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Unsupervised learning of aging principles
from longitudinal data

Konstantin Avchaciov 1, Marina P. Antoch2, Ekaterina L. Andrianova3,
Andrei E. Tarkhov 1, Leonid I. Menshikov1, Olga Burmistrova1,
Andrei V. Gudkov 3,4 & Peter O. Fedichev1

Age is the leading risk factor for prevalent diseases and death. However, the
relation between age-related physiological changes and lifespan is poorly
understood. We combined analytical and machine learning tools to describe
the aging process in large sets of longitudinal measurements. Assuming that
aging results from a dynamic instability of the organism state, we designed a
deep artificial neural network, including auto-encoder and auto-regression
(AR) components. The ARmodel tied the dynamics of physiological state with
the stochastic evolution of a single variable, the “dynamic frailty indicator”
(dFI). In a subset of blood tests from the Mouse Phenome Database, dFI
increased exponentially andpredicted the remaining lifespan. Theobservation
of the limiting dFI was consistent with the late-life mortality deceleration. dFI
changed along with hallmarks of aging, including frailty index, molecular
markers of inflammation, senescent cell accumulation, and responded to life-
shortening (high-fat diet) and life-extending (rapamycin) treatments.

Aging manifests itself on multiple levels of the organism organization.
Accordingly, diverse sets of physiological state variables, such as DNA
methylation patterns or blood composition markers1–5, can be used to
quantify aging. State-of-the-art biomarkers of aging came out from
supervised models that require chronological age or mortality age as
labels for training (see, e.g., the most recent6). Alternatively, the
number of health deficits accumulated7 or composite frailty indices8,9

correlate with the disease burden and remaining lifespan of humans
and animals9,10 and find applications in laboratory experiments and
clinical trials of anti-aging interventions3,11,12. Future use of aging bio-
markers will depend on a better understanding of the connection
between aging hallmarks, biological age predictors, frailty indices, and
the remaining lifespan.

Here, we demonstrate a combination ofmodernmachine learning
techniques and approaches borrowed from the dynamic systems
theory working together to identify quantitative rules governing
manifestations of aging and their relation to all-cause mortality in big
longitudinal biomedical data. We start by presuming that aging is a
particular case of the dynamics of a complex system unfolding near a

bifurcation or a tipping point on the boundary of a dynamic stability
region. Under the circumstances, the organism state fluctuations
should bedrivenby the dynamicsof a very few, if not a single collective
feature having the meaning of the order parameter corresponding to
the unstable phase13–15. Examples of such dimensionality reduction in
biological sciences include development16, aging, and mortality
acceleration5,17,18.

We built upon this theoretical concept and produced a deep
artificial neural network composed of a denoising autoencoder (AE)
and an auto-regressive (AR) model — a computational metaphor for
the stochastic dynamics of the order parameter. To test the approach,
we used the network to produce a descriptor of aging based on
complete blood count (CBC) measurements from the largest open-
access source of phenotypic data, the Mouse Phenome Database
(MPD)19. The network output variable, hereinafter referred to as the
dynamic frailty indicator (dFI), is the best numerical approximation for
the order parameter associated with the organism state disintegration
and hence aging from any given data. We demonstrated that the
dynamics of dFI drives the mortality acceleration and explain late-life
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deviations from Gompertz mortality law. The dFI exhibited the most
desirable properties of a biological age marker: it increased expo-
nentially with age, predicted the remaining lifespan of the animals,
correlated with multiple hallmarks of aging, and responded to inter-
ventions known to accelerate (high-fat diet) and decelerate (rapamy-
cin) aging in mice.

Results
Principal component analysis of CBC in the MPD
We used the largest publicly available longitudinal phenotypic data
source, the MPD19. To achieve the best possible compatibility with
earlier studies, we scanned the database records to maximize the
number of available measurements common to those used in con-
structing the physiological frailty index (PFI) in ref. 3. As a result, we
chose a subset of 12 CBCmeasurements fromnine datasets, altogether
including 6693 animals (see Supplementary Data 1 for the full list of
datasets used for training the models in this work).

To visualize the 12-dimensional CBC data from the MPD, we per-
formed principal component analysis (PCA). PCA of the MPD slice
representing fully grown animals (exceeding the age of 25-week-old,
see Methods for the details regarding the relevant age-range deter-
mination) turned out to be particularly simple. In this case, most of the
variance in the data (31%) is explained by the first PC score, z0, with the
subsequent PC scores (z1, z2, etc., each explaining 19%, 16%, etc. of the
total variance in the data, respectively). The hierarchical clustering of
the CBC features suggested that the first two PC scores could be pre-
dominantly connected with the red and white blood cell counts, as
shown in Fig. 1a, respectively.

Only the first PC score, z0, demonstrated an appreciable correla-
tion with the chronological age (the corresponding Pearson’s corre-
lation coefficients were r =0.59 (p < 10−5) and r =0.08 (p = 0.003) for
the first two PC scores, respectively (Fig. 1b). The variance of the PC
scores increased with age (see the inset in Fig. 1b), which is a signature
of a stochastic process.

Aging and critical dynamics of the organism’s state (the sum-
mary of theoretical results)
The association of the fluctuations along the dominant PC with the
slowest dynamic process (aging, in our case) has deep roots in the
dynamic systems theory and critical phenomena14. The transition

from stability to instability in networks with the network graphs not
possessing specific symmetries is typically associated with co-
dimension 1 (or saddle-node) bifurcations20,21. Such transitions are
characterized by the loss of stability along a single direction in the
state vector space, approximately coinciding with the first principal
component. In contrast, contributions from all other principal
components remain stable (and hence age-independent). Accord-
ingly, over sufficiently long timescales, the fluctuations of physiolo-
gical indices (such as CBC features), xi, are expected to follow the
dynamics of the order parameter, z, associated with the instability:
xi ≈ biz + ξi. Here ξi is noise, bi is a vector, and the integer index i
enumerates the measured features.

Close to the tipping point, the dynamics of the physiological state
is slow and approximately linear. Hence the variable z satisfies the
stochastic Langevin equation with the higher-order time derivative
terms neglected:

_z =αz + gz2 + f : ð1Þ

Here the linear term, αz, on the right side of the equation repre-
sents the effect of the regulatory network stiffness governing the
organism’s responses to small stresses and producing slight deviations
of theorganismstate from itsmost stableposition. The following term,
gz2, represents the lowest-order non-linear coupling effects of reg-
ulatory interactions.

The stochastic forces f represent external stresses and the effects
of endogenous factors not described by the effective Eq. (1). Naturally,
we assume that random perturbations of the organism state are seri-
ally uncorrelated, so that hf ðtÞf ðt0Þi ~Bδðt0 � tÞ, where B is the power of
the noise, δ is the Dirac’s delta-function, and 〈…〉 stands for averaging
along the aging trajectory. Eq. (1) is a mathematical relationship
between the rate of change of the organism state variable, _z =dz=dt,
on the left sideof the equation, and the effects of deterministic (αz, gz2)
and stochastic forces (f), on the right side.

Depending on the sign of the stiffness coefficient, α, the organism
state may be dynamically stable (if α <0) or unstable (if α >0). In the
latter case, minor deviations of the organism state get amplified
exponentially over time, so no equilibrium is possible. In this case, the
solution of Eq. (1) describes an aging organism. Typically, α is small,
and hence, the evolution of the physiological indices exhibits

Fig. 1 | Hierarchical clustering and Principal Component (PC) Analysis of
complete blood count (CBC) measurements from The Mouse Phenome Data-
base. a Clustering of CBC features and PC scores in the training dataset. The colors
represent Pearson’s correlation coefficient (absolute value) as indicated by the scale

on the right. b The graphs represent the average of the PC scores in subsequent age
groups (the error bars are standard deviations). The inset shows that the variance for
all PC scores increases with age. Two-sided p values were calculated for the Pearson
correlation coefficient in the sample size of n= 1448 animals.
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hallmarks of critically: the dynamics of the order parameter are slow
(critical slowing down), whereas the fluctuations of the physiological
state following the variations in z are large, z2 ~B expð2αtÞ=2α≫1 (cri-
tical fluctuations).

Very early in life, the deviations from the critical point are small,
and the evolution of the organism state is dominated by diffusion.
Later in life, the linear term takes over such that the deviations from
the youthful state accelerate exponentially:

z ≈ �z expðαtÞ+ z0, ð2Þ

where �z ~ ðB=αÞ1=2 and z0 are constants representing the accumulated
early effects of random and deterministic forces, respectively.

Finally, once the order parameter is sufficiently large, z ≳ Z = α/g,
the non-linear terms take over, the disintegration of the organism
state proceeds at a rate greater than exponential, and the animal dies
in a finite time. Eq. (1) can be solved to obtain the simple analytical
expression for the fraction of animals surviving up until the age t:
SðtÞ≈ ErfðZ=�z expð�αtÞÞ, where Erf(x) is the error function18. The
theoretical survival function is different from that of the Gompertz
mortality law implying the exponential acceleration of mortality at
all ages.

The all-cause mortality in the model,MðtÞ= � _SðtÞ=SðtÞ, increases
quickly at first in the diffusion-dominated regime and then slows down
at the age, approximately coinciding with the average lifespan
�t = 1=α logðZ=�zÞ. In the eldest animals, the disagreement with the
Gompertz mortality law is the strongest: the mortality in the model
decelerates and reaches the plateau at Mðt≫�tÞ≈α.

Finally, we observe, that the sample co-variance matrix of the
organism state variables in the unstable regime is dominated by the
dynamics of the order parameter:

hxiðtÞxjðtÞi ≈bibj
B
2α

expð2αtÞ, ð3Þ

where 〈…〉 stands for sample average. In the weak nonlinearity limit,
α�t≫ 1, PCA of such signal would reveal the loading vector corre-
sponding to the first PC score coinciding with bi. The first PC score
z0 = (b, x) is then the approximation to the order parameter z ≈ z0
itself.

Deep learning aging descriptors from longitudinal data
Aging at criticality may be a useful theoretical concept. However, it
does not provide a practical algorithm for identifying the order para-
meter other than an approximate application of PCA. To characterize
the aging process from the measurements, we analyzed the long-
itudinal aging trajectories of CBC measurements from 6,693 samples
in nineMPDdatasets (seeMethods and SupplementaryData 1)with the
help of an artificial neural network. The algorithm included a combi-
nation of a deep auto-encoder (AE) for the dimensionality reduction
and a simple ARmodel for the fit of the network representations of the
subsequent measurements onto solutions of Eq. (1) (AE–AR; see
Methods).

The AR problem’s solution, z, is the output of the algorithm and is
the best fit estimation of the order parameter associated with the
disintegration of the organism state and hence aging from the avail-
able data. Below we establish the associations of z with hallmarks of
aging, frailty, and mortality. Accordingly, we chose to refer to z as
the dFI.

The performance of the AR model was demonstrated by plotting
the auto-correlation property of dFI, which is the correlation between
dFI values measured along aging trajectories of the same mice at age
points separated by 14 and 28 weeks in the test dataset MA0072
(Fig. 2). The corresponding Pearson correlation coefficients between
the respective age-adjusted dFI estimations were r =0.71 (p < 0.001)
and r =0.70 (p <0.001). The dFI auto-correlations were better than the
auto-correlations of the first PC score z0 for the same mice, see Sup-
plementary Fig. 2; the corresponding Pearson’s correlation valueswere
r =0.55 (p <0.001) and r =0.71 (p < 0.001) for 14- and 28-week time
lags, correspondingly.

A semi-quantitative hierarchical clusteringof theCBC features’ co-
variances in the test dataset produced correlations across the features
associated with the immune system (white blood cell counts and the
related quantities), metabolic rate/oxygen consumption (red blood
cell counts and hemoglobin concentrations), and an apparently inde-
pendent subsystem formed by platelets (Supplementary Fig. 6).

dFI increasedwith the ageof the animals both in the test and in the
training sets (Fig. 3 and Supplementary Fig. 3, respectively). As
expected from the qualitative solution of Eq. (1), dFI increased up to

Fig. 2 | Auto-correlation property of the dynamic frailty indicator (dFI). Cor-
relation between age-adjusted dFI values across sampling intervals Δt of 14 (blue
circles, animals n = 40) and 28 (orange squares, animals n = 19) weeks in the vali-
dation MA0072 dataset. Two-sided p values were calculated for the Pearson cor-
relation coefficient.

Fig. 3 | The dynamic frailty indicator (dFI) as a function of age. The dependence
of the dFI from age in the validation datasets from the experiments: MA0071
(males, orange diamonds), MA0071 (females, blue circles), and MA0072 (green
triangles). The black dashed line is the exponential fit in the age groups younger
than the average lifespan of NIH Swiss mice (indicated by the vertical grey dashed
line). Red stars mark the average dFI in age-matched groups of frail animals from
the MA0073 cohort. All data are presented as Mean ± SEM.

Article https://doi.org/10.1038/s41467-022-34051-9

Nature Communications |         (2022) 13:6529 3



the age corresponding to the average animal lifespan (~100 weeks in
our case).We performed an exponential fit in the formof Eq. (2) on the
data from the test datasets (excluding animals that lived longer than
the strain’s average lifespanand animals at the endof their life fromthe
dataset MA0073). The calculation returned dFI growth exponent of
α = 0.02 per week.

The saturation of the dFI beyond the average lifespan in the
training and test datasets revealed a limiting value that is apparently
incompatible with the animals’ survival. To highlight this possibility,
we plotted the dFI ranges from a separate cohort of “unhealthy” mice
from theMA0073 experiment, representing the animals scheduled for
euthanasia under lab requirements (Fig. 3, red stars).

The character of the dFI acceleration with age and the dFI dou-
bling rate matching the mortality acceleration rate (equal to 0.037 per
week22) are good indicators of the association between dFI and mor-
tality. The observation could be further supported by computing the
Spearman’s rank correlation between the dFI “acceleration” (i.e., the
difference between the dFI of an animal and its mean value in
the corresponding age- and sex-matched cohorts) and the order of the
death events among the animals of same age and sex (see Table 1). We
obtained significant correlations between the dFI and the remaining
lifespan for all cohorts.

As a benchmark, we also produced a supervised Cox proportional
hazards (PH) model predicting animal survival in the same data.
Notably, the age- and sex-adjusted dFI predicted the remaining life-
span equally well or marginally better than the log-hazard ratio pre-
dictor from the supervised model trained in the same data (c.f. the
rows corresponding to “dFI” and “HRCBC” in Table 1).

The dFI predicted remaining lifespan later in life better than body
weight (BW) or insulin-like growth factor 1 (IGF1) serum level. Both
factors were previously shown to be associated with mortality in refs.
23 and 24. As pointed out in ref. 24 and checked here, the con-
centration of IGF1 in serum was significantly associated with lifespan
(r = −0.28, p =0.008) only in one cohort of younger, 26-week-oldmale
mice. According to ref. 23 and our calculations, BW is better associated
with mortality in the youngest animals (age 26 and 52 weeks).

Late-life mortality deceleration and limiting mortality
The number of animals with recorded lifespans inMPDwas insufficient
to understand the deviations of mortality from Gompertz mortality
law, as predicted by the aging at criticalitymodel at themost advanced
ages. Fortunately, a quantitative analysis of late-life mortality could be
performed using the data from the non-treated controls in a large
experiment involving thousands of mice25. Gompertz mortality fits
produced the following estimations for the lifespan, �t, the Gompertz
exponent, α and the initial mortality rate, M0 separately for males:
�t = 100:3 weeks, α =0.0385 ± 0.0002 per week, M0 = (4.1 ± 0.1) ⋅ 10−4

per week; and for females: �t = 115:8 weeks, α =0.0568 ±0.0003 per
week, M0 = (3.4 ± 0.1) ⋅ 10−5 per week.

Late in life in both sexes, the empirical survival curves fall slower
than the predictions from the Gompertz mortality law (see the solid
blue and the orange dashed lines in Fig. 4a and Supplementary Fig. 4a,
respectively). This is a signature of the deceleration of mortality. The
blue lines in Fig. 4b and Supplementary Fig. 4b are the empirical
mortality curves. The grey dashed lines correspond to the theoretical
expectation for the level of mortality at the plateau, corresponding to
the theoretical limiting mortality Mðt≫�tÞ=α, where α is the mortality
rate doubling rate from the Gompertz fit.

The leveling off of mortality is better pronounced in the female
cohorts (Fig. 4) and is consistent with the theoretical prediction of the
late-life plateau mortality in our model. In the male cohorts, the ani-
mals expire before the plateau is reached (Supplementary Fig. 4),
possibly due to the elevated background mortality earlier in life
between weeks 40 and 100. Nevertheless, the maximum observed
mortality is still not very far from (and is definitely of the same order
as) the predicted limiting value even in male cohorts.

Table 1 | The dynamic frailty indicator (dFI) predicts the remaining lifespan

M (26 w) F (26 w) M (52 w) F (52 w) M (78 w) F (78 w)

Cohort 1, animals 91 125 148 188 173 150

dFI −0.31 (2.9e-03) −0.18 (4.8e-02) −0.38 (2.2e-06) −0.23 (1.4e-03) −0.37 (7.8e-07) −0.28 (5.2e-04)

HRCBC −0.31 (2.5e-03) −0.10 (2.6e-01) −0.41 (3.2e-07) −0.20 (6.4e-03) −0.37 (4.6e-07) −0.35 (1.5e-05)

Cohort 2, animals 79 118 139 177 133 129

dFI −0.34 (2.4e-03) −0.21 (2.1e-02) −0.37 (6.3e-06) −0.25 (7.8e-04) −0.32 (1.8e-04) −0.31 (3.2e-04)

HRCBC −0.31 (5.9e-03) −0.14 (1.2e-01) −0.40 (9.2e-07) −0.22 (3.8e-03) −0.31 (3.5e-04) −0.39 (6.4e-06)

IGF1 −0.28 (7.7e-03) −0.17 (6.9e-02) −0.12 (1.4e-01) −0.11 (1.2e-01) 0.04 (6.9e-01) 0.05 (5.6e-01)

Body weight −0.26 (1.3e-02) −0.19 (3.3e-02) −0.25 (3.0e-03) −0.24 (9.7e-04) 0.03 (6.9e-01) 0.04 (6.8e-01)

We report Spearman’s correlationbetween thedFI and lifespan. Theanalysis is produced for the twocohorts:Cohort 1 includes all animalswithmortalitydata; Cohort 2 includes the subset of animals
fromCohort 1 for which insulin-like growth factor 1 (IGF1)measurementswere available. For comparison, wecharacterize theperformanceof theCox proportional hazardmodel (HRCBC) trained from
complete blood counts in the same dataset. The values in brackets represent p values, a two-sided Spearman’s rank test. The significant correlations (p <0.05) are highlighted in bold.

Fig. 4 | Late-lifemortality deceleration inmice. aTheKaplan-Meier survival curve
(solid blue line) in female mice cohorts from ref. 25. The orange dashed line
represent the best Gompertz fits. b The Nelson–Aalen estimator of total mortality
(solid blue line) and the 95% confidence intervals are filled in blue. The grey dashed
line corresponds to the mortality level according to the theoretical predic-
tion Mðt≫�tÞ=α.
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dFI and hallmarks of aging
To further validate dFI as a biomarker of aging, we examined its rela-
tion to the PFI, a quantitative measure of aging and frailty recently
proposed in ref. 3. dFI and PFI were found to be strongly correlated
(Pearson’s r = 0.64, p <0.001), Fig. 5a. PFI is a composite frailty score
and also depends on CBC measures for its determination. However,
the calculation of PFI involves more factors, including traditional
measures of frailty in animals and humans, such as grip strength, car-
diovascular health, inflammation markers, etc. Remarkably, the cor-
relation between PFI and dFI remained significant after adjustment for
sex and age (Supplementary Fig. 5, Pearson’s r =0.59, p <0.001).

As illustrated in Fig. 5b and Supplementary Fig. 6, 7, we observed
that the dFI was significantly associated with an extended set of CBC
features across independent functional subsystems (most notably, but
not limited to, myeloid cell lineage). The correlation between dFI and
myeloid cell features was less profound in the training set, involving
multiple strains (Supplementary Fig. 7). The correlation coefficient is a
measure of the response of dFI to individual CBC features variation
and is different (sometimes even of opposite sign) in various mouse
strains (Supplementary Fig. 8). The variation of the associations of
individual features and dFI would be a significant challenge to any
linear model and is a demonstration of the non-linear character
of the AE.

The dFI was strongly associated with red blood cell distribution
width (RDW) and BW (Fig. 5b), known predictors of frailty in both
mice26 and humans27. dFI was also strongly associated with levels of

C-reactiveprotein (CRP, r =0.39, p <0.001) and themurine chemokine
CXCL1 (KC, r = 0.28, p < 0.001), both of which are known markers of
systemic inflammation and mortality28,29.

Aging is associated with an increasing burden of senescent
cells30–32, widely considered a source of chronic sterile systemic
inflammation, “inflammaging”33. Senescent cells (SC) are commonly
detected in vivo as a population of p16/Ink4a-positive cells accumu-
latedwith age recognized by the activity of p16/Ink4a promoter-driven
reporters34.Weutilized homozygous p16/Ink4a reportermicewith one
p16/Ink4a allele knocked in with firefly luciferase cDNA35. Figure 6a
shows the correlation between animal age and the presence of
senescent cells, as measured by the flux from p16/Ink4a promoter-
driven luciferase activity (r =0.54, p =0.008).

The correlation of this SC proxy (total luciferase flux) with dFI
was even stronger (r = 0.69, p < 0.001; Fig. 6b). The observation fits
well with our theoretical prediction: the kinetic equation for the
order parameter (dFI) is autonomous (its coefficients do not depend
on the time). This means that the organism state variables, including
measures of senescent cell burden,may not explicitly depend on age,
so the age dependence may only come through the depen-
dence on dFI.

dFI responds to lifespan-modulating interventions
To assess the utility of dFI for the analysis of effects of interventions on
aging, we retrospectively evaluated the dFI and its relation to the
remaining lifespan in response to a high-fat diet (HFD) using the data
from the earlier experiment3. Male mice were fed HFD instead of a
regular diet (RD) beginning at 50 weeks of age had significantly
reduced lifespans (Supplementary Fig. 9a) and also showed a sig-
nificant increase in average dFI measured at week 78 (p =0.05, Stu-
dent’s two-tailed t-test; Fig. 6c) in comparison to control RD-fedmales.
In contrast, HFD feedingof femalemicehadnoeffecton either lifespan
or average dFI (Supplementary Fig. 9b and Fig. 6d). Thus, dFI appeared
to be a good predictor of gender-dependent differences in the
organism to HFD, the underlying reasons for which remain to be
explained.

Our calculations shown that the aging acceleration captured by
the dFI agreed with the previously reported gain in the PFI (p = 0.02
according to Student’s t-test) in male and no effect in female mice at
week 78 in the same experiment. This is a notable statement regarding
the sensitivity of dFI, since PFI was developed (trained) in the MA0071
experiment and employs more (18 vs. 12) variables than mere CBC for
its determination. On the contrary, we did not use any data from the
MA0071-73 datasets to train the dFI model. Figure 6c, d demonstrates
dFI performance relative to the independently developed PFI in an
external dataset.

In another experiment, we tested the response of dFI to a short
treatment with an established life-extending agent, rapamycin36,37.
Here we present the results of an experiment with a cohort of 60 60-
week-old C57BL/6 male mice. 48 animals (the treatment group) were
treated with rapamycin daily at a dose of 12 mg/kg for 8 weeks. The
other 12 animals (the control group) received the vehicle on the same
schedule.

BWs were measured every week and increased as expected in the
control group (Fig. 6e). In contrast, BW in the rapamycin-treated group
stayed approximately constant near the initial value throughout the
observation period of 10 weeks. A lower BW is typical for rapamycin-
treatedmice compared to the control group3,38. To generate dFI values
for the mice in this experiment, we collected and produced CBC from
blood samples from each animal every two weeks (Fig. 6f).

The longitudinal character of sampling in the experiment let us
use the autoregression analysis to detect possible effects of a drug on
the dynamics of dFI and hence aging. Whenever a non-random force
(that is the effect of the drug) is present in Eq. (1), the jump in dFI
between any of the consequent measurements from the same animal
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Fig. 5 | Correlation of dFI with other biomarkers of aging. aCorrelation between
the dFI and the physiological frailty index (PFI). Colors represent animals from the
test dataset, where blue, orange and green circles are females in MA0071, males in
MA0071 and males in MA0072, respectively. b Volcano plot representation of the
dFI correlation with the extended set of biomarkers in the test datasets MA0071
and MA0072. Features with correlation above and below significance level
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ficient and the sample size of n = 282 animals.
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should satisfy the modified Eq. (7):

zðt +ΔtÞ= rzðtÞ+ z0 + J + ξ , ð4Þ

where J is the accumulated effect of the drug along the aging trajectory
between the measurements. The time intervals are usually very small,
αΔt≪ 1 and hence the autoregression coefficient r ≈ 1. We, therefore,
expected to identify the effect of rapamycin by comparing the dis-
tributions of the dFI increments, ΔdFI = z(t +Δt) − z(t), in animals
receiving or not the treatment between the measurements both in the
treated and in the control groups (see Methods for the details of the
statistical analysis). The statistical analysis of the dFI increments
demonstrated a significant aging deceleration associated with the
rapamycin treatment (Fig. 6g, p = 0.05, Student’s two-tailed test).

Discussion
We introduced a novel way to reveal biomarkers of age and frailty from
big biomedical data involving longitudinal measurements, i.e., multiple
samples of the same animals collected along the aging trajectories. The
approach belongs to the class of unsupervised learning algorithms such
that it does not require labels associated with age, mortality, and mor-
bidity. It couldbeexemplifiedby thediscovery and characterizationof a
biomarker of aging in mice, the dFI, from conventional and automated
measurements of CBC and trained from the data from MPD.

Aging is a very slow process that occurs at characteristic time
scales far exceeding times associated with molecular processes or
operations of an organism’s functional subsystems. Typically, such a
hierarchy of scales arises from criticality, which is a special case of a
dynamic system operating close to a tipping point separating the

stable and unstable region15–17,39. In ref. 18, we proposed that aging
results from inherent dynamic instability of the underlying regulatory
networks andmanifests itself as small deviations of the organism state
variables (physiological indices) get exponentially amplified and lead
to the exponential acceleration of mortality. The first principal com-
ponent score is then an approximation to the order parameter char-
acterizing the unstable phase and having the meaning of the total
number of regulatory errors accumulated in the course of life of the
animal17. Hence, we believe that aging at criticality conjecture provides
a good explanation for the success of Principal Components Analysis
(PCA) as a semi-quantitative tool in aging research40–42.

The idea of the order parameter associated with instability is a
generalizationof a concept initially introduced in theGinzburg-Landau
theory to describe phase transitions in thermodynamics. The idea was
further developed for applications to open non-equilibrium systems in
the form of the “enslaving-principle”13, which states that next to the
critical point, the dynamics of fast-relaxing (stable) components of a
system is completely determined by the ’slow’ dynamics of only a few
’order-parameters’. The dFI identified as an approximation to the order
parameter is then not a mere machine learning tool developed for
specific predictions but rather a fundamentalmacroscopic property of
the aging organism as a non-equilibrium system.

However, the abilities of linear rank reduction techniques, such as
PCA, to unravel an accurate dynamicdescription of aging are limited for
the following reasons. First, there are no reasons to believe that the
effects of non-linear interactions between different dynamic sub-
systems are small. That is why a biomarker produced from such a linear
analysis cannot be expected to perform well in different biological
contexts (strains, laboratory conditions, or therapeutic interventions

Fig. 6 | dFI is associated with senescent cells burden and responds to lifespan
modulating interventions. Total flux (TF) in log scale represents p16-dependent
luciferase reporter activity, is a quantitative indicator of senescent cells burden,
and shows statistically significant correlations with age (Pearson’s r =0.54, two-
sided p =0.008, n = 23 animals) (a) and with dFI (Pearson’s r =0.69, two-sided
p =0.0003, n = 23 animals) (b) in old mice (>50 weeks). The colorbar in
b represents animal age in weeks. dFI responds to the lifespan-modifying effect of
high-fat diet (HFD): the dFI values (dots) were obtained late in life (at week 78) for
male (c) and female (d)mice fedwithRDorHFD. The horizontal bar and the dashed
lines indicate the mean values in the groups and for all animals, respectively. dFI
was significantly higher inmales with HFD (n = 7 animals) vs RD (two-sidedp =0.05,
Student’s t test, n = 8 animals), but therewas no significant difference betweenHFD
(n = 8 animals) and RD (n = 12 animals) groups of female mice. The dFI

measurements are consistent with life-shortening and neutral effects of HFD in
males and female animals in the same experiment, as reported in ref. 3. Effects of 8
week-long rapamycin treatment onbodyweight anddFI. Bodyweight (e) anddFI (f)
were measured every 1 and 2 weeks, respectively. All the data are presented as the
mean ± SEM (n = 48 and n = 12mice in control and rapamycin groups, respectively).
g The statistics of the dFI increments in pairs of consecutive measurements are
different by the presence or the absence of the treatment (the blue box, including
both the control and rapamycin-treated group after cessation of the treatment,
n = 204 animals, vs. the treated group, the orange box, n = 36 animals). Boxplots
indicate median, 25th and 75th percentiles, whiskers indicate 5th and 95th per-
centiles. The dFI increments between the subsequent measurements were sig-
nificantly lower under treatment (p =0.05, Student’s two-tailed t test), thus
suggesting lifespan increasing effects of rapamycin.
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such as drugs). Second, biological measurements are often noisy.
Hence, simple techniques lacking efficient regularization may fail to
reconstruct the space of the latent variables correctly unless a prohi-
bitively large number of samples is obtained43. Finally, the association of
the first principal component with the order parameter is only an
approximate statement. Fundamentally, there is no way to identify the
system’s dynamics from the data, which does not include the dynamics
itself in multiple measurements of the same organism along the aging
trajectory.

To compensate for the drawbacks of PCA and demonstrate an
efficient way to produce an accurate approximation to dFI from the
data, we employed an artificial neural network, a combination of a
deep denoising AE and an AR model. The AE part of the algorithm is a
non-linear generalization of PCA and was used to compress the cor-
related and necessarily noisy biological measurements into a compact
set of latent variables, a low-dimensional representation of the
organism state. The AR-arm of the network is nothing else but the best
possible prediction of the future state of the same animal from the
current measurements. The solution to the AR-problem provided by
the network is the estimate for the order parameter from the given
data, the dynamic frailty indicator (dFI).

The network architecture applied here was inspired by deep rank-
reduction architectures, recently used to characterize numerical
solutions of large non-linear dynamical systems44,45. In a broader sense,
we report the development and characterization of a fully inter-
pretable (model-based) algorithm, a particular example of identifying
the equations ofmotion of the underlying dynamical system fromdata
with the help of deep learning46,47. By the standard of physical sciences,
aging in mice turns out to be “exactly solvable”. We demonstrated an
analytically tractable model tying the dynamics of the physiological
state and all-cause survival to the evolution of a single age-dependent
quantity, the order parameter of the unstable phase, and following a
simple first-order stochastic differential equation.

The profound correlations between the CBC features and dFImay
reflect a key role in aging of hematopoietic tissue in determining aging
of the whole organism. This concept is intuitively acceptable given the
universal systemic physiological function of blood. As an alternative
explanation, age-dependent changes in blood parameters may be
secondary events induced by aging of the remainder of the organism
(i.e., various solid tissues). However, accumulated experimental evi-
dence argues against this. Multiple reports are demonstrating “reju-
venating” effects of young hematopoietic system on old animals
delivered either by bone marrow transplantation or by parabiosis
(reviewed in ref. 48). Moreover, restoration of mouse hematopoiesis
through transplantation of hematopoietic stem cells (HSCs) from
young vs. old donors clearly demonstrated that aged HSCs cannot be
rejuvenated by the environment of a young body49. Also, the inter-
pretation of age dependence of HSC-derived features as secondary
effects of aging would face formal difficulties since the dynamics of
such factors should exhibit shorter, in fact at least twice shorter,
doubling times than the dFI and the mortality rate doubling times.

A peculiar result of our analysis is that our data strongly point
toward myeloid lineage which provides much more accurate pre-
dictors of biological age than lymphoid lineage parameters. This is
counterintuitive since aging is generally accepted tobe associatedwith
the well-documented general decline in immunity known as an
immunosenescence50, the phenomenon illustrated by the reduced
efficiency of vaccination51 and increased frequency and lethality of
infectious diseases and cancer in older organisms52. Nevertheless,
there is strong experimental evidence that supports and provides a
mechanistic explanation for our finding that myeloid parameters
weighmore heavily than lymphoid ones as biological age indicators. In
a comprehensive study of the epigenetic mechanisms of HSC aging,
Beerman et al.49 described age-dependent epigenetic reprogramming
that leads to a significant shift towards myeloid lineage differentiation

of the progeny of agedHSCs49,53. This shift is driven by specific changes
in methylation of the DNA of HSCs that occur during mouse aging.
Surprisingly, these changes in methylation, which alter gene expres-
sion, do not occur in the part of the genome that controls HSC phe-
notype, but rather modify DNA regions encoding genes that control
downstream differentiation stages. Remarkably, the pattern of DNA
methylation changes associatedwith agingofHSCs seems to represent
the same process that was previously described as a DNAmethylation-
based clock1,49, and therefore, may be part of the same epigenetically
controlled fundamental aging mechanism. Another factor that could
diminish the impact of lymphoid lineage-related parameters as biolo-
gical age markers is the reactive nature of this branch of hematopoi-
esis, which serves to rapidly respond to sporadic events such as viral or
bacterial infection, wounding, and other types of stress requiring an
emergency response usually in the form of acute inflammation. Since
the time of occurrence of such events is unpredictable, age-associated
changes may be masked by the noise coming from large-scale age-
unrelated fluctuations in the lymphoid compartment.

These observations do not mean that the blood is the single
determinant of aging (otherwise, biological age would be 100% defined
by the age of HSCs), but at least place it among themajor drivers of the
process and provide an explanation for our success in reliably deter-
miningbiological age fromblood test data. Aging in ourmodel emerges
cooperatively so that despite the appearance of “aging clock” in the
formof the order parameter or its estimate from the data, the dFI, there
is no specific subsystem tracking time (or the age) in an animal.

The organism state’s dynamics are described by an autonomous
Eq. (1), where none of themodel coefficients explicitly depend on time.
Accordingly, no physiological state variable can depend on the age of
the animals explicitly, only implicitly via dependence on the collective
variable, the dFI. That is why we observed the correlations between the
dFI, on the one hand, and multiple aging and frailty measures com-
monly known as the hallmarks of aging54, on the other. These include
grip strength, BW, RDW, andmarkers of inflammation such as CRP and
KC (IL-8). dFI also correlatedwellwith thep16-luciferaseflux, aproxy for
the number of senescent cells in agedmice. Conversely, we predict that
anti-aging treatment altering the dFI should significantly alleviate other
hallmarks of aging at the same time. This property is not uncommon
among interventions with potentially life-extending effect55.

Moreover, the instability of the organism state means that the
animals cannot relax to any equilibriumeven after a short perturbation
(formally, this property manifests itself as strong auto-correlations of
dFI over extended periods of time). Therefore, the effects of short
treatments should likely persist until the end of life. Accordingly, the
effects of such transient treatments could, in principle, be detected in
short experiments involving longitudinal dFI measurements in just
over a few weeks. Although the effect size and the signal-to-noise ratio
in the short prospective rapamycin treatment experiment are not very
large, the aging deceleration observed in this work is compatible with
the earlier reported life-long pro-longevity effects of transient rapa-
mycin treatments37.

The common biomarkers of aging rely on individual or composite
measures of the deviation of an organism from its youthful state.
Notable examples are forms of frailty index (FI) defined as the propor-
tion of accumulated deficits in any available signal8,9 or, more specifi-
cally in blood test data9–11,56,57. Sincewedonot expect any dependence of
the physiological state variables on age other than the dependence on
the order parameter, there should be a good concordance between
composite markers of aging and dFI. Indeed, we observed a very high
degree of concordance between the dFI and the PFI from ref. 3, which is
an example of theMahalanobis distance fromold to young states7 and is
derived from a wide range of features including CBC, physical fitness,
cardiovascular health, and biochemistry.

Of all such measures, dFI alone comes with an established equa-
tion of motion (1) and hence has the best auto-correlation property
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along the individual aging trajectories (see, e.g., the auto-correlation of
dFI and the first PC in Fig. 2 and Supplementary Fig. 2, respectively).
The property is convenient for determining the effects of drugs or
other interventions on aging in experiments involving comparisons of
the organism state of the same animals before and during the
treatments.

The reduction of aging to the dynamics of a single variablemakes
the quantitative model of aging in the form of the stochastic Eq. (1)
from ref. 18 and this study distinct from previous proposals to derive
mortality from a physiological state’s dynamics58,59. Such models are
mathematical metaphors of random walks in very high dimensional
spaces and thus may be difficult to interpret or infer from biological
signals without additional assumptions. We believe that criticality is a
helpful theoretical observation and deep learning is a great practical
tool, which may be used together to simplify identifying the model
parameters and their relations to organism properties. We note that
the explanation of the Gompertz law of mortality is insufficient proof
of an aging theory. Matching stochastic longitudinal dynamics of
physiological indices to amodel prediction is amuch harder challenge
and should be used as an effective tool for model validation.

dFI increased exponentially with age at a characteristic doubling
rate of 0.02 per week. This estimate is somewhat smaller than (but still
of the same order as) the expected Gompertz mortality acceleration
rate of 0.037 per week22 for the SWR/J strain. Given the observed dFI
doubling rates in mice, α�t ~ 3 and hence the deterministic phenotypic
changes dominate the random effects by a factor of 3 (see Eq. (2)
and Fig. 3).

More interestingly, in the cross-sectional dataset, the dFI satu-
rated at a limiting value, which is reached at the age corresponding to
the average lifespan in the group. However, we observed that the dFI
ceiling corresponds to the dFI levels in cohorts of animals scheduled
for euthanasia due to excessive morbidity under current laboratory
protocols, which is as close to death from natural causes as animals
could possibly be in a modern laboratory.

Both features of the aging trajectories inMPD are compatiblewith
the analytical solutions of Eq. (1) for the dynamics of the order para-
meter. In ref. 18, we explained that early in life dFI increases expo-
nentially (see Eq. (2)). At the age approximately corresponding to the
average lifespan in the population, non-linear effects take over the
dynamics of dFI, and the organism state deviates from its youthful
state even faster than exponentially. Such a situation is incompatible
with survival and hence cannot be observed in the data. In our model
and in the experiment, death occurs quickly once the maximum dFI
level is reached at some point in the life history of the animal.

The stochastic Eq. (1) establishes the “law of motion” for the
organism’s physiological state and predicts the late-life mortality
deceleration in the form of saturation of mortality at the plateau level,
Mðt≫�tÞ≈α. The predicted relationship between the limiting mortality
and the mortality rate doubling time held in a variety of species60 and
experiments in multiple conditions in the same species, such as
nematodes42. Here we report the validation of the limiting mortality
prediction in very large cohorts of mice from ref. 25.

The good semi-quantitative agreement between the empirical
mortality curves in large experiments and the theoretical prediction
provides an independent and sensitive test of the aging at criticality
model as a theoretical framework proposed here for the data analysis in
experiments involving aging animals. More specifically, the experi-
mental confirmation for the late-life mortality deceleration prediction
validates the basic stochastic Eq. (1) and the association between its
solution in the form of dFI and all-causemortality. We also note that the
mortality deceleration in the model arises from the stochastic nature of
the order parameter dynamics and should be expected even in a cohort
of genetically identical animals (see the discussion in ref. 61).

Deviations from the Gompertz law in human cohorts also occur,
but at ages exceeding the average lifespan when the mortality is

already well beyond the theoretical limit corresponding to the mor-
tality rate doubling rate by almost an order ofmagnitude60. Thismeans
that the character of the organism state dynamics in the course of
human aging is qualitatively different than that in mice or nematodes.
In ref. 5, we observed that the fluctuations of physiological indices in
humans are also dominated by a collective variable characterized by a
relatively long but finite auto-correlation time (in the range of a few
weeks) and associated with age and all-causemortality. The number of
individuals exhibiting signs of the loss of dynamic stability (measured
by exceedingly long auto-correlation times) increased exponentially
with age at a rate matching the mortality doubling rate from the
Gompertz mortality law61.

The intimate relation between the auto-correlation properties of
physiological state variables and hallmarks of aging suggests that AR
analysis enhanced by deep learning may help discover signatures of
human aging and chronic disease progression. The benefit may be
particularly huge in studies involving large sets of longitudinal mea-
surements but often lacking follow-up mortality and morbidity infor-
mation. While hallmarks of aging in mice are correlated and primarily
reversible, a large part of physiological changes associated with aging
in humans is stochastic and may be thermodynamically irreversible62.
Therefore, we expect that the systematic application of dynamic sys-
tems theory principles to biomedical data analysis will help identify
actionable aging phenotypes and thus facilitate the discovery and
development of anti-aging therapeutics that produce lasting rejuve-
nating effects.

Methods
Datasets
The trainingdata setwasprepared from thenine data sources available
in the MPD19. A list of the included sources is presented in Supple-
mentary Data 1 with references to the included and missing records
groupedby sex and age cohorts.Weused the assays providing theCBC
data only, assays with other biomarkers were not considered due to
the insufficient number of samples. Our model was trained using the
best overlap of available CBC features from all sources. The final list
contained 12 CBC features: granulocytes differential (GR%), granulo-
cytes count (GR), hemoglobin (HB), hematocrit (HCT%), lymphocyte
differential (LY%), lymphocyte count (LY), mean corpuscular hemo-
globin content (MCHC), mean hemoglobin concentration (MCH),
mean corpuscular volume (MCV), platelet count (PLT), red blood cell
count (RBC) and white blood cell count (WBC). See Supplementary
Data 2 for the list of all abbreviations. If the data source lacked gran-
ulocytes measurements, it was retrieved using formulas:

GR=WBC� LY�MO

GR%= 100� LY%�MO%
ð5Þ

All animals with one or more missing parameters were excluded from
the training. The percentage of the excluded records was <2% and
should not have affected the results.

Animals
All animal experimentswere approved by the Institutional Animal Care
and Use Committee of Roswell Park Cancer Institute or by the Explora
BioLabs, Inc Animal Use Committee.

We received 4–5-week-old NIH Swiss male and female mice from
Charles River Laboratories (Wilmington, MA). They were allowed to
age within the Roswell Park Comprehensive Cancer Center (RPCCC)
animal facility. During this time mice were housed 1–3 per cage and
were fedad libwith standard chow (TeklandGlobal 18%ProteinRodent
Diet). Blood sampleswere obtained at different ages as part of creating
of the PFI3. Blood samples were collected from a single submandibular
vein bleed into EDTA-treated Vacutainer tubes (total volume of 20 μl)
and used for whole blood cell counts and glucosemeasurements using
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Hemavet 950 Analyzer (Drew Scientific). Another 75 μl of blood was
collected into Li-Heparin treated plasma separator tubes; plasma was
purified by centrifugation at 5000×g for 5min and used for measuring
the concentration of circulating pro-inflammatory cytokines and
triglycerides.

Dataset MA0071 was built in a cross-sectional experiment
using male and female NIH Swiss mice. Blood was collected from
male mice at ages of 26 (n = 20), 64 (n = 18), 78 (n = 17), 92 (n = 14),
and 132 (n = 6) weeks. Female age groups were represented by the
ages of 30 (n = 20), 56 (n = 20), 68 (n = 19), 82 (n = 19), 95 (n = 18),
108 (n = 20), and 136 (n = 7) weeks. Dataset MA0072 was obtained
from a longitudinal experiment. Blood samples were collected at
the ages of 66 (n = 27), 81 (n = 22), 94 (n = 21), 109 (n = 16), and 130
(n = 7) weeks. Dataset MA0073 includes blood samples collected
from 97 male and 127 female mice of different ages when animals
reached approved experimental endpoints and required humane
euthanasia. All animal procedureswere performed according to the
approved Institutional Animal Care and Use Committee (IACUC)
protocol. Mice were monitored daily for the development of age-
related pathologies. Whenever health issues were reported,
research staff contacted veterinarian staff and followed their
recommendations for either treatment or euthanasia. Mice were
treated until the condition was improved or euthanized when the
endpoint for each health condition described in the protocol was
reached. Euthanasia was performed by CO2 asphyxiation followed
by cervical dislocation. See Supplementary Data 3 for the total
number of animals in these datasets.

p16/INK4a-LUC female mice (p16-Luc) at ages of 44 to
106 weeks were obtained from the N. Sharpless laboratory at the
University of North Carolina (Chapel Hill, NC). All animals were
housed under 12:12 light:dark conditions (12 hours of light followed
by 12 hours of darkness) at the Laboratory Animal Shared Resource
at RPCCC. All animal experiments were approved by the IACUC of
Roswell Park Cancer Institute. Bioluminescence imaging was per-
formed using an IVIS Spectrum imaging system (Caliper Life-
Sciences, Inc, Waltham, MA). p16/Ink4a-Luc+/- mice were injected
intraperitoneally with D-Luciferin (150 mg/kg, Gold Biotechnol-
ogy), 3minutes later anesthetizedwith isoflurane and imaged using
a 20-second integration time and medium binning. The images
were processed and quantified as the sum of photon flux recorded
from both sides of each mouse using Living Image software (Perkin
Elmer, Waltham, MA.).

For the rapamycin treatment experiment 60-week-old C57BL/6J
malemice were obtained from Jackson Laboratories (USA). The cohort
of 60 60-week-old C57BL/6 male mice was divided into treatment
(n = 12) and control (n = 48) groups using a stratified randomization
technique to produce indistinguishable distributions of dFI values
prior to the experiment. The blood samples (total volume of 120 μL)
were collected into EDTA tubes via submandibular or facial vein using a
lancet. All animal procedures were approved by the Explora BioLabs,
Inc animal use committee (IACUC SP17-004-035B) and were in accor-
dance with Explora BioLabs, Inc policies on the care, welfare, and
treatment of laboratory animals. Rapamycin was purchased from LC
Laboratories (MA, USA). Rapamycin was administered daily at 12 mg/
kg via oral gavage for 8 weeks. The control group was treated with
vehicle (5% Tween-80, 5% PEG-400, 3% DMSO).

Dimensionality reduction with PCA
We performed the PCA with the help of Python and Scikit-learn
package63. First, we applied PCA transformation to the entire
training dataset. However, the principal components were
dominated by the difference in mice strains. We removed strain
difference by subtracting mean values of CBC features calculated
for the earliest age available for the selected strain from values of

CBC features of all animals for this strain:

eXj
i =X

j
i �

1
Nt

XNt

t=minðageÞ
Xj
i,t , ð6Þ

where the indices i and j enumerate the CBC features and strains,
respectively, and t is the age of an animal. For simplicity, wefiltered out
mouse strains, which were not presented in the Peters4 dataset64.

Most of the variance in the data representing the full dataset was
associated with animal growth and maturation. The first PC score
increased with the age of animals most notably after 25 weeks (Sup-
plementary Fig. 1). On the contrary, the second and the third PC scores
acquire non-zero means by the same age of 25 weeks. This suggests
that aging and early development in mice are different phenotypes.
Subsequently, we performed all our calculations using the data from
animals older than 25 weeks.

Statistical analysis of mortality data
The death records for animals linked with the MPD dataset Peters4
were also available in the MPD as a separate dataset named Yuan223.
Thesedatasets contain different cohorts of animalswith a vast overlap.
We found mortality records for 487 animals in Peters4 dataset, while
393 animals weremissing. The reason for the missingness is unknown.
To create censoring records, we included all animals having at least
two sequential CBC measurements. We assumed that the animals
provided with a single CBC measurement were probably sacrificed
after the blood collection. Hence, if an animal has more than one CBC
measurement, we consider it lost at the last measurement. Altogether,
we found79 animals satisfying this condition. The rest 314 animalswith
unknown mortality dates were excluded from the analysis.

The Spearman’s rank correlation test was performed separately
for the two cohorts of mice. The first cohort included all animals from
the Peters4 dataset with uncensored mortality records. The second
cohort included animals from the Peters4 dataset with the measure-
ments of BW and the IGF1 serum level taken from the MPD dataset
named Yuan124.

We performed the Cox PH regression analysis with the help of
Python and Lifelines package65. First, we produced the supervised
multivariate Cox-PH model using the age, sex, and CBC features as
covariates and utilizing the data from all the animals from the Peters4
dataset, including both censored and uncensored mortality events.
The output of the model, the log-hazard ratio (HRCBC) is the dot pro-
duct of the vector comprising the CBC features and the respective
coefficients from the Cox-PHmodel. Next, we tested the association of
theHRCBC feature in a univariate Cox-PHmodel alongside the dFI score
in cohorts of animals of the same age and sex (see Supplementary
Data 6) as an alternative for Spearman’s rank correlation test. Both
tests were in good agreement with each other.

Training of the AE/AR neural network
We used a combination of a deep AE and a simple ARmodel for modal
analysis (AE-AR model). At its bottleneck, the encoder arm of the AE
produced a compressed 4-dimensional representation y of the input,
the 12-dimensional physiological state vectors x built from the avail-
able CBC measurements. The decoder arm reconstructed the original
12-dimensional state ~x from the bottleneck features.

Simultaneously with the AE, we trained the network to fit the
longitudinal slice of MPD (including fully-grown animals at ages from
26 to 104 weeks with a sampling interval of Δt = 26 weeks) to the
solution of the linearized (g =0) version of Eq. (1),

zðt +ΔtÞ= rzðtÞ+ z0 + ξ , ð7Þ
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where z is the best possible linear combination of AE bottle-neck
features, r = expðαΔtÞ≈ 1, and z0 are the best fit values of the auto-
regression coefficient and the constant shift, respectively. Here, ξ is the
error of the fit (the combination of the system’s noise and measure-
ment errors).

We adapted the neural network architecture proposed in ref. 45.
Our implementation handled cross-sectional and longitudinal mea-
surements simultaneously with an imbalance in favor of cross-
sectional data, which is typical for real-world clinical data. As inputs,
the network has three 12-dimensional vectors represented by CBC
parameters: one for the cross-sectional dataset (x), and two others for
the longitudinal dataset corresponding to the present (xn) and future
(xn+1) states of a sample (Fig. 7a).

The cross-sectional samples served as inputs in the AE. The
longitudinal samples in the compressed representation (yn, yn+1) also
participated in the training autoregressionpart. Themain advantageof
the inclusion of AE in the neural network is its ability of effective
nonlinear dimensionality reduction66, which is necessary for such
correlated quantities as CBC components (Fig. 1a). The reduced size of
latent dimensions works as regularization and helps to train without
overfitting on a small longitudinal dataset using more samples from a
larger cross-sectional dataset.

The AE block encodes input (x) to the 4-dimensional vector
y =ϕ(x) and then reconstructs back the original signal ex =ϕ�1ðyÞ. AE
was implemented as a stack of fully connecteddense layers and residual
network blocks (ResNet)67. The dense layers have a trainable weight
matrixW, bias vector b, and a linear activation function by default. The
ResNet block, shown in Fig. 7b, is a stack of two dense layers with an
activation function of a leaky rectified linear unit (Leaky ReLU). The
input and the output are linked by applying element-wise addition. The
ResNet blocks add nonlinear rectification transformations to the origi-
nal input, helping to learn nonlinear transformations. The AE is trained
simultaneously on cross-sectional and longitudinal datasets.

The projector block takes a 4-dimensional vector as an input and
transforms it to a scalar z =A ⋅ y, which we refer to as dFI. During
training, a pair of vectors is fed to the inputs: one yn for the present
state of the system and one yn+1 for the future state. The linear
dynamics block solves the autoregressionproblem (7) andpredicts the
future state ezn+ 1 = ξðznÞ= rzn +b. The auxiliary decoder block recon-
structs the original 12-dimension CBC vector from the output of the
linear dynamics block ezn+ 1 utilizing the decoder ϕ−1 from the AE
block: exn+ 1 =ϕ

�1ðB � ezn+ 1Þ.
To forcematrices of A and B in the projector and linear dynamics

blocks to be left and right eigenvectors in the solution of Eq. (7) we
added the following constraints:

CAB : k A � B� Ik2F =0
CB :

P
i
B2
ij � 1 =0 ð8Þ

The total loss function is theweighted sumof the following losses:

L=α1ðLAE +LpredÞ+α2LAR +α3LC +α4 k Wk22, ð9Þ

where

LAE = k x� ϕ�1ðϕðxÞÞk2, ð10Þ

Lpred = k xn+ 1 � ϕ�1 Bξ AϕðxÞ½ �� �k2, ð11Þ

LAR = k Aϕðxn+ 1Þ � ξ AϕðxnÞ
� �k2, ð12Þ

LC =CAB = k A � B� Ik22: ð13Þ

Here, LAE is the AE reconstruction loss, Lpred is the future state
reconstruction loss,LAR the auto-regression loss,LC is the loss to force
the constraints from Eq. (8), and the term k Wk22 is L2 regularization of
NN weights to avoid over-fitting issue.

The weights α1, α3, α4 were assigned to the values of 1, 100, and
0.01, respectively. The weight α2 was gradually increased from 0 to 1
during training. Themodel was trained for 600 epochs with a learning
rate of 0.001 and Adam optimizer68. The last 200 epochs were trained
with a learning rate of 0.0001. The AE/AR NN architecture was
implemented with Python and TensorFlow framework69.

The non-linear dynamics of the order parameter are crucial for
explaining mortality. At the same time, the effects of the nonlinearity
can be neglected almost always in the course of the life of an animal if
the dimensionless parameter expressing the animal lifespan �t in units
of themortality rate doubling time is large, α�t≫ 118. Given the observed
dFI doubling rates inmice, α�t ~ 3 and hence the linear ARmodel is only
a reasonable approximation. One should obtain better dFI variants in
the future by increasing the rank in AR models, possibly including the
effects of mode coupling with dFI.

Model evaluation
The model was validated in test datasets (see Supplementary Data 3),
whichwerecompletely excluded fromthe training of theAE-ARmodel.
The test datasets were obtained from independent experiments by
collecting CBC samples from cohorts of NIH Swiss mice of different
age and sex (dataset MA0071), cohort NIH Swiss male mice observed
for 15months (datasetMA0072), and cohorts of naivemale and female
NIH Swiss mice that were humanely euthanized after reaching
approved experimental endpoints (dataset MA0073).

We estimated the reconstruction error of the AE by calculation of
the root mean squared error (RMSE) and the coefficient of determi-
nationR2 for each CBC feature in training and test sets (Supplementary
Data 4 and Supplementary Data 5). The average RMSE in the test set
was 229.6 with R2 = 0.55; in the training set, RMSE was 106.4 and
R2 = 0.77. The best reconstruction was achieved for hematocrit
(R2 = 0.95), red blood cells (R2 = 0.92) and lymphocytes (R2 = 0.87); the
worst results were for mean corpuscular hemoglobin concentration
(R2 = −0.82) and platelets (R2 = −0.14) in the test set. We note that
according to definition, −1 <R2 < 1 (see, e.g.,70), the quantity may be
negative in either the train or validation sets, which indicates cases of
particularly bad fit.

Determination of the effects of a drug on dFI
We performed the investigation of the effects of rapamycin on dFI
trajectories in individual animals. Technically, we compared the
increments of dFI levels along the individual life histories in time
intervals depending on the amount of treatment between the sub-
sequent time points. Such analysis explicitly relies on the equation of
motion (7) for the order parameter, which is approximated by dFI. The
drug’s effect manifests itself as the “force” term reducing the dFI
increments between the measurements when the drug is given and
having no effect (no force) whenever the drug is not administered,
both in the treatment and control groups.

The determination of a drug’s effect on the aging process is
therefore equivalent to determining the “force” term in the auto-
regression problem in Eq. (4). Since the natural variation of dFI levels
between animals is often high, longitudinal studies should havemore
statistical power than standard group comparisons. The dFI was
trained with the AR model (7). Accordingly, it is well suited to max-
imize the signal-to-noise ratio in a longitudinal analysis of an anti-
aging intervention’s effects. If required, the autoregression model
can accommodate any number of confounding factors, such as the
experimental batch or sex of the animals. Technically, one can
achieve the goal by adding the respective covariates to Eq’s right-
hand side (4).
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Late-life mortality and survival analysis
The data for mice mortality were taken from ref. 25. Only control
groups were selected for the analysis. Mice removed from the study
were also removed from the current survival analysis. The mice were
pooled together from all three study centers and cohorts and sepa-
rated into two groups according to sex. Overall, there were 3249 male
mice, and 2978 female mice.

The mortality analysis is done with the help of the Nelson-Aalen
fitter from the lifelines python package65. For the Gompertz fit of the
survivals and other survival analysis, we used the custom code pub-
lished on GitHub.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available at theMPD
(RRID:SCR_003212). Rawdata files and scripts to reproduce all findings
are available on GitHub https://github.com/gero-science/mice_dfi71.
Additional data are available from the corresponding authors on rea-
sonable request. Source data are provided with this paper.

Code availability
The code will be available on GitHub https://github.com/gero-science/
mice_dfi71
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