
1SCIEnTIfIC REPOrTS |  (2018) 8:7248  | DOI:10.1038/s41598-018-25337-4

www.nature.com/scientificreports

TASI: A software tool for spatial-
temporal quantification of tumor 
spheroid dynamics
Yue Hou1, Jessica Konen2, Daniel J. Brat3, Adam I. Marcus4,5 & Lee A. D. Cooper   1,4,6

Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource 
for studying complex biological processes like tumor cell invasion and metastasis, representing an 
important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and 
the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the 
dynamics of cell behaviors and microenvironments, and when combined with quantitative image 
analysis methods, enables deep interrogation of biological mechanisms. This paper presents a 
comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) 
that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI 
performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid 
morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of 
experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung 
cancer spheroids that exhibit variability in metastatic and proliferative behaviors.

3-dimensional spheroid models of cancer have been widely used to investigate mechanisms of invasion and 
metastasis1–4 and the impact of drugs on metastatic potential5–7. Spheroid cultures help to bridge the gap between 
simplistic 2-dimensional in vitro cultures and complex in vivo mouse models, and have been used to study com-
plex biological processes that are strongly coupled to tissue microenvironments. Cell-cell and cell-matrix inter-
actions in spheroid cultures are more similar to animal models and human disease than 2-dimensional in vitro 
models, yet spheroids can be grown rapidly, are relatively inexpensive and are easier to image than in vivo models. 
The relative ease in imaging spheroid models makes them especially amenable to investigating temporal processes 
where dynamic behaviors and interactions can be captured. Metastatic and invasive processes are fundamentally 
dynamic, and temporal imaging of spheroids can provide important insights into how cancer cells divide8, invade, 
and metastasize1,5,9,10. For example, measuring growth kinetics of tumor spheroids has been used for anti-cancer 
drug screening5,7. Co-culturing of multiple cell types in 3-dimensional spheroids has also been used to investigate 
cell-cell interactions in microenvironments11,12.

Software for spheroid image analysis has largely focused on static images generated by high throughput 
screening4–6,13–27. Existing software programs for analyzing spheroid imaging are described in Table 1. Software 
for measuring spheroid dynamics has received relatively less attention4,16,23–29. An interactive system for segment-
ing and measuring spheroid volume and dimensions was developed in26. Software for analyzing of collective 
cell migration has been developed in smaller models for developmental biology, using cell tracking to extract 
quantitative features describing migration patterns30. The primary challenges in measuring spheroid dynamics 
are in accurate delineation of the spheroid boundaries, and the extraction of spatiotemporal features that describe 
spheroid growth, shape, and motion. Cultures derived from neoplastic cells often exhibit irregular shapes, chain-
ing and branching behaviors, and can be highly dynamic, making automatic delineation difficult5,22,25, and leading 
investigators to perform manual segmentations that are not objective or repeatable31,32. Similarly, variations in 
dynamic behavior complicate the extraction of descriptive features. Most spheroid analysis software only meas-
ures basic size and shape features, which is insufficient to discriminate different patterns of invasion33. Finally, 
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there is a gap between mathematical modeling of behavior following feature extraction, with both capabilities 
often not available in the same tool34,35.

Leader and follower cells were defined in the collective migration process, in which leader cells were migrating 
at the leading edge of the collective sheet or spheroid, whereas follower cells followed or attached to the leader 
cells. Leader and follower cells showed distinctive morphology and migration behaviors. For example, leader 
cells had larger size29 and were more mesenchymal-like36. They formed large lamellipodium and migrated with 
persistent protrusion37. Follower cells were smaller29 and more epithelial-like36. Although leader and follower 
cell migration behavior were widely studied, most were conducted in 2-dimensional models and there were no 
standard features selected to quantify the morphology differences between them. Furthermore, many researchers 
still used manual selection to quantify the morphology features of these cells, which limited the number of cells 
studied and was time-consuming and subjective.

In this paper, we describe TASI, an open-sourced software framework for end-to-end Temporal Analysis 
of Spheroid Imaging (http://github.com/cooperlab/TASI). This framework allows investigators to automatically 
segment spheroid images, extract features describing their shape, growth, and invasiveness, and to perform math-
ematical modeling and statistical analyses of these features to compare treatment and control populations of 
spheroids. This approach improves the efficiency and objectivity of investigations utilizing spheroid models, and 
is open-source and extensible by the research community. We demonstrate the utility of this framework with an 
analysis of lung cancer spheroids and show TASI can discriminate different invasive phenotypes.

Materials and Methods
An overview of the TASI framework is presented in Fig. 1 (see Supplement Fig. S1 for details). Spheroids are first 
imaged under variable experimental conditions to produce 4D volumes (x, y, z, time). Images are then processed 
using a segmentation algorithm to delineate spheroid boundaries and features are extracted to describe their 
spatiotemporal characteristics. The temporal evolution of features is described using mathematical models, and 
statistical tests are performed to compare parameters across conditions, and visualizations are generated. These 
steps are described in greater detail below.

Spheroid culture and imaging.  Data for validating the TASI framework was generated using the 
SpAtiotemporal Genomic and cellular Analysis (SaGA) technique to create spheroid cultures that represent the 
different invasive and metastatic phenotypes observed in lung cancer38. First, parental H1299 non-small cell lung 
cancer spheroids were embedded in a 3-dimensional matrix and visualized using a Leica SP8 confocal micro-
scope. These spheroids contain cells that exhibit a variety of invasive tendencies, forming chain-like growths 
containing multiple cells that project from the main spheroid body (see example Fig. 2a). The cells at the tips of 
these chains were isolated using SaGA and cultured to form “leader” cell spheroids (see example Fig. 2a). The cells 
following the leaders within the chain-like projections were similarly isolated to produce “follower” spheroids 
(see example Fig. 2a). Each spheroid was imaged at x, y, z planes every 10 minutes for a minimum 14 hours. The 
10-minute interval was selected to minimize differences between image frames, making image segmentation 
smooth across time, while not inducing photo bleaching or toxicity in the 14-hour duration. A total of 6 parental 
spheroids, 3 leader spheroids and 3 follower spheroids were imaged for the purposes of generating data to validate 
the ability of our software to quantify cancer invasion and metastasis. The leader/follower/parental spheroids were 
chosen for study to ensure that TASI can analyze the full spectrum of morphologies and dynamics presented by 
cancer spheroid models. Where leader spheroids are highly dynamic and morphologically complex, follower 
spheroids are indolent and nearly spherical. Most cancer spheroids, like our parental spheroids, have intermediate 
dynamics and morphologic qualities. Detailed experimental methods for cell culture and imaging are provided 
in supplementary methods.

Preprocessing and image segmentation.  Preprocessing methods are employed to enhance the contrast 
and salience of structures to improve image segmentation quality (see Fig. 3). Four-dimensional volumes are first 
projected to 3-dimensional (x, y, t) using the standard deviation filter developed in39. At a given time t0, the vol-
umetric image I(x, y, zi, t0) contains multiple focal planes zi (see Fig. 3a). Uneven illumination of the focal plane 

Software Category
Analysis & 
visualization

Availability & 
language

TASI Time-lapse Yes Open source, Matlab

qVISTA13 High-throughput Yes Software not 
provided, Matlab

AMIDA6; AnaSP14,15 High-throughput No* Open source, Java6 
or Matlab14,15

PCaAnalyser21 High-throughput No Open source, ImageJ

Phaedra17; MetaXpress19,20 High-throughput No Commercial

Spheroid Analyzer13,23 Both No* Open source, ImageJ

SpheroidSizer26 Both No Open source, Matlab

Celigo5,22,25; Imaris & Velocity24; 
VTT_Acca4 Both No5,22,24,25; No*4 Commercial

Table 1.  Summary of software available for spheroid image analysis. *Requires other statistical/visualization 
software, such as R, Excel or additional Matlab functions.

http://github.com/cooperlab/TASI
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in semi-solid gels can weaken the appearance of structures (see Fig. 3a, Z = 5, t0) making segmentation difficult. 
To correct this a standard deviation filter is applied at each time point to integrate focal planes and to define 
the 2-dimensional image sequence Ip(x, y, t) = σz [I(x, y, z, t)]. These time-domain volumes are then Gaussian 
smoothed in both space (x, y) and time (t) to further mitigate noise. To delineate the spheroid boundaries, we 
leverage both spatial and temporal structure simultaneously by using an energy-minimizing graph cut segmen-
tation40–42. The max-flow graph cut provides a smooth segmentation in both space and time using the similar-
ities of spatial-temporal pixel neighbors. Treating these pixels as a spatial-temporal graph, where edge weight 
corresponds to inverse similarity, the algorithm finds an energy-minimizing cutting path through the volume to 
partition foreground and background regions. Example segmentations are provided in Fig. 2. The time interval 
used for imaging has important implications for image segmentation. A long time interval could result in signif-
icant differences between frames, leading to discontinuities in the image segmentation across time. While short 
time intervals are desirable for segmentation, photo bleaching and toxicity issues can arise. If necessary, users can 
select 2-dimensional graph cut segmentation in the software settings to perform segmentation independently for 
each frame for longer imaging intervals.

Feature extraction.  Given spheroid segmentation masks, TASI extracts a number of features to character-
ize static spheroid morphology at each time-point in the volume (see complete list, Table 2). Basic morphology 
features including area, perimeter, eccentricity, and intensity statistics are calculated. Complexity of the spheroid 
boundary is also measured as

π
=

∗
complexity Perimeter

Area4 (1)

2

More irregular shapes will have larger perimeters for a corresponding area, translating to higher complexity 
measures (a circle has complexity 1).

Spheroids often exhibit interesting branching behavior, forming thin branches of invasive cells that protrude 
from the main spheroid mass. To quantify this phenomenon, we defined a “core radius” that captures the size of 
the main spheroid mass and an “invasive radius” that captures the extent of the projections (see Fig. 1). The core 
radius was defined as the radius of the largest circle that can be inscribed within the spheroid mask, centered at 
the mask centroid. The invasive radius was defined from the minimum circle that can encompass the entire sphe-
roid, including any invasive branches. These radii roughly capture growth due to proliferation and growth due to 
invasion. The number of the branches was further quantified using a skeletonization procedure. Morphological 
operations were applied to thin the mask to a skeletal structure, and the terminal endpoints were counted. This 
process robustly captures the tips of branching structures, even with complex shapes (see Figs 1 and 2b).

Figure 1.  Overview of TASI framework. Step1 shows 4-dimensional (x, y, z, t) spheroid dynamic experiment 
and imaging. Step 2 shows the segmentation and morphology features extracted from the individual spheroid. 
Solid yellow line is the spheroid boundary. Dashed yellow lines are single cell boundaries. Red circle and red 
arrow represent the invasive radius. Green circle and green arrow represent the core radius. White dots are 
branch points and cyan square is centroid of the spheroid. Step 3 show the visualization, modeling and statistical 
analysis for grouped spheroid dynamics under different treatments.
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The presence of any isolated “cells” not connected from the main spheroid mass was also measured. These 
leaders are biologically extremely significant and may be represent a distinct cell phenotype with strong meta-
static potential (see example Fig. 1). These objects were detected by labeling the segmentation mask and looking 
for disconnected islands of foreground with a small area.

Modeling and statistical analysis.  The temporal evolution of measured features contains important infor-
mation about spheroid dynamics and invasion. To measure dynamics, we provide mathematical modeling capa-
bilities to fit models to temporal feature sequences. Three models are available for fitting: linear, quadratic, and 
exponential.

Figure 2.  Distinct patterns of dynamic features. (a) 3-dimensional graphcuts segmentation results. The white 
outlines are segmented boundaries for leader, follower and parental spheroids at different time points (Hour: 
Minute). Scale bars are 100 μm. (b) Feature extraction results. The red circles are invasive radius; green circles 
are core radius; blue squares are centroids and cyan dots are branch points for leader, follower and parental 
spheroids at each time points (Hour: Minute). Scale bars are 100 μm.
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Modeling can be applied to individual spheroids, or to the average feature values of replicates for a single 
experimental condition. An adjusted R2 value is reported for each model as a measure of model fitness.

Statistical testing can be performed to on the model parameters to determine if there are measurable differ-
ences in spheroid dynamics across experimental conditions. Comparisons between pairs of treatments are made 
using the student’s t-test. Comparisons across two or more experimental conditions use the ANOVA test.

Visualization and reporting.  TASI automatically generates visualizations and reports for image analysis, 
model fitting, and statistical analysis results. For each experimental condition, time plots of the features are gener-
ated along with confidence intervals to illustrate variance within the condition replicates (see Fig. 4). Feature plots 
and modeling can also be generated individually for each replicate in all experimental conditions (see Fig. S2).

Results
TASI software.  TASI is published as open-source software under an Apache 2.0 license (https://github.com/
cooperlab/TASI). Full documentation on using TASI and the formatting of inputs and outputs is described in the 
Github repository. As an open-source framework, TASI can be readily and easily modified and extended to meet 
the needs of individual researchers.

Figure 3.  Contrast enhancement and smoothing. (a) 3-dimensional projection algorithm converting z stacks 
at each time point to projection image, and then using projection images at each time point for preprocess. 
(b) Segmentation effects comparison between without and with 3-dimensional Gaussian filter. 3-dimensional 
Gaussian filter smooth the segmentation in both spatial and temporal.

Feature
Best 
model

ANOVA pa 
(linear)

ANOVA pb 
(quadratic)

Adjusted R2 Range

Leader Follower Parental

Area Linear 3.40e-7 — 0.993–0.995 0.990–1.0 0.997–1.0

Invasive radius Quadratic 9.49e-3 3.90e-3 0.944–0.970 0.877–0.979 0.816–0.970

Branch number Quadratic 1.12e-3 1.19e-4 0.594–0.867 0.553–0.904 0.840–0.902

Core radius Linear 1.05e-3 − 0.909–0.951 0.945–0.982 0.921–0.992

Perimeter Quadratic 7.96e-6 3.93e-9 0.877–0.980 0.930–0.976 0.936–0.989

Complexity Quadratic 9.88e-8 7.16e-10 0.585–0.903 0.610–0.885 0.667–0.970

Intensity mean Quadratic 7.15e-5 2.91e-3 0.990–0.990 0.980–0.993 0.990–0.998

Intensity deviation Quadratic 8.35e-3 3.59e-2 0.709–0.981 0.756–0.883 0.885–0.986

Eccentricity Quadratic 1.52e-1 7.02e-1 0.689–0.972 0.262–0.816 0.528–0.995

Single cell count Linear 6.08e-2 − −0.012–0.413 0.010–0.951 −1.28–0.786

Table 2.  Statistical analysis of modeling parameters for spheroid types. Bold: p < 0.05.

https://github.com/cooperlab/TASI
https://github.com/cooperlab/TASI
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As shown in Fig. S1, TASI enables users to analyze individual spheroids, or spheroids grouped by experimental 
conditions. TASI uses a simple folder structure to organize and group experimental conditions, and performs 
end-to-end analysis once the input and output folders have been identified. Currently TASI supports most com-
mon image formats (jpg, png, tiff and others). The outputs generated for each spheroid include segmentation 
masks, feature extraction images, and spreadsheet CSV files containing feature extraction data and image analysis 
parameters for reproducibility. Additional CSV files describing modeling parameters and optionally statistical 
tests are also generated in the base output folder.

The spatio-temporal segmentation approach produces smooth segmentations of various spheroid morpholo-
gies (see Fig. 2a). By performing graph cuts simultaneously across both space (x, y) and time (t), the segmentation 
algorithm suppresses noise and produces segmentations that are smooth in both space and time. Dim branches 
and edges that are characteristic of invasive spheroid phenotypes can be segmented accurately using this approach 
by integrating information across time. The graph-cutting approach can also compensate for gradual decreases 
in spheroid intensity over time due to imaging, as compared to segmentation methods that establish a uniform 
threshold for all time.

Segmentation masks are automatically saved in the output folders for quality control, where segmentation 
boundaries are superimposed over the spheroid intensity images in videos. By examining the video, the users can 
quickly review the segmentation quality, and refine if necessary.

TASI analysis captures differences in spheroid phenotypes.  Coordination between leader and fol-
lower cells in collective migration has been investigated, and key differences between leader and follower cells 
include cytoskeleton structure43 and signaling pathway activations29,44,45. It is not clear, however, whether these 
complementary differences have a genetic basis or are induced by microenvironmental conditions. It is unknown, 
for example, if a follower cell becomes a leader when exposed to the spheroid/environment interface, or to what 
extent leader and follower phenotypes are transitory states that can be reversed. To answer these questions, we 
used TASI to analyze spheroids that were derived from purified leader or follower cells using SaGA.

The morphological differences between these spheroids are apparent in Fig. 2. Leader spheroids exhibit 
extensive chain-like branching, where the follower spheroids are compact and have more regular boundaries 
and sheet-like growth. The parental spheroids used to derive these populations are shown for comparison, and 
have intermediate morphologic qualities. Branch detection and core/invasive radius detection results for these 
spheroids are shown in Fig. 2b. The branch detection and radius finding algorithms work effectively across all 
spheroid types.

Temporal plots of key features are presented in Fig. 4 for each spheroid type. We noted from the interval in 
these plots that trends are remarkably stable for each spheroid type, with replicates from a given type exhibiting 
little variation, suggesting that the segmentation and feature extraction methods are robust. Significant differ-
ences exist were observed in how the features evolved over time for each spheroid type. Leader spheroids rapidly 
develop branches in the first 5 hours of growth and then reach a plateau, although the core radius continues to 

Figure 4.  Visualization of average dynamic features under different treatments. Average values for (a) branch 
number, (b) invasive radius, (c) core radius, (d) area, (e) perimeter and (f) complexity as a function of time 
for different cell lines. Red solid lines with x symbols represent mean values for leader spheroids. Shaded areas 
represent 95% confidence intervals for feature values over the replicates.
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increase. The branch number for follower spheroids increases very slowly and consistently over 8 hours, and pro-
portional to core radius (and hence spheroid circumference). The complexity of follower spheroids remains close 
to 1 for all time points, suggesting a spherical morphology. Trends for parental spheroids were similar to follower 
spheroids, with a slight shift towards a more invasive phenotype.

Model fitting and statistical testing of spheroid types.  To further quantify differences in migration 
and growth between spheroid types, we fit models to the temporal sequences of each feature using least squares. 
Linear and exponential models are the most commonly used models for tumor growth, so we utilized these two 
models as well as a quadratic model to the sequences in Fig. 5. Fitted models are shown in Fig. 5. We noted that 
the R2 values are generally high, ranging from 0.71 to 0.99. Linear models accurately describing the temporal evo-
lution of follower and parental spheroids. The temporal evolution of the leader spheroids is much more complex, 
and was better fit by the quadratic models in most cases (adjusted R2 ranges 0.71–0.99). The branch number and 
complexity dynamics of the leader spheroids are an exception, and are not described well by any model (adjusted 
R2 ranges 0.58~0.90).

We performed statistical tests on these models to further quantify differences between the three spheroid types 
(see Table 2). The summary of the statistical test results among three cell lines is listed in Table 2. The features with 
the most significant differences in model parameters included area (linear model, ANOVA p = 3.40e-7), complex-
ity (quadratic model, pa = 9.88e-8, pb = 7,16e-10), and perimeter (quadratic model, pa = 7.96e-6, pb = 3.93e-9). 
Eccentricity and single cell number had the weakest differences across spheroid types. The statistical tests con-
firmed our aim of defining unique features to classify different collective migration patterns.

Discussion
The application of TASI image analysis to spheroid data obtained by SaGA illustrates how spheroid cultures 
and image analysis can be used to investigate tissue microenvironments and their role in cancer invasion and 
metastasis. TASI contributes an end-to-end software approach for characterizing spheroid growth and invasion 
dynamics, providing image segmentation, feature extraction, modeling, and statistical analysis capabilities within 
the same tool. As an open source framework, it can readily be extended and tailored to the specific needs of 
investigators.

Our analysis of spheroids derived from purified leader and follower cells38 used features like branch tip count 
and core radius to reveal important differences in growth and invasion. Leader and follower cells likely play 
complementary roles in establishing viable metastases distant from the primary tumor, and understanding this 
process and the differences in these cell phenotypes can lead to better targeting of these important mechanisms in 
the future. Growth and invasion are by definition dynamic processes, and by providing a framework to measure 
dynamic behaviors of spheroids, TASI enables precise and quantitative characterization of spheroid behavior. 
The ability to model these behaviors and to perform statistical tests between experimental conditions could aid 

Figure 5.  Model temporal feature evolution. Model fitting curves for mean (a) branch number, (b) invasive 
radius, (c) core radius, (d) area, (e) perimeter and (f) complexity as a function of time for each cell line. The 
dash-dot line represents the 1st order polynomial (or linear) model fitting. The dotted line represents the 
2nd order polynomial model fitting. The dashed line represents the exponential model fitting. Shaded areas 
represent 95% confidence intervals for feature values over the replicates.
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in screening drugs or functional genetics studies by detecting subtle differences in dynamic behavior as opposed 
to static morphology. Objectivity and repeatability in these types of experiments is increasingly critical, and with 
large amounts of data, traditional manual quantification may not be practical.

Although our software provides new capabilities for spheroid analysis, the proposed approaches and vali-
dation have important limitations. TASI currently uses a projection operation to convert 3-dimensional image 
sequences to 2-dimensional to simplify image analysis. In the future we plan to extend the image analysis algo-
rithms in TASI to perform three-dimensional temporal imaging (x, y, z + time) of spheroid cultures. Adding the 
z-dimension requires extending the graph-cutting segmentation to 4-dimensional volumes, and implementing 
features like surface area calculation and 3-dimensional skeletonization and branching analysis. Despite flattening 
3-dimensional volumes to two dimensions, TASI is able to measure clear and statistically significant differences 
in our leader/follower/parental spheroids. Extending TASI to leverage existing cell tracking algorithms is another 
important direction for future development. Tracking will enable more detailed analysis of the movement pat-
terns of leader cells, and more complex characterizations of the constituents in chain-like projections. Although 
the leader/follower/parental spheroids used in our study represent a broad spectrum of spheroid dynamics and 
morphologies, applying TASI to other spheroid models remains an important goal to provide additional valida-
tion of our software.
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