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Abstract 

Glioblastoma Multiforme is a highly aggressive brain malignancy commonly refractory to 

classical and novel chemo-, radio- and immuno-therapies, with median survival times of ~15 

months following diagnosis. Poor immunological responses exemplified by the down-

regulation of T-cell activity, and upregulation of immunosuppressive cells within the tumour 

micro-environment have limited the effectiveness of immunotherapy in GBM to date. Here we 

show that GBM cells express a large repertoire of inhibitory checkpoint ligands. Furthermore, 

GBM cells with an enhanced stem cell-like phenotype exhibit heightened levels of inhibitory 

checkpoint ligands, compared to non-stem cell-like GBM cells. Understanding how GBM 

modulates an extensive repertoire of immune checkpoint ligands and the functional 

consequence on immune evasion are necessary to develop effective immuno-therapeutics. 
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Background 

Glioblastoma Multiforme (GBM) is classified as a WHO Grade IV astrocytoma that continues 

to circumvent classical and novel chemo-, radio- and immuno-therapies through extensive 

intratumoral heterogeneity (1, 2). Like the surrounding central nervous system (CNS) tissue 

GBM tumours exhibit intrinsic complexity through the presence of interacting microglia, 

macrophages, astrocytes, oligodendrocytes, neurons, glial and neuronal progenitor cells, 

pericytes, and endothelial cells (1). In particular, the identification of a subpopulation of cells 

that share features reminiscent of neural stem cells was first described by Singh et al. (2004), 

who demonstrated that CD133+ cells isolated from human GBM tumours were unique in their 

ability to self-renew and recapitulate parent tumours in mouse xenograft assays (3). The 

importance of stem cell-like populations residing within GBM tumour microenvironments has 

been shown, with cancer stem cell populations demonstrating the propensity to initiate and 

maintain tumour growth, promote immune evasion, enhance intratumoral angiogenesis, and 

desensitise GBM to radio- and chemo-therapies (4, 5). Clinically, the presence of GBM cancer 

stem cells (gCSCs) is associated with progression from low grade to high grade gliomas, in 

part due to vast cancer stem cell interactomes (6). Specifically, GBM tumours actively interact 

with immune cell populations, potentially through multiple immune checkpoint ligand-receptor 

interactions. 

 

Immune checkpoint molecules are essential cell-surface receptors utilised by immune cells to 

mediate intercellular communication (Figure 1) (7). Inhibitory checkpoint receptors serve to 

negatively regulate the development and effector functions of lymphocyte subsets; namely 

effector T-cells and natural killer cells, with activation of regulatory T –cells (Treg) also reported 

(7, 8). Through the expression of ligands to checkpoint receptors tumour cells effectively 

suppress immune reactivity (8). In recent years there has been a growing appreciation that a 

range of these inhibitory checkpoint ligands are expressed throughout the GBM 

microenvironment (9, 10). Particularly, the expression of programmed death 1 (PD-1; the 
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cognate receptor to PD-L1) in GBM tumours can be as high as 88% (11). Cytotoxic T-

lymphocyte-associated protein-4 (CTLA-4) is an additional checkpoint receptor frequently 

upregulated by T cells within GBM (12). The presence of PD-1 and CTLA-4 is clinically 

associated with reduced immunological elimination of malignant cells, primarily through either 

an increase in T-cell anergy or enhanced Treg mediated immunosuppression. FDA approved 

therapies (originally for melanoma; ipilimumab, pembrolizumab and nivolumab) aimed at 

disrupting these inhibitory checkpoint signals are in clinical trials for the treatment of GBM (13). 

In addition to PD-1 and CTLA-4, other immune checkpoints have been described in GBM, with 

minimal understanding of their functional relevance (14). 

 

 

Figure 1 Inhibitory immune checkpoint ligand-receptor interactions. The regulatory 
suppressive l igands are classically expressed by professional antigen presenting cells (APC) to 
mediate appropriate immune responses. Cancer cells uti l ise these mechanisms by aberrantly 
expressing inhibitory checkpoint l igands as a means of down-regulating anti-tumour immune 
mechanisms.  
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An important consideration in the investigation of immune-suppression is the expression and 

modulation of checkpoint ligands by glioma cancer stem cells. Emerging studies have linked 

increased PD-L1 expression to CD44+ and CD133+ CSC populations in non-CNS tumours (14). 

Wu et al. (2017) demonstrated that both MCF-7 breast cancer and HCT-116 colon cancer 

cultures enriched for cancer stem cells as defined by CD44highCD24low phenotypes exhibit 

significantly higher percentages of PD-L1 positive cells (15). While the functional implications 

of elevated checkpoint ligand expression by CSC populations is still unclear, the findings 

reinforce the multi-faceted role CSCs may play in solid tumour immuno-modulation.  

 

The recent FDA approvals of anti-CTLA-4 and anti-PD-1 immunotherapies have propelled the 

benefits of targeting immune checkpoints into the spotlight. However, as multiple checkpoint 

ligands have been demonstrated to play complementary roles in the inhibition of T-cell activity, 

monotherapies as a means of countering checkpoint mediated immune suppression may not 

provide the greatest anti-tumour effects (16). For example tumours are able to escape anti-

CTLA-4 monotherapy via upregulation of PD-1/PD-L1 interactions (17). It is apparent that 

inhibitory checkpoint receptor signalling function in concert to mediate inappropriate immune 

down-regulation. Thus, understanding the extent of checkpoint ligand expression within GBM 

tumours is necessary to develop functional, long-lasting therapeutics. In this study, we 

investigate the expression of an extensive range of suppressive checkpoint ligands by two 

primary New Zealand glioblastoma cell lines. Additionally, we highlight the enhanced 

expression of checkpoint ligands by stem cell-like enriched populations and recognise the 

implications of cancer stem cells for future immunotherapeutic interventions. 

 

Methods 

Cell culture 

Primary New Zealand Glioblastoma cell lines. NZB11 and NZB19 primary cell lines were 

provided in collaboration with the Auckland Cancer Society Research Centre. The cells were 
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acquired at a low passage and routinely cultured at 37 ˚C in 5% O2, 5% CO2. Cells were 

cultured as adherent monolayers on uncoated 75 cm2 culture flasks until 80-90% confluent. 

For experimental conditions requiring fetal bovine serum (FBS), cells were cultured in α 

Minimal Essential Medium (MEM) (ThermoFisher) supplemented with 5% FBS (Moregate) and 

1x insulin-transferrin-selenium (ITS) (Sigma) (herein referred to as serum-cultures).  

 

Adherent GBM Cancer Stem Cell-Like Cells (gCSC). Adapted from established glioma stem 

cell protocols (18), adherent gCSCs were expanded for experimental use and routinely 

cultured at 37 ˚C in 5% O2, 5% CO2. NZB11 and NZB19 primary cell lines at low passages 

were transferred into 25 cm2 culture flasks coated with 10 µg/mL laminin (ThermoFisher). 

gCSC culture medium consisted of Dulbecco’s Modified Eagle Medium/F12 (DMEM/F12) 

(ThermoFisher) supplemented with 0.5x B-27 minus vitamin A (ThermoFisher), 0.5x N2 

(ThermoFisher), 20 ng/mL bFGF (Peprotech) and 20ng/mL EGF (Novus Biologicals) (herein 

referred to as gCSC cultures). Half-volume medium changes were carried out every 3 days, 

for a minimum of 21 days prior to experimental use.  

Glioma-sphere Formation. For the formation of gCSC glioma-spheres, gCSC cultures were 

removed from laminin coated flasks and cultured in DMEM/F12 supplemented with 0.5x B-27 

minus vitamin A, 0.5x N2, 20 ng/mL bFGF and 20ng/mL EGF. Spheres were routinely cultured 

at 37 ˚C in 5 % O2, 5% CO2. 

NT2-Astrocytes (NT2A). NT2A cells were generated as described previously (19) and were 

cultured on uncoated 25 cm2 culture flasks in DMEM/F12 at 37 ˚C in 20% O2, 5% CO2. 

Imaging. For phase imaging of each respective cell culture, cells were imaged at equivalent 

confluences on EVOS FL auto imaging system (ThermoFisher) at either 10x or 20x 

magnification.   

 

Limited Dilution Assay 

As per sphere forming conditions, gCSC NZB11 and NZB19 primary cell lines were grown in 

gCSC culture medium in the absence of laminin coating. To determine gCSC self-renewal 
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potential, primary GBM glioma-spheres were treated with Accutase and triturated until all cells 

were in single cell suspension. Single cells derived from primary spheres were then seeded 

into 96 well plates at a cell seeding density of 5 cells per µL. After 2 weeks the number of 

spheres greater than 80 µm in diameter were counted. Sphere forming efficiency (SFE) was 

determined by calculating (No. spheres < 80 µm / No. cells seeded)*100.  

 

Flow Cytometry 

The expression of surface stem cell-associated molecules and checkpoint ligands were 

determined by flow cytometry. Primary cell lines were cultured in 75 cm2 culture flasks under 

respective culture conditions until 80-90% confluent. Medium was removed and cells were 

washed with 1x PBS (ThermoFisher). Following removal of PBS, cells were treated with 

Accutase (Sigma) for 5 min at room temperature until all cells were in single cell suspension. 

Accutase was diluted 1:2 with warm medium and suspended cells were centrifuged for 5 min 

at 300 x g. The supernatant was discarded, and the cells were re-suspended in medium. For 

flow cytometry preparation, 100,000 cells were added to round-bottom polystyrene tubes for 

antibody incubations. Cells were incubated at a 1:20 dilution (5 µL into 100 µL cell suspension) 

for 15 min at 4oC with conjugated primary antibody (Table 1). 7-AAD (BioLegend) was used 

for live/dead discrimination. Following incubations, each tube was washed once with 2 mL 

FACS buffer (PBS containing 1% FBS) and centrifuged for 5 min at 300 x g at 4 ˚C. 

Supernatant was decanted and cells were vortexed vigorously immediately prior to flow 

cytometry analysis. Cells were analysed using a BD Accuri C6 Flow Cytometer. Data was 

processed using FlowJo v.7.6.5 software. Dot plots were created in GraphPad Prism v.7.  

 

Table 1 Conjugated primary antibodies used for flow cytometry 

Antibody Cat. # Conjugate 

CD133 372804 PE 
A2B5 150704 Alexa 647 
CD15 301904 FITC 
CD49F 313606 FITC 
CD44 338806 APC 
PD-L2 345508 APC 
CEACAM-1 342308 APC 
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CD86 305412 APC 
CD80 305208 PE 
PD-L1 329706 PE 
Galectin-9 348908 APC 
B7-H4 358108 APC 
CD155 337618 APC 
HVEM 318805 PE 
B7H3 351008 PE-CY7 
B7H2 309408 APC 

 

Immunocytochemistry 

Cells cultured in serum and gCSC medium were seeded at 5000 cells/0.33cm2 into either 

uncoated or laminin coated 96 well plates, respectively. Cells were allowed to settle and 

continue to proliferate for a further 48 hrs and then fixed. Cells were fixed in either 4% 

paraformaldehyde (PFA) or 95% methanol, 5% acetic acid for 10 min and then washed once 

with 1x PBS. Cells fixed in PFA were permeabilised for a further 10 min in 0.1% PBS-Triton X-

100 (PBS-T). Cells were washed and stored in PBS. For immunocytochemical analysis, PBS 

was aspirated, and cells were blocked in 1% Bovine Serum Albumin (BSA) for 45 min and 

washed thrice for 10 min in 0.1% PBS-T. Primary antibodies were diluted, as per table 2, in 

1% BSA and incubated with cells for 1 h at room temperature on a rocker. After primary 

antibody incubations, cells were washed as previously described and incubated with either 

1:400 goat anti-mouse 488 conjugated secondary (Cat. #A11001) or 1:400 goat anti-rabbit 594 

conjugated secondary (Cat. #A11005) made up in 1% BSA for 1 hr at room temperature. Cells 

were counterstained with 1:10,000 Hoechst 33342 (ThermoFisher). Cells were then washed 

as previously described and stored in PBS. For imaging, EVOS FL auto imaging system 

(ThermoFisher) was used and ImageJ was used to process images. 

 
Table 2 Primary antibodies used for immunocytochemistry 

Antibody Cat. # Dilution Fixation Host 
Nestin sc-23927 1:100 PFA Mouse 
A2B5 150704 1:400 PFA Mouse 
Vimentin ab20346 1:1000 Methanol Mouse 
BIII Tubulin T8660 1:400 PFA Mouse 
GFAP Z0334 1:2000 Methanol Rabbit 
NeuN MAB377 1:100 PFA Mouse 
CD44 ab189524 1:400 Methanol Rabbit 
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Confocal Microscopy 

Glioma-spheres were added to 16-well chamber slides (ThermoFisher) coated with 1:50 

Matrigel. Spheres were cultured for 1 hr until they adhered loosely. Spheres were fixed in either 

4% PFA or 95% methanol, 5% acetic acid for 10 min and then washed once with 1x PBS. 

Spheres fixed in PFA were permeabilised for a further 10 min in 0.1% PBS-Triton X-100 (PBS-

T). Spheres were washed and stored in PBS. For immunocytochemical analysis, PBS was 

aspirated and spheres were blocked in 1% Bovine Serum Albumin (BSA) for 45 min and 

washed thrice for 10 min in 0.1% PBS-T. CD44, GFAP, vimentin, nestin and BIII Tubulin 

primary antibodies were diluted, as indicated in Table 2, in 1% BSA and incubated with spheres 

for 1 h at room temperature on a rocker. After primary antibody incubations, spheres were 

washed as previously described and incubated with either 1:400 goat anti-mouse 488 

conjugated secondary (Cat. #A11001) or 1:400 goat anti-rabbit 594 conjugated secondary 

(Cat. #A11005) made up in 1% BSA for 1 hr at room temperature. Spheres were 

counterstained with 1:10,000 Hoechst 33342 (ThermoFisher). Spheres were then washed as 

previously described and stored in PBS. For imaging, an Olympus FV1000 confocal 

microscope was used and ImageJ was used to process images. 

 

In silico analysis of GBM checkpoint ligand expression 

Search strategy used SCOPUS to search for key terms related to GBM, PD-L1, PD-L2, CD80, 

CD86, Galectin-9, CEACAM-1, CD155, B7-H2, B7-H3, B7-H4 and HVEM on and before 25 

March 2019 (Table 3). Keywords were all inclusive. All studies that included one of the search 

terms within the title, abstract or keywords were included. Duplicates were removed using 

EndNote Software X8. Only studies that included i) human analysis, ii) mRNA and/or protein 

detection, and/or iii) direct tumour cell expression of ligands were included.  

 
Table 3 In silico analysis search terms 

Keyword Search Term 
GBM "Glioma"  OR  "GBM"  OR  "Glioblastoma*"  OR  "Grade IV astrocytoma*"  OR  "Glioblastoma 

Multiforme"  OR  "Glial tumour" 
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CD80 "CD80"  OR  "B7-1"  OR  "BB1"  OR  "CD28LG"  OR  "CD28LG1"  OR  "LAB7" 
CD86 "CD86"  OR  "B7-2"  OR  "B7.2"  OR  "B70"  OR  "CD28LG2"  OR  "LAB72" 
PD-L1 "CD274"  OR  "B7-H"  OR  "B7H1"  OR  "PD-

L1"  OR  "PDCD1L1"  OR  "PDL1"  OR  "Programmed cell death 1 ligand 1" 
PD-L2 "PDCD1LG2"  OR  "B7DC"  OR  "Btdc"  OR  "CD273"  OR  "PD-

L2"  OR  "PDL2"  OR  "programmed cell death 1 ligand 2"  OR  "PDCD1"  OR  "CD279" 
CEACAM-1  "CEACAM1"  OR  "BPG"  OR  "CD66"  OR  "Carcinoembryonic antigen related cell adhesion 

molecule 1"  OR  "NKG2"  
CD155 "PVR"  OR  "CD155"  OR  "HVED"  OR  "NECL5"  OR  "PVS"  OR  "TAGE4"  OR  "poliovirus 

receptor" 
Galectin-9 "LGALS9"  OR  "HUAT"  OR  "LGALS9A"  OR  "Galectin 9"  OR  "Galectin-9" 
B7-H3 "CD276"  OR  "4IG-B7-H3"  OR  "B7-H3"  OR  "B7H3"  OR  "B7RP-2"  OR  "CD276 molecule" 
B7-H2 "B7-H2"  OR  "ICOSLG"  OR  "B7H2"  OR  "B7HRP-

1"  OR  "B7HRP1"  OR  "CD275"  OR  "ICOS-L"  OR  "LICOS"  OR  "ICOS LIGAND" 
H7-H4 "VTCN1"  OR  "B7-

H4"  OR  "B7H4"  OR  "B7S1"  OR  "B7X"  OR  "PRO1291"  OR  "VCTN1"  OR  "V-set domain 
containing T cell activation inhibitor 1" 

HVEM "TNFSF14"  OR  "ATAR"  OR  "CD270"  OR  "HVEA"  OR  "HVEM"  OR  "LIGHTR"  OR  "TR2"  
OR  "TUMOUR NECROSIS FACTOR RECEPTOR SUPERFAMILY MEMBER 14"  OR  "TNF 
RECEPTOR SUPERFAMILY MEMBER 14"  OR  "BTLA"  OR  "CD272"  OR  "B and T 
lymphocyte associated" 

 
Statistical Analysis 

Each experiment was repeated three times with representative data shown where applicable. 

For flow cytometry data, median fluorescent intensities across three independent repeats are 

presented with students T-tests used for statistical comparisons. GraphPad v.7 was used to 

generate statistical tests. P = 0.05 (*), 0.01 (**), 0.001 (***), 0.0001(****). 

 

Results 

Primary New Zealand GBM cell lines readily form adherent cells and free floating 

glioma-spheres in gCSC culture 

To establish GBM cancer stem cell-like cells (gCSCs) in vitro, the absence of serum in 

combination with key mitogens such as EGF and bFGF is required (18). To assess the ability 

of primary New Zealand GBM cell lines to be grown as gCSCs, NZB11 and NZB19 primary 

cell lines were cultured and characterised in both serum and serum-free medium. Primary cell 

lines were initially established from reported glioblastoma resections and cultured in medium 

supplemented with 5% FBS. These cultures readily expand as adherent, heterogeneous 

populations in the absence of extracellular matrix. The cells form a mixture of large, flat circular 

cells reminiscent of non-reactive astrocytes cultured in vitro and a smaller population of 
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elongated, spindle-like cells (Figure 2) (18, 20). The heterogeneity of the serum-cultured cells 

is exemplified by the large range in forward scatter indicated by flow cytometry analysis, 

demonstrating that the cells exist as an extensive range of cell sizes (Figure S1). The presence 

of a heterogeneous population likely reflects in vivo conditions, whereby the bulk of the primary 

tumour will contain cells of various phenotypes. However prolonged exposure to serum will 

undoubtedly promote cellular differentiation and escape from parental phenotypes. Serum-

cultured cells exhibit stable growth rates over extended passages and consistently had 

doubling times of ~1 week.  

 

To ascertain whether primary New Zealand GBM cell lines established in serum-containing 

medium retain stem cell-like potential, at passage ~10, cells were removed from serum and 

cultured in established gCSC media on 10 µg/mL laminin for a period of 21 days prior to 

characterisation. Primary cell lines rapidly formed homogenous, adherent cultures that were 

analogous to the long, spindle-like cells present in the serum-cultured cells (Figure 2). These 

observations are routinely observed across patient derived primary GBM cells and commercial 

GBM primary cell lines (18, 21). The cells retain this morphology for subsequent passages 

over months of culture. The cells showed a definite left-ward shift in their forward scatter, with 

greater proportions of smaller cells compared to their serum-cultured counterparts (Figure S1).  

 

The current gold standard for the identification and expansion of gCSCs from GBM resections 

is the ability of primary cell lines to form free-floating glioma-spheres, reflective of neural stem 

sphere formation. To determine the sphere forming properties of gCSC cultures, cells were 

cultured in gCSC media in the absence of any extracellular matrix. The cells immediately failed 

to adhere, instead remained in single cell suspension. ~2 days post transfer into laminin free 

flasks, ~20 % of the single cells began to replicate and form cell aggregates that remained 

free-floating. After 2 weeks of sphere culture, each glioma-sphere remained viable and 

continued to expand until spheres were consistently ~80 µm in diameter. At 4 weeks post 

adherent culture, the spheres no longer proliferated at ~150 – 200 µm in diameter (Figure 2). 
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Any larger, the spheres rapidly settled on to the plastic and began to spread out and adhere 

loosely via a small number of migrating cells. NZB11 and NZB19 glioma-spheres retained 

sphere forming abilities over multiple generations with sphere forming efficiencies of 11.2 % 

and 15.3 %, respectively (Figure S2). 

 

  
GBM cancer stem cell-like cells exhibit increased stem cell associated 

phenotypes compared to serum-exposed cells 

To validate the hypothesis that the gCSC adherent cultures promote the development of 

cancer stem cells, both primary cell lines were assessed using flow cytometry and 

immunocytochemistry for the expression of key cancer stem cell associated markers and 

neural lineage differentiation markers.  

Figure 2 Morphological comparison of New Zealand serum-cultured GBM, gCSC and 
glioma-sphere cultures. Phase contrast images showing morphological distinctions between 
NT2A, NZB11 and NZB19 cell l ines in serum-cultured conditions, as adherent gCSC cultures and 
glioma-spheres. Images were acquired at 10x and 20x magnification. Adherent culture scale bar 
= 400 µm. Glioma-sphere scale bar = 200 µm.   
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Both primary cell lines were analysed for their expression of CD133, A2B5, CD44 and CD49F 

by flow cytometry (Figure 3). All markers were detected at significant in the serum-

supplemented medium. When grown as gCSCs, the expression of A2B5 significantly 

increased in both primary cell lines. While gCSC cultures did not express CD133 and CD49F 

substantially above serum-cultured cells, there is a definite increase in the overall stem cell-

like phenotype of both primary cell lines grown as gCSCs (Figure 3, B). It is important to note 

that gCSC A2B5 expression was not only elevated, but also showed broader expression 

profiles according to flow cytometry histograms (Figure 3, A).  

 

Next, comparisons between the expression of key stem cell associated and differentiation 

markers were made by immunocytochemical analysis (Figure 4). Each primary cell line, grown 

in serum or as gCSCs cultures, were imaged for their expression of nestin, A2B5, vimentin, 

BIII Tubulin, GFAP and NeuN. All markers assessed were expressed by both primary cell lines 

(Figure 4). However, gCSC cultures differed from serum-cultured cells in their expression of 

A2B5. NZB11 and NZB19 gCSC cultures showed increased  intensities for A2B5, in agreement 

with flow cytometry findings (Figure 4, A). Both primary cell lines similarly demonstrated 

downregulation of BIII Tubulin and NeuN when cultured as gCSCs (Figure 4, B).  

 

Furthermore, the expression of nestin, GFAP, CD44, vimentin and BIII Tubulin by GBM derived 

glioma-spheres was determined (Figure 5). Z-stack analyses revealed that CD44 is expressed 

throughout glioma-spheres, whereas GFAP, nestin, vimentin and BIII Tubulin are localised to 

sphere peripheries (Figure S3-S6). The expression profiles between spheres are consistent 

between both primary cell lines, however the varied expression within each sphere indicate 

that while a homogenous population of gCSCs forms spheres, the spheres themselves are 

inherently heterogeneous. 
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 1 

 2 Figure 3 Flow cytometry analysis of cell surface cancer stem cell associated markers A) Representative 
histograms of NZB11 and NZB19 cancer stem cell associated marker expression. Blue histograms represent 
serum-cultured cells, red histograms represent gCSC cultures. Grey histograms represent auto-fluorescence. 
Shown is one representative experiment of three independent repeats. B) Median fluorescent intensity fold 
change from auto-fluorescence for each cancer stem cell associated marker. Side by side comparisons of 
NZB11 and NZB19 serum-cultured vs. gCSC cultured cells. Shown are three independent repeats. Paired 
students T-test analysis was carried out.  P = 0.05 (*), 0.01 (**), 0.001 (***), 0.0001(****).  
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 3 

Figure 4 Surface stem cell associated marker and neural lineage differentiation marker 
expression by GBM cell  lines. A) Nestin, A2B5 and Vimentin immuno-staining of NZB11 and 
NZB19 serum-cultured cel ls and gCSC cultures. B) BIII Tubulin, GFAP and NeuN immuno-staining 
of NZB11 and NZB19 serum-cultured cells and gCSC cultures. Cells were seed at 5000 
cells/0.33cm2 and, f ixed 48 hrs post seeding. Images were acquired at x20 magnification. Scale 
bar = 200 µm. Shown is one representative experiment of three independent repeats. 

A 

B 
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Primary New Zealand GBM cells express a wide range of checkpoint ligands that 

are present at a greater level in gCSCs 

The expression of immune inhibitory checkpoint ligands within tumour micro-environments is 

of immense clinical importance. The expression, however, of these molecules by GBM cancer 

stem cells is largely unknown. GBM tumours are known to express checkpoint ligands, with 

expression levels (of PD-L1) often correlated with worsening grades (22). This study is the first 

to explore the expression of an extensive selection of inhibitory checkpoint ligands on GBM 

tumour cells and on their cancer stem-cell like counterparts. Figure 6 emphasises the 

importance of investigating the expression profiles of these molecules as all ligands show 

rightward shifts in the median fluorescence intensity. Moreover, the broad histogram 

expression profiles for multiple ligands investigated here is in line with reports that GBM 

expression of immune modulating molecules are frequently heterogeneous in both gCSC and 

serum-cultured cells (23). Interestingly, CD80 expression in serum-cultured cells by both 

primary GBM lines consistently shows skewed rightward expression while gCSC cultures are 

Figure 5 Glioma-sphere expression and localisation of stem cell associated markers. 
NZB11 and NZB19 gCSC derived glioma-sphere expression of GFAP, vimentin, CD44, nestin 
and BIII Tubulin . Max intensity Z-project stacks showing the expression of stem-cell associated 
markers through each glioma-sphere. Images were acquired at x40 magnification. Scale bar = 
100 µm.  
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likely expressing CD80 in two separate populations as indicated by an emerging bimodal 

profile (Figure 6). 

 

Next, we compared serum-supplemented and gCSC median florescence intensities of the 11 

checkpoint ligands against a glial control (NT2A). NZB11 cells express PD-L1 (p=0.0068), PD-

L2 (p=0.0002), CD80 (p=0.0083), CD155 (p=0.0046), B7-H2 (p=0.0313), B7-H3 (p=0.0058) 

and HVEM (p=0.0003) (Figure S8). NZB19’s show expression of PD-L1 (p=0.0277), PD-L2 

(p=0.0033), CD80 (p=0.0058), CEACAM-1 (p=0.0057), CD155 (p=0.0030), Galectin-9 

(p=0.0097), B7-H3 (p=0.0051) and HVEM (p=0.0264) (Figure S8). The flow cytometry analysis 

reveals the trend that checkpoint ligands are commonly expressed at higher levels than are 

seen with non-transformed neural cells, with NZB11’s and NZB19’s positive for 63.6 % and 

72.7 % of inhibitory checkpoint ligands, respectively (Figure S8).  

 

As the expression of the aforementioned ligands has been shown to be associated with 

worsening grade in gliomas and some cancer stem cells in non-CNS tumours, we sought to 

investigate the expression of these molecules by GBM gCSC cultures. Of the 11 ligands, both 

the NZB11 and NZB19 gCSCs showed greater levels of surface expression of 3 of the 11 

ligands than that of serum-cultured cells (Figure 7).  In particular, NZB11 gCSCs expressed 

surface PD-L1, CD155 and B7-H3 at 23.3, 73.2 and 65.0 fold above that of serum-cultured 

cells, respectively (Figure 7). In addition, there was a slight increase (not significant) for PD-

L2, CD80, Galectin-9, HVEM, and CD86 in the gCSC cultures.  

 

Of interest was the observation that the NZB19 gCSC cultures had significantly more B7-H3, 

B7-H2, and HVEM, but there was no change in PD-L1 or PD-L2. Also contrary to other NZB11 

gCSC changes, the surface expression of CD155 was reduced in the gCSC NZB19 cell 

cultures. (Figure 7). This is very intriguing as not all ligands are elevated, and it is not the same 

complement of ligands changing across these two distinct lines. Clinically, very few of these 

molecules are currently being targeted and typically are only targeted by monotherapy. This 
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data reinforces the urgent need to consider checkpoint ligands as a collective group that are 

differentially regulated and expressed across patient derived glioblastomas.  
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1 

Figure 6 Checkpoint ligand expression in NZB11 and NZB19 primary cell l ines. Representative 
histograms of NZB11 and NZB19 checkpoint l igand expression. Blue histograms represent serum-
cultured cells, red histograms represent gCSC cultures. Grey histograms represent auto-
fluorescence. Shown is one representative experiment of three independent repeats. 
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Figure 7 Checkpoint ligand expression analysis across two primary New Zealand 
GBM cell lines grown as gCSCs. Median fluorescent intensity fold change from auto-
fluorescence for each checkpoint l igand. Side by side comparisons of NZB11 and NZB19 
serum-cultured cells vs. gCSC cultures. Shown are three independent repeats. Paired 
students T-test analysis was carried out. P = 0.05 (*), 0.01 (**), 0.001 (***),  0.0001(****). 
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Figure 8 successfully demonstrates the correlation between increased stem cell phenotypes 

and elevated expression of inhibitory checkpoint ligands. The role of cancer stem cells in 

checkpoint immuno-modulation has only very recently been considered outside of non-CNS 

tumours.  Taken together, these results indicate that checkpoint ligands are differentially 

expressed within glioblastoma in response to increased stem cell-like phenotypes.  

Figure 8 Visualisation of checkpoint ligand expression by New Zealand Glioblastoma 
cells. Radar plot representation of f low cytometry median fluorescent intensity fold change 
from auto-fluorescence in NT2A’s, NZB11’s and NZB19’s cultured in serum or as gCSCs 
(n=3). Scale = Log10.  
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Discussion  

The resounding successes of anti-PD-1 (nivolumab) and anti-CTLA-4 (ipilimumab) in 

maintaining durable response in melanoma led to the start of a range of clinical trials in GBM 

(16, 24).  Successful treatment of GBM has remained modest at best, with immunotherapies 

against immune checkpoint ligand-receptor interactions failing to translate into adequate 

clinical responses. At the forefront of GBM immune checkpoint inhibition was the phase 3, 

randomised CHECKMATE-143 trial.  While the trial failed to induce enhanced overall response 

rates (8%) in comparison to bevacizumab; an anti-angiogenic (23%), further clinical trials 

arising from the original concept are underway (25). In particular, trials utilising the combination 

of nivolumab with either temozolomide, radiation or ipilimumab have commenced, with results 

pending (26-28). However, the benefits of immune checkpoint inhibition has been limited, 

primarily due to the commonly low GBM mutational burden and the frequent depletion of 

lymphocytes within the tumour microenvironment (29, 30). One investigation of a small cohort 

(n=32) of patients with recurrent glioblastoma aimed to overcome the commonly low immune-

response by modifying the immune microenvironment. Through the administration of the anti-

PD-1 monoclonal antibody; pembrolizumab in a neoadjuvant fashion, the investigation 

successfully induced functional activation of tumour infiltrating lymphocytes (TILs), increased 

tumour-specific T cell clones and caused systemic phenotypic changes in CD4+ T cells to 

upregulate CD152 and CD127 with concurrent decreases in PD-1 expression. Furthermore, 

patients showed prolonged overall survival indicating the importance of appropriate T cell 

activity for effective checkpoint therapies (31). While promising, these studies typically don’t 

consider the importance of the expression of multiple, likely interacting, immune checkpoint 

molecules beyond those operating in the PD-1/CTLA-4 axes.  

Presented here is, to the best of our knowledge, the first extensive characterisation of surface 

expression of immune checkpoint ligands with known immune suppressive functions (Figure 

6). Surface expression analyses of 11 checkpoint ligands reputed to be immunosuppressive 

within tumour microenvironments revealed that primary New Zealand GBM cells ubiquitously 
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express these ligands (32). An in-silico review of glioblastoma literature revealed that all 

ligands have been investigated, except for HVEM (Table S1). However, to date investigations 

have been heavily skewed towards the PD-L1/PD-1 axis, with limited literature on expression 

profiles of PD-L2, CD80, CD86, B7-H2, B7-H3, B7-H4, CEACAM-1, HVEM and CD155 in 

human GBM.  Collectively, an in-silico search revealed that 55% of checkpoint ligand studies 

in GBM were centred on PD-L1 expression. Therefore, extending our investigation beyond 

commonly investigated ligands was of importance. Of the ligands we have investigated here, 

PD-L1, CD155, PD-L2 and B7-H3 surface expression levels are between 8 to 118-fold higher 

on GBM cells than on astrocytic controls (Figure S8). All 4 ligands are unanimously reported 

to be expressed in human GBM (Table S1). Therefore, in lieu of the expanding repertoire of 

checkpoint ligand expression by GBM, the clinical relevance of tumour immune checkpoint 

interactions needs to be considered heavily. For example, it has been shown that B7-H3 

expression by glioma cells corresponds with malignancy grade, likely due to suppression of 

natural killer cell mediated cell lysis. Further it has been demonstrated by gene silencing of B7-

H3 that B7-H3 negative glioma primary cell lines injected into orthotopic models result in 

greater susceptibility of tumour cells to natural killer cell lysis (33). Similarly, PD-L2 expression 

across 1357 glioma samples conferred shorter survival times compared to low expressing 

counterparts. In addition, PD-L2 expression positively correlated with T-regulatory signatures 

indicating the functional role of PD-L2 in enhancing glioma immunosuppression (34). A similar 

study of 976 brain glioma samples showed the same functional implications of PD-L1 

expression, whereby WHO grade IV gliomas had higher levels of PD-L1 expression compared 

to grade II and III gliomas. As per PD-L2, PD-L1 expression positively correlated with T cell 

immunosuppressive signatures (22). Importantly, Wang et al. (2016) also determined that PD-

L1 expression correlated with PD-L2 and CD80 expression, further evincing the higher levels 

of immune suppression present in glioblastoma compared to lower glioma grades (22). One 

other study has also demonstrated this correlation, whereby high grade gliomas showed high 

correlations between PD-L2, CD80 and PD-L1 (35). Collectively, this highlights the impact of 

checkpoint ligand expression on glioma grade and subsequent immune evasion. However, 
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only 18% of human glioma investigations looked at expression levels of multiple ligands, and 

frequently only in the scope of PD-1/PD-L1/2 and CTLA-4/CD80/86 axes (Table S1). Clinically, 

expression of multiple ligands poses challenges in targeting GBM through checkpoint 

inhibition, as the regulation of these ligands in concert is still unclear.  

 

To maximise the potential of immunotherapies, the mechanisms exploited by GBM to promote 

enhanced checkpoint ligand expression need to be understood. The intrinsic heterogeneity in 

not only the classification of GBM, but within the tumour microenvironment heavily influences 

the poor patient survival and ultimate recurrence that is observed (36). In particular, recurrence 

is likely due to residual GBM subpopulations of stem cells (37). Currently markers reputed for 

delineating GBM cancer stem cells within the tumour microenvironment include CD133, CD44, 

A2B5, CD15 and CD49F (38).  GBM cancer stem cells can be broadly classified as pro-neural, 

non-adherent, non-invasive CD133+ populations, or as semi-adherent, invasive mesenchymal 

CD44+ populations (37, 39). Flow cytometry analysis revealed that both NZB11 and NZB19 

primary cell line derived gCSCs showed increased A2B5 levels. However, NZB11 gCSCs 

highly expressed CD44, but did not show an increase in CD133 expression (Figure 3). 

Conversely, NZB19 gCSCs did not show an increase in CD44, but did exhibit elevated CD49F 

and a non-significant increase in CD133 (Figure 3). These findings exemplify that GBM stem 

cells display a range of phenotypic characteristics, reiterated by Brown et el. (2015), despite 

retaining classic cancer stem cell features such as sphere forming ability (Figure 2) (37). To 

determine the role cancer stem cell populations may play in promoting immunological 

blockades, our two distinct gCSC lines were screened for the 11 checkpoint ligands previously 

described (Figure 7). gCSCs are known to impede immunity through multiple modalities, in 

particular through the expression of inhibitory checkpoint ligands and consequential T-cell 

anergy (40). Elevated expression by two gCSC lines of 5 of the 11 checkpoint ligands was 

shown. Importantly, the distinct gCSCs did not show identical expression patterns. The 

differential expression levels of the checkpoint ligands indicate that phenotypically different 
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gCSCs may utilise discrete repertoires of inhibitory molecules to mediate immune inhibition. 

B7-H3, the only commonly elevated ligand by NZB11 and NZB19 gCSCs, expression 

correlates with glioma grade and negatively correlates with T-cell mediated immune response 

to glioma (41, 42). While B7-H3 expression has not been well characterised on glioma cancer 

stem cell subsets beyond this study, the elevated expression here suggests to a mechanism 

by which B7-H3 expression on GBM cancer stem cells could drive worsening prognosis 

through enhanced immunological inhibition.  

 

Conclusions 
The data here indicates that an increased GBM stem cell-like phenotype results in elevated 

expression of a range of checkpoint ligands, beyond the extensive repertoire already 

expressed by serum-cultured cells. The role of checkpoint ligand expression by GBM cancer 

stem cell subsets ultimately warrants further investigation. Attempting to target these subsets 

and the mechanisms they use to actively evade immune detection provides a unique 

therapeutic opportunity in the context of immunotherapies against Glioblastoma Multiforme. 

 

List of abbreviations 
GBM – Glioblastoma Multiforme 

CNS – Central nervous system 

gCSC – GBM cancer stem cell 

FBS – Fetal bovine serum 

SFE – Sphere forming efficiency  

BSA – bovine serum albumin 

PFA – Paraformaldehyde 

TIL – tumour infiltrating lymphocyte  

CTLA-4 – Cytotoxic T-lymphocyte-associated protein-4 

PD-1 – Programmed death-1 

PD-L1 – Programmed death ligand-1 
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PD-L2 – Programmed death ligand-2 

CEACAM-1 – Carcinoembryonic antigen-related cell adhesion molecule-1 

HVEM – Herpesvirus entry mediator 
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