

‘normal’ mitochondria might need to fully interact with each other in order to more efficiently 

maintain the necessary cellular energy supply. Higher frequency of this type of motifs may also 

partially compensate for the substantial right-side ganglionic shrinking in PD patients 13. It is 

noteworthy that the fully-connected triangle 3-node motifs, as that analyzed in the index of 

transivity, are the most recurring motifs in many different types of biological and social networks 

28,29, reflecting the relevance and importance of such types of motifs in establishing network 

efficiency and maintaining network function. 

Network topological features are correlated with PD clinical scores 

With these promising results in terms of difference in topological patterns of the MINs from 

macro- to meso- to micro-scale levels in mind, we explored whether some of these network 

features are correlated with the most-used clinical scores, i.e., Unified Parkinson's Disease 

Rating Scale (UPDRS) III 30 and thus could be used as potential biomarkers of early PD 

diagnosis. Notably, network efficiency is significantly negatively correlated with the UPDRS 

scores (r=-0.857, P-value=0.014) for a large size of network components (size of 28; this size 

exists among different individuals), indicating that a lower network efficiency reflects more 

severe PD motor symptoms in individual patients (Fig. 2f). Accordingly, as the related but 

inverted parameters of network efficiency, ASPL and diameter are highly positively correlated 
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with the UPDRS scores for the corresponding components (size of 28) (Fig. 2f). The Z-scores 

of the paw-like 4-node network motifs were also negatively correlated with the UPDRS scores, 

although to a lesser extent (Fig. 2f). 

Network topological features alone can accurately discriminate PD patients from 

controls 

As we had found such a high correlation between network features and well-accepted PD 

clinical scores, we applied machine-learning approaches to assess whether we can use a 

combinatory panel of those network features as more powerful biomarkers. After testing and 

comparing several algorithms in both our real datasets as well as randomized datasets with re-

shuffled sample labels (Supplementary Fig.3), we selected a high-performance machine 

learning approach (i.e., multilayer perception (MLP)) with leave-one-out cross-validation to 

discriminate the samples of PD patients from healthy controls (Fig. 2g). When only choosing 

features from right-side or left-side ganglia, we found the area under the ROC curve (AUC), the 

essential performance index of biomarkers, was as high as 98.6% and 98.4%, respectively (Fig. 

2g, left panel). When we mixed the features from both right- and left-side samples, the AUC 

was still maintained at 87.7% (Fig. 2g, left panel). The classification results using various sizes 

of components of MINs showed that PD-specific features were mainly encoded in large 

subnetworks (AUC=98.9% for size>=20, Fig. 2g, middle). Integration of different types of key 

topological features is necessary to reach accurate classification (Fig. 2g). Together, these 

results demonstrate that the features in the MINs represent very valuable information and can 

be used as potent novel biomarkers for the PD diagnosis. 
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MINs within dopaminergic neurons derived from genetic PD patients also show altered 

network features. 

To further check whether our observation in enteric neurons of idiopathic PD patients holds true 

in mDANs derived from genetic PD patients, we generated human iPSCs-differentiated mDANs 

and analyzed their MINs (Fig. 3a). Again, the MINs in iPSCs-differentiated mDANs, no matter 

being derived from which genetic PD patients or age- and gender-matched healthy controls, did 

not self-organize into standard scale-free networks similar as observed in enteric ganglia 

neurons (Fig. 3b). In line with the observation in enteric ganglia, the MINs of iPSCs-

differentiated mDANs derived from a PD patient with a point mutation in the SNCA gene that 

leads to an A30P amino acid exchange in the encoded protein also formed a non-classic scale-

free supernetwork (Fig. 3c). Consistent with the effect on subnetwork sizes of the MINs from the 

idiopathic PD patients, the SNCA-mutated patient showed much larger subnetworks than that 

from the healthy controls (50 or 60 different measurements or clones per group; P-

value=3.81x10-13, Fig. 3c). This also holds true for that from one Miro1-mutated patient relative 

to the age- and gender-matched healthy control (P-value=7.06 x10-44). However, the correction 

of the point mutation in SNCA using CRISPR/CAS9-based genome editing did not dramatically, 

although still significantly (P-value=1.65 x10-3), change the size of the subnetworks (Fig. 3c). In 

contrast to the observations of other mutations, the VPS35-mutated patient showed 

substantially smaller subnetworks than that from the matched healthy controls (P-

value=2.15x10-53, Fig. 3c), which is in line with the reported observation that VPS35 mutations 

cause the fragmentation of individual mitochondria19. To further test whether the astonishing 

effect of the VPS35 mutations is regulated by oxidative stress, we exposed the cells to oxidative 

stress during the iPSCs-differentiation process. Following oxidative stress, the difference 

disappeared in subnetwork size of MINs within mDANs derived from the VPS35-mutated patient 

versus (vs.) the matched control, indicative of the direct involvement of oxidative stress in 
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VPS35-mediated feature changes of the MINs. The distinction observed between the VPS35-

mutated samples and the other genetic PD samples might be simply attributable to the fact that 

the D620N mutation in VPS35 disrupts both the distribution of endosomes31 and mitochondrial 

functions19, while the other PD genetic mutations mainly affect the latter. Therefore, the effect 

on subnetwork size of MINs of mDANs might be dependent on which familial PD gene is 

mutated, depending on whether the given mutation directly contributes to mitochondrial 

dysfunction and is regulated by oxidative stress. 

 

To obtain a more comprehensive understanding of the network features of MINs, we 

investigated and compared other network topological indexes of the MINs from mDANs derived 

from genetic PD patients. Keeping in mind the observations in ganglia neurons, we particularly 

checked the topological metrics related to network efficiency. Notably, the MINs from the three 

rare genetic PD patients all presented smaller diameters for the subnetworks that are composed 

of nodes larger than a certain number (≥34, 27, 34, 14 for SNCA mutation, RHOT1 mutation, 

VPS35 mutation with or without oxidative stress respectively, Fig. 4a), whereas the efficiency 

was always higher than that of age- and gender-matched healthy controls (Fig. 4b). Correction 

in the SNCA mutation reversed both changes in network diameters and efficiency caused by the 

SNCA mutation (Fig. 4a, b). As determined by the definition of ASPL, the change of the ASPL 

in genetic PD patients is correlated with that of network diameter (Supplementary Fig. 4a). Of 

note, again the effect of the VPS35 mutation on these MIN indexes, when the differentiation was 

performed with anti-oxidants, was smaller compared with that of the other analyzed genetic 

factors in this work. As oxidative stress worsens the iPSC-derived mDAN phenotypes of several 

genetic factors that contribute to the pathogenesis of PD32,33, the influence of the VPS35 

mutation under oxidative stress on particular network indexes became more evident (Fig. 4a, b 

and Supplementary Fig. 4a).  In short, closely associated network indexes analyzed here such 

as diameter, efficiency and ASPL showed consistent alteration in all the selected genetic PD 
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patients. The results of the three network parameters demonstrated that the MINs within 

mDANs derived from several genetic PD patients all have enhanced efficiency in terms of 

energy transfer among different mitochondria within the those larger subnetworks. Most likely, 

these consistent alterations in particular network features represent a conservative 

compensatory mechanism that tends to protect PD mDANs from death. 

 

We further analyzed other topological indexes of MINs of mDANs that were also calculated in 

enteric ganglia neurons of idiopathic PD patients. Interestingly, correction in the SNCA mutation 

significantly affected network transitivity and small worldness (Fig. 4c, for transitivity and small 

worldness, refer to the Materials and Methods for the definition). The MINs of mDANs derived 

from both VPS35-mutated materials under oxidative stress and Miro1-mutated patient samples 

showed significantly changed assortativity, a network metric representing to which extent highly 

connected nodes in a network tend to link with each other34 (Fig. 4c, refer to Methods). 

Furthermore, the MINs of mDANs derived from both VPS35-mutated materials under oxidative 

stress and SNCA-mutated materials showed a significant change in the MIN network efficiency 

even in a global scale (Fig. 4c) in addition to those visible only in larger subnetworks (Fig. 4b). 

For the mDANs derived from the VPS35-mutated patient materials cultured with anti-oxidants, 

only modularity of the global MINs that measures how much the network is organized into 

communities showed a significant difference (Fig. 4c). Thus, alike the effect on MIN subnetwork 

size, the influence on particular network properties is also dependent on specific genetic 

mutations and apparently affected by exogenous oxidative stress. 

 

We further examined the 3-node and 4-node motifs of MINs from those genetic PD patients. 

Interestingly, the triangle motifs, the most abundant network motifs in different types of 

networks28,29, within the mDANs differentiated with anti-oxidants also displayed similar changes 

for larger MIN subnetworks of all patients carrying SNCA- or RHOT1- or VPS35-mutations (Fig. 
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4d). Since both cellular MINs and power/electricity grid networks29 might share similar functions 

in terms of ‘energy transferring’, we reasoned that the frequency reduction in the triangle motifs 

of the larger MIN subnetworks from those genetic PD patients might enhance the risk of energy 

supply failure and eventually harm the functions and survival of those neurons. The correction in 

the SNCA point mutation again reversed the frequency change of triangle motifs caused by the 

SNCA mutation (Fig. 4d). It is noteworthy that under oxidative stress the MINs derived from the 

VPS35-mutated patient showed an inverted change as that of mDANs derived from the PD 

patients with mutations in any of the three analyzed key PD genes, when being differentiated in 

the presence of anti-oxidants. This oxidative-stress induced effect of the VPS35 mutation on the 

frequency of triangle motifs of iPSCs-differentiated mDANs was in fact similar to that observed 

in the ex-vivo analysis of ganglia neurons of idiopathic PD patients (Fig. 2d). These results are 

very much in line with the current well-established paradigm that oxidative stress plays a critical 

role in dopaminergic neurotoxicity35 (Fig. 4d). The frequency change of the V-shape 3-node 

motifs was similar, although to a lesser degree, as that of triangle motifs (Supplementary Fig. 

4b). The frequency change of both paw-like and U-shape 4-node motifs in those genetic PD 

patients was still similar to that of the triangle 3-node motifs in larger MIN subnetworks 

(Supplementary Fig. 4c, d). Nevertheless, the altered degree between the genetic PD patients 

and the controls in the frequency of the analyzed 4-node motifs was smaller compared with that 

of the triangle motifs. In summary, the analyzed network motifs also showed consistent changes 

for four out of the five comparison groups/conditions. The only exception existed in the MIN 

network features caused by the VPS35 mutations that was imposed by oxidative stress. Taken 

together, although not always identical in changes for various examined indexes, the image 

datasets from both idiopathic and genetic PD patients revealed novel critical changes in the 

topological structure of MINs that are associated with PD. 
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DISCUSSION 

Since mitochondria constantly interact with each other, it is rational to analyze the mitochondria-

mitochondria interaction networks (MINs). However, such an analysis has never been 

performed  even in general populations, not to mention among the patients with 

neurodegenerative diseases with direct mitochondrial involvement. As many molecular networks 

share certain underlying organizing principles, we aimed to investigate whether the MINs follow 

similar principles and whether and how the network topological properties are affected in 

relevant pathological conditions that are related to mitochondrial deficiency. To this end, we 

here comprehensively analyzed a variety of network topological indexes of MINs, contrary to a 

conventional analysis focusing on individual-mitochondria-based phenotypes such as 

mitochondrial number, volume, size, shape and even recent simplified network-like analysis only 

on connection degree 13,36. Beyond the initially only intended proof-of-principle analysis, we 

found remarkable pattern differences in the MINs of enteric ganglia of sporadic PD patients vs. 

healthy controls. Furthermore, particular network metrics are highly correlated with PD clinical 

scores, indicating a potential of using particular network features for early diagnosis and basic 

research purposes of PD. Excitingly, with network topological features alone, we can already 

accurately distinguish the PD patients from healthy controls. This discovery opens the door to a 

new type of biomarkers from network metrics of MINs in patient-based materials. However 

further validation in a large-scale cohort or even multicenter cohorts is required. In PD patients 

these differences in MINs might be directly related to well-known mitochondrial complex I 

deficiency 37, mitochondrial fragmentation and/or deficient mitochondrial dynamics 38,39. In this 

work, we demonstrated the association between altered network topological indexes of MINs 

with known mitochondrial deficiency of sporadic PD patients. 
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Network analysis of MINs of mDANs derived from all the tested genetic PD patients vs. age- 

and gender-matched healthy controls revealed consistent changes for several related network 

metrics, such as diameter, efficiency and ASPL. Remarkably, the change of direction seen in 

genetic PD patients is in sharp contrast to that seen in sporadic PD patients. The difference in 

change direction of particular network features might be caused by several factors: 1, genetic 

PD vs. idiopathic PD; 2, tissue difference (enteric neurons vs. mDANs); 3, ex vivo imaging in 

ganglia vs. imaging on in vitro derived cells; 4, also  possibly direct disease involvement vs. 

secondary compensation mechanism. Therefore, the inverted change of direction is plausible 

due to these fundamental differences. Importantly, despite of a huge difference in the roles of 

the tested genetic factors, the consistence in pattern changes of particular network indexes 

(e.g., network efficiency related indexes and triangle motifs) among different genetic PD patients 

underscores the value of using this type of MIN network analysis to assist diagnosis and 

classification of genetic PD patients. Such a consistency in pathology among different genetic 

PD patients has so far not been reported in other studies not applying such a fundamental 

network analysis in MINs. Machine-learning-based computational analysis of MINs provides 

another layer of new information and enables automatized classification of a large number of 

subjects. 

 

We also noticed a general negative correlation between the changed directions (increase or 

decrease) in network efficiency and triangle motif frequency of PD patients, independent of 

samples from sporadic or genetic PD patients. These two important network metrics might well 

compensate each other to fine tune the overall functions of mitochondria networks in PD 

patients no matter in which tissue we analyzed. Interestingly, the only exception existed in the 

MINs of the mDANs derived from the VPS35-mutated patient materials under oxidative stress. 

In that case, both network efficiency and triangle motif frequency in the MINs were 
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simultaneously heightened, possibly to fight against or compensate the cytotoxic effects induced 

by oxidative stress. 

 

Due to the limited access to colonic ganglia samples from healthy controls, we were unable to 

analyze more healthy controls at the current stage of the project. We also could not access the 

ganglia materials from patients with other types of diseases, in particular from other (e.g., 

inflammatory) colon diseases. Due to this lack of comparison with samples from non-PD 

patients, we cannot conclude whether our observed changes in the structural features of the 

MINs are PD-specific or not. However, we are poised that such MIN-related network analyses 

provide novel insight into the pathogenesis and/or compensatory mechanisms in various chronic 

complex diseases. The MIN signature, per se, could be qualified as a key health indicator, 

providing information on the energy supply (deficits) in various diseases. Such analyses open 

innovative avenues of biomedical research for dissecting complex diseases, with primary or 

secondary bioenergetic deficiencies. Finally, this approach may well be applicable to the 

network analysis of other cellular organelles, such as endoplasmic reticula or lysosomes. 

MATERIALS AND METHODS 

Experimental Methods 

Reprogramming of human fibroblasts into iPSCs 

 

We complied with all the relevant ethic regulations and Luxembourg CNER (Comité National 

d'Ethique de Recherche) has approved the usage of the iPSCs derived from PD patients and 

the related controls (201411/05). Both the SNCA-mutated patient (p.A30P) and the unaffected 

control (Control 1) were 67-year old male when the biopsies were collected. The RHOT1-

mutated patient was from the existing German PD cohort (average age of onset of 59.4 ± 13.2 
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years, average age of sample collection of 65.7 ± 10.2 years). Informed consent was obtained 

from these patients and controls and approved by the Ethics Committee of the Medical faculty 

and the University Hospital Tübingen, Germany. The RHOT1-mutated late-onset female PD 

patient (with a heterozygous point mutation c.815G>A in RHOT1 [NM_001033568]) had a 

tremor dominant clinical phenotype and her father had also tremor in family history. The 

selected control (Control 2) was age- and gender-matched. More information about the RHOT1-

mutated patient can be found elsewhere17. 

Patient dermal fibroblasts carrying the heterozygous p.D620N mutation in VPS35 were a kind 

gift from George Mellick from the Griffith Institute (Queensland, Australia). Control fibroblasts 

from age and gender-matched healthy individuals 16_33 and 16_1 are from Tübingen’s Biobank. 

Skin biopsies were performed at the ages of 73, 72 and 77 for VPS35-mutated patient, the 

control 16_33 and the control 16_1 respectively. Informed consent were given by all individuals 

included in this study. 

Skin fibroblasts of patients or healthy controls were cultured at low passage number and 

maintained with Dulbecco’s modified eagle medium (41965-062, Thermo Fisher Scientific) 

supplemented with 15% fetal bovine serum (10270106, Thermo Fisher Scientific) and 1% 

penicillin-streptomycin (15140-122, Thermo Fisher Scientific). When confluency was reached, 

wild-type skin fibroblasts were reprogrammed into induced-pluripotent stem cells (iPSCs) via 

lentivirus infection 40 using the CytoTune-iPS 2.0 Sendai Reprogramming Kit (A16517, Thermo 

Fisher Scientific) and patient-derived fibroblasts were reprogrammed into iPSCs via synthetic 

modified mRNA 41. For the samples derived from control 16_1, the fibroblasts were 

reprogrammed using the three plasmids (pCXLE-hOct3/4 [Addgene #27076], pCXLE-hSK 

[Addgene #27078], pCXLE-hUL [Addgene #27080]) with 10ug of each plasmid through the 

Amaxa Nucleofector (Lonza). The fibroblasts from other donors were reprogrammed using 

Sendai virus. 
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iPSC clones were expanded in culture and maintained with Essential 8 medium (A1517001, 

Thermo Fisher Scientific) supplemented with 1% penicillin-streptomycin. Chosen iPSC clones 

for neuronal differentiation were selected via karyotype analysis and iPSC-characterization 

procedures42. 

Midbrain dopaminergic neuronal differentiation 

Following the procedures above, human iPSCs derived from patients or age- and gender-

matched healthy controls were obtained and submitted to neuronal differentiation (for details 

see below). We included human iPSCs from a monogenic, heterozygous dominant familial case 

of PD, with a point mutation in the alpha-synuclein (SNCA) gene (Patient 1), from a healthy 

control (Control 1), and from a patient isogenic control (Patient1 + mutation correction). The 

patient isogenic control was obtained by the CRISPR/CAS9-based genome editing to correct 

the point mutation of SNCA found in the Patient 1 case. The detailed method was described 

elsewhere 43. We also generated human iPSCs from a genetic PD patient with a point mutation 

in RHOT1 (Patient 2), from a matched healthy control (Control 2), from a familial genetic PD 

patient with a point mutation in VPS35 and from two matched healthy controls (Control 16_33 

and 16_1).  

 

Chosen iPSC clones were differentiated into small-molecule neural progenitor cells (smNPCs) 

via small molecules of human neural progenitors 44. Successfully differentiated smNPCs were 

expanded in culture and maintained with N2B27 medium consisted of 50:50 Neurobasal 

(21103-049, Thermo Fisher Scientific)/DMEM-F12 (11320-033, Thermo Fisher Scientific) 

supplemented with 1:200 N2 (17502-048, Thermo Fisher Scientific), 1:100 B27 (17504-044, 

Thermo Fisher Scientific), 1% Glutamax (35050-061, Thermo Fisher Scientific) and 1% 

penicillin-streptomycin. Dopaminergic neuronal differentiation of smNPCs was performed using 

the methodology explained elsewhere 44. Of note, the cells derived from the VPS35-mutated 
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patient and the matched controls were differentiated in the medium with or without N2 

supplements (as anti-oxidants), while all the others were cultured with N2 supplements. 

Live-cell imaging of iPSC-derived neurons 

For the materials derived from the patient with a mutation in RHOT1 or the related control, 

neurons at day 25 of maturation were seeded in chamber slides (154534, Thermo Fisher 

Scientific). Five days were needed for the cells to stabilize in the chamber slides and reach an 

appropriate level of connectivity. For the materials derived from the patient with a mutation in 

VPS35 or the related control, neurons at day 21 of maturation were seeded in chamber slides 

(154534, Thermo Fisher Scientific). Nine days were needed for the cells to stabilize in the 

chamber slides and reach an appropriate level of connectivity. For the cells derived from both 

the RHOT1-mutated patient and the VPS35-mutated patient and their corresponding controls, 

the staining and image analysis is identical. At day 30 of maturation, mDANs were stained for 

live-cell imaging by using 1:10000 MitoTracker Green FM (M-7514, Thermo Fisher Scientific) to 

label mitochondria and 1:5000 LysoTracker Deep Red (L-12492, Thermo Fisher Scientific) to 

label lysosomes. Cellular nuclei were stained with 1:100 Hoechst 33342 (H1399, Thermo Fisher 

Scientific) after mitochondria and lysosomes staining was performed. Neurons were washed 

once with pre-warmed medium prior to imaging. Live-cell imaging was performed using the Live 

Cell Microscope Axiovert 2000 with spinning disc (Carl Zeiss Microimaging GmbH) in a 

humidified atmosphere containing 5% CO2 at 37°C. 

 

For the cells derived from the alpha-synuclein (SNCA)-mutated patient or the corresponding 

control, the details were slightly different. Neurons at day 35 of differentiation were seeded into 

coverslips (AB0577, Thermo Fisher Scientif). Ten days were necessary for the cells to stabilize 

and regenerate the complex network. At day 45 of differentiation, cells were fixed using 4% PFA 

(J61899.AP, Thermo Fisher Scientific) for 15 minutes at room temperature agitating. 
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Permeabilisation/blocking was performed using 0.4% Triton-X-100 (T8787-100ML, Sigma-

Aldrich) in PBS +/+ (HYCLSH30264.FS, GE Healthcare Europe GmbH) with 10% Goat serum 

(S26-100ML, Merck Millipore) and 2% BSA (B9000S, New England Biolabs) for 1 hour at room 

temperature. First and second antibodies were prepared in a solution of 0.1% Triton-X-100 

(T8787-100ML, Sigma-Aldrich) in PBS+/+ (HYCLSH30264.FS, GE Healthcare Europe GmbH) 

with 1% Goat serum (S26-100ML, Merck Millipore) and 0.2% BSA (B9000S, New England 

Biolabs). For mitochondria detection, we used the Tom20 (sc-11415, Santa Cruz) antibody at 

1:500 dilution overnight at 4°C with agitation. Tom20 was detected by the use of the secondary 

ab Alexa Fluor® 488 (A-11008, Thermo Fisher Scientific) at 1:1000 dilution, incubated for 3 

hours at room temperature with agitation. For nuclear staining we used 1:100 Hoechst 33342 

(H1399, Thermo Fisher Scientific) for 15 minutes at room temperature with agitation. Coverslips 

were mounted in slides using Vectashield (H-1000, LABCONSULT SPRL / Vectorlab) mounting 

solution and sealed. Imaging was performed using the Live Cell Microscope Axiovert 2000 with 

spinning disc (Carl Zeiss Microimaging GmbH) using a 63x objective. For each condition, it was 

acquired ten non-empty fields randomly selected, each of them as a Z-stack, using a 0.2 µm Z-

axis step and a total number of slices enough to cover the entire depth of the sample. All files 

were saved for further analysis as .czi files. 

Computational Methods 

MIN matrix construction 

Adjacency matrices of the mitochondrial interaction networks (MINs) were extracted from 

confocal three dimensional (3D, with Z-stack) mitochondrial immunofluorescence images of 

colonic ganglia 13, according to a reported method which has been optimized for image-based 

network analysis45. In classical adjacency matrices (A) of undirected graphs, the element Ai,j=1 

indicates that there is a link between nodes i and j, Ai,j=0 otherwise. In contrast to the classical 
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matrix, in the adjacency matrix variant defined by Kerschnitzki et al. 45, the matrix element Ai,j 

represents the count of pixels in the link connecting the given nodes i and j if there is a link and 

otherwise sets to zero. The key Matlab functions for mask skeletonization and adjacency matrix 

extraction, namely ‘Skeleton3D’ and ‘Skel2Graph3D’ were kindly provided by the authors of the 

previous work45. For the parameter ‘THR’ of the function ‘Skel2Graph3D’, defining the minimum 

length of branches (edges that do not end at another node), to filter out potential skeletonization 

artifacts, in our analysis we set as zero to avoid losing any information. Accordingly, in the 

following network analysis, we considered the existence of a link between the nodes i and j if Ai,j 

is larger than zero. The other criteria, masks and filters used for mitochondrial segmentation and 

pixel calculation were described in our previous work 13. 

Subnetwork/component extraction and computational analysis 

 

The MINs, reconstructed as aforementioned, are potentially disconnected, i.e., they may not 

form a path between all pairs of nodes. In order to ensure a meaningful calculation of all the 

analyzed topological metrics, we have proceeded to dissect each MIN into a collection of 

connected subnetworks/components, thus representing a set of locally interacting mitochondria. 

 

The following standard metrics have been evaluated on the obtained subnetworks: 

● Normalized degree (k*). Considering the varying sizes of distinct network components 

and to make the degree comparable, we normalized the connection degrees of the given 

nodes within each component using the equation k*= 
�

�
 , where k is the raw connection 

degree and N is the number of nodes in the given component/subnetwork. 
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● Link density and Max Degree. Respectively defined as the number of active links over 

the total number of possible links ( �� �
�

������
∑ ��,
�,
�� ), and the number of direct 

connections of the most connected node (�� � ������)
 7,22. 

● ASPL. The average shortest path length (ASPL) is defined as the average distance 

separating all possible pairs of nodes, i.e., �	
� �
�

������
∑ ��,
�,
�� . 22 

● Diameter. Defined as the greatest distance between all pairs of nodes in the network22. 

● Efficiency. Metric assessing how efficiently information can be transmitted among 

nodes; it is defined as the harmonic mean of the geodesic distance between all pairs of 

nodes:  �
�

������
∑

�

��,�
�,
�� , � being the number of nodes composing the network, and 

��,
 the distance (in terms of the number of links) between nodes � and � 46. 

● Modularity. Measuring how much the network is organized into communities, i.e., 

groups of nodes strongly connected between them but loosely connected with the other 

nodes of the network 47,48. The community structure has been detected through the 

Louvain algorithm 49 . 

● Assortativity. Pearson’s correlation coefficient between the degrees of both nodes of a 

link. Positive values indicate that highly connected nodes prefer to link with other hubs 

while negative values designate that highly connected nodes prefer to link with periphery 

nodes34. 

● Transitivity. Density of triangles (triplets of completely connected nodes) in the network. 

● Information Content. The measure of assessing the presence of meso-scale 

structures, e.g. communities, based on the identification of regular patterns in the 

adjacency matrix of the network, and on the calculation of the quantity of information lost 

when pairs of nodes are iteratively merged 24. 

● Small-Worldness. Metric assessing the coexistence of a high clustering coefficient and 

a low mean geodesic distance 23,50-52. 
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● Motifs. Specific connectivity patterns, created by a small number of nodes, that exist 

more frequently in the given networks than in randomized networks 27. Motifs with 3 or 4 

nodes have been considered here. We displayed the components with a size ranging 

from 6-28 Fig2d, e. The component with 29 nodes only appeared once in the healthy 

controls. When showing the average scores, we did not include very large components 

(size>=29) in Fig2d, e. This restriction in sizes does not apply to the classification 

section of ganglia samples. 

● Comparison of subnetwork size between groups. Distribution of network 

components’ sizes, e.g. the curves in Fig.1b, have further been modelled through a 

power law P(s)~ks, where s is the component size, by disregarding the lower and higher 

tails of the curves 53. Pairs of distributions have been compared for the null hypothesis of 

sharing the same power law slope k (Fig. 1e and 3c), by representing the two slopes as 

two random variables from two normal distributions, and by calculating the probability of 

the difference between the means of both distributions of being zero. 

Normalization through random networks  

In order to normalize the values obtained for the listed metrics, a set of 100 random networks 

were generated for each component, and used as a null model. Each one of these randomized 

networks is composed of the same number of nodes and links as the original network; 

additionally, to ensure a biological plausibility, each generated random network was used only if 

all the nodes and links form a single component. Afterwards, each metric is normalized through 

a Z-score, calculated as:� � ����� �
������

�����
, � being the value obtained in the real network, 

�� the set of values obtained for the random set, and ���� and ���� respectively the average 

and standard deviation operators. 
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Probability of overall Z-scores. For any of the analyzed metrics, the probability of a given Z-

score is defined as follows: 
�

�
 , where m is number of components with the given Z-score and n 

is number of total components within the MINs. 

Classification 

 

The classification models’ performance has been corrected against overfitting by using a 

modified Leave-One-Out Cross Validation (LOOCV) approach. The standard LOOCV technique 

entails testing each instance of the data set with a model trained with all other instances, 

followed by calculating the average classification error. It is worth noting that a simple LOOCV 

would here lead to an overfitting, as each person in the data set is described by multiple 

instances (i.e. different neurons and mitochondrial networks). False conclusions may be drawn 

when using a model trained from the MINs of one neuron for testing another neuron of the same 

participant. In order to avoid this pitfall, we here employed a modified approach in which each 

model was trained using the data from all the other people, except from those records belonging 

to the tested participant. The overfitting issue was also minimized by the fact that we had many 

more network components/subnetworks than the selected features. Furthermore, we also 

randomly re-shuffled the sample labels 50 times to test whether the high AUC values we 

achieved in the real datasets can be also obtained even in the randomized datasets. 

Quantification and Statistical Analysis 

We employed the two-sample two-sided K-S (Kolmogorov–Smirnov) test in general. However, 

for the comparison of the exponential fits (Fig. 1e and 3c), we used a different test as a K-S test 

would not work well with a distribution with such a long tail (for details see the description 

above). Bold and * indicate a significant P-value (<=0.05) after Šidák correction (the displayed 

P-values in the corresponding figures are before correction). Whenever the corresponding test 
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was used, it was directly indicated in the corresponding figure legend. The number of analyzed 

samples were indicated either in Fig.1 or in Fig. 3. 

Data and Code Availability 

Raw 3-D image datasets will be deposited online (>500G; it will take time to deposit everything) 

and the computational script codes can be accessible at Github 

(https://github.com/FengHe001/Mitochondria-network-analysis; 

https://github.com/FengHe001/Network-matrix-extraction). Network adjacency matrix was 

extracted using Matlab codes and network analysis was performed using Python scripts. All 

these information will become openly accessible upon acceptance. 
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FIGURES 

 
Figure 1. Topological properties of mitochondria interaction networks (MINs) from enteric ganglia of

PD. a, Probability distribution of the normalized degree of nodes within MINs of PD or healthy controls

or indicated subgroups of samples. The displayed degree was normalized by the number of nodes in the

given network component. b, Summary of the network components of various sets of patients’

materials. A dashed line in the element indicates no entry. c, d, Cumulative distribution of the

component/subnetwork size of the MINs among all samples of healthy controls and PD patients (c), and

among subsets of samples taken from left or right side (d). e, f, P-value of the test (see the Methods)

evaluating the null hypothesis that the exponential fits of the degree distribution for the given two

groups share the same power law slope k (e), or evaluating through a two-sided K-S (Kolmogorov–

Smirnov) test the null hypothesis that the distribution of each topological metric of the global MINs is

identical for the given two groups (f). In e only the lower triangular matrix of all the pair-wised

comparisons is displayed for simplification. Bold and * indicate a significant P-value<=0.05 after Šidák

correction (the displayed P-values are before correction). PD, patients with Parkinson’s Disease; Control,

healthy controls; Assort., Assortativity; Transit., Transitivity; Inf.Cont., Information Content; ASPL,

average shortest pathway length; S-W, Small-worldness. 
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Figure 2. PD MINs show significantly altered motifs and network features and can be 

used for accurate sample classification. a, Distribution of Z-scores of different network 

metrics. Left, histograms representing the probability distribution of the corresponding Z-score 

from the global MINs; The right graphs depicting the Z-scores for the given size of the MIN 

components/subnetworks. The green dashed line and the green arrow above the plots highlight 

the large components. b, c, Example of partially- (b) or fully- (c) connected 3-node MIN motifs. 

Left, representative mitochondrial immunofluorescence images; middle, the cartoon of the 

undirected network motif; right, the corresponding adjacency matrix (the pixel values in the link 

were simplified to 1 if there is a link and otherwise 0). Red circles in the left panel indicates 

where the nodes are positioned. d, e, Distribution of the two types of 3-node (d) or 4-node (e) 

motifs from PD patients and healthy controls. Left, the cartoon of the corresponding motif; 

Middle, the histograms representing the probability distribution of the corresponding Z-scores 

from healthy controls (black bar) or PD patients (red bar);the right graphs depicting the Z-scores 

for various sizes of the network components. f, Correlation analysis between individual patient 

UPDRS clinical score and network efficiency, diameter, average shortest path length (ASPL) 

and paw-like 4-node motif (the first one in e) within the network components with the size of 28. 

The parameter r is the Pearson correlation coefficient. P-value is the probability that correlation 
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coefficient is in fact zero. Of note, not all the patients have the corresponding component (size 

of 28). g, Accurate classification of PD patients from healthy controls using the MIN topological 

features alone. Each graph depicts multiple ROC curves and the corresponding area under 

ROC curve (AUC). Left, central and right panels respectively present classification results using 

samples from left- or right-side or both-side ganglia, from components with different sizes, from 

various indicated features. 
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Figure 3, MINs within iPSCs-differentiated dopaminergic neurons of certain genetic PD 

patients show similar alterations as that in ganglia of sporadic PD. a, Schematic on how to 

perform network analysis from dopaminergic neurons differentiated and derived from skin 

fibroblasts of human subjects. Details are provided in the Materials and Methods. Here we only 

described briefly. iPSCs were first reprogrammed from skin fibroblasts using Yamanaka factors. 

Using small molecules, we then differentiated iPSCs to small molecule neural precursor cells 

(smNPCs). Finally, using trophic factors, smNPCs were differentiated to midbrain dopaminergic 

neurons (mDANs). We then performed cellular staining to identify mitochondria within mDAN 

and identified mitochondria-mitochondria interactions using confocal 3D mitochondrial 

immunofluorescence images. After extracting network adjacency matrixes, we then performed 

large-scale network analysis on the MINs. b, Probability distribution of the normalized degree of 

nodes within MINs of iPSCs-differentiated mDANs derived from skin fibroblasts of different 

genetic PD patients or the corresponding age- and gender-matched healthy controls (refer to 

Materials and Methods) or SNCA-mutations corrected lines using the CRISPR/CAS9 approach. 

Of note, mDANs from the VPS35-mutated patient and the matched controls were differentiated 

with or without (w/o) anti-oxidants (as indicated), while the others were all differentiated in the 

presence of anti-oxidants. c, Cumulative distribution of the component/subnetwork size of the 

MINs among all the samples of different patients or controls or patients’ isogenic controls. 

Displayed P-value of the test (see the Methods) evaluating the null hypothesis that the 

exponential fits of the degree distribution for the indicated two groups of the given plot share the 

same power law slope k. 
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Figure 4. MINs of iPSCs-differentiated mDANs of different genetic PD patients show 

consistent alteration in network features. a, b, Distribution of Z-scores of different network 

structure features, for instance network diameter (a) and efficiency (b). Left, histograms 

representing the probability distribution of the corresponding Z-score from the global MINs of 

mDANs derived from different patients or matched controls; The right graphs depicting the Z-

scores for the given size of the MIN components/subnetworks. The green dashed line and the 

green arrow above the plots highlight the large components that show a clear difference. c, P-

values of the two-sample two-sided K-S (Kolmogorov–Smirnov) test evaluating the null 

hypothesis that the distribution of each indicated topological metric of the global MINs is 

identical for the given two groups. Bold and * indicate a significant P-value<=0.05 after Šidák 
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correction (the displayed P-values are before correction). d, Distribution of the fully-connected 

3-node MIN motifs (as known as ‘triangle’) of mDANs derived from different patients or matched 

controls; Left, the histograms representing the probability distribution of the corresponding Z-

scores of global MINs from different genetic PD patients or matched controls; the right graphs 

depicting the Z-scores for various sizes of the network components. 

 

 

SUPPLEMENTARY FIGURES: 
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Supplementary Figure 1. Various graph metrics of mitochondrial interaction networks 

(MINs) from enteric ganglia of PD. Left, probability of different Z-score of the global MINs from 

PD patients or healthy controls were plotted; right, Z-score of a given graph metric for the given 

size of the MIN network components from PD patients or healthy controls. The corresponding 

statistic results of the graph metrics for the global MINs (refer to Methods) were displayed in 

Fig.1f. 
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Supplementary Figure 2. Occurrence of the other types of 4-node motifs within enteric 

ganglia MINs of PD patients and healthy controls. Each row presents information of the 

particular type of 4-node motifs from PD or healthy controls. The legend of the display is the 

same as in Fig. 2e. 
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Supplementary Figure 3. Classification performance of different machine-learning 

approaches using all the MIN features from all the types of enteric ganglia samples 

versus randomly-reshuffled datasets. SGD, Stochastic Gradient Descent; MLP, Multilayer 

Perception; RF, Random Forest; ADA, Ada-boost; DT, Decision Tree; NB, Naive Bayes. The 

legend ‘Reshuffled’ indicates that we randomly reshuffled the labels 50 times among our 

samples to test whether we can obtain similar high AUC results in the randomized datasets. The 

error bar in reshuffled data represents standard deviation. 
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Supplementary Figure 4. Extended characterization of the MINs of iPSCs-differentiated 

mDANs of different genetic PD patients. a, Distribution of Z-scores of average shortest 

pathway length (ASPL). Left, histograms representing the probability distribution of the 

corresponding Z-score from the global MINs of mDANs derived from different patients or 

matched controls; The right graphs depicting the Z-scores for the given size of the MIN 

components/subnetworks. The green dashed line and the green arrow above the plots highlight 

the large components that show a clear difference. Of note, mDANs from the VPS35-mutated 

patient and the matched controls were differentiated with or without (w/o) anti-oxidants (as 

indicated), while the others were all differentiated in the presence of anti-oxidants. b, c, d, 

Distribution of V-shape motifs (b), paw-like 4-node motifs (c) and U-shape 4-node motifs (d) of 

the MINs of mDANs derived from different genetic PD patients or matched controls; Left, the 

histograms representing the probability distribution of the corresponding Z-scores of global 
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MINs from different genetic PD patients or matched controls; the right graphs depicting the Z-

scores for various sizes of the network components. The green dashed line and the green arrow 

above the plots highlight the large components that show a clear difference. 
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