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Many biological applications require the segmentation of cell bodies, membranes and nuclei from mi-
croscopy images. Deep learning has enabled great progress on this problem, but current methods are spe-
cialized for images that have large training datasets. Here we introduce a generalist, deep learning-based
segmentation method called Cellpose, which can precisely segment cells from a wide range of image types
and does not require model retraining or parameter adjustments. We trained Cellpose on a new dataset of
highly-varied images of cells, containing over 70,000 segmented objects. We also demonstrate a 3D exten-
sion of Cellpose which reuses the 2D model and does not require 3D-labelled data. To support community
contributions to the training data, we developed software for manual labelling and for curation of the auto-
mated results, with optional direct upload to our data repository. Periodically retraining the model on the

community-contributed data will ensure that Cellpose improves constantly.

Introduction

Quantitative cell biology requires measurements of
multiple cellular properties such as shape, position,
RNA expression and protein expression [1]. To assign
these properties to individual cells, one must first seg-
ment an image volume into cell bodies, usually based
on a cytoplasmic or membrane marker [2—8]. This step
can be straightforward when cells are sufficiently sep-
arated from one other, e.g. in monodispersed cultures
in vitro. However, in many tissues, cells are tightly
packed together and difficult to separate computation-
ally.

Most methods for cell body segmentation make
trade-offs between flexibility and automation. These
methods range from fully-manual labelling [9], to user-
customized pipelines involving a sequence of image
transformations with user-defined parameters [2, 8,
10, 11], to fully automated methods based on deep
neural networks with parameters estimated on large
training datasets [4, 5, 7, 12, 13]. Fully automated
methods have many advantages, such as reduced hu-
man effort, increased reproducibility and better scal-
ability to big datasets from large screens. However,
these methods are typically trained on specialized
datasets, and do not generalize well to other types of
data, requiring new human-labelled images to achieve
best performance on any one image type.

Recognizing this generalization problem in the con-
text of nuclear segmentation, a recent Data Science
Bowl challenge amassed a dataset of varied images
of nuclei from many different laboratories [14]. Meth-
ods trained on this dataset can generalize much more
widely than those trained on data from a single lab.
The winning methods from the challenge were based
on established computer vision algorithms like the
Mask R-CNN model [15, 16]. Following the competi-

tion, the dataset generated further progress, with other
methods like Stardist and nucleAlzer being developed
[17, 18].

In this work, we followed the approach of the Data
Science Bowl team to collect and segment a large
dataset of cell images from a variety of microscopy
modalities and fluorescent markers. We had no guar-
antee that we could replicate the success of the
nuclear dataset, because cells have highly diverse
shapes and a single model may not be able to segment
all these shapes. Previous approaches did not perform
well on this dataset. We hypothesized that their fail-
ure was due to low expressive power, i.e. insufficient
flexibility in describing diverse cell shapes. We there-
fore developed a new model with better expressive
power called Cellpose. We next describe the archi-
tecture of Cellpose and the new training dataset, and
then proceed to show performance benchmarks on
test data, as well as an extension to 3D. The Cellpose
package with a graphical user interface (Figure S1)
can be installed from www.github.com/mouseland/
cellpose or tested online at www.cellpose.org.

Results

Model design

In classical segmentation approaches like the water-
shed [19], the grayscale values of an image create
a topological map, whose basins represent the seg-
mented regions. These methods work well when the
segmented objects are blob-like, so that they form
smooth basins. However, many types of cells are not
blob-like, which motivated us to construct an interme-
diate image representation that forms a smooth topo-
logical map (Figure 1ab).

Our topological maps were generated from ground
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Figure 1: Model architecture. a, Procedure for transforming manually annotated masks into a vector flow representation that can be predicted
by a neural network. A simulated diffusion process started at the center of the mask is used to derive spatial gradients that point towards the
center of the cell, potentially indirectly around corners. The X and Y gradients are combined into a single normalized direction from 0° to 360°.
b, Example spatial flows for cells from the training dataset. ¢d, A neural network is trained to predict the horizontal and vertical flows, as well
as whether a pixel belongs to any cell. The three predicted maps are combined into a flow field. d shows the details of the neural network
which contains a standard backbone neural network that downsamples and then upsamples the feature maps, contains skip connections
between layers of the same size, and global skip connections from the image styles, computed at the lowest resolution, to all the successive
computations. e, At test time, the predicted flow fields are used to construct a dynamical system with fixed points whose basins of attraction
represent the predicted masks. Informally, every pixel "follows the flows” along the predicted flow fields towards their eventual fixed point. f, All
the pixels that converge to the same fixed point are assigned to the same mask.

x2 x2

truth masks, manually drawn by a human annotator, recover their shapes (Figure 1e,f, and Methods). The
through a process of simulated diffusion (Figure 1a). A cell shapes were further refined by removing pixels
neural network was then trained to predict (1) the hor- with cell probabilities less than 0.5.

izontal gradients of the topological maps, (2) the verti-
cal gradients, and finally (3) a probability map which in-
dicates if a given pixel is part of any cells (Figure 1c,d).
On test images, the neural network predicted the hor-
izontal and vertical gradients, which form vector fields
or "paths”. By following these paths, all pixels belong-
ing to a given cell should be routed to its center. Thus,
by grouping pixels that flowed to the same center point,
we could simultaneously segment individual cells and

The neural network that predicts the spatial flows
was based on the general U-net architecture, which
downsamples the convolutional maps several times
before upsampling in a mirror-symmetric fashion (Fig-
ure 1d). On the upsampling pass, the U-net "mixes in”
the convolutional maps from the downsampling pass.
This mixing is typically done by feature concatenation,
but we opted for direct summation in order to reduce
the number of parameters. We also replaced the stan-
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dard building blocks of a U-net with residual blocks,
which have been shown to perform better, and doubled
the depth of the network as typically done for resid-
ual networks [20]. In addition, we used global average
pooling on the smallest convolutional maps to obtain
a representation of the "style” of the image (for similar
definitions of style see [18, 21, 22]). We anticipated
that images with different styles might need to be pro-
cessed differently, and therefore fed the style vectors
into all the following processing stages to potentially
re-route and re-adjust the computations on an image
by image basis.

We also use several test time enhancements to fur-
ther increase the predictive power of the model: test
time resizing, ROI quality estimation, model ensem-
bling, image tiling and image augmentation (see Meth-
ods).

Training dataset

We collected images from a variety of sources, primar-
ily via internet searches for keywords such as “cyto-

plasm”, “cellular microscopy”, "fluorescent cells” etc.
Some of the websites with hits shared the images

Figure 2: Visualization of the
diverse training dataset. The
styles from the network for all
the images in the cytoplasm
dataset were embedded using
t-SNE. Each point represents a
different image. Legend: dark
blue = CelllmageLibrary, blue =
cytoplasm, cyan = membrane,
green = non-fluorescent cells,
orange = microscopy other, red
= non-microscopy. Randomly
chosen example images are
shown around the t-SNE plot.
Images with a second channel
marking the nucleus are dis-
played in green/blue.

as educational material, promotional material or news
stories, while others contained datasets used in previ-
ous scientific publications (i.e. OMERO [23, 24]). The
dataset consisted primarily consisted of fluorescently
labelled proteins that localized to the cytoplasm with
or without DAPI-stained nuclei in a separate channel
(n = 316 images). We also included images of cells
from brightfield microscopy (n = 50) and membrane-
labelled cells (n = 58). Finally, we included a small set
of images from other types of microscopy (n = 86), and
a small set of non-microscopy images which contained
large numbers of repeated objects such as fruits, rocks
and jellyfish (n = 98). We hypothesized that the inclu-
sion of such images in the training set would allow the
network to generalize more widely and more robustly.

We visualized the structure of this dataset by ap-
plying t-SNE to the image styles learned by the neu-
ral network (Figure 2) [25, 26]. Images were gener-
ally placed in the embedding according to the cate-
gories defined above, with the non-cell image cate-
gories scattered across the entire embedding space.
To manually segment these images, we developed a
graphical user interface in Python (Figure S1) that re-
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lies on PyQt and the pyqtgraph package [27, 28]. The
interface enables quick switching between views such
as outlines, filled masks and image color channels, as
well as easy image navigation like zooming and pan-
ning. A new mask is initiated with a right-click, and
gets completed automatically when the user returns
within a few pixels of the starting area. This interface
allowed human operators to segment 300-600 objects
per hour, and is part of the code we are releasing with
the Cellpose package. The automated algorithm can
also be run in the same interface, allowing users to
easily curate and contribute their own data to our train-
ing dataset.

Within the varied dataset of 616 images, a sub-
set of 100 images were pre-segmented as part of
the CelllmageLibrary [29]. These two-channel images
(cytoplasm and nucleus) were from a single experi-
mental preparation and contained cells with complex
shapes. We reasoned that the segmentation meth-
ods we tested would not overfit on such a large and
visually uniform dataset, and may instead fail due to
a lack of expressive power such as an inability to pre-
cisely follow cell contours, or to incorporate information
from the nuclear channel. We therefore chose to also
train the models on this dataset alone, as a "specialist”
benchmark of expressive power (Figure 3a).

Benchmarks

For the specialist benchmarks, we trained Cellpose
and two previous state of the art methods, Stardist
[17] and Mask-RCNN [15, 16], on the CelllmageLi-
brary (Figure 3b). On test images, we matched the
predictions of the algorithm to the true masks at dif-
ferent thresholds of matching precision, defined as the
standard intersection over union metric (loU). We eval-
uated performance with the standard average preci-
sion metric (AP), computed from the numbers of true
positives TP, false positives FP and false negatives
FN as AP = P

TP+FP+FN’
significantly outperformed the previous methods at all

matching thresholds. For example, at the commonly
used loU threshold of 0.5, Cellpose correctly matched
485 out of 521 total ground truth ROls, and gave only
18 false positives. This corresponded to an average
precision of 0.88, compared to 0.76 for Stardist and
0.80 for Mask R-CNN. At higher loUs, which bench-
mark the ability to precisely follow cell contours, the rel-
ative improvement of Cellpose compared to the other
methods grew even larger. This analysis thus shows
that Cellpose has enough expressive power to capture
complicated shapes (Figure 3d).

However, the models trained on the specialized data
performed poorly on the full dataset (Figure 3e), moti-

We found that Cellpose

vating the need for a generalist algorithm. To help with
generalization across different image resolutions, we
resized all images in the training set to the same aver-
age cell size. To estimate cell size on test images, we
trained another model based on the image style vec-
tors (see methods, Figure S2). Users may also manu-
ally input the cell size to the algorithm.

Across all image types (specialized and generalized
cell data), we found that the generalist Cellpose model
had an average precision of 0.82 at a threshold of
0.5, significantly outperforming Stardist and Mask R-
CNN which had average precisions of 0.68 and 0.70
respectively. Example segmentations are shown for
one image in Figure 3c and for 36 other images in
Figure 4 for Cellpose, Figure S3 for Stardist and Fig-
ure S4 for Mask R-CNN. On the specialized data alone
(the CelllmageLibrary), the generalist Cellpose model
matched the performance of the specialist model (Fig-
ure 3f). This shows that the inclusion of the other im-
ages in the training set did not saturate the capacity
of the network, implying that Cellpose has spare ca-
pacity for more training data, which we hope to iden-
tify via community contributions. For the generalized
data alone (all the cell images except those in the Cel-
lImageLibrary), Cellpose had an average precision of
0.79, while Stardist and Mask-RCNN had average pre-
cisions of 0.67 and 0.66 respectively (loU threshold =
0.5, Figure 3g). All models had relatively worse per-
formance on "non-microscopy” and "microscopy:other”
images, with Cellpose scoring 0.73 compared to 0.54
and 0.55 for Stardist and Mask R-CNN (loU threshold
= 0.5, Figure S5). These relatively worse scores are
likely due to images in these categories being highly
visually distinct from other images in the training set.
Note that the advantage of Cellpose compared to other
models grew on these visually-distinct images, sug-
gesting that Cellpose has better generalization perfor-
mance.

Finally, we assembled a large dataset of images
of nuclei, by combining pre-segmented datasets from
several previous studies, including the Data Sci-
ence Bowl kaggle competition [14]. Because nuclear
shapes are simpler, this dataset did not have as much
variability as the dataset of cells, as illustrated by
the t-SNE embedding of the segmentation styles (Fig-
ure S6a). Cellpose outperformed the other methods
on this dataset by smaller amounts, likely reflecting the
simpler shapes of the masks, and the more uniform
aspect of the nuclei (Figure S6b-d, Figure S7).

3D segmentation

Our last contribution is to generalize Cellpose to three-
dimensional segmentation. This task usually requires
3D training data, which is much more difficult to obtain
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Figure 3: Segmentation performance of specialist and generalist algorithms. a, lllustration of the training and test data for specialist and
generalist algorithms. We refer to the CelllmageLibrary dataset as a "specialist dataset” due to the uniformity of its 100 images. b, Example
test image segmentation for Cellpose, Stardist and Mask R-CNN, when trained as specialist models. ¢, Example test image segmentation for
the same models trained as generalist models. defg, Quantified performance of all models, trained as specialists or generalists, and tested
on specialized or generalized data. The loU threshold (intersection over union) quantifies the match between a predicted mask and a ground
truth mask, with 1 indicating a pixel-perfect match and 0.5 indicating as many correctly matched pixels as there were missed and false positive
pixels. The average precision score is computed from the proportion of matched and missed masks. To gain an intuition for the range of these
scores, refer to the reported values in be as well as Figure 4. e, Note the poor generalization of the specialist models. f, Note the similar
performance of the generalist and specialist model on the specialist data (compare to d). g, The generalist cellpose model outperforms the

other models by a large margin on generalized data.

than 2D training data, as it consists of one 2D segmen-
tation for every Z position in the volume. At the median
cell diameter size of 30 pixels in our dataset, we can
estimate that every cell would take 30 times longer to
manually segment in 3D than in a single 2D slice.

We designed a new method for extending Cellpose
to 3D, using only the trained 2D model and no addi-
tional 3D training data. For a test volume, we ran Cell-
pose on all XY, XZ and YZ slices independently (Fig-
ure 5ab). For each point, this procedure generated
two estimates of the gradientin X, Y and Z (i.e. 6 total
predictions), which we then averaged together to ob-
tain a complete set of 3D vector flows. To generate

ROls, we proceed like before to run the pixel dynam-
ics and evaluate which pixels converge together to the
same fixed points. Those pixels are then assigned to
the same mask (Figure 5e). For comparison, we used
ilastik to generate a 3D segmentation pipeline specific
for this volume. The parameters of ilastik were chosen
manually to give good performance on a subset of the
volume that was not used for testing.

We evaluated the performance of Cellpose by com-
paring to manual annotations of a test 3D volume in
which the DNA and RNA were co-stained to serve as
nuclear and cytoplasmic markers, respectively (Fig-
ure 5f). The human annotator found 183 cells, while
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Figure 4: Example cellpose segmentations for 36 test images. The ground truth masks segmented by a human operator are shown in
yellow, and the predicted masks are shown in dotted red line. Compare to Stardist and Mask-RCNN in Figure S3 and Figure S4.

Cellpose predicted 172 cells, with 17 false positives
at an loU threshold of 0.5 (Figure 5g, Movie 1,2). At
all loU thresholds, the generalist Cellpose 3D model
outperformed the ilastik pipeline which was manually
optimized for this dataset.

Discussion

Here we introduced Cellpose, a generalist model that
can segment many types of cells, without requiring
parameter adjustments, new training data or further
model retraining. Cellpose uses two major innova-
tions: a reversible transformation from training set
masks to vector flows that can be predicted by a neu-

ral network, and a large segmented dataset of varied
images of cells. In addition, multiple smaller improve-
ments to the basic approach led to a significant cumu-
lative performance increase: we developed methods
to use animage “style” for changing the neural network
computation on an image by image basis, to validate
segmented ROls, to average the predictions of multi-
ple models, to resize images to a common object size,
to average model predictions in overlapping tiles, and
to augment those predictions by flipping the tiles hor-
izontally and vertically. Finally, we introduced a new
method for 3D cell segmentation that reuses the 2D
model and does not require new 3D labelled data.
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Figure 5: Segmentation in 3D without 3D labelled data. a, A 3D volume is sliced into XY, XZ and YZ sections respectively. b, Example
frames for each type of section. ¢, Each 2D frame is passed through the cellpose prediction network, generating predicted 2D flows. d, The
six predicted flow maps (two each for X, Y and Z) are pairwise averaged and combined into a single 3D flow field XYZ. Shown is the XY flow
map, and the Z flow map for an XY slice through the volume. e, The 3D flows are used to create pixel dynamics towards the 3D sinks of the
flow field, and the pixels are grouped into 3D masks if they converge to the same sink. f, Example XY slices with ground truth (yellow) and
predicted (red) masks at different depths in the Z-stack. g, Matching performance at different loU thresholds.

Our approach to the segmentation problem allows
anyone to contribute new training data to improve Cell-
pose for themselves and for others. We encourage
users to contribute up to a few manually segmented
images of the same type, which we will use to periodi-
cally retrain a single generalist Cellpose model for the
community. Cellpose has high expressive power and
high capacity, as shown by its ability to segment cells
with complex protuberances like elongated dendrites,
and even non-cell objects like rocks and jellyfish. We
therefore expect Cellpose to successfully incorporate
new training data that has a passing similarity to an
image of cells and consists of collections of objects
that resemble each other. In contrast, we do not ex-
pect Cellpose to work well on images where different
objects have different shapes and textures or when oc-
clusions require highly overlapping masks.

Other extensions of Cellpose are possible, along the
same principles as the 3D extension. One such ap-
plication might be cell tracking, which could be ad-

dressed by adding a "temporal flow” dimension to the
spatial flow dimensions. Combined with new histol-
ogy methods like spatial transcriptomics [30], Cellpose
has the potential to aid and enable novel approaches
in quantitative single-cell biology that are reproducible
and scalable to large datasets.
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Data and code availability

The code and GUI are available at www.github.com/
mouseland/cellpose. To test out the model directly
on the web, visit www.cellpose.org. Note that the
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test time augmentations and tiling, which improve seg-
mentation, are not performed on the website to save
computation time. The manually segmented cyto-
plasmic dataset will be made available upon publica-
tion, and will be continuously updated with community-
contributed data.

Methods

The Cellpose code library is implemented in Python
3 [31], using numpy, scipy, humba, opencv and the
deep learning package mxnet [32—36]. The graphical
user interface additionally uses PyQt, pygtgraph and
scikit-image [27, 28, 37]. The benchmark values were
computed using the stardist implementation of aver-
age precision [38]. The figures were made using mat-
plotlib and jupyter-notebook [39, 40].

Datasets

Specialized data

This dataset consisted of 100 fluorescent images of
cultured neurons with cytoplasmic and nuclear stains
obtained from the CelllmageLibrary [29]. Each im-
age has a manual cytoplasmic segmentation. We cor-
rected some of the manual segmentation errors where
touching neurons were joined, and removed any over-
laps in the segmentation so that each pixel in the im-
age was assigned to at most one cytoplasmic mask. A
small number of dendrites were cut off by this process,
but the bulk of their cell bodies was un-modified.

Generalized data

The full dataset included the 100 images described
above, as well as 516 additional images from various
sources detailed below. All these extra images were
fully manually segmented by a single human operator
(MM). 69 of these images were reserved for testing.

216 of the images contained cells with fluores-
cent cytoplasmic markers. We used BBBCO020
from the Broad Bioimage Benchmark Collection [41],
which consisted of 25 images of bone-marrow de-
rived macrophages from C57BL/6 mice. We used
BBBCO007v1 image set version 1 [42], which consisted
of 15 fluorescent images of Drosophila melanogaster
Kc167 cells with stains for DNA and actin. We im-
aged mouse cortical and hippocampal cells express-
ing GCaMP&6 using a two-photon microscope, and in-
cluded 8 images (mean activity) of such data. The
other images in this set were obtained through Google
image searches. We also used 10 images from con-
focal imaging of mouse cortical neurons with cytoplas-
mic and nuclear markers, from a similar dataset to that
we used for 3D segmentation.

50 of the images were taken with standard bright-
field microscopy. There were four images shared via

OMERQO [23] of pancreatic stem cells on a polystyrene
substrate taken using a light microscope [43]. The
other images in this set were obtained through google
image searches.

In 58 of the images, the cell membrane was fluo-
rescently labeled. We used the Micro-Net image set,
which consisted of 40 fluorescent images of mouse
pancreatic exocrine cells and endocrine cells with a
membrane marker (Ecad-FITC) and a nuclear marker
(DAPI) [44]. Because the nuclear marker did not ap-
pear in focus with the membrane labels, we discarded
this channel, and re-segmented all images according
to the membrane marker exclusively. The other im-
ages in this set were obtained through google image
searches.

86 of the images were other types of microscopy
samples which were either not cells, or cells with atypi-
cal appearance. These images were obtained through
google image search.

98 of the images were non-microscopy images of re-
peating objects. These images were obtained through
google image search, and include images of fruits,
vegetables, artificial materials, fish and reptile scales,
starfish, jellyfish, sea urchins, rocks, sea shells, etc.

Nucleus data

This data set consisted of 1139 images with man-
ual segmentations from various sources, 111 of which
were reserved for testing. We did not segment any of
these images ourselves.

We used image set BBBC038v1 [14], available from
the Broad Bioimage Benchmark Collection. For this
image set, we used the unofficial corrected manual la-
bels provided by Konstantin Lopuhin [45].

We used image set BBBC039v1 [14], which con-
sists of 200 fluorescent images of U20S osteosar-
coma cells with the Hoechst stain. Some of these im-
ages overlap with the BBBC038v1, so we only used
the 157 unique images.

We used image set MoNuSeg, which consists of 30
H&E stained histological images of various human or-
gans [46]. Because the images contain many small
nuclei (~700 per image), we divided each of these im-
ages into 9 separate images. We inverted the polarity
of these images so that foreground nuclear pixels had
higher intensity values than the background, which is
more similar to fluorescence images.

We also used the image set from ISBI 2009, which
consists of 97 fluorescent images of U20S cells and
NIH3T3 cells [47].

3D data

We used a DNA stain (DAPI) and an RNA stain (fluo-
rescent oligonucleotide probe against the 28S rRNA)
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to label the nucleus and cytoplasm respectively for a
volume of murine cortical neurons. The tissue was first
expanded by a factor of two and digested to remove all
proteins [48, 49]. A small cube (~190x190x190 um)
was manually labelled by a human annotator in the
Cellpose GUI. We allowed the annotator to potentially
skip “easy” planes while drawing a cell, with an algo-
rithm automatically interpolating the shapes of cells in
those planes.

Auxiliary vector flow representation

Central to the Cellpose model is an auxiliary represen-
tation which converts the cell masks to two images or
"maps” of the same size as the original image. These
maps are similar to the vector fields predicted by track-
ing models like OpenPose [50], which point from object
parts to other object parts and are used in object track-
ing and coarse segmentation. In our case, the vector
gradient flows lead all pixels within a cell towards its
center. These flows do not necessarily point directly
towards the center of the cell [51], because that di-
rection might intersect cell boundaries. Instead, the
flows are designed so that locally they translate pixels
to other pixels inside cells, and globally over many it-
erations translate pixels to the eventual fixed points of
the flows, chosen to be the cell centers. Since all pixels
from the same cells end up at the same cell center, it is
to recognize which pixels should be grouped together
into ROIs, by assigning the same cell label to pixels
with the same fates. The task of the neural network is
to predict these gradients from the raw image, which is
potentially a highly nonlinear transformation. Note the
similarity to gradient flow tracking methods, where the
gradients are computed directly as derivatives of the
raw image brightness [52].

To create a flow field with the properties described
above, we turned to a heat diffusion simulation. We
define the "center” of each cell as the pixel in a cell that
was closest to the median values of horizontal and ver-
tical positions for pixels in that cell. Other definitions of
"center”, such as the 2D medoid, resulted in similar-
looking flows and algorithm performance. In the heat
diffusion simulation, we introduce a heat source at the
center pixel, which adds a constant value of 1 to that
pixels value at each iteration. Every pixel inside the
cell gets assigned the average value of pixels in a 3x3
square surrounding it, including itself, at every itera-
tion, with pixels outside of a mask being assigned to
0 at every iteration. In other words, the boundaries of
the cell mask are “"leaky”. This process gets repeated
for N iterations, where N is chosen for each mask as
twice the sum of its horizontal and vertical range, to
ensure that the heat dissipates to the furthest corners
of the cell. The distribution of heat at the end of the

simulation approaches the equilibrium distribution. We
use this final distribution as an energy function, whose
horizontal and vertical gradients represent the two flow
fields that in our auxiliary vector flow representation.

Deep neural network

The input to the neural network was a two-channel im-
age with the primary channel corresponding to the cy-
toplasmic label, and the optional secondary channel
corresponding to nuclei, which in all cases was a DAPI
stain. When a second channel was not available, it
was replaced with an image of zeros. Raw pixel inten-
sities were scaled for each image so that the 1 and 99
percentiles corresponded to 0 and 1.

The neural network was composed of a downsam-
pling pass followed by an upsampling pass, as typi-
cal in U-nets [3]. Both passes were composed of four
spatial scales, each scale composed of two residual
blocks, and each residual block composed of two con-
volutions with filter size 3x3, as is typical in residual
networks [20]. This resulted in 4 convolutional maps
per spatial scale, and we used max pooling to down-
sample the feature maps. Each convolutional map
was preceded by a batchnorm + relu operation, in the
order suggested by He et al, 2016 [53]. The skip
connections were additive identity mappings for the
second residual block at each spatial scale. For the
first residual block we used 1x1 convolutions for the
skip connections, as in the original residual networks
[20], because these convolutions follow a downsam-
pling/upsampling operation where the number of fea-
ture maps changes.

In-between the downsampling and upsampling we
computed an image style [21], defined as the global
average pool of each feature map [22], resulting in a
256-dimensional feature vector for each image. To ac-
count for differences in cell density across images, we
normalized the feature vector to a norm of 1 for every
image. This style vector was passed as input to the
residual blocks on the upsampling pass, after projec-
tion to a suitable number of features equal to the num-
ber of convolutional feature maps of the corresponding
residual block, as described below.

On the upsampling pass, we followed the typical U-
net architecture, where the convolutional layers after
an upsampling operation take as input not only the
previous feature maps, but also the feature maps from
the equivalent level in the downsampling pass [3]. We
depart from the standard feature concatenation in U-
nets and combine these feature maps additively on
the second out of four convolutions per spatial scale
[54]. The last three convolutions, but not the first one,
also had the style vectors added, after a suitable lin-
ear projection to match the number of feature maps
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and a global broadcast to each position in the convo-
lution maps. Finally, the last convolutional map on the
upsampling pass was given as given as input to a 1x1
layer of three output convolutional maps. The first two
of these were used to directly predict the horizontal
and vertical gradients of the Cellpose flows, using an
L2 loss. The third output map was passed through a
sigmoid and used to predict the probability that a pixel
is inside or outside of a cell with a cross-entropy loss.
To match the relative contributions of the L2 loss and
cross-entropy loss, we multiplied the Cellpose flows by
a factor of 5.

We built and trained the deep neural network using
mxnet [36].

Training

The networks were trained for 500 epochs with
stochastic gradient descent with a learning rate of
0.2, a momentum of 0.9, batch size of 8 images and
a weight decay of 0.00001. The learning rate was
started at 0 and annealed linearly to 0.2 over the first
10 epochs to prevent initial instabilities. The value
of the learning rate was chosen to minimize training
set loss (we also tested 0.01, 0.05, 0.1 and 0.4). At
epoch 400 the learning rate annealing schedule was
started, reducing the learning rate by a factor of 2 ev-
ery 10 epochs. For all analyses in the paper we used
a base of 32 feature maps in the first layer, growing
by a factor of two at each downsampling step and up
to 256 feature maps in the layer with the lowest reso-
lution. Separate experiments on a validation set held
out from the main training dataset confirmed that in-
creases to a base of 48 feature maps were not helpful,
while decreases to 24 and 16 feature maps hurt the
performance of the algorithm.

Image augmentations for training

On every epoch, the training set images are randomly
transformed together with their associated vector fields
and pixel inside/outside maps. For all algorithms, we
used random rotations, random scaling and random
translations, and then sampled a 224 by 224 image
from the center of the resultant image. For Cellpose,
the scaling was composed of a scaling to a common
size of cells, followed by a random scaling factor be-
tween 0.75 and 1.25. For Mask R-CNN and Stardist,
the common size resizing was turned off because
these methods cannot resize their predictions. Corre-
spondingly, we used a larger range of scale augmen-
tations between 0.5 and 1.5. Note that Mask R-CNN
additonally employs a multi-scale training paradigm
based on the size of the objects in the image.

The random rotations were uniformly drawn from 0°
to 360°. Random translations were limited along X
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and Y to a maximum amplitude of (I, —224)/2 and
(I, —224)/2, where [, and [, are the sizes of the orig-
inal image. This ensures that the sample is taken
from inside the image. Rotations, but not translations
and scalings, result in changes to the direction of vec-
tors. We therefore rotated the mask flow vectors by the
same angles the images were rotated.

Mask recovery from vector flows

The output of the neural network after tiling is a set of
three maps: the horizontal gradients, the vertical gra-
dients, and the pixel probabilities. The next step is to
recover the masks from these. First, we threshold the
pixel probability map and only consider pixels above
a threshold of 0.5. For each of these pixels, we run
a dynamical system starting at that pixel location and
following the spatial derivatives specified by the hori-
zontal and vertical gradient maps. We use finite dif-
ferences with a step size of 1. Note that we do not
re-normalize the predicted gradients, but the gradients
in the training set have unit norm, so we expect the
predicted gradients to be on the same scale. We run
200 iterations for each pixel, and at every iteration we
take a step in the direction of the gradient at the near-
est grid location. Following convergence, pixels can
be easily clustered according to the pixel they end up
at. For robustness, we also extend the clusters along
regions of high-density of pixel convergence. For ex-
ample, if a high-density peak occurs at position (x,y),
we iteratively agglomerate neighboring positions which
have at least 3 converged pixels until all the positions
surrounding the agglomerated region have less than 3
pixels. This ensures success in some cases where the
deep neural network is not sure about the exact center
of a mask, and creates a region of very low gradient
where it thinks the center should be.

Test time enhancements

We use several test time enhancements to further in-
crease the predictive power of the model: test time re-
sizing, ROI quality estimation, model ensembling, im-
age tiling and image augmentation. We describe them
briefly in this paragraph, and in more detail below. We
estimate the quality of each predicted ROI according
to the discrepancy between the predicted flows inside
that ROl and the optimal, re-computed flows for that
mask. We discard ROls for which this discrepancy is
large. Model ensembling is performed by averaging
the flow predictions of 4 models trained separately. Im-
age tiling and augmentation are performed together by
dividing the image into overlapping tiles of the size of
the training set patches (224 x 224 pixels). We use
50% overlaps for both horizontal and vertical tiling, re-
sulting in every pixel being processed 4 times. We then
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combine the results by averaging the 4 flow predictions
at every pixel, multiplied with appropriate taper masks
to minimize edge effects. Furthermore, we take advan-
tage of test data augmentation by flipping image tiles
vertically, horizontally or in both directions depending
on their position in the tile grid. The predicted flows
are correspondingly flipped back with appropriately re-
versed sign before being averaged into the final pre-
dicted flows (see methods). An equivalent procedure
is performed to augment the binary prediction of pixels
inside/outside of cells.

Test time resizing

While it is easy to resize training set images to a com-
mon object size, such resizing cannot be directly per-
formed on test images because we do not know the
average size of objects in that image. In practice, a
user might be able to quickly specify this value for their
own dataset, but for benchmarks we needed an auto-
mated object size prediction algorithm. This informa-
tion is not readily computable from raw images, but we
hypothesized that the image style vectors might be a
good representation from which to predict the object
size. We predicted object sizes in two steps: 1) we
train a linear regression model from the style vectors of
the training set images, which is a good but not perfect
prediction on the test set, 2) we refine the size predic-
tion on the test set by running Cellpose segmentation
after resizing to the object size predicted by the style
vectors. Since this segmentation is already relatively
good, we can use its mean object size as a better pre-
dictor of the true object size. We found that this refined
object size prediction reached a correlation of 0.93 and
0.97 with the ground truth on test images, for the cy-
toplasm and nuclear dataset respectively (Figure S2).
We include this algorithm as a calibration procedure
which the user can choose to do either on every im-
age, or just once for their entire dataset. We use this
object size to resize test images, run the algorithm to
produce the three output maps, and then resize these
maps back to the original image sizes before running
the pixel dynamics and mask segmentation. For all
resizing operations we used standard bilinear interpo-
lation from the OpenCV package [35].

Tiling and test augmentations

Image tiling is performed for three reasons: 1) to run
Cellpose on images of arbitrary sizes, 2) to run Cell-
pose on the same image patch size used during train-
ing (224 by 224), and 3) to enable augmentation of
each image tile in parallel with different augmentations
on the other tiles. We start with an image of size [, by
[, and divide this into 4 sets of tiles, where each tile
set covers the entire image without overlap, except for
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some overlap at the right and bottom edges of the im-
age. Each image tile of size 224 x 224 pixels can be
completely specified by its upper-left corner position,
defined by the coordinates (ry+224 - ny, r,+224-n,),
with n, = 0,1,2,.. and n, = 0,1,2,..., and (ry,ry) =
(0,0),(0,112),(112,0), (112, 112) respectively for the
four sets of tiles. For the tiles at the edges which would
contain pixels outside of cells, we move the entire tile
in so it aligns with that edge of the image. For these
4 sets of tiles, we extract the corresponding image
patches, and apply the augmentation transformation:
we keep tile set 1 the same, we flip tile set 2 horizon-
tally, we flip tile set 3 vertically, and we flip tile set 4
both horizontally and vertically. We then run Cellpose
on all tiles, producing three output maps for each. The
output maps are correspondingly flipped back, taking
care to reverse the gradient directions for gradients
along the flipped dimension. For example, in tile set
2 we flip horizontally both the horizontal and vertical
gradients as well as the pixel probabilities, but we only
reverse the sign of the horizontal gradients. We then
use the tiles of the three outputs maps to reconstitute
the gradient and probability maps for the entire image,
tapering each tile around its 4 edges with a sigmoid ta-
per with bandwidth parameter of 7.5 pixels. Note that
in the final re-assembled image, almost all pixels are
averages of 4 outputs, one for each tile set.

Mask quality threshold

Note there is nothing keeping the neural network from
predicting horizontal and vertical flows that do not cor-
respond to any real shapes at all. In practice, most
predicted flows are consistent with real shapes, be-
cause the network was only trained on image flows
that are consistent with real shapes, but sometimes
when the network is uncertain it may output inconsis-
tent flows. To check that the recovered shapes after
the flow dynamics step are consistent with real masks,
we recompute the flow gradients for these putative pre-
dicted masks, and compare them to the ones predicted
by the network. When there is a large discrepancy
between the two sets of flows, as measured by their
mean squared difference, we exclude that mask since
it is inconsistent. We cross-validate the threshold for
this operation on a validation set held out from the
main training dataset, and found that a value of 0.4
was optimal.

3D model

We extend the 2D model to 3D without the need for 3D
labelled data by running the network on various slices
of the 3D stack. Slices in XY provide X and Y flow
information, slices in XZ provide X and Z flow informa-
tion, and slices in YZ provide Y and Z flow informa-
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tion (Figure 5a). We average over the two estimates of
each flow at each pixel (Figure 5d). From each slice we
also predict the cell probability, and we average across
these three estimates for each pixel. We threshold
the cell probability at 0.5 and multiply it by the flows.
We then use these flows to run the dynamics to create
the mask estimates (Figure 5e). Objects smaller than
10% of the median cell volume (2000 voxels) were dis-
carded (Figure 5f,g). The default median diameter was
used (30 pixels).

Benchmarking

We compared the segmentations performed by Cell-
pose to segmentations performed by Stardist [17] and
Mask-RCNN [15, 16].

Training Stardist and Mask-RCNN
Stardist and Mask-RCNN were trained on the same

training sets as Cellpose for the "specialized”, "gen-
eralized” and “nuclei” data sets. 12% of the training
set was used for validation for each algorithm. Stardist
and Mask-RCNN were trained for 1000 epochs. The
learning rates were optimized to reduce the training
error - this resulted in a learning rate of 0.0007 for
Stardist and a learning rate of 0.001 for Mask-RCNN.
For Mask-RCNN, TRAIN_ROIS_PER_IMAGE was in-
creased to 300, MAX_GT_INSTANCES to 200, and
DETECTION_MAX_INSTANCES to 400. Mask-RCNN
was initialized with the pretrained "imagenet” weights.
All other parameters and learning schedules for both
algorithms were kept to their default values.

Using ilastik for 3D segmentation

As a comparison to Cellpose for 3D segmentation,
we used ilastik [8] in a two-step process. First, each
voxel was classified as ‘background’, ‘nucleus’, or ‘cy-
toplasm’ using a supervised algorithm. Then individual
objects (i.e. cells) were identified using the hysteresis
thresholding method. For the supervised classifica-
tion, a small number of voxels were annotated manu-
ally and the following features were used for the classi-
fication: Gaussian smoothing (sigma = 0,3, 1 ,3.5 and
10), Gaussian gradient magnitude (sigma = 0.7, 1.6,
and 5), difference of Gaussians (sigma = 0.7, 1.6, and
5), structure tensor eigenvalues (sigma = 0.7, 1.6, and
5), and Hessian of Gaussian eigenvalues (sigma = 0.7,
1.6, and 5). For the object identification, the ‘nucleus’
and ‘cytoplasm’ probability maps were used for setting
the high (i.e. ‘core’) and low (ie. ‘final’) thresholds, re-
spectively. Prior to thresholding, an isotropic Gaussian
blur was applied (sigma = 1) and thresholds of 0.85
and 0.4 were chosen. Finally, objects smaller than
10% of the median cell volume (2000 voxels) were dis-
carded.
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Quantification of precision

We quantified the predictions of the algorithms by
matching each predicted mask to the ground-truth
mask that is most similar, as defined by the intersec-
tion over union metric (loU). Then we evaluated the
predictions at various levels of loU; at a lower loU,
fewer pixels in a predicted mask have to match a cor-
responding ground-truth mask for a match to be con-
sidered valid. The valid matches define the true pos-
itives TP, the masks with no valid matches are false
positives F'P, and the ground-truth masks which have
no valid match are false negatives F'N. Using these
values, we computed the standard average precision
metric (AP) for each image:

TP

AP= —————.
TP+FP+FN

The average precision reported is averaged over the
AP for each image in the test set, using the "match-
ing_dataset” function from the Stardist package with
the "by_image” option set to True [38].
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S1: Graphical User Interface (GUI). Shown in
the GUI is an image from the test set, zoomed in
on an area of interest, and segmented using Cell-
pose. The GUI serves two main purposes: 1) eas-
ily run Cellpose “out-of-the-box” on new images
p and visualize the results in an interactive mode; 2)
Samenaior [ L e manually segment new images, to provide train-

- v " ing data for Cellpose. The image view can be
changed between image channels, cellpose vec-
tor flows and cellpose predicted pixel probabilities.

Similarly, the mask overlays can be changed be-
a2 ony el S | . tween outlines, transparent masks or both. The
E - , L g size calibration procedure can be run to estimate
[F—T— | cell size, or the user can directly input the cell di-

saaen ameter, with an image overlay of a red disk shown
as an aid for visual calibration. Dense, com-
plete manual segmentations can be uploaded to
our server with one button press, and the latest
trained model can be downloaded from the drop-
down menu.
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S2: Prediction of median object diameter. a,
r=0.93 The style vectors were used as linear regressors
: : : : to predict the diameter of the objects in each im-
25 50 25 50 age. Shown are the predictions for 69 testimages,
which were not used either for training cellpose or
for training the size model. b, The refined size
predictions are obtained after running cellpose on
nuclei images resized according to the sizes computed
in a. The median diameter of resulting objects
is used as the refined size prediction for the fi-
nal cellpose run. cd, Same as ab for the nucleus
dataset.
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S3: Example Stardist segmentations.
Compare to Figure 4.

S4: Example Mask R-CNN segmenta-
tions. Compare to Figure 4.
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a b 1.0 1 .
cellpose S5: Performance on non-cell categories. a,
) stardist We used the same trained models as shown in
(n2Tony e c 0.8 1 mask r-cnn figure 3, and tested them on the more visually
Cells : fluorescent O Z% distinctive categories of "microscopy: other” and
(n = 216) 39 8 0.6 “non-microscopy”. Performance in this task can
Cells : Aonfllonescent 28 s be an indicator of generalization performance, be-
Cell(r:e:rnbranes QE o} 04 cause mc'Js't test images had no similar equivalent
Microscopy : othen s in the training dataset. b, Cellpose outperformed
(n = 86) 2 the other approaches by an even larger margin
Non- microscopy 0.2 on this task, maintaining accuracy scores in the
range of 0.7-0.8 at an loU threshold of 0.5. These
trained on testedon 0.0 x x scores show that Cellpose can be useful as an

all-purpose segmentation algorithm for groups of

0.6 0.8 1.0 similar objects.
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S6: Benchmarks for dataset of nuclei. a, Embedding of image styles for the nuclear dataset of 1139 images, with a new Cellpose model
trained on this dataset. Legend: dark blue = Data Science Bowl dataset, blue = extra kaggle, cyan = ISBI 2009, green = MoNuSeg. bcd,
Segmentations on one example test image. e, Accuracy scores on test data.
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a .5=0.80 a .5=0.62 a .5=0.78
— p@o e - p@o

F: b L
ap@0.5=0.89 .5=0. ) ap@0.5=0.86

S7: Example cellpose segmentations for nuclei. The ground truth masks segmented by a human operator are shown in yellow, while the
predicted masks are shown in dotted red line.
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