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Abstract

Measurement of gene expression levels for multiple genes in single cells pro-
vides a powerful approach to study heterogeneity of cell populations and
cellular plasticity. While the expression levels of multiple genes in each cell
are available in such data, the potential connections among the cells (e.g. the
cellular state transition relationship) are not directly evident from the mea-
surement. Classifying the cellular states, identifying their transitions among
those states, and extracting the pseudotime ordering of cells are challenging
due to the noise in the data and the high-dimensionality in the number of
genes in the data. In this paper we adapt the classical self-organizing-map
(SOM) approach for single-cell gene expression data (SOMSC), such as those
based on single cell gPCR and single cell RNA-seq. In SOMSC, a cellular
state map (CSM) is derived and employed to identify cellular states inher-
ited in the population of the measured single cells. Cells located in the same
basin of the CSM are considered as in one cellular state while barriers among
the basins in CSM provide information on transitions among the cellular
states. A cellular state transitions path (e.g. differentiation) and a temporal
ordering of the measured single cells are consequently obtained. In addition,
SOMSC could estimate the cellular state replication probability and transi-
tion probabilities. Applied to a set of synthetic data, one single-cell gPCR
data set on mouse early embryonic development and two single-cell RN A-seq
data sets, SOMSC shows effectiveness in capturing cellular states and their
transitions presented in the high-dimensional single-cell data. This approach
will have broader applications to analyzing cellular fate specification and cell
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lineages using single cell gene expression data

1. Introduction

Heterogeneity of cell populations is considered functionally and clinically
significant in normal and diseased tissues, and transitions among different
subpopulations of cells play key roles in cell differentiation during develop-
ment or disease recurrence (Tsioris et al., 2014; Wilson et al., 2014; Saadat-
pour et al., 2015). In recent years, single-cell gene expression profiling tech-
nologies have emerged as an important tool in dissecting heterogeneity and
plasticity of cell populations and in analysis of cell-to-cell variability on a ge-
nomic scale (Saliba et al., 2014). For example, mammalian pre-implantation
development has been analyzed from oocyte stage to morula stage in both
human and mouse embryos using single-cell RNA sequencing (Xue et al.,
2013; Yan et al., 2013) to identify stage-specific transcriptomic dynamics;
In breast cancer, gene expression profiles of tumor subpopulations along a
spectrum from low metastatic burden to high metastatic burden have been
obtained using qPCR at the single-cell level (Lawson et al., 2015); and multi-
ple new phenotypes in healthy and leukemic blood cells have been identified
using gene expression signatures through analysis of single-cell data (Levine
et al., 2015).

Distinguishing or clustering measured cells computationally through their
transcriptomic data (e.g. gene expression) is challenging. The number of
genes measured is usually significantly larger than the number of cells (Jiang
et al., 2004). Another challenge is that a group of cells collected at one tem-
poral point from one sample may not be perfectly ordered in time compared
to the cells collected at a slightly different temporal stage, due to cell-to-cell
variability in sampling and the nature of unsynchronized cell divisions (Hep-
pner, 1984; de Vargas Roditi and Claassen, 2015). As a result, the pseudo-
temporal ordering of single cells in a high-dimensional gene expression space
was introduced (Trapnell et al., 2014b). The difficulty in analyzing single-
cell data becomes particularly evident for systems of differentiation in which
new cell types emerge as time advances, such as identifying lineage specific
markers of different cell subtypes during the development of murine lung
(Treutlein et al., 2014) and finding the differentiation trajectory of skeletal
muscles (Trapnell et al., 2014a).

Temporal ordering of single cells, grouping cells of similar transcriptomic
profiles, finding transition points, and determining branches are the key steps
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in analyzing the single-cell data. Clustering methods based on Principle
Component Analysis (PCA) or Independent Components Analysis (ICA),
such as MONOCLE algorithm (Trapnell et al., 2014a), allow grouping cells
according to the specific properties of interest. Several other clustering-based
methods such as SPADE (Qiu et al., 2011), t-SNE (Van der Maaten and Hin-
ton, 2008), and viSNE (Amir et al., 2013) were introduced to identify subpop-
ulations within the measured cells without an explicit temporal ordering of
cells. In the Wanderlust algorithm (Bendall et al., 2014), a pseudo-temporal
ordering technique incorporated the continuity concept in branching process,
however, with an assumption that the cells consist of only one branch during
differentiation. To study nonlinearity of the branching process in differentia-
tion, a diffusion map technique was adapted to single-cell data by adjusting
kernel width and inclusion of uncertainties, enabling a pseudo-temporal or-
dering of single cells in a high-dimensional gene expression space (Haghverdi
et al., 2015). SLICER is another method to capture highly nonlinear gene
expression changes and select genes related to the process, and to detect
multiple branches (Welch et al., 2016). TASIC was developed to determine
temporal trajectories, branching and cell assignments using a probabilistic
graphical model (Rashid et al., 2017). UNCURL incorporates prior knowl-
edge to perform the cell state identification (Mukherjee et al., 2017). With a
focus on modeling the dynamic changes associated with cell differentiation,
a bifurcation analysis method (SCUBA) was developed to extract lineage
relationships (Marco et al., 2014).

The Waddington landscape (Goldberg et al., 2007) of gene expression
provided a global and convenient view in describing stem cell dynamics and
lineages. In this method, a forward stochastic model on a small gene net-
work was first derived, then a landscape of cellular states was obtained by
constructing an energy function that depends on each gene in the modeled
regulatory network (Foster et al., 2009; Zhang et al., 2013; Zhou and Huang,
2011; Chen et al., 2015). The prior knowledge of the gene regulatory net-
work needs to be known in this method, and the landscape calculation did
not require dimension reduction in the gene space. However, due to the com-
putational cost associated with sampling solutions of stochastic differential
equations or solving equations of probability density functions of the gene
states, the network size in the landscape calculation can’t be too large (Wang
et al., 2011).

Here, we propose a new method to analyze single-cell gene expression
data by combining a machine learning method and a concept similar to the
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landscape (Wang et al., 2011; Kohonen, 1998) (Figure 1). In this approach,
the high-dimensional data of single cells is first reduced to two dimensions
through a classical unsupervised artificial neural network (ANN) method: a
self-organizing map (SOM) (Kohonen, 1998) in which the topological prop-
erties of the input data are preserved through a neighborhood function. The
cellular states are then identified by the watershed algorithm based on the U-
matrix calculated by SOM (Vincent and Soille, 1991; Najman and Schmitt,
1996). By building transition paths among the cellular states, we obtain a
cellular state map (CSM). In this map, the barriers separating different states
provide information on transitions between cellular states. Moreover, a repli-
cation probability and transition probabilities are estimated in the cellular
state transition paths. Next, the state-driven genes differentially expressed
during a cellular state transition are determined by t-test, and then path-
way enrichment analysis for each transition is performed based on the list of
state-driven genes. In this approach, the transition path among the cellular
states leads to a pseudo-temporal ordering of the cells. To study effectiveness
and capability of the approach, we apply SOMSC to a set of simulated data
and three real data sets based on qPCR or RNA-seq collected from cell at
various stages of differentiation.

2. Methods

SOMSC has three major functions: identifying cellular states, recon-
structing cellular state transition paths and building the pesudotime ordering
of cells. The algorithm of SOMSC consists of six main steps as follows (Figure

1).

Step 1: Calculate a topographic chart of single cell data using a self-organizing
map

SOMSC takes single-cell RNAseq and single-cell PCR data as the in-
puts G = (91,69, ...,9n)", where g; is the vector with the length n of the
gene expression levels for the i-th sample and N is the number of the sam-
ples. Since two kinds of datasets are collected using different technology
platforms, different preprocessing methods are necessary (See details in Sup-
plementary file). A topographical chart of high dimensional expression data
is calculated by a SOM. A SOM is an effective way of analyzing topology
of high-dimensional data by projecting the data to low-dimensional surfaces
through a rectangular, a cylindrical, or a toroidal map (Kohonen, 1998). In
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the SOM, an ordered set of model vectors x € R™ is mapped onto the space
of observation vectors m; € R™ through the following iteration processes:

Mt + 1) = mi(t) + ey o((t) — mi(1)) 1)

where ¢ is a regression index. This regression procedure is performed re-
cursively for each sample x(t). The scalar multiplier he@),i is a Gaussian
neighborhood function, acting like a smoothing or blurring kernel over SOM
computational grids:

2
_ lri=rell

hm(xm‘ = a(t)e 202(t) (2)

where 0 < a(t) < 1 is a learning-rate factor, which decreases monotonically
in each regression step; r; € R? and r. € R? are the computational grid
locations, and o(t) corresponds to the width of the neighborhood function
that also decreases monotonically in each regression step. The subscript
¢ = ¢(x) is obtained when the following condition is achieved:

[[2(8) = me(D)]] < {l2(t) = ma(t)]] (3)

Consequently, m.(t) is the "winner” that matches the best with x(¢). The
comparison metric || ® || is selected as the Euclidean metric for this study in
Eq. 2, and Eq. 3. If multiple functions c(t) satisfy Eq. 3 with discrete-valued
variables, ¢(t) is chosen randomly among those functions for the winner. In
addition, a toroid map is used to reduce edge effects in the data on the
overall mapping (Vesanto et al., 1999). Applying the SOM to the single-cell
gene expression data leads to a unified distance matrix (U-matrix) U(z,vy),
representing distances between neighboring map units, where z and y denote
the coordinates of a plane (Kohonen, 1998). Accordingly, U(x,y) defines a
2-dimensional topographic chart.

Step 2: Identify basins of the topographic chart by the watershed algorithm

The watershed segmentation algorithm is employed to identify the basins
of the topographic chart. By the SOM the high dimensional single cell data
is projected onto U(z,y) denoting the distance between adjacent grids. The
algorithm identifies the boundaries of basins by constantly pouring water
into the mountains of the chart (Najman and Schmitt, 1994). As water
levels rise, the boundaries of basins are estimated (See more details of the
watershed segmentation algorithm in Supplementary file). Let nb denote the
number of basins in the topographic chart, and C7, C, ..., C,;, represent the
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identified basins. The height of the barrier between two adjacent basins is
the number of genes differentially expressed in those cells of the two adjacent
basins, which are calculated by t-test with 5% significance. The adjacent
matrix of basins is then calculated: T = (%;;)nn, Where t;; is the height of
the barrier between C; and C; and t;; = 0 means that C; and C; are not
adjacent with each other.

Step 3: Classify the cellular states and construct their transition paths

The cellular states are classified based on the adjacent matrix calculated
in Step 2. In order to avoid the over-segmentation occurrence when applying
the watershed algorithm, we merge any two basins C; and C; when C; and
C; form a cycle, which means the height of the barrier between these two
basins is the smallest one between the basin C; and all its adjacent basins
as well as the smallest one between the basin C; and all its adjacent basins.
(C;,C;) is called a merging pair. After the merging, all cells in one basin
labeled as S;, (i = 1,...,m) are in the same cellular state. The adjacency
matrix D =(d;;)m,m represents the distances between the cells in S; and the
ones in S; (the default distance metric in our algorithm is the /; norm), and
can be considered as an undirected network for cellular states in SOMSC,
which is the cellular state network. All nodes in the network are labeled by
the cellular states S; (i = 1,2,...,m). The weight of the edge connecting the
node S; and the node S; is d;; in the adjacency matrix D and there is no edge
between the node S; and the node S; if d;; = 0. All edges in the cellular state
network are denoted by F. We assume that the starting cellular state is S
where s € {1, 2, ..., m}. First, we find out the edge pair in the path (5;, S;,)
for each node S; where ¢ € {1, 2, ..., m}. S;, is the closet adjacent cellular
state of S;. All edge pairs are denoted by E. Second, we make all nodes of
the cellular states reachable. A node S; is reachable when there exists a path
from S; to the node S, of the starting cellular state, which consists of the
edge pairs in E. Here we denote the set of all reachable nodes by R and the
set of the rest nodes by Q). If the set @) is not empty, then we will find out the
edges from F\E (the element in F' but not in F) which connect the node in
R and the one in ) and the one with smallest weight is selected to add to the
set E and the sets of R and @) are updated correspondingly. We repeat these
steps until () is empty since each iteration results in more reachable nodes
in R. Accordingly, all nodes become reachable with the edge pair set E, and
the path P; from 5; to S, consists of a subset of the edge pair set £. Finally,
all the paths P; (i = 1,2,...,m) are combined to generate a transition path
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tree of the cellular states. From P; = (5;,,S,, .., S ) (ix € {1,2, ... ,m},

k=1,2,...,1; i =1, i,= s) we can extract the transition pairs (5;,,5;,_,)
(k =1,2, ..., [;), which mean that the cellular state S;_ is the parent of
Si,_,- All transition pairs determine the transition path tree (Sp,, ..., Sp,.)

together, where S, is the parent cellular state of S; in the path tree and S;
is the daughter cellular state of .S,,.

Step 4: Construct the cellular state map for all cells

Each cell in the data is assigned a relative location in the cellular state
map using the following method. Not all cells in the data show up in the
topographic chart since only winners of the grids in the SOM stay, suggesting
known cellular states of those cells. We then use k-nearest neighbors (KNN)
algorithm to identify the states of the remaining cells (Altman, 1992).

To visualize the topologic structure of the data we define the cellular state
map (CSM) as follows. First, we calculate the convolution function M by
the following equations.

M@GE) =Y > Up.)K(j—p+1Lk—q+1) (4)

where
- D(p,q P, q) is on the boundaries
Up,q) = L9 (29 :
0 otherwise

K is a kernel matrix whose elements define how to remove the high frequency
components of the original data U. The size of kernels may be different from
the size of the U. Small-sized kernels can smooth data containing only a few
frequency components whereas larger size kernels can provide better precision
for tuning frequency response, resulting in a smoother output. Accordingly,
the CSM is the central part of the convolution M whose size is equal to the
size of U. Each cell is plotted as a three-dimensional sphere, whose center
represents that cell’s position in the CSM.

Step 5: Detect the state-driven genes and their enrichment analysis in each
transition

We next identify the differentially expressed genes for each cellular state
transition. We perform a t-test for the expression levels of each gene in all
cells involved in the cellular state transition. A gene is taken to be state-
driven if the p-value is within 1%. Accordingly, a list of all state-driven genes
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for each cellular state transition can be obtained. The gene list is then used as
an input into the Enrichr database (http://amp.pharm.mssm.edu/Enrichr/),
which defines the members of each pathway as a gene list. Fisher’s exact test
is used to obtain a p-value for the number of pathway members present
among the state-driven genes we obtained. If the p-value falls within our
critical region (5%), we determine the pathway to be significantly enriched
(Chen et al., 2013).

Step 6: Estimate the cellular state replication probability and cellular state
transition probabilities and determine the pseudo-time ordering of each cell
during the cellular state transitions

One goal of SOMSC is to estimate the cellular state replication probability
and the cellular state transition probability for each cellular state. First, we
calculate the centroid for each cellular state and denote C'T; as the centroid
of the cellular state S;. Second, we define the cellular state replication axis
PR; and the transition axes DEy, ,DEy,,...,DE,_ for the corresponding k
daughter cellular states Sg,,54,,. - - ,54,. They are calculated by PR, = CT,
— CT; and DE;;, = CT;;, — CT; where j = 1,2,... k; CT, is the centroid of
the parent cellular state of S;; and Cj; is the centroid of the jth daughter
cellular state of S;. Then we project the data ¢;, —CT;,q;,—CT;,. .. Gin, —CT;
where n; is the number of cells in the cellular state .5;, to the cellular state
replication axis and the cellular state transition axises. Third, we obtain
the vector (Pro,,Pro., Pro; ,Pro,,,...,Pro; ) for the expression vector of
each cell g; (I =1,2,...,n;), where Pro, is the projection of the data of the
[-th cell in the cellular state S; to the cellular state replication axis PR;,
Pro, is the distance between g¢;, and CT;, and Pro; (r =1,2,....k) is the
projection of g;, to the cellular state transition axis DE; (r =12,... k).
We then determine the replication/transition state of the cells as follows: If
the minimum positive element in (Proy, Pro.,Pro;, ,Pro,,,...,Pro; ) is the
projection to one cellular state transition axis DFE; , then it means the [-th
cell will transition to the daughter cellular state S;;. Otherwise, the I-th cell
is in the replication cellular state. The number of cells in the replication and
transition states are obtained and the normalized numbers are taken as the
replication and transition probabilities, respectively. Fourth, the pseudotime
ordering of each cell is determined by its projection to the replication axis
or the transition axes or the distance from the cell to the centroid of the
cellular state S;. If the cell g; is in the replication state and Pro, is positive,
then we get the ordering pair (1, —Pro,). If the cell g;, is in the replication
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state and Pro, is negative, then we get the ordering pair (2,Pro.). If the
cell g;, is in the transition state, then we get the ordering pair (3,Promm),
where Progi, is the minimum positive element of {Pro;,,Pro,,, ... ,Pro; }.
In this way, we get the ordering pair for each cell in the cellular state S;.
The pseudotime ordering of cells in S; is based on the ordering pairs. We
compute the pseudotime ordering of cells in different cellular states based
on the cellular transition path. Finally, we construct the trajectories of the
expression levels of each gene from all cells along the pseudotime ordering.
Here we interpolate the average expression levels of the gene in disjoint small
groups of cells along the pseudotime ordering.

Generate the simulation data

In order to effectively evaluate performance and choices of parameters
of SOMSC, we next construct a toy system consisting of a small number of
genes to mimic single-cell gene expression data. There are three stages in the
system, and in each stage one type of cells makes a transition to two other
types of cells (Figure 2A). Together, seven types of cells with three branches
are present in the system. The cellular types are defined by the expression
levels of six genes (Figure 2A). Specifically, in Type 1 cells Gene A and Gene
B are activated and the other four genes are silenced; in Type 2 cells Gene
A, Gene C, and Gene D are activated; in Type 3 cells Gene B, Gene E, and
Gene F are activated; when one of Gene A and Gene B and one of Gene C,
Gene D, Gene E and Gene F are activated, four other types of cells in the
third stage are then defined as Type 4, Type 5, Type 6, and Type 7 cells,
respectively.

The system of three-toggle modules consisting of six genes is modeled
through a system of stochastic differential equations (Haghverdi et al., 2015;
Chen et al., 2005; Ocone et al., 2015). Starting with only Type 1 cells in the
system (i.e. the initial state), the expression values of each gene are then
collected at three different temporal stages for each stochastic simulation:
the early, the middle, and the final stage, in order to mimic a typical set of
temporal single-cell data (See Section II in the Supplementary file). Repeat-
ing the stochastic simulations using the same set of parameters and the same
initial values of genes for 400 times produces a set of gene expression values,
corresponding to 1200 sets of single-cell data.
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3. RESULTS

3.1. SOMSC on the simulation data

We apply SOMSC to 346 cells, which are randomly selected from 1200
simulated cells. The SOM (N = 16) maps the high-dimensional gene-
expression data to a 2-dimensional topographic chart, U(z,y), and the wa-
tershed algorithm is employed to identify the basins of the topographic chart
with the yellow boundaries between the adjacent basins (Figure 2B). There
are seven basins identified. Since no cycles exist on the topographic chart,
basins correspond to cellular states, which are labeled Sy, Ss,...,S7 (Figure
2B). The red numbers on the yellow boundaries are the height of the bound-
aries between the adjacent cellular states. Based on the above information,
we calculate the adjacency matrix of cellular states, T" = (¢;;)77 and con-
struct a cellular state network, in which the edge between the node .S; and
the node S; means that ¢;; # 0 and the weight of the edge is t;; (Figure 2C).
Then we identify the edge pair for each cellular state (Table 1), highlighted in
orange (Figure 2C). For example, the cellular state S; has five adjacent cel-
lular states, Ss, S3, S5, Sg, and S7 with edge weights, 2.6733, 2.1888, 1.2798,
1.1335, 5.0827 and Si is the one with the smallest weight, 1.1335. Therefore,
(S1, Sg) is the edge pair for the cellular state Sj.

Table 1: Edge pairs in the simulation data

Cellular | Edge in || Cellular | Edge in
state | the path state | the path
Sh (S1,S6) S (S2, Se)
S3 (S3,51) Sy (S4, 52)
Ss (S5, S1) Se (Se, S1)
St (S7,.52)

We track the paths from each cellular state to the starting cellular state
Se using the highlighted edges. Since the edge pair for the cellular state S
is (S1, Sg), the transition path P; is from the cellular state S; to the cellular
state Sg, (S1, S). Similarly, the transition path P, is from the cellular
state Sy to the cellular state Sg, (S2, Sg). Because the edge pair for the
cellular state S3 is (S3, S7) and the path transition P; is (S, Sg), then the
combination of (S3, S7) and P, results in the transition path Pj, (S3, S,
Se). Similarly, We find the transition paths P, Ps, P; from these cellular
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states Sy, S5, 57 to the starting cellular state Sg. Those transition paths are
summarized as follows (Table 2).

Table 2: Path from one cellular state to the starting cellular state in the simulation data

State | Path The path to the
starting cellular state
Sl Pl (Sb SG)
Sy Py (52, S6)
S3 Ps (3,51, 5)
Sy Py (S4, S2, S6)
Ss Py (S5, S1, S6)
Se | P (S65 S6)
Sy Py (57,592, 5)

The cellular state map is constructed to illustrate the relative locations
of all cells and the relationship among different cellular states (Figure 2D)
(See Methods). The SOM maps the winner of each computational grid to
the topographical chart and the KNN algorithm places each non-winner cell
at the mean position of its nearest neighbors. Cells are represented on the
topographic chart as purple spheres (Figure 2D). Finally, we add the arrows
from the parent cellular state to the daughter cellular state on the CSM
(Figure 2E). The cellular state transition tree is obtained from all transition
pairs, (S1, S3), (S1, Si), (S3, Ss), (S3, S7), (Ss, S2), and (S, Sg) (Figure
2F). To validate the calculated transition path we plot the cellular states
of the cells in the topographic chart (Figure S4). All above results show
that SOMSC can not only calculate the transition path but also identify the
cellular states of over 90% cells.

3.2. SOMSC on gPCR data of mouse embryo development from zygote to
blastocyst

Previously, the expression levels of 48 genes at seven time points were
measured using qPCR for mouse early embryonic development from zygote
to blastocyst (Guo et al., 2010). Expression levels for each of the 439 single-
cell libraries were normalized independently by the mean expression levels of
two genes: Actb and Gapdh (Guo et al., 2010).

Two different approaches might be applied to such data by either using
the data at each temporal point individually or lumping the data of all seven
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stages into one set. However, a series of single-state maps is unable to deter-
mine potential cellular state transition paths from the data because differ-
ent basins or cellular states are obtained using different topographic charts
(Figure S5). Therefore we choose to analyze all time points concurrently.
Furthermore, prior knowledge about cell state is withheld during inference
and subsequently used to validate the state-transition path calculated by
SOMSC.

We generate a topographic chart from the expression-levels of all 439 cells
and use the watershed algorithm to identify 20 basins. The basins are labeled
by Ci, Cs, ..., Cy and the heights of the barriers between adjacent basins
are the red numbers on the yellow barriers (Figure S6 and S7). The t-test is
performed gene-by-gene between the cells of each basin-pair, C; and C; and
then we calculate the number T;; of the genes, which are not differentially
expressed at 5% significance. Based on all calculated T;;, we merge the
fOHOWiIlg pairs: (Olg, 014), (017, 018); (0187 OQ()), (Cl, 06)7 (OQ, Cg), (015,
Ci6), (Cy, C7) (See Methods), yielding a new topographic chart with barriers
highlighted in yellow (Figure 3B). Thirteen basins labeled by S, S, ..., Si3
are identified in the new chart, corresponding to thirteen cellular states. The
distance between adjacent states is labeled in red on the yellow boundaries
between states (Figure 3B, S8 and S9).

Using the topographic chart, we construct a cellular state transition path
tree in two steps. First, we construct the cellular state network (Figure 3C)
and highlight the edges with the smallest weight values for each cellular state.
The highlighted edges for the cellular states are summarized in Table 3.

Table 3: Edge pairs in the qPCR data of mouse embryo development from zygote to

blastocyst
Cellular | Edge in Cellular | Edge in
state | the path state | the path
S (S1,5) Sy (2, S9)
S3 (53, S%) Sy (84, 511)
Ss (S5, 57) Se (S1, S6)
St (57, Sg) Sg (53, Ss)
So (S1,5) S1o (S3,S10)
S (S11,512) Si2 (S11, S12)
S13 (S6, S13)

Second, we track the cellular state transition paths from each cellular
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state to the starting cellular state S5 using the highlighted edges. We find
the paths from these cellular states Ss, Sy, S7, Ss, S0, S11, S12 to the starting
cellular state Sy consisting of the edges from Table 3. They form one group R
of reachable cellular states and the rest cellular states Sy, Sa, S4, Se, So, S11,
S12, S13 form the group ) using the highlighted edges. Then the smallest
weight value between R and @) is the one, 28.797, between the cellular state
S11 and the cellular state S7g. Then RUS71US,US 15 generates the new R and
the new () is the set consisting of Sy, S5, Sg, Sg, and Si3. The edge with
the smallest weight, 32.526, connecting R and @ is (Ss, Sig), which results
all elements in @) are reachable. Accordingly, all these edges (S7, Sy), (S2,
So), (83, Sg), (S, S11), (S5, S7), (S1, S6), (S7, Ss), (S3, S10), (S11, Si2), (Se,
S13), (Sa2, S10), and (S1o, S11) result in that each cellular state can reach the
starting cellular state S5 by a transition path (Table 4).

Table 4: Path from one cellular state to the starting cellular state in the qPCR data of
mouse embryo development from zygote to blastocyst

State | Path | The path to the
starting cellular state

Sh Py | (51,859, 82, 510,53, Ss, 57, 55)

S Py | (52,,510,53,Ss,57,55)

S3 P3| (S3,8s,57,55)

Sy Py | (S4, 511,510, 53, 58,57, 55)

Ss Ps | (S5,55)

Se Fs | (S6, 51,59, 5%,,510, 53,5, 57,55)
Sy Pr | (57,55)

Sg Py | (Ss,57,55)

So Py | (S, S, , 510,53, 5%, 57, 55)

Siw | Pio | (S, Ss, S8, 597,55)

Su | P | (S, Si2)

Si2 | Pz | (Sh2,S11, S0, S3, Ss, S7,55)

Sis | Pis | (Sis, S, 51,5, 52,510, Ss, Ss, 57, 55)

The combination of these paths results in the cellular state transition
path tree, (So, Sio, Ss, Si1, 0, S1, S5, S7, Sa, S3, S0, S11, S¢). We know
the state of the winner of each map grid and we use the KNN method to
classify the remaining cells based on Euclidean distance to the nearest three
winners. Then we smooth the data and produce the cellular state map for

all cells (Figure 3E) (See details in Methods).
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To study the dynamics of gene expression during the transitions, we cal-
culate the pseudotime ordering of the cells, which is shown along the cellular
state transition paths (Figure 4A) (See details in Methods). The colors of
the cells represent the expression levels of CDX2. The variances of the ex-
pression levels of CDX2 in cellular states Sy, Sy, S1, Sg, and S5 are smaller
than the ones in other cellular states. The greater variances might be one
of the reasons of resulting in the cellular state transition branches, S7o—S>,
S10—S11 and S1;—Sy, S11—S12 (Figure 4A). The cellular state transition
trajectory of CDX2 shows that the expression levels of CDX2 in the trophec-
toderm (TE) is greater than in the inner cell mass (ICM) which includes
the primitive endoderm (PE) and epiblast (EPI), consistent with the pre-
vious study (Jedrusik et al., 2008). We define a gene as state-driven when
its differential expression between the two adjacent states has a p-value of
less than 5% as computed by t-test. Pathway enrichment is conducted using
the Enrichr tool (See details in the Supplementary file). Briefly, Fisher’s
exact test is used to obtain a p-value for the number of pathway members
present among the state-driven genes defined in our experiment. If the p-
value falls within our critical region (5%), we determine the pathway to be
significantly enriched. We present the pathway enrichment analysis for the
cellular state transitions S19—S2 (Figure 4C). They illustrate that PluriNet-
Work, ESC pluripotency pathway, regulation of actin cytoskeleton pathway
and focal adhesion-PI3K-Akt-mTOR-signaling pathway involve significantly
in the mouse early embryo development (Zhao and Guan, 2011; Reiske et al.,
1999). For the first transition branch S;j0—Ss, S10—S11, we can see that the
transition probability of Sjp—Si; is 19% and the transition probability of
S10—S11 is 18%. Additionally the replication probability of S, is 67% and
the replication probability of Sj; is 54%. This provides a clear mechanism
for the difference in population size between Sy and Si;. Interestingly, we
find the transition probability of S;;—S4, 28%, is greater than the one of
S11—S12, 18%. And the replication probability of S, is also greater than
the one of Si3. However, the number of the cells in the cellular state Sy is
smaller than the one in the cellular state Si5. Perhaps the replication rate
of cells in Sy is higher, despite a smaller replication probability for each in-
dividual cell, due to a much shorter cell cycle (Kelly et al., 1978; Artus and
Cohen-Tannoudji, 2008).

We validate the results calculated by SOMSC against our prior knowledge
of the cells temporal order and differentiation trajectory. The temporal or-
dering of the cellular states identified by SOMSC is consistent with the stage
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information of the cells in the data (Figure S10). The cells in the cellular
state Sg, S7, Sg, 53, and Sj are collected at the 1-cell stage, the 2-cell stage,
the 4-cell stage, the 8-cell stage, the 16-cell stage respectively. The cells har-
vested at the 32-cell stage are located in the areas of the cellular states Sy
and S in the cellular state map and the ones harvested at the 64-cell stage
are at the regions of the cellular states Sy, Si2, Sy, S1, Sg, and Si3 in the
map. Finally, SOMSC can track the two state transition branches during
the mouse early embryo development (Zernicka-Goetz et al., 2009; Pedersen
et al., 1986). The results calculated by SOMSC show that those two fate
decisions occur at the 32-cell stage and the 64-cell stage.

3.3. SOMSC on scRNA-seq data of mouse haematopoietic stem cell differ-
entiation

To analyze discrete genomic states and the transitional intermediates that
span myelopoiesis, the previous study performed single-cell RNA sequencing
(scRNA-seq) on 382 cells consisting of stem/multipotent progenitor cells,
common myeloid progenitor (CMP) cells, granulocyte monocyte progenitor
(GMP) cells, and LKCD34+ cells that includes granulocytic precursors (Ols-
son et al., 2016). The quality control was performed in the original dataset
and therefore the data of those 382 cells are used as the input to SOMSC
(Olsson et al., 2016). Out of 23955 genes measured in the original data, 1240
highly variable genes were selected.

We use the data from 382 cells to produces the topographic chart by SOM
(Figure S11). We identify 14 basins by the watershed algorithm, labeled C},
Cy, ..., C1y (Figure S11 and S12). The heights of the barriers between ad-
jacent basins are the red numbers on the yellow barriers (Figure S12). The
t-test is performed gene-by-gene between the cells of each basin-pair, C; and
C; and then we calculate the number T;; of the genes, which are not differ-
entially expressed at 5% significance. Based on all calculated T;;, we merge
the following pairs to generate a new topographic chart: (Cy,Cs), (Cs, Cr),
(C7,Cy), (Cho,C11), (C1,Ch3) (Figure S12). The basins in the topographic
chart are labeled Sy, S5, ..., and Sy and each basin represents a cellular state.
The distance between the adjacent cellular states in the chart is shown in
red (Figure S13 and S14) and used to construct the cellular state network
(Figure 5A).

The combination of these paths Py, P, ..., and Py results in the cellular
state transition path tree, (S3, S7, So, 0, S7, S7, Si, Si, S4). The cellu-
lar state map including all 382 cells was generated as previously described
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(Figure 5B). SOMSC identifies nine cellular states, which is consistent with
previously reported classification of myelopoetic cells based on scRNA-seq
(Olsson et al., 2016). Importantly, SOMSC faithfully recovers the differenti-
ation trajectories of the cells: cellular states Sy, Sy, S3 are the LSK cells and
S consists of CMP and GMP cells. There is a branch from the cellular state
S1 to the cellular state S7; and to the cellular state Sg. All cells in the cellular
state Sy are CMP cells and the ones in the cellular state S; are GMP cells.
We find that Irf8 is expressed in the cellular state Sy (Figure 5C). The cells
in the cellular state S, are CMP, the ones in the cellular state S5 are LSKs
and the ones in the cellular state Sg are GMP cells. From the violin plots
in Figure 5C we can see that there is more than one mode in the cellular
states Sy, So, S3, S1, and S7, suggesting that the cell fate decision is made
relatively early.

In order to determine the genes driving the cellular state transitions we
identify state-driven genes by t-test as previously described. Based on the list
of differentially expressed genes, the enriched pathways are obtained by gene
set enrichment as previously described. We present the pathway enrichment
analysis for the cellular state transitions S;—Ss (Figure 5E), indicating that
TNFa-NFxB pathway is critical during the differentiation of GMP cells (See
more results in the Supplementary file).

Next we estimate the replication probabilities and transition probabilities
of the cellular states (Figure 5F). There are two branches in this cellular state
transition path tree. The results show that the transition probability from 5
to Sy is 34% and the transition probability from S; to Sg is 12%. The latter
probability is smaller, corresponding to fewer cells classified in Sg than in S7.
The results also show that the probability of the transition from S7 to Sg, S7
to Sy, and S; to S5 are 22%, 16%, and 4% respectively. Correspondingly, S
represents the largest population among all three fates.

The cellular state transition path tree calculated by the SOMSC is con-
sistent with the hematopoietic hierarchy. S, is the long-term HSC. Sy is
the short-term HSC. S5 is the multipotent progenitor. S; is the common
myeloid progenitor. S; is the granulocyte-macrophage progenitor. Sg is the
megakaryocyte-erythrocyte progenitor (Figure S15). Since Gfil is expressed
only in the cells of Sg among Sg, S5, and Sy (Figure S16), then Sg is the
granulocyte cell. Because Irf8 is highly expressed in the cells of Sy (Figure
5C), then the cells in Sy are the monocyte cells. We predict that the cells in
Ss are the dendritic cells. All of them need to be verified.
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3.4. SOMSC on scRNA-seq data of adult mouse olfactory stem cell lineage
trajectories

616 cells were collected to define a detailed map of the postnatal olfactory
epithelium showing the cell fate potentials and branchpoints in olfactory stem
cell lineage trajectories by whole transcriptome profiling scRNA-seq (Fletcher
et al., 2017). We select 824 highly variable genes out of 42127.

As before, we use an SOM to produce a topographic chart using the
expression profiles of all 616 cells (Figure S17). We identify 22 basins by
the watershed algorithm, labeled Cy, Cs, ..., Ci4 (Figure S18). Then 17
cellular states are determined by SOMSC (see Methods) and their corre-
sponding cellular state network is constructed (Figure S19 and S20). Next,
the CSM and the cellular state transition path are obtained (Figure 6). To
validate our results, we utilize the prior categorization of these cells, which
are available from (GEO accession GSE95601) (Fletcher et al., 2017). They
include the resting HBCs, immediate Neuronal Precursor 1 (INP1), Globose
Basal Cells (GBCs), mature Sustentacular Cells (mSUS), transitional HBC
2, immature Sustentacular Cells (iSUS), transitional HBC 1, immature Ol-
facotry Sensory Neurons (iOSNs), Immediate Neuronal Precursor 3 (INP3),
Microvillous Cells, type 1, mature Olfactory Sensory Neurons (mOSNs), Im-
mediate Neuronal Precursor 2 (INP2), and Microvillous Cells (MV) (Fletcher
et al., 2017). The cellular states are denoted by the cluster labels used in the
original data. The non-differentiating cell types are determined by the known
marker genes (mature olfactory sensory neurons, mature sustentacular cells,
and microvillus cells) (Fletcher et al., 2017). All of these cellular types cor-
respond to the cellular states, which are the endpoints in the cellular state
transition paths, consistent with our prior knowledge (Figure S21). Notably,
SOMSC identifies the sustentacular cluster as the endpoint in the cellular
state transition path tree without using the prior knowledge (Figure 6CF)
not possible using previous methods (Fletcher et al., 2017). The SOMSC
can not only identify those three primary cellular state transition paths but
also detect more cellular state transition paths than what previous methods
obtained (Figure 6CF). Interestingly, other lineage detection methods fail to
recognize the three primary lineages in this dataset (Street et al., 2017). We
suggest here that GBC is categorized as an intermediate state, and a precur-
sor cellular state of the immediate neuronal precursors. And that immature
sustentacular cells may be the progenitor cells for mature olfactory sensory
neurons. In addition, transitional horizontal basal cells are found in different
branches. Finally, the microvillus cells are recognized as a separate branch
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different from the neuronal lineage, which is consistent with the previous
results (Fletcher et al., 2017).

An interesting observation from the cellular trajectory of gene Trp63
shows that the expression levels of cells in Sy (HBC1) change from high
to low and they become rather low before the cells transit into other cellular
states, which was also observed in the previous study (Schnittke et al., 2015)
(Figure 6D). The pathway enrichment analysis indicates that p53 signaling
pathway plays an important role during the cellular transition from HBCs
to GBCs, which is consistent with the previous observations (Herrick et al.,
2017) (Figure 6E). It also shows that the pseudotime ordering of cells gen-
erated by SOMSC is consistent with previous study (Schnittke et al., 2015).
The estimated values of replication probability and the transition probabil-
ities suggest that the length of cell cycle may play a critical roles at some
cellular transitions. For example, the transition probability from Sig to Sy
(6%) is very close with the one from Sy to Si3 (8%). The value of replica-
tion probability of Si3 is smaller than the one of S, (Figure 6F). However,
the number of cells in the cellular state S5 is much greater than the one in
the cellular state Sy indicating that the shorter cell cycle length of cells in
the cellular states may be one of the key factors during the development of
olfactory (Huard and Schwob, 1995).

4. Conclusion and Discussion

In this work we have presented a SOM based method for analyzing gene
expression data of single cells that may contain multiple cellular states. Ap-
plications of SOMSC to a set of simulated data and three sets of experimental
data have demonstrated the capabilities and effectiveness of SOMSC in iden-
tifying cellular states and their cellular state transition path trees.

The CSM based on the cellular states identified by SOM provides a global
landscape view of the cellular states and their transitions. The location of
each cell in the CSM may provide useful information on the cells viability, po-
tential of transitions to different cellular states and the replication/transition
probabilities using the unbiased selection of genes. These properties make our
algorithm unique compared with many other methods for single-cell analysis.

The major computational cost of SOMSC comes from iteratively com-
puting the U-matrix in the SOM, which has a complexity of O(N-N,-D-T)
where D is the number of genes measured in the data, T" is the number of
iterations used in SOM, and N is the number of cells in the data set(Lee
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and Verleysen, 2007). In practice, D is usually less than 10,000 (the num-
ber of genes significantly expressed), and both 7" and N are less than 1,000,
implying an average complexity of O(1017).

The one parameter of SOMSC is the map size. A map with too many
grids may produce too many small clusters while too few grids may lead to a
map containing too few clusters (Figure S14A, S14B, S14C). In our analysis,
we set the number of grids approximately equal to the number of cells in
each dataset.

Single-cell data is often used to identify cellular states in heterogeneous
cell populations (Kolodziejezyk et al., 2015). SOMSC can capture the shape
of data which lacks the convex or normal structure required by many other
methods (Liebscher et al., 2012). Another major feature of SOM is the iden-
tification of multiple minima since SOM searches the entire space of feasible
solutions during early exploration, and divides the search space gradually
until it finds an optimal solution (Liebscher et al., 2012; Openshaw et al.,
1995). When SOM and k-means use the same initial guess near the optimal
solution to approach the optimal, similar performance and similar results are
obtained(Liebscher et al., 2012; Openshaw et al., 1995). This is consistent
with the observation that SOMSC is rather stable in finding the basins of
attraction and the transition paths from the CSM of the single-cell data.

Previous work has shown that confounding factors (e.g. batch errors, cell
cycle effects) impede analysis of single-cell data (Buettner and Theis, 2012;
Buettner et al., 2015). PCA (Pickrell et al., 2010), surrogate variable analy-
ses (Leek and Storey, 2007), probabilistic estimation of expression residuals
(Stegle et al., 2010, 2012) and factor analysis (Risso et al., 2014) have been
explored to reduce the effects of confounders in gene expression studies on
bulk cell populations (Stegle et al., 2015). Most of these methods could be
extended to the data of single cells, however, removal of cell cycle effects, an
important source of variation in single-cell measurement, is still challenging.
However, a linear mixed model has recently been utilized to remove cell-cycle
dependent gene expression as a source of variation (Buettner et al., 2015).

The CSM in many ways is similar to the landscape description although
the typical landscape is a function of each gene. It would be interesting
to make a comparison between a landscape computed by forward modeling
based on a small size of network and the CSM generated by data. In general,
SOMSC is a robust method, which is also convenient for visualization, to
identify the cell states based on single-cell data. It facilitates the identifi-
cation of pathway components, such as signature transcription factors, and
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pseudo temporal ordering of cells involving complex differentiation trajecto-
ries.
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Caption

Figure 1. A schematic diagram on steps of constructing cellular state maps
and transition paths using the SOMSC method. (A) The gene expression
data of single cells. (B) A topographic chart constructed by SOMSC using
the data. The transitions among different basins are labeled by arrows: P1,

P2, ... and P5. (C) The cellular state lineage trees or differentiation pro-
cesses are then summarized based on the transition paths. (D) The workflow
of SOMSC.

Figure 2. SOMSC on the simulated model. (A) A three-stage lineage sys-
tem. Stage 1 contains one type of cells in which the activated genes, A and
B are highlighted by green; Stage 2 contains Type 2 cells and Type 3 cells in
which the activated genes, A, C, and D are highlighted by orange in Type 2
cells while the activated genes, B, E, and F are highlighted by orange in Type
3 cells; Stage 4 contains four types of cells: Type 4 cells, Type 5 cells, Type
6 cells, and Type 7 cells. The activated genes, A and C, A and D, B and E,
or B and F are highlighted in light green in Type 4, Type 5, Type 6, and
Type 7 cells, respectively. (B) The topographic chart is constructed based
on SOMSC algorithm with the map of 18 x18 grids in the topographic chart
computed for N = 346 single cells. The basins are labeled by Si, S, S3,
Sy, S5, Sg, S7. Each basin represents a cluster of cells in one cellular state.
The yellow areas are the boundaries between adjacent basins and the red
numbers are the heights of the barriers of adjacent basins. (C) The cellular
state network is built based on the topographic chart. The nodes are the
cellular states. The weight of the edge is the height of the barrier of adjacent
basins. The orange line is the edge with the smallest weight associated with
each cellular state. (D) The cellular state map. The red dots are the cells.
The basins correspond to the cellular states in Figure B. (E) The zoomed-in
cellular state map. The white text is the label of the cellular state. The
arrow is the direction of the cellular state transition. (F) The cellular state
transition map. The percentage numbers present the probability of the cel-
lular state transition replication and cellular state transitions.

Figure 3. SOMSC reconstructed the cellular state transition path using the
qPCR data of mouse stem cells from zygote to blastocyst (Guo et al., 2010).
(A) The topographic chart is constructed based on the SOMSC algorithm
with the map of 20x20 grids. (B) The topographic chart with barriers of
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the adjacent cellular states. The yellow areas are the barriers of the adjacent
cellular states. Each basin means one cellular state: Si, Ss, ..., Si3. The
red numbers are the heights of the barriers. (C) The cellular state network
is built based on the topographic chart. The nodes are the cellular states.
The weight of the edge is the height of the barrier of adjacent basins. The
orange line is the edge with the smallest weight associated with each cellular
state. (D) The cellular state map. The red dots are the cells. The basins
correspond to the cellular states in Figure B. (E) The zoomed-in cellular
state map. The white text is the label of the cellular state. The arrow is
the direction of the cellular state transition. (F) The cellular state transition
map. The percentage numbers present the probability of the cellular state
transition replication and cellular state transitions.

Figure 4. The dynamics of gene expression levels during the cellular state
transitions and pathway enrichment analysis of the cellular state transitions.
(A). The pseudotime ordering of cells. The colors represent the expression
levels of CDX2. The violin plots are the distributions of the expression
levels of CDX2 in each cellular state. (B) The cellular state trajectory of
CDX2. (C ) The bubble charts of pathway enrichment for different cellular
state transitions, Sip—S2. The x-axis is the pathway index and y-axis is
—logip(P-value). Each circle is one pathway. The pathways related with the
data are highlighted. (D) The cellular state transition map. The percentage
numbers present the probability of the cellular state transition replication
and cellular state transitions.

Figure 5. SOMSC reconstructed the cellular state transition path using the
scRNA-seq data of mouse haematopoietic stem cell differentiation (Moignard
et al., 2013). (A) The cellular state network is built based on the topographic
chart. The nodes are the cellular states. The weight of the edge is the height
of the barrier of adjacent basins. The orange line is the edge with the small-
est weight associated with each cellular state. (B) The cellular state map.
The red balls are the cells. The basins correspond to the cellular states. (C)
The pseudotime ordering of cells. The colors represent the expression levels
of Irf8. The violin plots are the distributions of the expression levels of Irf8
in each cellular state. (D) the cellular state trajectory of Irf8. (E) the bubble
charts of pathway enrichment for different cellular state transitions, S;—Sg.
The x-axis is the pathway index and y-axis is —logyo(P-value). Each circle is
one pathway. The pathways related with the data are highlighted. (F) The
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cellular state transition path tree with the cellular state replication proba-
bility and the cellular state transition probabilities.

Figure 6. SOMSC reconstructed the cellular state transition path using
the scRNA-seq data of adult mouse olfactory stem cell lineage trajectories
(Fletcher et al., 2017). (A) The cellular state network is built based on the
topographic chart. The weight of the edge is the height of the barrier of
adjacent basins. The orange line is the edge with the smallest weight associ-
ated with each cellular state. (B) The cellular state map. The red balls are
the cells. The basins correspond to the cellular states. (C) The pseudotime
ordering of cells. The colors are quantified by the expression levels of Trp63.
The violin plots are the distributions of the expression levels of Trp63 in
each cellular state. (D) the cellular state trajectory of Trp63. (E) the bubble
charts of pathway enrichment for different cellular state transitions, S19—S13.
The x-axis is the pathway index and y-axis is —log;o(P-value). Each circle is
one pathway. The pathways related with the data are highlighted. (F) The
cellular state transition path tree with the cellular state replication proba-
bility and the cellular state transition probabilities.
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