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Abstract

Background: Acute and chronic low back pain (LBP) are different conditions with different treatments. However, they are
coded in electronic health records with the same International Classification of Diseases, 10th revision (ICD-10) code (M54.5)
and can be differentiated only by retrospective chart reviews. This prevents an efficient definition of data-driven guidelines for
billing and therapy recommendations, such as return-to-work options.

Objective: The objective of this study was to evaluate the feasibility of automatically distinguishing acute LBP episodes by
analyzing free-text clinical notes.

Methods: We used a dataset of 17,409 clinical notes from different primary care practices; of these, 891 documents were
manually annotated as acute LBP and 2973 were generally associated with LBP via the recorded ICD-10 code. We compared
different supervised and unsupervised strategies for automated identification: keyword search, topic modeling, logistic regression
with bag of n-grams and manual features, and deep learning (a convolutional neural network-based architecture [ConvNet]). We
trained the supervised models using either manual annotations or ICD-10 codes as positive labels.

Results: ConvNet trained using manual annotations obtained the best results with an area under the receiver operating characteristic
curve of 0.98 and an F score of 0.70. ConvNet’s results were also robust to reduction of the number of manually annotated
documents. In the absence of manual annotations, topic models performed better than methods trained using ICD-10 codes, which
were unsatisfactory for identifying LBP acuity.

Conclusions: This study uses clinical notes to delineate a potential path toward systematic learning of therapeutic strategies,
billing guidelines, and management options for acute LBP at the point of care.

(JMIR Med Inform 2020;8(2):e16878) doi: 10.2196/16878
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Introduction

Low back pain (LBP) is one of the most common causes of
disability in US adults younger than 45 years [1], with 10 to

20% of American workers reporting persistent back pain [2].
LBP impacts one’s ability to work and affects the quality of
life. For example, in 2015, Luckhaupt et al showed that, from
a pool of 19,441 people, 16.9% of workers with any LBP and
19.0% of those with frequent and severe LBP missed at least
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one full day of work over a period of 3 months [3]. LBP events
also lead to a significant financial burden for both individuals
and clinical facilities, with combined direct and indirect costs
of treatment for musculoskeletal injuries and associated pain
estimated to be approximately US $213 billion annually [4].

LBP events fall into 2 major categories: acute and chronic [5].
Acute LBP occurs suddenly, usually associated with trauma or
injury with subsequent pain, whereas chronic LBP is often
reported by patients in regular checkups and has led to a
significant increase in the use of health care services over the
past two decades. It is very important to differentiate between
acute and chronic LBP in the clinical setting as these
conditions—as well as their management and billing—are
substantively different. Chronic back pain is generally treated
with spinal injections [6,7], surgery [8,9], and/or pain
medications [10,11], whereas anti-inflammatories and a rapid
return to normal activities of daily living are generally the best
recommendations for acute LBP [12].

However, acute and chronic LBP are usually not explicitly
separated in electronic health records (EHRs) because of a lack
of distinguishing codes. The International Classification of
Diseases, 10th revision (ICD-10) standard only includes the
code M54.5 to characterize low back pain diagnosis, and it does
not provide modifiers to distinguish different LBP acuities [13].
Acuity is usually reported in clinical notes, requiring a
retrospective chart review of the free text to characterize LBP
events, which is time consuming and not scalable [14].
Moreover, acuity can be expressed in different ways. For
example, the text could mention acute low back pain or acute
LBP, but could also simply report shooting pain down into the
lower extremities, limited spine range of motion, vertebral
tenderness, diffuse pain in lumbar muscles, and so on [15]. This
variability makes it difficult for clinical facilities and researchers
to group LBP episodes by acuity to perform key tasks, such as
defining appropriate diagnostic and billing codes; evaluating
the effectiveness of prescribed treatments; and deriving
data-driven therapeutic guidelines and improved diagnostic
methods that could reduce time, disability, and cost.

This paper is the first to explore the use of automated approaches
based on machine learning and information retrieval to analyze
free-text clinical notes and identify the acuity of LBP episodes.
Specifically, we use a set of manually annotated notes to train
and evaluate various machine learning architectures based on
logistic regression (LR), n-grams, topic models, word
embeddings, and convolutional neural networks, and to
demonstrate that some of these models are able to identify acute
LBP episodes with promising precision. In addition, we
demonstrate the ineffectiveness of using ICD-10 codes alone
to train the models, reinforcing the idea that they are not
sufficient to differentiate the acuity of LBP. Our overall
objective was to build an automated framework that can help
front line primary care providers (PCPs) in the development of
targeted strategies and return-to-work (RTW) options for acute
LBP episodes in clinical practice.

Background and Significance
PCPs are commonly the first medical practitioners to assess
patient’s musculoskeletal injuries and pain associated with these

injuries and are, therefore, in a unique position to offer
reassurance, treatment options, and RTW recommendations
catered to the acuity of the injury and pain associated with it.
Several studies have documented increases in medication
prescriptions and visits to physicians, physical therapists, and
chiropractors for LBP episodes [16-18]. As individuals with
chronic LBP seek care and use health care services more
frequently than those with acute LBP, increases in health care
use and costs for back pain are driven more by chronic than
acute cases [19].

A rapid return to normal activities of daily living, including
work, is generally the best activity recommendation for acute
LBP management [12]. The number of workdays that are lost
because of acute LBP can be reduced by implementing clinical
practice guidelines in the primary care setting [20]. In previous
work, Cruz et al built an RTW protocol tool for PCPs based on
guidelines from the LBP literature [21]. On the basis of the type
of work (eg, clerical, manual, or heavy) and the severity of the
condition, the doctor would recommend RTW options (in partial
or full duty capacity) within a certain number of days. The study
found that physicians were likely to use this protocol, especially
when it was integrated into the EHRs. However, the protocol
was not always used for patients suffering from acute LBP as
the research team was unable to quickly identify the acuity using
only the structured EHR data (eg., ICD-10 codes). Acuity
information was only available in the progress notes and was
thus not incorporated into the automated recommendations.
This prevented the research team from providing accurate
feedback to PCPs based on a full picture of the patient’s
condition. A similar tool that could incorporate acuity
information from notes could provide much more specific
recommendations to PCPs that incorporate best practice
guidelines for each acuity level. Besides leading to more precise
care, this would streamline billing for LBP [22]. Similar needs
arise for other musculoskeletal conditions, such as knee, elbow,
and shoulder pain, where ICD-10 codes do not differentiate by
pain level and acuity [23,24].

Machine learning methods for EHR data processing are enabling
improved understanding of patient clinical trajectories, creating
opportunities to derive new clinical insights [25,26]. In recent
years, the application of deep learning, a hierarchical
computational design based on layers of neural networks [27],
to structured EHRs has led to promising results on clinical tasks
such as disease phenotyping and prediction [28-33]. However,
a wealth of relevant clinical information remains locked behind
clinical narratives in the free text of notes. Natural language
processing (NLP)—a branch of computer science that enables
machines to process human language [34] for applications such
as machine translation [35], text generation [36], and image
captioning [37]—has been used to parse clinical notes to extract
relevant insights that can guide clinical decisions [38]. Recent
applications of deep learning to clinical NLP have classified
clinical notes according to diagnosis or disease codes [39-41],
predicted disease onset [32,42], and extracted primary cancer
sites and their laterality in pathology reports [43,44]. However,
although deep learning has successfully been applied to analyze
clinical notes, traditional methods are still preferable when
training data are limited [45,46].
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Regardless of the specific methodology, tools based on NLP
applied to clinical narratives have not been widely used in
clinical settings [31,38], despite the fact that physicians are
likely to follow computer-assisted guidelines if
recommendations are tied to their own observations [47]. In
this paper, we present an NLP-based framework that can help
physicians adhere to best practices and RTW recommendations
for LBP. To the best of our knowledge, there are no studies to
date that have applied machine learning to clinical notes to
distinguish the acuity of a musculoskeletal condition in cases
where it is not explicitly coded.

Methods

Overview
The conceptual steps of this study are summarized in Figure 1,
specifically dataset composition, text processing, clinical notes
modeling, and experimental evaluation. The overall goal was
to evaluate the feasibility of automatically identifying clinical
notes reporting acute LBP episodes.

Figure 1. Conceptual framework used to evaluate the use of automated approaches based on machine learning and information retrieval to analyze
free-text clinical notes and identify acute low back pain episodes (a). The various unsupervised and supervised machine learning approaches used for
clinical note modeling (b). ConvNet: convolutional neural network-based architecture; ICD-10: international classification of diseases, 10th revision.

Dataset
We used a set of free-text clinical notes extracted from the
Mount Sinai data warehouse, made available for use under

institutional review board approval following Health Insurance
Portability and Accountability Act guidelines. The Mount Sinai
Health System is an urban tertiary care hospital located in the
Upper East Side of Manhattan in New York City. It generates
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a high volume of structured, semistructured, and unstructured
data as part of its routine health care and clinical operations,
which include inpatient, outpatient, and emergency room visits.
These clinical notes were collected during a previous pilot study
evaluating an RTW tool based on EHR data that included nearly
40,000 encounters for 15,715 patients spanning from 2016 to
2018 and clinical notes written by 81 different providers [21].
In that study, we used the published literature to develop a list
of guidelines to determine the assessment and management of
acute LBP episodes in clinical practice. In particular, we used
ICD-10 codes and other parameters, such as presenting
complaint, pre-existing conditions, management factors, and
imaging/radiology/test ordered, to define and label the acuity
of LBP in a clinical encounter. Following these guidelines, 14
individuals (physical medicine and rehabilitation fellows,
residents, and medical students) manually reviewed a random
set of 4291 clinical notes associated with these encounters and
labeled all acute low back pain events. Each note was reviewed
by at least two individuals and was further checked by a lead
physician researcher if it was marked as ambiguous and/or there
was discordance between reviewers.

This project leveraged the entire set of clinical notes that were
collected in the previous study. In particular, we joined all the
progress notes of these encounters under the same initial visit,
and we eliminated duplicate, short (less than 3 words), and
nonmeaningful reports. The final dataset was composed of
17,409 distinct clinical notes, with length ranging from 7 to
6638 words. Of this set, 3092 notes were manually reviewed in
the previous study, and 891 of them were annotated as acute
LBP. The remaining 14,317 notes were not manually evaluated
and were related to different clinical domains, including various
musculoskeletal disorders and potentially LBP events. In this
final dataset, 1973 notes were also associated with an encounter
billed with an ICD-10 M54.5 Low back pain code.

Text Processing
Every note in the dataset was tokenized, divided into sentences,
and checked to remove punctuation; numbers; and nonrelevant
concepts such as URLs, emails, and dates. Each note was then
represented as a list of sentences, with every sentence being a
list of lemmatized words represented as one-hot encodings. The
vocabulary was composed of all the words appearing at least
five times in the training set. The discarded words were
corrected to the terms in the vocabulary having the minimum
edit distance, that is, the minimum number of operations
required to transform one string into the other [48]. This step
reduced the number of misspelled words and prevented the
accidental discarding of relevant information; at the same time,
it also limited the size of the vocabulary to improve scalability
[39]. Overall, the vocabulary covering the whole dataset
comprised 56,142 unique words.

Clinical Note Modeling
We evaluated different approaches for identifying clinical notes
that refer to acute LBP episodes. These included both supervised
and unsupervised methods. Although we benefited from the use
of high-quality manual annotations to train the supervised
models, we also investigated alternatives that did not require
manual annotation of notes. All these methods provided

straightforward explanations of their predictions, enabling us
to validate each model and to identify parts of text and patterns
that are relevant to the acute LBP predictions.

Keyword Search
We searched for a set of relevant keywords in the text. In
particular, we looked for “acute low back pain,” “acute lbp,”
“acute low bp,” and “acute back pain,” and we counted their
occurrences in the text. We used the NegEx algorithm [49] to
annotate and remove negated occurrences of the keywords. In
the evaluation, we refer to this model as WordSearch.

Topic Modeling
We used topic modeling on the full set of words contained in
the notes to capture abstract topics referred to in the dataset
[50]. Topic modeling is an unsupervised inference process, in
this case, implemented using latent Dirichlet allocation [51],
which captures patterns of word co-occurrences within
documents to define interpretable topics (ie, multinomial
distribution of words) and represent a document as a multinomial
over these topics. Every document can then be classified as
talking about 1 or (usually) more topics. Topic modeling is often
used in health care to generalize clinical notes, improve the
automatic processing of patient data, and explore clinical
datasets [52-55].

In this study, we assumed that 1 or more of these topics might
refer to acute LBP. To discover them, we identified the most
likely topics for a set of keywords (ie, “acute,” “low,” “back,”
“pain,” “lbp,” and “bp”), and we manually reviewed them to
retain only those that seemed more likely to characterize acute
LBP episodes (ie, that included most of the keywords with high
probability). We then considered the maximum likelihood
among these topics as the probability that a report referred to
acute LBP (ie, TopicModel in the experiments).

Bag of N-Grams
Each clinical note was represented as a bag of n-grams (BoN;
with n=1, ..., 5), with term frequency-inverse document
frequency (TF-IDF) weights (determined from the corpus of
documents). Each n-gram is a contiguous sequence of n words
from the text. We considered all the words in the vocabulary
and filtered the common stop words based on the English
dictionary before building all the n-grams. The classification
was implemented using LR with least absolute shrinkage and
selection operator (LASSO; ie, BoN-LR).

Feature Engineering
We used the protocol built by Cruz et al [21] to define acute
LBP episodes in the clinical notes. In particular, we used all the
concepts described in that guideline, preprocessed them with
the same algorithm used for the clinical notes, and built a set
of 5154 distinct n-grams (with n=1, ..., 5), which we refer to as
FeatEng. We then represented each clinical note as a bag of
FeatEng (ie, we counted the occurrences of only these n-grams
in the text), normalized with TF-IDF weights, and classified
them using LR with LASSO (ie, FeatEng-LR).
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Deep Learning
We implemented an end-to-end deep neural network architecture
based on convolutional neural networks that takes as input the
full note and outputs its probability of being related to acute
LBP (ie, ConvNet in the experiments). The first layer of the
architecture maps the words to dense vector representations (ie,
embeddings), which attempt to contextualize the semantic
meaning of each word by creating a metric space where vectors
of semantically similar words are close to each other. We applied
word2vec with the skip-gram algorithm to the parsed notes [56]
to initialize the embedding of each word in the vocabulary.
Word2vec is commonly used with EHRs to learn embeddings
of medical concepts from structured data and clinical notes
[46,57-59].

The embeddings were then fed to a convolutional neural network
inspired by the model described by Kim [60] and Liu et al [42].
This architecture concatenates representations of the text at
different levels of abstraction by essentially choosing the most
relevant n-grams at each level. Here, we first applied a set of
parallel 1 dimensional (1D) convolutions on the input sequence
with kernel sizes ranging from 1 to 5, thus simulating n-grams
with n=1, ..., 5. The outputs of each of these convolutions were
then max-pooled over the whole sequence and concatenated to
a 5 × d dimensional vector, where d is the number of 1D
convolutional filters. This representation was then fed to
sequences of fully connected layers, which learn the interactions
between the text features, and finally to a sigmoid layer that
outputs the prediction probability.

The n-grams that are most relevant to the prediction, in this
architecture, are those that activate the neurons in the
max-pooling layer. Therefore, we used the log-odds that the
n-gram contributes to the sigmoid decision function [42] as an
indication of how much each n-gram influences the decision.

Evaluation Design
We evaluated all the architectures using a 10-fold
cross-validation experiment, with every note appearing in the
test set only once. In each training set, we used a random 90/10
split to train and validate all the model configurations. As
baseline, we also report the results obtained by considering as
acute LBP all the notes associated with the Low back pain
M54.5 ICD-10 code (ie, ICD-10 in the results).

Training Annotations
We considered 2 different sets of annotations as gold standards
to train the supervised models. In the first experiment, we used
the manually curated annotations provided with the dataset from
previous work [21], whereas in the second experiment, we
trained the models using the ICD-10 codes associated with each
note encounter. Both experiments were evaluated using manual
annotations. The rationale was to compare the feasibility of
identifying acute LBP events when manual annotations are and
are not available. We trained the classifier to output acute LBP
versus other because the goal of the project was to identify
clinical notes with acute LBP events rather than discriminate
different facets of LBP events (eg, chronic LBP vs acute LBP).

Metrics
For all experiments, we report area under the receiver operating
characteristic curve (AUC-ROC); precision, recall, and F score;
and area under the precision-recall curve (AUC-PRC) [61]. The
ROC curve is a plot of true positive rate versus false positive
rate found over the set of predictions. F score is the harmonic
mean of classification precision and recall per annotation, where
precision is the number of correct positive results divided by
the number of all positive results, and recall is the number of
correct positive results divided by the number of positive results
that should have been returned. The PRC is a plot of precision
and recall for different thresholds. The areas under the ROC
and PR curves are computed by integrating the corresponding
curves.

Model Hyperparameters
The model hyperparameters were empirically tuned using the
validation sets to optimize the results with both training
annotations. In the topic modeling method, we inferred topics
using the whole training set of documents and 200 topics
(derived using perplexity analysis). Although seemingly more
intuitive, using only the notes associated with the M54.5 Low
back pain ICD-10 code actually produced worse results. For
each fold, the most relevant topics associated with acute LBP
were manually reviewed and used to annotate the notes. In the
deep learning architecture, we used embeddings with size 300
and full-length notes. We trained word2vec just on the clinical
note dataset to initialize embeddings. Preinitializing the
embeddings with a general-purpose corpus did not lead to any
improvement. Each convolutional neural network had 200 filters
and used a rectified linear unit (ReLu) activation function. We
added 2 fully connected layers of size 600 following the
convolutional neural networks with ReLu activations and batch
normalization. Dropout values across the layers were all set to
0.5. The architecture was trained using cross-entropy loss with
the Adam optimizer for 5 epochs and batch size 32 (learning
rate=0.001). The classification thresholds for precision, recall,
and F score were found by ranging the value from 0.1 to 1, with
0.1 increments, and retaining, for each model, the value leading
to the best results on the validation set.

Results

Table 1 and Figure 2 show the average results of the 10-fold
cross-validation experiment for all the models considered. The
best results were obtained by convolutional neural
network-based architecture (ConvNet) when trained with the
manual annotations. Although this is not entirely surprising
given the success of deep learning for NLP when high-quality
annotations and a large amount of data (ie, on the order of
millions of training examples) are available, this was not certain
in this domain where the training dataset was much smaller. As
expected, the results obtained by the baseline and by training
the models using the ICD-10 codes were not as good, confirming
that the M54.5 ICD-10 code is not a sufficient indicator of acute
LBP. TopicModel leads to similar performance but provides a
more intuitive and potentially effective way for exploring the
collection, extracting meaningful patterns that are related to
acute LBP episodes. The most relevant topics included words
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defining acute LBP (eg, acute, low, back, pain, lbp, spasm,
lifting, sciatica) and also included several medications that are
usually prescribed to treat inflammation and pain (eg,
Cyclobenzaprine, Flexeril, and Advil). Although this approach
might not be robust enough for clinical application, a refined
and manually curated version of TopicModel promises to allow

an efficient prefiltering of clinical reports that can speed up the
manual work required to annotate them. On the contrary, but
as expected, WordSearch performed poorly as the condition is
mentioned in too many different ways across the text, and simple
keywords were not sufficient.

Table 1. The classification results in identifying clinical notes with acute low back pain (LBP) episodes averaged over the 10-fold cross-validation
experiment. We compared different supervised and unsupervised strategies: keyword search (WordSearch), topic modeling (TopicModel), logistic
regression with bag of n-grams (BoN-LR) and manual features (FeatEng-LR), and deep learning (ConvNet). The supervised models (ie, BoN-LR,
FeatEng-LR, and ConvNet) were trained using manual annotations or M54.5 International Classification of Diseases, 10th revision (ICD-10) codes.
The ICD-10 baseline simply considered as acute LBP all the notes associated with the generic M54.5 Low back pain ICD-10 code.

Area under the precision-recall
curve

Area under the receiver operating characteristic
curve

F scoreRecallPrecisionModel

Baseline

0.420.810.410.680.32ICD-10a

Unsupervised methods

0.400.520.060.030.71WordSearch

0.460.920.500.580.44TopicModel

Trained with the M54.5 ICD-10 code

0.420.830.590.700.50BoN-LRb

0.410.880.520.590.47FeatEng-LRc

0.460.890.610.680.55ConvNetd

Trained with manual annotations

0.560.930.580.640.53BoN-LR

0.580.930.620.660.58FeatEng-LR

0.720.980.700.730.65ConvNet

aICD-10: International Classification of Diseases, 10th revision codes.
bBoN-LR: logistic regression with bag of n-grams.
cFeatEng-LR: logistic regression with feature engineering.
dConvNet: convolutional neural network-based architecture.
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Figure 2. Receiver operating characteristic and precision-recall curves obtained when using as training data for BoN-LR, FeatEng-LR and ConvNet
the manual annotations (a) and the M54.5 ICD-10 codes (b). ConvNet trained using the manual annotations obtained the best results. In the absence of
manual annotations to use for training, TopicModel worked better than methods trained using ICD-10 codes, which proved not to be a good indicator
to identify acuity in low back pain episodes. BoN-LR: logistic regression with bag of n-grams; ConvNet: convolutional neural network-based architecture;
FeatEng-LR: logistic regression with feature engineering; ICD-10: international classification of diseases, 10th revision; PR: precision-recall; ROC:
receiver operating characteristic.

Figure 3 shows the classification results in terms of AUC-ROC
and AUC-PRC when randomly subsampling the acute LBP
manual annotations in the training set. We found that ConvNet
always outperforms the other methods based on LR as well as
TopicModel. In addition, we notice that using just 240 out of
800 (30.0%) manual annotations in the training set already leads

to better results than using ICD-10 codes as training labels. This
is a particularly interesting insight as it shows that only minimal
manual work is required to achieve good classifications; these
can then be further improved by adding automatically annotated
notes to the model (after manual verification) and retraining.
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Figure 3. Area under the receiver operating characteristic and precision-recall curves obtained when training the supervised models using random
subsamples of the manual annotations. TopicModel is reported as reference baseline. ConvNet obtained satisfactory results when trained using less
manually annotated documents, showing robustness and scalability to the gold standard. AUC-PRC: area under the precision-recall curve; AUC-ROC:
area under the receiver operating characteristic curve; BoN-LR: logistic regression with bag of n-grams; ConvNet: convolutional neural network-based
architecture; FeatEng-LR: logistic regression with feature engineering.

Figure 4 highlights the distributions of the classification scores
(predicted probability of the label acute LBP) derived by several
supervised models (trained with manual annotations) and
TopicModel. ConvNet shows a clear separation between acute
LBP notes and the rest of the dataset. In particular, all acute
LBP notes had scores greater than 0.2, with 81.6% (727/891)

of them having scores greater than 0.5. On the contrary, only
347 controls had scores greater than 0.5, meaning that only a
few notes were highly likely to be misclassified. Similarly,
TopicModel had no controls with scores greater than 0.7, and
all acute LBP notes had scores greater than 0.2.
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Figure 4. Representation of the probability distribution of the scores obtained by BoN-LR, FeatEng-LR, ConvNet, and TopicModel. ConvNet led to
a good separation between acute low back pain clinical notes and all the other documents. In other cases, such separation is not as clear, explaining the
worse classification results obtained by those models. BoN-LR: logistic regression with bag of n-grams; ConvNet: convolutional neural network-based
architecture; FeatEng-LR: logistic regression with feature engineering.

Finally, Table 2 summarizes some of the n-grams driving the
acute LBP predictions obtained by ConvNet (trained with
manual annotations) across the experiments. Although some of
these are obvious and refer to the disease itself (eg, “acute lbp”),
others refer to medications (eg, “prescribed muscle relaxant”

and “flexeril”) and recommendations (eg, “rtw full duty quick”).
Given their clinical meaning and relevance, all these patterns
can be further analyzed and reviewed to potentially drive the
development of guidelines for, for example, treatment and RTW
options.
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Table 2. Examples of n-grams that were relevant in identifying acute low back pain notes when using convolutional neural network-based architecture
trained with manual annotations. The n-grams’ relevance was determined by analyzing the neurons of the convolutional neural networks activating the
max-pooling layers and their log-odds to contribute to the final output. Log-odds were filtered per notes and then averaged over all the notes and
evaluation folds.

Acute LBPa-related predictive n-gramsType

Diagnosis • Muscle spasm lower back
• Acute LBP flare
• Been having acute back pain
• Acute midline LBP
• Sports acute bilateral LBP
• Acute low back pain
• Acute LBP

Related conditions • Gait abnormality
• Showed significant disk herniation
• Intermittent sciatica
• Spinal stenosis

Medications • Back pain flare prescribed flexeril
• Cyclobenzaprine
• Flexeril
• Naproxen for acute low back
• Prescribed muscle relaxant

Recommendations • Back brace for back pain
• Obtain lumbar spine MRIb

• Recommendation RTWc visit
• RTW full duty quick

aLBP: low back pain.
bMRI: magnetic resonance imaging.
cRTW: return-to-work.

Discussion

Principal Findings
In this work, we evaluated the use of several machine learning
approaches to identify acute LBP episodes in free-text clinical
notes to better personalize the treatment and management of
this condition in primary care. The experimental results showed
that it is possible to extract acute LBP episodes with promising
precision, especially when at least some manually curated
annotations are available. In this scenario, ConvNet, a deep
learning architecture based on convolutional neural networks,
significantly outperformed other shallow techniques based on
BoN and LR, opening the possibility to boost performances
using more complex architectures from current research in the
NLP community. The implemented deep architecture also
provides an easy mechanism to explain the predictions, leading
to informed decision support based on model transparency
[62,63] and the identification of meaningful patterns that can
drive clinical decision making. If no annotations are available,
experiments showed that the use of topic modeling is preferred
to training a classifier using only the M54.5 ICD-10 codes (ie,
Low back pain) associated with the clinical note encounter,
which proved to be a poor indicator to discriminate LBP
episodes. In addition, the topics identified can serve as an
intuitive tool to inform guidelines and recommendations, to
prefilter the documents, and to reduce the manual work required
to annotate the notes. The proposed framework is inherently

domain agnostic and does not require any manual supervision
to identify relevant features from the free text. Therefore, it can
be leveraged in other musculoskeletal condition domains where
acuity is not expressed in the ICD-10 diagnostic codes, such as
knee, elbow, and shoulder pain.

Potential Applications
Medical care decisions are often based on heuristics and
manually derived rule-based models constructed on previous
knowledge and expertise [64]. Cognitive biases and personality
traits, such as aversion to risk or ambiguity, overconfidence,
and the anchoring effect, may lead to diagnostic inaccuracies
and medical errors, resulting in mismanagement or inadequate
utilization of resources [65]. In the LBP domain, this may lead
to delays in finding the right therapy and assisting patients in
the return to normal activities, increased risk of transitioning
the condition from acute to chronic, discomfort for patients,
and increased economic burdens on clinical facilities to
adequately treat and manage this patient population. Deriving
data-driven guidelines for treatment recommendations can help
in reducing these cognitive biases and personality traits, leading
to more consistent and accurate decisions. In this scenario, the
proposed frameworks integrate seamlessly with the RTW tool
proposed by Cruz et al [21] by including acuity-relevant
information in the clinical notes and addressing 1 of the
limitations of that study (ie, recommending the RTW tool at
the point of care by accurately identifying the condition as acute
LBP). Similarly, an understanding of the patterns driving the
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predictions can lead to the development of new and improved
treatment strategies for various types of injuries, which can be
presented to the clinicians at the time of patient encounter to
help them with better management of the condition. Although
physicians will continue to have autonomy in determining
optimal care pathways for their patients, the recommendations
provided by the supporting framework will be useful to
systematize and support their activities within the realm of the
busy clinical practice. Posterior analysis of the clinical notes to
infer acute LBP episodes can also help in assigning the proper
diagnostic and billing codes for the encounter. In a foreseeable
future scenario where, clinical observations are automatically
transcribed via voice and EHRs are processed in real time, an
automated tool that identifies acuity information could also
improve the accuracy of diagnosis and billing in real time, with
no need to wait for posterior evaluations.

Limitations
This work evaluated the feasibility of using machine learning
to identify acute LBP episodes in clinical notes. Therefore, we
compared different types of models (shallow vs deep) and
learning frameworks (unsupervised vs supervised) to identify
the best directions for implementation and deployment in real
clinical settings. Although several of the architectures evaluated
in this work obtained promising results, more sophisticated
models are likely to improve these performances, especially in
the deep learning domain. For example, algorithms based on
attention models [66], Bidirectional Encoder Representations
from Transformers [67], or XLNet [68] have shown encouraging
results on similar NLP tasks and are likely to obtain better results
in this domain as well. In this work, we only focused on
processing clinical notes; however, embedding structured EHR
data, especially medications, imaging studies, and/or laboratory
tests, into the method should improve the results.

The dataset of clinical notes used in this study originated from
a geographically diverse set of primary care clinics serving the
New York City population across the city’s metro area over a

limited period (ie, 2016 to 2018). Providers were enrolled and
randomized into the study on a rolling basis, with the number
of encounters for LBP varying for each individual provider,
based on his/her own practice. The majority of the PCPs were
assistant professors serving on the front lines. No specialists
were included in the initial study, as the pilot project was only
geared toward the PCPs. Consequently, the results of this study
might not be applicable to specialty care practice.

Future Work
The classification of LBP episodes as acute or chronic at the
point of care level within primary care practice is imperative
for an RTW tool to be effectively used to render evidence-based
guidelines. At this time, we plan to classify a large set of notes,
derive patterns related to acute LBP, and extend the tool
proposed by Cruz et al [21] according to them. We further plan
to identify cases where the RTW tool can be easily deployed
based on EHR integration in the clinical domain. We will also
begin to address some of the methodological limitations of this
study to optimize performance and evaluate its generalizability
outside primary care. Finally, we aim to evaluate the feasibility
of this type of approach for other musculoskeletal conditions,
in particular, shoulder and knee pain.

Conclusions
This study demonstrates the feasibility of using machine learning
to automatically identify acute LBP episodes from clinical
reports using only unstructured free-text data. In particular,
manually annotating a set of notes to use as a gold standard can
lead to effective results, especially when using deep learning.
Topic modeling can help in speeding up the annotation process,
initiating an iterative process where initial predictions are
validated and then used to refine and optimize the model. This
approach provides a generalizable framework for learning to
differentiate disease acuity in primary care, which can more
accurately and specifically guide the diagnosis and treatment
of LBP. It also provides a clear path toward improving the
accuracy of coding and billing of clinical encounters for LBP.
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NLP: natural language processing
PCP: primary care provider
ReLu: rectified linear unit
RTW: return-to-work
TF-IDF: term frequency-inverse document frequency
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