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Abstract

Terminator is a DNA sequence that gives the RNA polymerase the transcriptional termina-

tion signal. Identifying terminators correctly can optimize the genome annotation, more

importantly, it has considerable application value in disease diagnosis and therapies. How-

ever, accurate prediction methods are deficient and in urgent need. Therefore, we proposed

a prediction method “iterb-PPse” for terminators by incorporating 47 nucleotide properties

into PseKNC-I and PseKNC-II and utilizing Extreme Gradient Boosting to predict termina-

tors based on Escherichia coli and Bacillus subtilis. Combing with the preceding methods,

we employed three new feature extraction methods K-pwm, Base-content, Nucleotidepro to

formulate raw samples. The two-step method was applied to select features. When identify-

ing terminators based on optimized features, we compared five single models as well as 16

ensemble models. As a result, the accuracy of our method on benchmark dataset achieved

99.88%, higher than the existing state-of-the-art predictor iTerm-PseKNC in 100 times five-

fold cross-validation test. Its prediction accuracy for two independent datasets reached

94.24% and 99.45% respectively. For the convenience of users, we developed a software

on the basis of “iterb-PPse” with the same name. The open software and source code of

“iterb-PPse” are available at https://github.com/Sarahyouzi/iterb-PPse.

1 Introduction

DNA transcription is an important step in the inheritance of genetic information and termina-

tors control the termination of transcription which exists in sequences that have been tran-

scribed. When transcription, the terminator will give the RNA polymerase the transcriptional

termination signal. Identifying terminators accurately can optimize the genome annotation,

more importantly, it has great application value in disease diagnosis and therapies, so it is cru-

cial to identify terminators. Whereas, using traditional biological experiments to identify ter-

minators is extremely time consuming and labor intensive. Therefore, a more effective and

convenient began to be applied in researches, that is, adopting machine learning to identify

gene sequences.
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Previous research found there are two types of terminators in prokaryotes, namely Rho-

dependent and Rho-independent [1], as shown in Fig 1. Although there have been a lot of

studies on the prediction of terminators, most of them only focused on one kind of them. In

2004, Wan XF, Xu D et al. proposed a prediction method for Rho-independent terminators

with an accuracy of 92.25%. In 2005, Michiel J. L. de Hoon et al. studied the sequence of Rho-

independent terminators in B. subtilis [2], and the final prediction accuracy was 94%. In 2011,

Magali Naville et al. conducted a research on Rho-dependent transcriptional terminators [3].

They used two published algorithms, Erpin and RNA motif, to predict terminators. The speci-

ficity and sensitivity of the final results were 95.3% and 87.8%, respectively. In 2019, Macro Di

Simore et al. utilized the secondary structure of the sequence as a feature [4], the classification

accuracy of the Rho-independent terminators was 67.5%. Not like the above experiments Lin

Hao et al. studied the prediction of two kinds of terminators in bacterial [5],they developed a

prediction tool for terminators with an accuracy of 95% in 2018.

To further improve the prediction accuracy, we obtained 503 terminator sequences, 719

non-terminator sequences of Escherichia coli (E. coli), and 425 terminator sequences, 122 non-

terminator sequence of Bacillus subtilis (B. subtilis) to construct the benchmark dataset and

two independent sets. Furthermore, we proposed three new feature extraction methods (K-

pwm, Base-content, Nucleotidepro) to combine them with PseKNC—I [6] and PseKNC—II

[5], then applied the two-step method to select effective features. In addition, we compared

five single models (Support Vector Machine (SVM), Naive Bayes, Logistic Regression (LR),

Decision Tree, Multi-layer Perceptron (MLP), K-Nearest Neighbor (KNN)) as well as 16

ensemble models based on AdaBoost, Bagging, Extreme Gradient Boosting (XGBoost) and

Gradient Boosting Method (GBM). Finally, we proposed a prediction method “iterb-PPse” for

terminators.

2 Materials and methods

As shown in the Fig 2, our study is mainly divided into the following steps [7]: (1) data collec-

tion, (2) feature extraction, (3) feature combination, (4) feature selection, (5) classification, (6)

result evaluation, (7) prediction method.

2.1 Data collection

In our study, the initial datasets were obtained from http://lin-group.cn/server/iTerm-

PseKNC [2], which includes 427 terminator sequences, 560 non-terminator sequences of E.

coli, and 425 terminator sequences of B. subtilis. To generate reliable benchmark dataset and

independent dataset, we collected another 76 terminator sequences, 159 non-terminator

sequences from E. coli K-12 genome in the database RegulonDB [8], and 122 non-terminator

sequences of B. subtilis were gathered from database DBTBS [2, 9]. The non-terminator

sequences of E. coli were intercepted from -100 bp to -20 bp upstream and 20 bp to 100 bp of

Fig 1. Transcriptional termination process. (A) The termination doesn’t require Rho. The transcription stops when

the RNA forms the stem loop structure. (B) The termination dependents on Rho.

https://doi.org/10.1371/journal.pone.0228479.g001
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positive samples not used in the benchmark dataset. The non-terminator sequences of B. subti-
lis were intercepted from -102 bp to -20 bp upstream and 20 bp to 102 bp of positive samples.

At last, we divided the collected sequences into the benchmark set and the independent dataset

at a ratio of 8: 2. In order to accurately evaluate the identification accuracy of our method to

different bacteria, we divided the independent test set into two. Details of the benchmark

Fig 2. The overall framework. A shows main steps of our study. First step is using five extraction methods to deal datasets, then select more important

features by two-step feature selection method, finally compared different models using the selected features. The “iterb-PPse” is the method we

proposed to predict terminators. B illustrates the prediction process of “iterm-PPse”. It extracts three features from gene sequences at first, namely

Pse5NC-I, Pse5NC-II, 47 nucleotide properties. Then sort all features using F-score and select the best feature set by IFS. Finally utilizes trained

XGBoost to determine whether these sequences are terminators.

https://doi.org/10.1371/journal.pone.0228479.g002
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dataset and independent sets are shown in Tables 1 and 2 of respectively. All sequences of E.

coli and B. subtilis could be found in S1–S7 Tables.

2.2 Feature extraction

How to extract effective features from DNA sequences is a particularly important step. At pres-

ent, the input of most machine learning methods must be numerical values rather than charac-

ter sequences [10], such as decision tree, logistic regression etc. Thus, it is essential to make use

of proper feature extraction methods to represent sequences.

2.2.1 K-pwm. The new feature extraction method “K-pwm” mainly employed the Posi-

tion Weight Matrix [11–14], where K represents k-tuple nucleotides. Considering that the

length of negative samples is different from that of the positive samples in the benchmark set.

We made a little modification to the calculation of the final sequence score to eliminate the

negative impact of sequence length. A total of 6 feature sets were obtained by using this

method, namely the position weight features corresponding to k = 1, 2, 3, 4, 5, 6. The calcula-

tion steps are shown below.

p0 ¼
1

4k ; ð1Þ

where p0 represents the background probability of the occurrence of k-tuple nucleotides.

pxi ¼
nxi

Ni
; ð2Þ

where pxi indicates the probability of k-tuple nucleotide x appearing at site i.

Wxi ¼ ln
pxi

p0

� �

; ð3Þ

where Wxi is the element in the position weight matrix.

F ¼
1

L

X

i

Wxi; ð4Þ

where L is the length of the corresponding sequence.

Table 1. Benchmark dataset.

Species Category Number Length

E. coli Rho-dependent terminator 18 ~50 bp

Rho-independent terminator 385 ~50 bp

non-terminator 575 80 bp

B. subtilis Rho-independent terminator 340 ~50 bp

non-terminator 98 82 bp

“~” represents approximately equal.

https://doi.org/10.1371/journal.pone.0228479.t001

Table 2. Independent dataset.

Species Category Number Length

E. coli Rho-independent terminator 100 ~50 bp

non-terminator 143 80 bp

B. subtilis Rho-independent terminator 85 ~50 bp

non-terminator 24 82 bp

https://doi.org/10.1371/journal.pone.0228479.t002
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2.2.2 Base-content. Given that the rho-independent terminators are rich in GC base

pairs, we extracted a set of features and collectively referred to as Base-content [15, 16]. Specifi-

cally, we mainly obtained the content features of the single nucleotide (A, C, G, T) in each

DNA sequence [17, 18]. In this paper, 5 kinds of base content features (atContent, gcContent,

gcSkew, atSkew, atgcRatio) [15, 16, 19–21] were took into account.

pAþT
i ¼

mAþT
i

mAþTþGþC
i

; ð5Þ

pGþC
i ¼

mGþC
i

mAþTþGþC
i

; ð6Þ

patgRatio
i ¼

mAþT
i

mGþC
i

; ð7Þ

pgcSkew
i ¼

mG� C
i

mGþC
i

; ð8Þ

patSkew
i ¼

mA� T
i

mAþT
i

; ð9Þ

where mG
i , mC

i are the contents of G and C in the i-th sequence, respectively. mAþT
i , mGþC

i ,

mAþTþGþC
i are the contents of “A+T”, “G+C” and “A+T+G+C”, respectively. mA� T

i , mG� C
i repre-

sent the content of “A-T” and “G-C”, respectively.

2.2.3 Nucleotidepro. Nucleotide properties of DNA sequences play a key role in gene reg-

ulation [22]. Therefore, we proposed a new feature extraction method “Nucleotidepro” involv-

ing 47 properties [23] not covered previously, including 3 nucleotide chemical properties [24],

32 dinucleotide physicochemical properties and 12 trinucleotide physicochemical properties.

To extract corresponding features, we employed a 47�L dimension matrix to represent each

sequence. L is the length of the corresponding sequence. As shown in the Table 3, we used 0

and 1 to represent the chemical properties of different nucleotides. Then we iterated through

each sequence and assigned the values of different properties for different nucleotide to the

corresponding elements in the matrix. The nucleotide properties and corresponding standard-

converted values [23] for the 47 properties can be obtained from the S9 and S10 Tables.

2.2.4 PseKNC-I. PseKNC-I [6] is generally understood to mean the parallel correlation

PseKNC. It combines K-tuple nucleotides components [25] with 6 physicochemical properties

[22] (rise, slide, shift, twist, roll, tilt), not only considering the global or long-range sequence

information, but also calculating the biochemical information of DNA sequences. The

Table 3. Corresponding values for different chemical properties.

Chemical Category Nucleotides Value

Ring structure Purine AG 0

Pyrimidine CT 1

Hydrogen bond Strong CG 0

Weak AT 1

Functional group Amino AC 0

Keto GT 1

https://doi.org/10.1371/journal.pone.0228479.t003
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PseKNC-I features can be obtained directly through the online tool Pse-in-one [26, 27], or run

our code to process multiple sequences at the same time.

By changing the value of K, more features could be obtained. However, as the dimension of

the feature matrix increases, it may lead to over-fitting and generate a large amount of redun-

dant data [28]. Therefore, only three feature sets were extracted when K = 4, 5 and 6,

respectively.

2.2.5 PseKNC-II. PseKNC-II, also known as the series correlation PseKNC [5]. PseKNC-

II also calculated the K-tuple pseudo nucleotide properties, but unlike PseKNC-I, it considered

the difference between properties. By changing the value of K, We extracted three feature sets

when K = 4, 5, 6 respectively.

2.3 Feature combination

Each feature extraction method can extract distinctive features of the DNA sequence with dif-

ferent emphasis. To further optimize the prediction results, we analyzed the performance of

five feature extraction methods by training XGBoost to predict terminators and selected the

more effective features from each method to combine. The specific combination method will

be introduced in the section Results.

2.4 Feature selection

Feature selection is an important data process, which could not only reduce the computation

time, but also remove redundant data, and select more effective features, finally greatly

improve the prediction accuracy [28].Hence, the two-step method was adopted to select

features.

To present the correlation between features, the Pearson correlation coefficients were calcu-

lated to construct correlation matrix. If the two properties change in the opposite direction, it

is a opposite effect. As shown in Fig 3, the features contain some redundant data, so it is neces-

sary to utilize the two-step feature selection method [5, 17, 29].

2.4.1 Feature sorting. The first step is utilizing feature sorting methods. The main task of

feature sort is to analyze the importance of each feature for prediction of terminators. The top

features are more helpful in predicting terminators.

F-score. F-score [6] is a method for measuring the ability of a feature to distinguish between

two classes. Given the training set x, if n+ and n- stand for the number of positive and negative

samples, respectively. The F-score of the i-th feature is inferred to be:

Fi ¼
ð�xðþÞi � �xiÞ

2
þ ð�xð� Þi � �xiÞ

2

1

nþ� 1

Xnþ

k¼1

ð�xðþÞk;i � �xðþÞi Þ
2
þ 1

n� � 1

Xn�

k¼1

ð�xð� Þk;i � �xð� Þi Þ
2

; ð10Þ

where �xi, �xðþÞi , i, �xð� Þi represent the average of the i-th feature in all samples, positive samples,

and negative samples, respectively. �xðþÞk;i is the i-th feature of the k-th positive sample, �xð� Þk;i is the

i-th, feature of the k-th negative sample. The larger the F-score, the more distinctive this fea-

ture. The existing feature sorting toolkit fselect.py can be obtained from http://www.csie.ntu.

edu.tw/~cjlin/.

Binomial distribution. As well as, binomial distribution [27, 30] were used to sort the fea-

tures [31, 32]. The specific process is as follows:

qi ¼ mi=M; ð11Þ

where qi is the prior probability, mi represents the number of i-th samples (i = 1,2 indicates
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positive and negative respectively), and M is the number of all samples.

PðnijÞ ¼
XNj

m¼nij

Nj!

m!ðNj� mÞ
qm

i ð1� qiÞ
Nj � m

; ð12Þ

where nij represents the times of the j-th feature appears in the i-th samples, and Nj is the times

of the j-th feature appears in all samples.

CLij ¼ 1 � PðnijÞ: ð13Þ

CLj ¼ maxðCLi1;CLi2Þ; ð14Þ

where CLj is the confidence level, the higher the confidence level, the higher the credibility.

Therefore, the confidence level of each feature was ranked in descending order according to

the corresponding CLj.

2.4.2 Incremental feature selection. The second step is Incremental Feature Selection

(IFS) [33]. It uses a feature as the training set at first, then adds the sorted features to the train-

ing set one by one, finally finds the number of features corresponding to highest classification

accuracy.

Fig 3. Correlation of all features. The correlation between all features obtained by calculating the Pearson correlation

coefficient.

https://doi.org/10.1371/journal.pone.0228479.g003
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2.5 Data normalization

It is necessary to process the data into the required format before conducting experiments,

such as normalized. Our study first employed function “mapminmax” for data normalization,

its purpose is to make data limited in a certain range, such as [0, 1] or [-1, 1], thereby eliminat-

ing singular sample data leading to negative impact.

In addition, it should be noted that data normalization is not applicable to all classification

algorithms, and sometimes it may lead to a decrease in accuracy. Data normalization applies to

optimization problems like AdaBoost, Support Vector Machine, Logistic regression, K-Nearest

Neighbor but not probability models such as decision tree.

2.6 Model

2.6.1 Single model. SVM. The principle of SVM [34] is using a series of kernel functions

to map the initial feature sets to high-dimensional space, and then finding a hyperplane in

high-dimensional space to classify samples. The SVM pattern classification and regression

package LIBSVM is available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles/.

Naïve Bayes. Naïve Bayes uses the prior probability of an object to calculate posterior proba-

bility belongs to one of the categories by using the Bayes formula. The object belongs to the

class whose corresponding posterior probability is the greatest.

LR. LR usually utilizes known independent variables to fit the model y = wTx+b. Then, pre-

dict the value of a discrete dependent variable (whether true or false). Besides its output value

should be 0~1, so it is very suitable for dealing with the two-class problem.

KNN. The main principle of the K-Nearest Neighbor is to find k samples closest to the sam-

ple to be classified. Then count which category has the largest number of samples, and the cur-

rent sample belongs to this category.

Decision Tree. Decision Tree is based on the tree structure which usually formed by a root

node, several leaf nodes and some branches. A node represents an attribute, each branch indi-

cates an option, and each leaf represents a classification result. The principle is to construct a

tree with the maximum information gain as a criterion, combine various situations through a

tree structure, and then employ it to predict new samples.

MLP. MLP with multiple neuron layers, also be known as Deep Neural Networks. Similar

to a common neural network, it has an input layer, implicit layers, an output layer, and opti-

mizes the model by information transfer between layers.

2.6.2 Ensemble model. Bagging. Bagging’s main principle is to integrate multiple base

models of the same kind in order to obtain better learning and generalization performance.

Single model SVM, Naïve Bayes, Decision Tree [35] and LR were employed as the base classi-

fier respectively. First, the training set is separated into multiple training subsets to train differ-

ent models. Then make final decision through the voting method.

AdaBoost. AdaBoost is a typical iterative algorithm whose core idea is to train different clas-

sifiers (weak classifiers) using the same training set. It adjusts the weight based on whether the

sample in each training set is correct and the accuracy of the last round. Then, the modified

weights are sent to next layer for training, the classifier obtained by each training are integrated

as the ultimate classifier. In our study, Decision Tree, SVM, LR and Naïve Bayes were mainly

adopted as the weak classifier for iterative algorithm.

GBM. It finds the maximum value of a function by exploring it along the gradient direction.

The gradient operator always points to the fastest growing direction. Because of the high

computational complexity, the improved algorithm only uses one sample point to update the

regression coefficient at a time, which greatly improves the computational complexity of the

algorithm.
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XGBoost. XGBoost which utilizes the cart tree that can get the predicted score as the base

classifier, optimizes different trees in turn during training, adds them to the integrated classi-

fier, and finally get the predicted scores of all trees. The scores are added together to get the

classification results.

2.6.3 Parameter optimization. Before applying various models, we studied the parame-

ters of each model and selected some more important to optimize by grid search using 100

times 5-fold cv scheme [36], as shown in Table 4.

2.7 Cross-validation test

The 5-fold cross-validation (5-fold CV) can effectively avoid over-fitting and under-learning

[37], and the results obtained are more convincing. First randomly divide the dataset into 5

pieces. One of them was employed as the test set and the other four were used as training sets.

The above process is repeated until each of the five datasets serves as the test set [38]. Since the

datasets are randomly divided, the results are accidental. The stability of the results can be

improved by performing repeatedly.

2.8 Independent test

To test the prediction performance, we utilized the independent set to test prediction perfor-

mance of terminators. The initial independent sets were obtained from http://lin-group.cn/

server/iTerm-PseKNC [2], containing sequences of E. coli and B. subtilis, respectively. How-

ever, both of them do not include negative samples, which result in the test results are not con-

vincing. Therefore, we collected another 159 non-terminator sequences of E. coli and 122 non-

terminator sequences of B. subtilis from database RegulonDB and DBTBS to construct two

reliable independent sets.

2.9 Performance measures

For the sake of better presentation and comparison of the experiments results, we mainly cal-

culated the following four evaluation parameters [39–41].

Sn ¼ 1 �
Nþ
�

Nþ
0 � Sn � 1

Sp ¼ 1 �
N �
þ

N �
0 � Sp � 1

Acc ¼ 1 �
Nþ
�
þ N �

þ

Nþ þ N �
0 � Acc � 1

MCC ¼
1 �

Nþ
�

Nþ
þ

N � þ
N �

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N �
þ
� Nþ

�

Nþ

� �

1þ
Nþ
�
� N �

þ

N �

� �s � 1 � MCC � 1

; ð15Þ

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

where N+ represents the number of terminator sequences, and N- is the number of non-termi-

nator sequences, N+ -indicates the number of positive samples mistaken as negative samples,

and N-+ indicates the number of negative samples mistaken as positive samples. Sn and Sp del-

egate the ability of the model to accurately predict samples. Acc reflects the prediction accuracy

of models. MCC measures the performance of model [5] on the unbalanced benchmark data-

set [42, 43].
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In addition to the above four evaluation parameters, the ROC curve was adopted to evaluate

the comprehensive performance of different method. It is a comprehensive indicator of con-

tinuous variables of sensitivity and specificity. AUC is the area below the ROC curve. Gener-

ally, the higher the value of AUC, the higher the classification accuracy [17].

3 Results and discussion

3.1 Result of feature selection

As shown in Fig 4, we compared the experimental results with and without feature selection,

and drew the accuracy corresponding to different number of features after IFS. It is clear that

the number of features has a great influence on the classification accuracy, and too many char-

acteristics are bad, so it is necessary to select features. Furthermore, F-score is better than bino-

mial distribution. Therefore, “F-score+IFS” was chose to conduct feature selection.

3.2 Comparison of different feature extraction methods

We compared the performance of different feature extraction methods by training XGBoost to

predict terminators. As shown in Fig 5, PseKNC-I, PseKNC-II, k-pwm, and nucleotidepro are

all effective, but the performance of base content is not ideal. Hence, the more effective features

were selected to construct combined feature sets. In the end, a total of nine group features

were obtained. Details of the combination method are shown in Table 5. As shown in Fig 6,

Group 8 stands out in terms of Sn, Sp, MCC and Acc from other combined feature sets. Conse-

quently, the three features Pse5NC-I, Pse5NC-II, 47 nucleotide properties were applied to for-

mulate all samples.

3.3 Comparison of different models

To compare different methods, the above experimental process was repeated using 16 different

models. What can be clearly seen in Table 6 is that the classification performance of some

ensemble models is better than that of a single model. For example, the accuracy of AdaBoost

(SVM) and Bagging (SVM) are significantly higher than SVM. Decision tree, AdaBoost (Deci-

sion Tree) and XGBoost perform well, but XGBoost achieved the highest prediction accuracy

in all models. Hence, it is reasonable and wise to choose XGBoost as the classifier.

Table 4. Parameters and the value range of parameter adjustment.

Model Parameter Value

SVM c, g [2−5, 215] Δ = 2, [2−15, 2−5] Δ = 2−1

LR c, solver [0.1, 1] Δ = 0.1 newton-cg, lbfgs, liblinear, sag

MLP alpha 0.001, 0.01, 0.1, 0.5, 1, 1.5

Decision Tree min_sample_split, max_depth [2, 30] Δ = 2, [1, 10] Δ = 1

Bagging n_estimators [10, 1000] Δ = 50

AdaBoost n_estimators, learning_rate [10, 1000] Δ = 50, [0.1, 1] Δ = 0.1

GBM learning_rate, n_estimators max_depth, max_features, random_state [0.1, 1] Δ = 0.1, [10, 1000] Δ = 50 [1, 10] Δ = 1

XGBoost n_estimators, learning_rate [10, 1000] Δ = 50, [0.1, 1] Δ = 0.1

Δ represents the step size.

https://doi.org/10.1371/journal.pone.0228479.t004

PLOS ONE Identification of transcriptional terminators in bacterial

PLOS ONE | https://doi.org/10.1371/journal.pone.0228479 May 15, 2020 10 / 19

https://doi.org/10.1371/journal.pone.0228479.t004
https://doi.org/10.1371/journal.pone.0228479


3.4 Comparison with existing state-of-the-art methods

To verify the advantage of our method “iterb-PPse”, we made a comprehensive comparison

with “iTerm-PseKNC” [5], the current best tool for classifying two kinds of terminators, on

the benchmark dataset and two independent sets we constructed using four evaluation param-

eters and ROC curves, as shown in Table 7 and Fig 7. The benchmark set we utilized is exactly

the same with “iTerm-PseKNC”, so the comparison between the two methods is fair and

objective.

Fig 4. Performance of feature selection. (A)-(C) Relationship between the number of features and classification

accuracy of three combined feature sets respectively. (D) Comparison of prediction results using three PseKNC-I

features and different feature sorting methods. The combined feature set is described in detail in the next section.

https://doi.org/10.1371/journal.pone.0228479.g004

Fig 5. Prediction results using different feature extraction methods. All results are obtained after 100 times 5-fold

CV. The ones marked red represent the best of each method.

https://doi.org/10.1371/journal.pone.0228479.g005

PLOS ONE Identification of transcriptional terminators in bacterial

PLOS ONE | https://doi.org/10.1371/journal.pone.0228479 May 15, 2020 11 / 19

https://doi.org/10.1371/journal.pone.0228479.g004
https://doi.org/10.1371/journal.pone.0228479.g005
https://doi.org/10.1371/journal.pone.0228479


As shown in Table 7 and Fig 7, the “iterb-PPse” performs better than the “iTerm-PseKNC”

across the three datasets in Sn, Sp, MCC, Acc and AUC after 100 times 5-fold CV. Besides, the

ROC curves in also show that the overall performance of our method is better. To be more pre-

cise, we improved the prediction accuracy (Acc) by 5.08%, 3.4%, 2.92% after 100 times 5-fold

CV for the benchmark dataset and two independent datasets respectively.

Table 5. Combination of feature extraction methods.

Combination Method Feature Number

Group1 PseKNC Pse5NC-I, Pse5NC-II 2083

Group2 K-pwm 1-pwm, 6-pwm 2

Group3 PseKNC-I Pse5NC-I 1031

K-pwm 1-pwm, 6-pwm

Group4 PseKNC Pse5NC-II 1056

K-pwm 1-pwm, 6-pwm

Group5 PseKNC Pse5NC-I, Pse5NC-II 2085

K-pwm 1-pwm, 6-pwm

Group6 PseKNC Pse5NC-I, Pse5NC-II 2088

K-pwm 1-pwm, 6-pwm

Base-content 3 base content features

Group7 K-pwm 1-pwm, 6-pwm 49

Nucleotidepro 3 nucleotide chemical properties

32 dinucleotide physicochemical properties

12 trinucleotide physicochemical properties

Group8 PseKNC Pse5NC-I, Pse5NC-II 2600

Nucleotidepro 3 nucleotide chemical properties

32 dinucleotide physicochemical properties

12 trinucleotide physicochemical properties

Group9 PseKNC Pse5NC-I, Pse5NC-II 2132

K-pwm 1-pwm, 6-pwm

Nucleotidepro 3 nucleotide chemical properties

32 dinucleotide physicochemical properties

12 trinucleotide physicochemical properties

The “Number” refers to the number of features after feature selection.

https://doi.org/10.1371/journal.pone.0228479.t005

Fig 6. Classification results using different combined features. These results are obtained using XGBoost after 100 times 5-fold CV.

https://doi.org/10.1371/journal.pone.0228479.g006
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3.5 Latest sequence prediction

In order to further evaluate iterb-PPse, we compiled two up-to-date terminator data sets

[45,46] in E. coli. These data are from recent new sequencing methods. The details of new

sequences and the corresponding recognition accuracy are shown in Table 8. The 1615 termi-

nator sequences can be found in S8 Table. The final prediction results show that our method

can identify 99.87% of terminators, proving that our method is effective and accurate.

3.6 Feature analysis

In order to analysis the feature of terminators, we further analyzed the selected 2600 features.

First, we draw a heat map based on the F-score of each feature. It can be seen from the Fig 8,

that there are extremely effective features among 2,600 features, for example, 18 features out of

1024 pentamer nucleotides have higher scores. Therefore, we analyzed the preferences of ter-

minators and non-terminators for these 18 pentamers using statistical methods. As shown in

the Fig 9, we plotted the distribution ratio of the pentamers in the terminator sequences and

non-terminator sequences. The figure clearly shows the 16 pentamer nucleotides that often

appear in the terminators, of which the preference for “TTTTT” is the most obvious.

Table 6. Display of all model classification results.

Model Sn Sp MCC Acc

SVM 0.9754±0.0003 1 0.9816±0.0002 0.9918±0.0001

Decision tree 0.9939±0.0012 0.9979±0.0002 0.9984±0.0002 0.9979±0.0398

LR 0.9904±0.0018 1 0.9975±0.0004 0.9967±0.0006

Naïve bayes 0.9933±0.0017 0.9935±0.0052 0.9984±0.0003 0.9978±0.0005

MLP 0.9911±0.0013 1 0.9977±0.0003 0.9970±0.0004

KNN 0.9921±0.0016 0.9994+0.0003 0.9966±0.0009 0.9970±0.0005

AdaBoost (LR) 0.9561±0.0028 1 0.9893±0.0008 0.9854±0.0010

AdaBoost (Naïve Bayes) 0.9917±0.0012 1 0.9979±0.0002 0.9972±0.0003

AdaBoost (Decision Tree) 0.9956±0.0013 0.9987±0.0005 0.9989±0.0003 0.9985±0.0004

AdaBoost (SVM) 0.9933±0.0015 0.9980±0.0004 0.9984±0.0003 0.9978±0.0004

Bagging (Decision Tree) 0.9910±0.0010 1 0.9976±0.0002 0.9969±0.0003

Bagging (SVM) 0.9840±0.0019 1 0.9959±0.0004 0.9946±0.0006

Bagging (LR) 0.9885±0.0010 1 0.9971±0.0002 0.9961±0.0003

Bagging (Naïve Bayes) 0.9931±0.0019 0.9903±0.0001 0.9983±0.0005 0.9977±0.0006

GBM 0.9921±0.0015 1 0.9980±0.0003 0.9973±0.0005

XGBoost 0.9964±0.0023 1 0.9991±0.0005 0.9988±0.0007

These results are obtained after 100 times 5-fold CV with standard error [44].

https://doi.org/10.1371/journal.pone.0228479.t006

Table 7. Comparison of “iTerm-PseKNC” and “iterb-PPse”.

Dataset Method Sn Sp MCC Acc

Benchmark dataset iterb-PPse 0.9964 1 0.9991 0.9988

iTerm-PseKNC 0.8545 0.9993 0.8846 0.9480

E. coli iterb-PPse 0.9013 1 0.8898 0.9424

iTerm-PseKNC 0.8879 0.9371 0.8166 0.9084

B. subtilis iterb-PPse 0.9929 1 0.9844 0.9945

iTerm-PseKNC 0.96 0.9836 0.9066 0.9653

The prediction results were obtained after 100 times 5-fold CV.

https://doi.org/10.1371/journal.pone.0228479.t007
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After that, in order to further analyze the characteristics of the terminator, we used the tool

MEME [47] to analyze the motif information of 928 terminator sequences. Then we got the

common motif of the terminator sequence [AC]A[TAC]AAAAAA[AG][CG]C[CG][CG]
[CG] [GAC]G[GC][GC]G[CG]TTTTT A[GT][GA][CA]CTGATAAG[CG]G[CA]AG
[CG]GC. As shown in Fig 10, we drew a motif diagram of the terminator sequence. This motif

corresponds to the terminator-preferred pentamer nucleotide we obtained, indicating that our

experiment is effective.

3.7 Availability of software “iterb-PPse”

In addition to providing all codes of the prediction method, we developed a prediction soft-

ware which could directly predict whether a DNA sequence is a terminator by simply installing

it according to our software manual. The interface of the software is shown in the Fig 11.

Fig 7. Comparison of “iTerm-PseKNC” and “iterb-PPse”. (A)-(C) ROC curves of two methods’ performance on the

benchmark dataset and independent sets. (D) Prediction accuracy of two methods on different datasets.

https://doi.org/10.1371/journal.pone.0228479.g007

Table 8. Sequence details and recognition accuracy.

Species Category Number Identification accuracy

E. coli Rho-dependent terminator 790 99.87%

Rho-independent terminator 411 100%

Terminator of undetermined classification 414 99.75%

https://doi.org/10.1371/journal.pone.0228479.t008
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4 Conclusions

In this work, we made miscellaneous comparisons of different feature extraction methods and

models in many aspects. Eventually we proposed an accurate classification method “iterb-

PPse” with 99.64%, 100%, 99.91% 99.88% in Sn, Sp, MCC, Acc respectively which is superior

to the state-of-art prediction method and came to the following conclusions: (1) PseNC-I,

PseNC-II, nucleotidepro are appropriate for formulating all samples. It proofs that nucleotide

properties and the nucleotide components play a significant role in terminator classification

and using the single GC content feature can’t achieve the ideal classification effect. When

Fig 8. Heat map of each feature score. This figure shows the score of 2600 features we got using F-score.

https://doi.org/10.1371/journal.pone.0228479.g008

Fig 9. Pentamer nucleotide distribution. The figure shows the distribution ratio of each pentamer nucleotide in terminator sequences and non-terminator sequences.

https://doi.org/10.1371/journal.pone.0228479.g009

Fig 10. Motif diagram of the terminator sequence. The figure shows three motif diagrams we discovered of terminator

sequences.

https://doi.org/10.1371/journal.pone.0228479.g010
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using K-pwm feature extraction methods, we found that position-weight features of oligonu-

cleotides and hexanucleotides are effective for predicting terminators (2) XGBoost works best

on predicting terminators among all models based on the features we extracted. All the code

and data used in our experiment are open source and the full laboratory protocol are available

online at https://www.protocols.io/view/prediction-of-terminational-terminators-in-bacteri-

beccjasw, hopefully could provide some assistance for related researches.

Supporting information

S1 Table. Dataset with 280 terminator sequences of E. coli.
(CSV)

S2 Table. Dataset with 560 non-terminator sequences of E. coli.
(CSV)

S3 Table. Dataset with 425 terminator sequences of B. subtilis.
(CSV)

S4 Table. Dataset with 147 terminator sequences of E. coli.
(CSV)

S5 Table. Dataset with 76 terminator sequences of E. coli.
(CSV)

S6 Table. Dataset with 159 non-terminator sequences of E. coli.
(CSV)

S7 Table. Dataset with 122 non-terminator sequences of B. subtilis.
(CSV)

S8 Table. Dataset with 1615 terminator sequences of E. coli.
(CSV)

S9 Table. Dinucleotide physicochemical properties. This table contains 32 dinucleotide

physicochemical properties we used and the corresponding standard values.

(CSV)

Fig 11. Main form of prediction tool. Just enter the sequence into the text box to get the prediction result.

https://doi.org/10.1371/journal.pone.0228479.g011
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S10 Table. Trinucleotide physicochemical properties. This table contains 12 trinucleotide

physicochemical properties we used and the corresponding standard values.

(CSV)
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