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Although different methods are available for the analyses of longitudinal data, analyses 
based on generalized linear models (GLM) are criticized as violating the assumption of 
independence of observations. Alternatively, linear mixed models (LMM) are commonly 
used to understand changes in human behavior over time. In this paper, the basic 
concepts surrounding LMM (or hierarchical linear models) are outlined. Although SPSS 
is a statistical analyses package commonly used by researchers, documentation on LMM 
procedures in SPSS is not thorough or user friendly. With reference to this limitation, the 
related procedures for performing analyses based on LMM in SPSS are described. To 
demonstrate the application of LMM analyses in SPSS, findings based on six waves of 
data collected in the Project P.A.T.H.S. (Positive Adolescent Training through Holistic 
Social Programmes) in Hong Kong are presented. 

KEYWORDS: linear mixed models, hierarchical linear models, longitudinal data analysis, SPSS, 
Project P.A.T.H.S. 

 

INTRODUCTION 

How can we analyze interindividual differences in intraindividual changes over time? Traditionally, 

researchers used generalized linear models (GLM), such as analysis of variance (ANOVA) and analysis 

of covariance (ANCOVA), to examine changes in behavior across time. However, these methods would 

only estimate the model accurately in a balanced, repeated-measures design (e.g., equal group sizes). 

Unfortunately, this condition is difficult to meet and the use of the traditional univariate and multivariate 

test statistics might increase Type I errors under the condition of an unbalanced repeated-measures 

design[1,2,3].  

Furthermore, the assumption of independence of observations intrinsic to GLM is not easily met 

when longitudinal data are under examination. As longitudinal observations may not be truly independent 

because of a higher-level clustering unit (i.e., time), the data used for analysis will include data that are 
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duplicated so that observations within the clustering unit are correlated. Although it is assumed that each 

observation contains unique information, this information will not be truly unique, which will eventually 

result in biased standard errors. While violation of independence of observations is not a must in 

longitudinal data and there are procedures to diagnose this problem, researchers must figure out ways to 

deal with this problem when it exists[2,4,5].  

Against the above background, there is an increased interest to study the rate of change using 

individual growth curve (IGC) models. IGC is an advanced technique for modeling within-person 

systematic change and between-person differences in developmental outcomes across different 

measurement waves over time. By specifying different sets of models, researchers are able to examine 

change in the predictive effect when additional variables are added[6]. To determine individual growth 

profiles and to address the questions of stability over time, researchers call for the measurement of change 

using this strategy[2,7]. Although the term ―individual growth curve‖ is commonly used, it is noteworthy 

that analyses are usually conducted to examine ―aggregates‖ of individual curves, rather than separate 

analysis of each IGC. Discussion on the use of IGC models has been described by Singer and Willett[3].   

Besides capturing developmental changes over time, many researchers advocated the use of IGC 

when examining the longitudinal pattern of treatment effects over time[1,8,9,10] and a number of 

advantages of using this method were identified[1,11]. First, it does not require balanced data across 

different waves of data. This provides researchers with a more flexible and powerful approach when 

handling unbalanced data (e.g., unequal sample size, inconsistent time interval, and missing data). For 

example, the number and spacing of measurement occasions may vary (i.e., different points in time for 

different individuals), instead of being fixed (i.e., regular spaced). This is important in longitudinal 

studies in which the problems of participant dropout and other forms of missing measurements within 

individuals are often encountered. This will overcome the limitation of other conventional statistical 

techniques (e.g., multivariate analysis of variance [MANOVA]) that do not allow for missing data.  

Second, it allows researchers to study both intra- and interindividual differences in the growth 

parameters (e.g., slopes and intercepts). IGC retains all of the information and variability in the data when 

examining the rate of changes in the dependent variables[12]. This information is valuable in the field of 

developmental psychology as individuals vary not only in their initial status, but also their rates of 

changes. Most methods for repeated-measures designs (e.g., multiple regression analyses, ANOVA, 

MANOVA) only focus on group differences in patterns of change, but variations of growth curve 

parameters might also exist at the individual level. Understanding the patterns of change and the effects at 

both the individual and group levels would help researchers to analyze data appropriately and capture a 

comprehensive picture of developmental changes across time.  

Third, IGC analyses estimate the change parameters with greater precision when the number of time 

waves is increased. This improves the reliability of the growth parameters by reducing standard errors of 

the within-subject change in the growth parameters estimates[11,13]. This is obviously an advantage 

when compared with traditional GLM. 

Fourth, the effects of predictors at higher levels (e.g., family, classroom, community, etc.) and other 

predictors on individual growth can flexibly be added in the growth curve models[14]. IGC can be used to 

explore the causal links between the linkages of predictors and changes in outcome variables across time. 

In addition, it allows predictors of growth to be discrete or continuous as well as time variant or time 

invariant. Time-variant predictors refer to independent variables that change over time (e.g., age, weight, 

height). Time-invariant predictors refer to independent variables that remain constant over time (e.g., 

gender, ethnicity).  

Lastly, IGC is more powerful than other methods (e.g., ANOVA, MANOVA, multiple regression 

analyses) in examining the effects associated with repeated measures as it models the covariance matrix 

(i.e., fitting the true covariance structure to the data[15]) rather than imposing a certain type of structure 

as commonly used in traditional univariate and multivariate approaches[16]. In particular, the error 

covariance structure of the repeated measurement can be specified in IGC models, and thus allow 

researchers to examine true change and possible determinants of this structure during hypothesis testing. 

By choosing an appropriate covariance structure for the growth curve model, error variance would be 
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reduced and allow researchers to specify a correct model that conceptualizes the patterns of change over 

time.  

When the search term ―individual growth curve‖ was used in September 2010, there were 260 

citations in PsycINFO and 11 citations in Social Work Abstracts. When the term ―growth curve 

modeling‖ was used, there were 633 and 17 citations in PsycINFO and Social Work Abstracts, 

respectively. These figures clearly show that there is a strong need to conduct studies on IGC modeling in 

the social work research context. The paucity of this analytic tool research might be related to the lack of 

technical papers illustrating the practical use of growth curve modeling via SPSS. There are two reasons 

why we document the use of linear mixed methods (LMM) in SPSS. First, SPSS is popular software used 

by researchers in different disciplines. As such, many researchers would like to use SPSS to perform 

LMM instead of using additional software. Second, there are few publications illustrating how researchers 

can use SPSS to analyze longitudinal data in an experimental design. As such, an illustration of how to 

use SPSS to analyze longitudinal intervention research would be beneficial to researchers.  

The purpose of this paper is to demonstrate the use of IGC in the analyses of longitudinal data using 

SPSS. The general strategy for model building, testing, and comparison are described. Previous studies 

have illustrated the application of IGC using PROC MIXED in SAS[16,17,18], HLM[19], R[20], and 

SPSS[21]. Nevertheless, the longitudinal analysis reported in Peugh and Enders[21] was only a simple 

example not conducted within an intervention context. Furthermore, as Francis et al.[1] pointed out, 

―more number of time points necessitated the use of polynomial models for the individual trajectories‖ (p. 

36). As such, the pattern of change across six time points after participating in a positive youth 

development program in comparison to a control group was examined in the present study. By modeling 

the longitudinal data, the IGC method is described and SPSS commands and outputs are examined. 

LONGITUDINAL DATA SET 

The data for this study were part of a multiyear positive youth development program. Data were collected 

in September 2006 (Wave 1), May 2007 (Wave 2), September 2007 (Wave 3), May 2008 (Wave 4), 

September 2008 (Wave 5), and May 2008 (Wave 6). The majority of missing data were the result of 

participant absence at the day of data collection rather than attrition from the study. The number of 

collected questionnaires was 7,846 in Wave 1; 7,388 in Wave 2; 6,939 in Wave 3; 6,697 in Wave 4; 6,876 

in Wave 5; and 6,733 in Wave 6. The number of successfully matched responses of the overall sample 

was 98% in Wave 1, 96% in Wave 2, 97% in Wave 3, 98% in Wave 4, 99% in Wave 5, and 97% in Wave 

6. Participants that completed all six waves were 4,712 (i.e., 60% of the sample). Details are shown in 

Table 1. 

At different measurement points, participants were required to respond to an objective outcome 

questionnaire, which included the Chinese Positive Youth Development Scale (CPYDS)[22]. For the 

purpose of illustration, a variable based on the 36 most important items (i.e., KEY 36 indicator) of the 

scale was focused upon (Table 2). Previous studies[22,23] showed that the CPYDS is a valid and reliable 

instrument.    

DATA ANALYTIC STRATEGY 

The data were analyzed by using a mixed effect model with maximum likelihood (ML) estimation[24]. 

This method modeled individual change over time, determined the shape of the growth curves, explored 

systematic differences in change, and examined the effects of covariates (e.g., treatment) on group 

differences in the initial status and the rate of growth. It is an appropriate approach when studying 

individual change as it creates a two-level hierarchical model that nests time within individual[14,25].  

The basic assumption of IGC is that the functional form of each individual trajectory is similar (e.g., 

linear growth over time in the whole sample, see Willett et al.[7]). To capture individual change over time,  
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TABLE 1 
Number of Participants at Each Measurement Occasion 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 

N (school) 48 47
a
 44

b
 44 43

c
 43 

No. of participants 7,846 7,388 6,939 6,697 6,876 6,733 

Control group 3,797 3,654 3,765 3,698 3,757 3,727 

Male 1,936 1,876 1,896 1,888 1,874 1,894 

Female 1,613 1,619 1,666 1,599 1,682 1,679 

Experimental group 4,049 3,734 3,174 2,999 3,119 3,006 

Male 2,154 1,998 1,691 1,548 1,632 1,591 

Female 1,745 1,571 1,283 1,259 1,312 1,278 

a
 One experimental school (n = 207) had withdrawn after Wave 1. 

b
 Three experimental schools (n = 629) had withdrawn after Wave 2. 

c
 One experimental school (n = 71) had withdrawn after Wave 4. 

TABLE 2 
Mean KEY 36 Indicator Scores at Each Measurement Occasion 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 

Control group 158.93 153.37 154.94 154.39 156.05 156.23 

Male 156.81 153.14 154.60 154.25 155.94 156.00 

Female 161.22 153.61 155.30 154.54 156.17 156.48 

Experimental group 159.63 155.91 156.47 157.37 157.24 158.99 

Male 156.26 154.92 154.45 155.78 154.89 156.96 

Female 163.11 156.95 158.59 158.94 159.76 161.27 

each individual trajectory is summarized by fitting to a specific form of parametric model (i.e., regressing 

observed record into the average of the trajectories[26]). Generally speaking, ordinary least squares 

(OLS) regression is used to meet this exploratory purpose[3]. Interindividual differences in growth 

trajectories may be found in the individual growth parameters, such as intercepts (i.e., initial status) and 

slopes (i.e., steep or flat). Researchers are interested in whether this heterogeneity in change is 

systematically related to various contextual variables[3,7]. In other words, by fitting each person’s OLS 

trajectory to a specific parametric model, the individual trajectory in a population was obtained and 

allowed us to further investigate whether the individual differences in growth parameters were related to 

other explanatory variables.   

There are two levels in IGC models. The Level 1 model refers to the within-person or intraindividual 

change model (i.e., repeated measurements over time). It focuses on the individual and describes the 

developmental changes for each individual (i.e., the variation within individual over time). The Level 1 

model estimates the average within-person initial status and rate of change over time. No predictors are 

included in this model. The basic linear growth model is as shown below. 

Level 1 model:  

Yij = β0j + β1j (Time) + rij         (1) 
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In our example, β0 is the initial status (i.e., Wave 1) of the KEY 36 indicator for individual i, β1 is the 

linear rate of change for individual i, and rij is the residual in the outcome variable for individual i at Time 

t. Yij is the repeatedly measured KEY 36 indicator for an individual i at Time t. If the effect of linear 

growth (Time, β1) is not statistically significant, there is no need to perform further growth curve 

modeling analysis. To test a nonlinear individual growth trajectory across time, other higher-order 

polynomial trends (i.e., quadratic and cubic slopes) can also be included for model testing. This is shown 

in Eq. 2, in which Time (i.e., the linear slope, β1) remains, while Time
2 
(i.e., quadratic slope, β2) and Time

3 

(i.e., cubic slope, β3) are added in the model.  

Yij = β0j + β1j (Time) + β2j (Time
2
) + β3j (Time

3
) + rij      (2) 

The linear slope suggests that the rate of growth remains constant across time (i.e., a straight line, see 

Fig. 1), whereas the higher-order polynomial trends indicate that the growth rates might not be the same 

over time. A quadratic (second-order polynomial) individual change trajectory has no constant common 

slope (i.e., accelerate/decelerate over time) and consists of a single stationary point (i.e., peak/trough) 

(i.e., a parabola shape, see Fig. 2). A cubic trajectory has two stationary points, with one peak and one 

trough (i.e., S-shaped, see Fig. 3)[3].  

 

 

 

 

 

 

 

 

 

       

 
FIGURE 1. A hypothesized linear slope model. 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

FIGURE 2. A hypothesized quadratic slope model. 
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FIGURE 3. A hypothesized cubic slope model. 

The Level 2 model captures whether the rate of change varies across individuals in a systematic way. 

The growth parameters (i.e., the within-subjects intercepts and slope) of Level 1 are the outcome variables 

to be predicted by the between-subjects variables at Level 2. At this level (Eq. 3), an explanatory variable 

(Wj) is included to analyze the predictor’s effect on interindividual variation on outcome variable. The 

errors are assumed to be independent and normally distributed, and the variance is equal across 

individuals[27]. The Level 2 model is: 

Yij = γ0i + γ1i (Time) + γ2i (Time
2
) + γ3i (Time

3
) + γ4i Wj + rij     (3) 

In our example, Yij is the grand mean for the KEY 36 indicator for the whole sample at Time t. γ0i is 

the initial status of the KEY 36 indicator for the whole sample at Time t. γ1i is the linear slope of change 

relating to the KEY 36 indicator for the whole sample at Time t. γ2i is the quadratic slope of change 

relating to the KEY 36 indicator for the whole sample at Time t. γ3i is the cubic slope of change relating to 

the KEY 36 indicator for the whole sample at Time t. γ4i is used to test whether the predictor (e.g., group) 

is associated with the growth parameters (i.e., initial status, linear growth, quadratic growth, and cubic 

growth). rij refers to the random effects (i.e., amount of variance) that are unexplained by the predictor.  

In this study, we tested whether treatment was predictive of students’ initial status and different 

trajectory changes in positive youth development across time. A dummy/dichotomous variable was created 

(i.e., group—control vs. experimental groups) as a predictor. Participants in the control group were coded as 

-1 and those in the experimental group as 1. Two covariates (i.e., gender and initial age) were included when 

examining the predictive program effect on the outcome variable. Gender (k2) was coded as -1 = male and 1 

= female. A similar coding method for a dichotomous variable was found in previous studies[14,24]. For the 

continuous variables, a grand mean centering method was generally recommended in order to simplify the 

interpretation of the results[2]. In our study, the mean age was 12. Initial age (k1) was then centered by 

subtracting the mean age (i.e., age = k1 – 12) and, therefore, the centered initial age (age) was generated. To 

compute the centered initial age (age), the following syntax was used: 

COMPUTE age = k1 – 12.  

EXECUTE. 

Following the strategy suggested by Singer and Willet[3], several models were tested. These included 

(1) an unconditional model (Model 1) that was tested to examine any mean differences in the outcome 

variable across individuals, (2) an unconditional growth model (Model 2) that served as a baseline model 

to explore whether the growth curves are linear or curvilinear, (3) two higher-order polynomial models 

(Models 3 and 4) that were estimated to determine if the rate of change accelerated or decelerated across 

time, (4) a conditional model (Model 5) that was formed to investigate whether the predictor was related 

to the growth parameters (i.e., initial status, linear growth, quadratic growth, and cubic growth), and (5) 
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three different covariance structure models (Models 6, 7, and 8) that were generated to assess the error 

covariance structure of the longitudinal data. The intercept and linear slope were allowed to vary across 

individuals. Missing data were handled through pairwise/likewise deletion.  

To select the best model, -2 log likelihood (i.e., likelihood ratio test/deviance test), Akaike Information 

Criterion (AIC), and Bayesian Information Criterion (BIC) were used. Generally, the smaller the statistical 

values, the better the model fit to the data. Analyses were performed using the mixed model procedure in 

SPSS 17.0 statistical software[28]. In SPSS, the restricted maximum likelihood method (REML) is the 

default option for model estimation. As we focused on the entire model (both fixed and random effects), the 

maximum likelihood (ML) method was used[3]. The KEY 36 indicator (Key) was the outcome variable. A 

high score of this variable suggested better positive youth development.  

PREPARATION FOR SPSS ANALYSES 

Before performing IGC analysis, a ―person-period data, one record for each period‖ (univariate format) set 

is required[3]. Based on this dataset, each subject’s temporary sequenced outcome values were recoded 

vertically. For example, Subject ID 1234 has six records (six waves) and Subject ID 10296 has two records 

(two waves). The VARSTOCASES statement restructured the dataset into a ―multiple-record‖/stacked 

format[3]. The MAKE statement converted the values of a repeated-measurement variable (i.e., KEY36, 

SKEY, TKEY36, FKEY36, GKEY36, HKEY36) into a single variable (i.e., key). The INDEX statement 

created a new variable (i.e., Wave) to specify the time interval of the six measurement occasions (i.e., Wave 

1 = KEY36; Wave 2 = SKEY; Wave 3 = TKEY36; Wave 4 = FKEY36; Wave 5 = GKEY36; Wave 6 = 

HKEY36). To convert the data into a stacked format, the following syntax was used: 

VARSTOCASES /ID = id 

/MAKE key FROM KEY36 SKEY36 TKEY36 FKEY36 GKEY36 HKEY36 

/INDEX = Wave. 

Command Syntax Interpretation 

1 VARSTOCASES /ID = id Recode ID in the original file to ―id‖ in the transposed matrix. 

2 /MAKE key FROM KEY36 SKEY36 
TKEY36 FKEY36 GKEY36 HKEY36 

Transform data in the six waves into one single variable. 

 

3 /INDEX = Wave. New variable with six values (i.e., Wave 1 to Wave 6). 
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One of the strengths of IGC is that it allows the irregularity of number and spacing of waves. Singer 

and Willett[3] highlighted the use of a time-structured predictor (TIME) for analyzing irregularly spaced 

datasets. In the present study, the measurement occasion was used because every individual was assessed 

on the same occasions. The pretest (Wave 1) values of time were set at 0, and the number of month from 

pretest was calculated for each wave of subsequent data collection (i.e., Waves 2–6). The data collection 

was scheduled at 8, 12, 20, 24, and 32 months after the baseline data collection. Therefore, Time was 

added in this model to test the linear effect of time on the KEY 36 indicator. TIME = 0 at Wave 1 (0 

month, September 2006), TIME = 0.67 at Wave 2 (8 months, May 2007), TIME = 1 at Wave 3 (12 

months, September 2007), TIME = 1.67 at Wave 4 (20 months, May 2008), TIME = 2 at Wave 5 (24 

months, September 2008), TIME = 2.67 at Wave 6 (32 months, May 2009). By using this centering 

method, the dataset was organized into time structured. The relationships of the KEY 36 indicator for 

each measurement point are shown in Table 3.  

TABLE 3 
Correlations of the KEY 36 Indicator across Measurement Occasions 

 1 2 3 4 5 6 

1. Wave 1 —      

2. Wave 2 0.63** —     

3. Wave 3 0.63** 0.76** —    

4. Wave 4 0.57** 0.66** 0.71** —   

5. Wave 5 0.55** 0.64** 0.69** 0.77** —  

6. Wave 6 0.51** 0.58** 0.64** 0.68** 0.73** — 

** p < 0.01. 

To test a nonlinear developmental trend over the measurement period, higher-order parameters (i.e., 

Time
2
, Time

3
) were included. Six waves of data are sufficient for a precise measurement of nonlinear 

individual trajectories change over time[5]. The quadratic time was formed by squaring the linear term 

(i.e., TIME
2
 = 0 at Wave 1; TIME

2
 = 0.45 at Wave 2; TIME

2
 = 1 at Wave 3; TIME

2
 = 2.79 at Wave 4; 

TIME
2
 = 4 at Wave 5; TIME

2
 = 7.13 at Wave 6). The cubic time was also calculated by powering the 

linear term to three (i.e., TIME
3
 = 0 at Wave 1; TIME

3
 = 0.30 at Wave 2; TIME

3
 = 1 at Wave 3; TIME

3
 = 

4.66 at Wave 4; TIME
3
 = 8 at Wave 5; TIME

3
 = 19.03 at Wave 6).  

To compute linear function of change Time variable, the following syntax was used: 

RECODE Wave (1=0) (2=.67) (3=1) (4=1.67) (5=2) (6=2.67) INTO Time. 

EXECUTE. 

The quadratic function of time (i.e., ―Time_sq‖) was computed by the following syntax: 

COMPUTE Time_sq=Time*Time. 

EXECUTE. 

The cubic function of time (i.e., ―Time_cub‖) was computed by the following syntax: 

COMPUTE Time_cub=Time*Time*Time. 

EXECUTE. 
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STEPS IN SPSS LINEAR MIXED MODEL ANALYSIS 

The six waves of data from the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social 

Programmes) were used. The Project P.A.T.H.S. is a large-scale positive youth development program 

designed for junior secondary school students (Secondary 1 to 3, i.e., Grades 7 to 9) in Hong Kong. The 

details of the program are reported elsewhere[28,29,30,31].  

Step 1: Unconditional Mean Model (Model 1) 

This is a one-way ANOVA model with a random effect. In this model, no predictor is included. It serves 

as a baseline model to examine individual variation in the outcome variable without regard to time[3]. 

This model assesses (1) the mean of the outcome variable and (2) the amount of outcome variation that 

exists in intra- and interindividual levels. This latter information is important as it helps determine which 

level (i.e., Level 1, time variant; or Level 2, time invariant) of predictors to add when fitting the 

subsequent models. If the variation is high, it suggests that certain amount of outcome variation could be 

explained by the predictors at that level.  

One of the strengths of IGC is that it examines the proportion of total outcome variation that is related 

to interindividual differences (i.e., intraclass correlation coefficient [ICC]). ICC describes the amount of 

variance in the outcome that is attributed to differences between individuals. It evaluates the necessity of 

modeling the nested data structure (i.e., any significant variation in individual initial status of the outcome 

variable). It is also a measure of the average autocorrelation of the outcome variable over time[3]. The 

higher value indicates the estimated average stability of the dependent variable over time.  

To test the unconditional mean model, the following syntax was used:  

mixed key 

  /fixed intercept  

  /random intercept | subject(id) covtype(un) 

  /print solution testcov /method ml. 

Command Syntax Interpretation 

1 mixed key  Requests the mixed-level analysis procedure. 

2 /fixed intercept  Lists the fixed-effect variables (i.e., intercept). 

3 /random intercept | subject(id) 
covtype(un) 

 

Lists the random-effect variables (i.e., intercept). 

Specifies the classification variable (i.e., ID) and the error 
covariance structure type (i.e., UN).  

4 /print solution testcov /method 
ml. 

Requests the printed output with specific results (i.e., fixed-
effect estimates, its standard errors, a t-test for the parameter, 
significance tests for the estimated variance components). 

Specifies the use of estimation method (i.e., ML).   

The MIXED statement requests the procedure. The FIXED and RANDOM statements list the fixed 

and random effect variables (i.e., intercept), respectively. The SUBJECT statement specifies that ID is a 

classification variable to indicate that the data represent multiple observations over time for individuals. 

The COVTYPE statement captures the error covariance structure for data analysis. The unstructured (UN) 

covariance matrix for the random effects was tested (note: other covariance structure models were tested 

in a later section). The PRINT SOLUTION statement requested the printed output of fixed-effect 

estimates, its standard errors, and a t-test for the parameter. The TESTCOV is used to conduct 
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significance tests for the estimated variance components. Maximum likelihood (ML) was used to estimate 

the model.  

Unconditional mean model (degrees of freedom=3) 

Information Criteria 

-2 Log Likelihood 334969.033 

Akaike's Information Criterion (AIC) 334975.033 

Hurvich and Tsai's Criterion (AICC) 334975.034 

Bozdogan's Criterion (CAIC) 335003.673 

Schwarz's Bayesian Criterion (BIC) 335000.673 

 
Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 155.581036 0.232034 9631.527 670.510 0.000 155.126201 156.035871 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 228.744134 1.936866 118.100 0.000 224.979272 232.571997 

Intercept [subject = id] Variance 455.701266 7.712225 59.088 0.000 440.833529 471.070439 

The ICC was 455.70/(455.70 + 228.74) = 0.67 (455.70/684.44), suggesting that about 67% of the 

total variation in the KEY 36 indicator was due to interindividual differences. In other words, the 

estimated average stability of the KEY36 indicator was 0.67. ICC can be used to help researchers be 

aware of possible mediating/moderating effects on outcome variables. If ICC is low, IGC might not 

perform better than the traditional method (e.g., ANOVA) in estimating fixed effects[32]. Generally, IGC 

is required if ICC is 0.25 or above[33,34]. The full SPSS output can be seen in Appendix A.   

Step 2: Unconditional Linear Growth Curve Model (Model 2) 

This is a baseline growth curve model that examines individual variation of the growth rates (i.e., any 

significant variations in individual trajectory changes over time). Unlike the unconditional mean model, 

which only assesses the outcome variation across individuals (i.e., the differences between the observed 

mean value of each person and the true mean from the population), this model also examines individual 

changes over time (i.e., how each person’s rate of change deviates from the true rate of change of the 

population)[3]. If there is no interindividual difference in trajectory change over time (i.e., Time is not 

statistically significant), further model testing would not be performed.  

To test the unconditional growth curve model, the following syntax was used:  

mixed key with Time 

  /fixed intercept Time 

  /random intercept Time | subject(id) covtype(un) 

  /print solution testcov /method ml. 
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Command Syntax Interpretation 

1 mixed key with Time  Requests the mixed-level analysis procedure. 

2. /fixed intercept Time Lists the fixed-effect variables (i.e., intercept, Time). 

3 /random intercept Time 
| subject(id) covtype(un) 

Lists the random-effect variables (i.e., intercept, Time). 

Specifies the classification variable (i.e., ID) and the error covariance 
structure type (i.e., UN).   

4 /print solution testcov 
/method ml. 

Requests the printed output with specific results (i.e., fixed-effect 
estimates, its standard errors, a t-test for the parameter, significance 
tests for the estimated variance components). 

Specifies the use of estimation method (i.e., ML).   

In this model, WITH was specified in the MIXED statement, and Time was added in the MIXED and 

FIXED statements to test the linear growth of the KEY 36 indicator over time. Furthermore, linear slopes 

were allowed to randomly vary across individuals by listing Time in the RANDOM statement. 

Unconditional linear growth model (degrees of freedom=6) 

Information Criteria 

-2 Log Likelihood 334025.838 

Akaike's Information Criterion (AIC) 334037.838 

Hurvich and Tsai's Criterion (AICC) 334037.841 

Bozdogan's Criterion (CAIC) 334095.119 

Schwarz's Bayesian Criterion (BIC) 334089.119 

 
Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 155.910860 0.274810 8822.914 567.340 0.000 155.372167 156.449552 

Time -0.328023 0.116614 6778.905 -2.813 0.005 -0.556623 -0.099423 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 192.113758 1.889325 101.684 0.000 188.446209 195.852685 

Intercept + Time 
[subject = id] 

UN (1,1) 532.888716 10.727355 49.676 0.000 512.272862 554.334232 

UN (2,1) -55.623597 3.644517 -15.262 0.000 -62.766718 -48.480475 

UN (2,2) 42.537662 1.830458 23.239 0.000 39.097156 46.280929 

The significant values in both the intercept and linear slope parameters indicate that the initial status 

and linear growth rate were not constant over time. There was a significant linear decrease in the KEY 36 

indicator scores (β = -0.33, SE = 0.12, p < 0.01). The mean estimated initial status and linear growth rate 

for the sample were 155.91 and -0.33, respectively. This suggested that the mean KEY 36 indicator was 

155.91 and decreased with time. The random error terms associated with the intercept and linear effect 

were significant (p < 0.01), suggesting that the variability in these parameters could be explained by 

between-individual predictors.   
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Comparing within-individual variation in initial status between Model 1 and Model 2, there was a 

decline in the residual variance of 36.63 (228.74 to 192.11). This suggested that about 37% of the within-

individual variation in the KEY 36 indicator was associated with linear rate of change.  

The correlation (β = -55.62, SE = 3.64, p < 0.01) between the intercept and the linear growth 

parameter was negative. This suggests that students with high KEY 36 indicator scores had a slower 

linear decrease, whereas students with low KEY 36 indicator scores had a faster decrease in linear growth 

over time.  

Step 3: Quadratic Growth Curve Model (Higher-Order Change Trajectories)  
(Model 3) 

Individual growth trajectories are usually nonlinear over time as shown in previous developmental 

studies[35,36]. As such, two higher-order polynomial models were tested. The analyses examined 

whether the rate of growth accelerated or decelerated over time. To test the quadratic rate of change, a 

model with quadratic time (Time_sq) was examined by adding quadratic parameter in the previous model.  

To test the quadratic effect, the following syntax was used: 

mixed key with Time Time_sq  

  /fixed intercept Time Time_sq  

  /random intercept time | subject(id) covtype(un) 

  /print solution testcov /method ml. 

Command Syntax Interpretation 

1 mixed key with Time Time_sq Requests the mixed-level analysis procedure. 

2. /fixed intercept Time Time_sq Lists the fixed-effect variables (i.e., intercept, Time, 
Time_sq). 

3 /random intercept Time | subject(id) 
covtype(un) 

Lists the random-effect variables (i.e., intercept, Time). 

Specifies the classification variable (i.e., ID) and the 
error covariance structure type (i.e., UN).   

4 /print solution testcov /method ml. Requests the printed output with specific results (i.e., 
fixed-effect estimates, its standard errors, a t-test for 
the parameter, significance tests for the estimated 
variance components). 

Specifies the use of estimation method (i.e., ML).   

Quadratic growth model (degrees of freedom=7) 

Information Criteria 

-2 Log Likelihood 333749.959 

Akaike's Information Criterion (AIC) 333763.959 

Hurvich and Tsai's Criterion (AICC) 333763.962 

Bozdogan's Criterion (CAIC) 333830.786 

Schwarz's Bayesian Criterion (BIC) 333823.786 
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Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 157.685999 0.294702 11121.113 535.069 0.000 157.108331 158.263667 

Time -5.048185 0.306463 29742.869 -16.472 0.000 -5.648866 -4.447505 

Time_sq 1.747592 0.104963 25301.492 16.650 0.000 1.541859 1.953325 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 190.085974 1.867786 101.771 0.000 186.460206 193.782246 

Intercept + Time 
[subject = id] 

UN (1,1) 533.975708 10.706157 49.876 0.000 513.398977 555.377142 

UN (2,1) -55.958842 3.626588 -15.430 0.000 -63.066823 -48.850860 

UN (2,2) 42.535485 1.815904 23.424 0.000 39.121213 46.247735 

Results showed that all growth parameters were significant (p < 0.01), indicating that there were 

significant between-subjects variations in the initial status, and linear and quadratic time trajectories (i.e., 

reliably different from zero). The initial status (grand mean score at Wave 1) of the KEY 36 indicator was 

157.69 (β = 157.69, SE = 0.29, p < 0.01). The significant linear effect for the KEY 36 indicator was 

negative (β = -5.05, SE = 0.31, p < 0.01), revealing that the rate of linear growth decreased over time. The 

significant quadratic effect was positive (β = 1.75, SE = 0.10, p < 0.01), showing that the rate of growth 

increased over time. The expected deceleration was found after Wave 1 [-5.05 / (2 (1.75)) = 1.44][3]. This 

indicates that the decreasing effect gradually diminished after Wave 1 (i.e., U-shaped curve). Compared 

to the linear change trajectory (-5.05), the rate of quadratic growth (1.75) was small. Based on the above 

results, it showed that the KEY 36 indicator decreased at the beginning, but this trend slowed down later 

on.  

Given that the quadratic model improved model fit over the linear model (χ
2
 (1) = 334025.84 – 

333749.96 = 275.88, p < 0.01; Δ AIC = 334037.84 – 333763.96 = 273.88, p < 0.01; Δ BIC = 334089.12 – 

333823.79 = 265.33), both linear and quadratic growth curve parameters were retained in the subsequent 

models. It indicated that the potential of curvature trajectories fit the data better.  

Step 4: Cubic Growth Curve Model (Higher-Order Change Trajectories) (Model 4) 

Researchers noted that more number of time points was required when testing different types of 

polynomial models for the individual trajectories, even though it is difficult to interpret such a complex 

model[3]. A cubic model was also tested to summarize individual change for the whole sample. The 

syntax of this model was similar to the previous one, except with the inclusion of Time_cub in the FIXED 

statement. The purpose of this model is to test any cubic changes in individual trajectories over time (i.e., 

examine whether another nonlinear growth model fits the data better).  

The following syntax was used: 

mixed key with Time Time_sq Time_cub 

  /fixed intercept Time Time_sq Time_cub 

  /random intercept time | subject(id) covtype(un) 

  /print solution testcov /method ml. 
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Command Syntax Interpretation 

1 mixed key with Time 
Time_sq Time_cub 

Requests the mixed-level analysis procedure. 

2. /fixed intercept Time 
Time_sq Time_cub 

Lists the fixed-effect variables (i.e., intercept, Time, Time_sq, 
Time_cub). 

3 /random intercept Time 
| subject(id) covtype(un) 

Lists the random-effect variables (i.e., intercept, Time). 

Specifies the classification variable (i.e., ID) and the covariance structure 
type (i.e., UN).   

4 /print solution testcov 
/method ml. 

Requests the printed output with specific results (i.e., fixed-effect 
estimates, its standard errors, a t-test for the parameter, significance 
tests for the estimated variance components). 

Specifies the use of estimation method (i.e., ML).   

Cubic growth model (degrees of freedom=8) 

Information Criteria 

-2 Log Likelihood 333684.554 

Akaike's Information Criterion (AIC) 333700.554 

Hurvich and Tsai's Criterion (AICC) 333700.558 

Bozdogan's Criterion (CAIC) 333776.928 

Schwarz's Bayesian Criterion (BIC) 333768.928 

 
Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 158.200143 0.301451 12002.213 524.796 0.000 157.609251 158.791035 

Time -9.459394 0.625204 25657.553 -15.130 0.000 -10.684829 -8.233958 

Time_sq 6.261327 0.567495 23457.836 11.033 0.000 5.148999 7.373655 

Time_cub -1.122656 0.138710 23043.425 -8.094 0.000 -1.394538 -0.850774 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 189.500331 1.862289 101.757 0.000 185.885238 193.185729 

Intercept + Time 
[subject = id] 

UN (1,1) 534.401214 10.704881 49.921 0.000 513.826567 555.799710 

UN (2,1) -56.258192 3.627004 -15.511 0.000 -63.366989 -49.149395 

UN (2,2) 42.749224 1.817371 23.523 0.000 39.331602 46.463812 

Time, Time_sq, and Time_cub had a significant contribution in the model (p < 0.01). The negative 

effect of linear growth (β = -9.46, SE = 0.63, p < 0.01) suggested that the KEY 36 indicator decreased at 

the beginning. The positive effect of quadratic growth (β = 6.26, SE = 0.57, p < 0.01) indicated a 

deceleration in the rate of change (i.e., initially decreased and then began to increase). However, the 

negative effect of cubic growth (β = -1.12, SE = 0.14, p < 0.01) revealed that such deceleration gradually 

diminished over time. Given that the cubic model improved model fit over the previous model (χ
2
 (1) = 

333749.96 – 333684.55 = 65.41, p < 0.01; Δ AIC = 333763.96 – 333700.55 = 63.41, p < 0.01; Δ BIC = 

333823.79 – 33768.93 = 54.86), cubic growth curve parameters were retained in the subsequent models.  
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Step 5: Adding Predictors (Model 5) 

To test the predictor effect on the shape of individual growth trajectories, a dichotomous variable ―group‖ 

was examined as a time-invariant covariate to explore any group differences in change over time (i.e., 

interaction with time). It examined whether group was a predictor of the intercept, linear, quadratic, and 

cubic parameters. In particular, the relationships between the KEY 36 indicator and group were estimated 

after controlling the effect of gender ―k2‖ and initial age ―age‖.  

The following syntax was used: 

mixed key with Time Time_sq  Time_cub group  k2 age 

  /fixed Time Time_sq Time_cub group k2 age group*Time group*Time_sq group*Time_cub k2*Time 

k2*Time_sq k2*Time_cub age*Time age*Time_sq  age*Time_cub  

  /random intercept time | subject(id) covtype(un)  

  /print solution testcov /method ml. 

Command Syntax Interpretation 

1 mixed key with Time Time_sq Time_cub 
k2 age 

Requests the mixed-level analysis procedure. 

2. /fixed intercept Time Time_sq Time_cub 
group k2 age group*Time group*Time_sq 
group*Time_cub k2*Time k2*Time_sq 
k2*Time_cub age*Time age*Time_sq 
age*Time_cub 

Lists the fixed-effect variables (i.e., intercept, Time 
Time_sq Time_cub group k2 age group*Time  
group*Time_sq group*Time_cub k2*Time 
k2*Time_sq k2*Time_cub age*Time  age*Time_sq 
age*Time_cub). 

3 /random intercept Time | subject(id) 
covtype(un) 

Lists the random-effect variables (i.e., intercept, 
Time). 

Specifies the classification variable (i.e., ID) and the 
error covariance structure type (i.e., UN).   

4 /print solution testcov /method ml. Requests the printed output with specific results (i.e., 
fixed-effect estimates, its standard errors, a t-test 
for the parameter, significance tests for the 
estimated variance components). 

Specifies the use of estimation method (i.e., ML).   

 

 
Information Criteria 

-2 Log Likelihood 233789.704 

Akaike's Information Criterion (AIC) 233829.704 

Hurvich and Tsai's Criterion (AICC) 233829.735 

Bozdogan's Criterion (CAIC) 234013.718 

Schwarz's Bayesian Criterion (BIC) 233993.718 
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Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 156.092067 0.499113 7690.645 312.739 0.000 155.113669 157.070465 

Time -5.622431 0.997006 18597.867 -5.639 0.000 -7.576654 -3.668209 

Time_sq 4.076358 0.920552 17140.516 4.428 0.000 2.271981 5.880735 

Time_cub -0.760958 0.227309 16900.036 -3.348 0.001 -1.206507 -0.315409 

group 0.057759 0.357038 7489.439 0.162 0.871 -0.642136 0.757654 

k2 5.961435 0.703101 7462.870 8.479 0.000 4.583158 7.339711 

age -1.686331 0.391491 7413.377 -4.307 0.000 -2.453764 -0.918898 

group * Time 2.921715 0.701601 18243.057 4.164 0.000 1.546512 4.296918 

group * Time_sq -2.381432 0.652016 16943.156 -3.652 0.000 -3.659452 -1.103412 

group * Time_cub 0.534979 0.161594 16751.241 3.311 0.001 0.218238 0.851721 

k2 * Time -9.876641 1.380947 18282.678 -7.152 0.000 -12.583428 -7.169855 

k2 * Time_sq 6.117306 1.278788 16907.613 4.784 0.000 3.610749 8.623864 

k2 * Time_cub -1.156036 0.316100 16727.092 -3.657 0.000 -1.775624 -0.536447 

age * Time 3.191449 0.805365 18480.635 3.963 0.000 1.612860 4.770038 

age * Time_sq -2.199849 0.755895 17145.136 -2.910 0.004 -3.681479 -0.718218 

age * Time_cub 0.449315 0.187762 16915.750 2.393 0.017 0.081281 0.817348 

 

Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 179.357492 2.026818 88.492 0.000 175.428671 183.374300 

Intercept + Time 
[subject = id] 

UN (1,1) 502.629872 11.869756 42.345 0.000 479.895762 526.440966 

UN (2,1) -48.229541 3.859513 -12.496 0.000 -55.794049 -40.665034 

UN (2,2) 41.665972 1.952382 21.341 0.000 38.009834 45.673792 

Group was a significant predictor of the linear, quadratic, and cubic changes in the KEY36 indicator 

(p < 0.01), but not associated with the initial status (β = 0.06, SE = 0.36, p < 0.01). Regarding the linear 

slope of the KEY 36 indicator, the control group showed a faster rate of change as compared with the 

experimental group (β = 2.92, t = 4.16, p < 0.01). In terms of quadratic growth, the control group had a 

slower rate of change in the KEY 36 indicator when compared with the experimental group (β = -2.38, t = 

-3.65, p < 0.01). Lastly, the control group had a faster rate of cubic change than the experimental group (β 

= 0.53, t = 3.31, p < 0.01). In other words, a stable trajectory of the KEY 36 indicator was found in the 

experimental group, but not in the control group. The predictor (group) accounted for 7% [(192.11 – 

179.36) / 192.11 = 0.066] of the within-individual variations in the KEY 36 indicator. This shows that 

only 7% of the overall variability in the KEY36 indicator is explained by Group.  

Singer and Willett[3] proposed using prototypical values to demonstrate the effect of treatment on 

initial status and the rate of change across time. The step in creating prototypical plots is generally 

identical to the method of plotting graphs in regression[37]. We can obtain the fitted trajectories by 

substituting the two values of Group in the cubic model: Yij = 156.09 + (-5.62)(Time) + (4.08)(Time
2
) +  

(-0.76)(Time
3
) + (0.06)(Group) + (2.92)(Group X Time) + (-2.38)(Group X Time

2
) + (0.53)(Group X 

Time
3
). This method was also used in previous studies[38,39]. The trajectories of the control and 

experimental groups are shown in Fig. 4. In general, the experimental group had a steady growth rate of 

change in the KEY 36 indicator compared to the control group. 
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FIGURE 4. Fitted trajectories of the control and experimental groups. 

For control group (-1), 

Yij = 156.09 + (-5.62)(Time) + (4.08)(Time
2
) + (-0.76)(Time

3
) + (0.06)(-1) +  

         (2.92)(-1)(Time) + (-2.38)(-1)(Time
2
) + (0.53)(-1)(Time

3
)                            

Yij = 156.03 – 8.54(Time) + 6.46(Time
2
) – 1.29(Time

3
) 

For experimental group (1), 

Yij = 156.09 + (-5.62)(Time) + (4.08)(Time
2
) + (-0.76)(Time

3
) + (0.06)(1) +  

         (2.92)(1)(Time) + (-2.38)(1)(Time
2
) + (0.53)(1)(Time

3
)                            

Yij = 156.15 – 2.70(Time) + 1.7(Time
2
) – 0.23(Time

3
) 

Step 6: Examining Covariance Structure  

One of the advantages of IGC is the availability to specify the within-individual error covariance structure 

that best fits the data. The purpose of testing different error covariance matrices is to describe how the 

error is distributed[18]. It examines whether the properties imposed on the error covariance structure of 

the parametric model fit well to the data[3]. This is very important when we examine unequally spaced 

and unbalanced data, which are commonly found in longitudinal studies.  

In fact, studies showed that the estimated variances of the parameter estimates are likely to be biased 

and inconsistent when repeated measurements are taken on the same individual across time (i.e., failure to 

take account for heteroscedasticity)[40,41] and consequently affect the precision of estimating the 

appropriate model[42]. Researchers advocated the use of this variance-covariance testing approach as it 

improves model predictions and statistic inferences, especially when examining random effects 

models[43,44]. In the present study, three types of covariance structures (i.e., unstructured, compound 

symmetric, and first-order autoregressive) that were commonly examined in previous studies were 

tested[18,45,46,47].  

Unstructured (UN) Covariance Structure (Model 6) 

The unstructured covariance structure model often offers the best fit and is most commonly found in 

longitudinal data as it is the most parsimonious, which requires no assumption in the error structure[18]. 

In this model, the syntax is the same as the previous one, except for the inclusion of the REPEATED 

statement, which substitutes the RANDOM statement. The REPEATED statement lists ―wave‖, which 

specified the number of each repeated measurement (e.g., 1, 2, 3….). The SUBJECT statement identified 
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the unit of analysis on which repeated observations were measured. The COVTYPE specified an 

unstructured (UN) residual covariance structure in which the variance between waves is not constant and 

the correlations between waves are differed across time.  

The following syntax was used: 

mixed key with Time Time_sq Time_cub group  k2 age 

  /fixed Time Time_sq Time_cub group k2 age group*Time group*Time_sq group*Time_cub k2*Time 

k2*Time_sq k2*Time_cub age*Time age*Time_sq  age*Time_cub  

  /repeated wave | subject(id) covtype(un)  

  /print solution testcov /method ml. 

Command Syntax Interpretation 

1 mixed key with Time Time_sq Time_cub k2 
age 

Requests the mixed-level analysis procedure. 

2. /fixed intercept Time Time_sq Time_cub 
group k2 age group*Time group*Time_sq 
group*Time_cub k2*Time k2*Time_sq 
k2*Time_cub age*Time age*Time_sq 
age*Time_cub 

Lists the fixed-effect variables (i.e., intercept, Time 
Time_sq Time_cub group k2 age group*Time 
group*Time_sq group*Time_cub k2*Time 
k2*Time_sq k2*Time_cub age*Time 
age*Time_sq age*Time_cub). 

3 /repeated wave | subject(id) covtype(un) Specifies the error covariance structure type (i.e., 
UN).   

4 /print solution testcov /method ml. Requests the printed output with specific results 
(i.e., fixed-effect estimates, its standard errors, a 
t-test for the parameter, significance tests for the 
estimated variance components). 

Specifies the use of estimation method (i.e., ML).   

 

 
Information Criteria 

-2 Log Likelihood 233203.108 

Akaike's Information Criterion (AIC) 233277.108 

Hurvich and Tsai's Criterion (AICC) 233277.213 

Bozdogan's Criterion (CAIC) 233617.534 

Schwarz's Bayesian Criterion (BIC) 233580.534 

Compound Symmetry (CS) Covariance Structure (Model 7) 

To examine whether the variance and correlation between each pair of observations are constant across 

time points, a compound symmetry (CS) covariance structure was tested. Therefore, the specification of 

CS was added in the COVTYPE statement.  

The following syntax was used: 

mixed key with Time Time_sq Time_cub group k2 age 

  /fixed Time Time_sq Time_cub group k2 age group*Time group*Time_sq group*Time_cub k2*Time 

k2*Time_sq k2*Time_cub age*Time age*Time_sq age*Time_cub  

  /repeated wave | subject(id) covtype(CS)  

  /print solution testcov /method ml. 
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Command Syntax Interpretation 

1 mixed key with Time Time_sq Time_cub k2 age Requests the mixed-level analysis procedure. 

2. /fixed intercept Time Time_sq Time_cub group 
k2 age group*Time group*Time_sq 
group*Time_cub k2*Time k2*Time_sq 
k2*Time_cub age*Time age*Time_sq 
age*Time_cub 

Lists the fixed-effect variables (i.e., intercept, 
Time Time_sq Time_cub group k2 age 
group*Time group*Time_sq group*Time_cub 
k2*Time k2*Time_sq k2*Time_cub age*Time 
age*Time_sq age*Time_cub). 

3 /repeated wave | subject(id) covtype(cs) Specifies the error covariance structure type (i.e., 
CS).   

4 /print solution testcov /method ml. Requests the printed output with specific results 
(i.e., fixed-effect estimates, its standard errors, 
a t-test for the parameter, significance tests for 
the estimated variance components). 

Specifies the use of estimation method (i.e., ML).   

 

 
Information Criteria 

-2 Log Likelihood 234605.557 

Akaike's Information Criterion (AIC) 234641.557 

Hurvich and Tsai's Criterion (AICC) 234641.583 

Bozdogan's Criterion (CAIC) 234807.170 

Schwarz's Bayesian Criterion (BIC) 234789.170 

First-Order Autoregressive (AR1) Covariance Structure (Model 8) 

In this model, the variance is assumed to be heterogeneous and the correlations between the two adjacent 

time points decline across measurement occasions. The AR1 was specified in the COVTYPE statement.  

The following syntax was used: 

mixed key with Time Time_sq Time_cub group k2 age 

  /fixed Time Time_sq Time_cub group k2 age group*Time group*Time_sq group*Time_cub k2*Time 

k2*Time_sq k2*Time_cub age*Time age*Time_sq age*Time_cub  

  /repeated wave | subject(id) covtype(AR1)  

  /print solution testcov /method ml. 

Command Syntax Interpretation 

1 mixed key with Time Time_sq Time_cub k2 age Requests the mixed-level analysis procedure. 

2. /fixed intercept Time Time_sq Time_cub group 
k2 age group*Time group*Time_sq 
group*Time_cub k2*Time k2*Time_sq 
k2*Time_cub age*Time age*Time_sq 
age*Time_cub 

Lists the fixed-effect variables (i.e., intercept, 
Time Time_sq Time_cub group k2 age 
group*Time group*Time_sq group*Time_cub 
k2*Time k2*Time_sq k2*Time_cub age*Time 
age*Time_sq age*Time_cub). 

3 /repeated wave | subject(id) covtype(AR1) Specifies the error covariance structure type (i.e., 
AR1).   

4 /print solution testcov /method ml. Requests the printed output with specific results 
(i.e., fixed-effect estimates, its standard errors, 
a t-test for the parameter, significance tests for 
the estimated variance components). 

Specifies the use of estimation method (i.e., ML).   
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Information Criteria 

-2 Log Likelihood 234964.276 

Akaike's Information Criterion (AIC) 235000.276 

Hurvich and Tsai's Criterion (AICC) 235000.301 

Bozdogan's Criterion (CAIC) 235165.888 

Schwarz's Bayesian Criterion (BIC) 235147.888 

Based on Table 4, it was observed that the smallest values in the three fit criterion (i.e., -2 times the 

log-likelihood [-2LL], Akaike’s Information Criteriaon [AIC], and the Bayesian Information Criterion 

[BIC]) were found in the UN model. These differences were statistically significant when compared to the 

results of a chi-square distribution with degrees of freedom (i.e., 37 parameters-18 parameters, Δdf = 19, 

p < 0.01). This suggested that the UN model was the best model in fitting the data, although it required 

many parameters. The correlated error terms and heterogeneous variances might be the result of 

unequally spaced time points of measurement. If the time points were closely spaced, the possibility of 

modeling correlated errors might be higher than those that were scheduled far apart[2]. The use of this 

variance-covariance approach would improve model predictions. Readers interested in different error 

covariance structures can read the work of others for details[47,48,49,50].  

TABLE 4 
Results of Information Criterion among Three Covariance Structure Models 

Covariance Structure -2LL AIC BIC 

Unstructured (df=37) 233203.11 233277.11 233580.53 

Compound symmetry (df=18) 234605.56 234641.56 234789.17 

First-order autoregressive (df=18) 234964.28 235000.28 235147.89 

DISCUSSION AND CONCLUSIONS 

The present study demonstrates the application of IGC analyses using SPSS. We first describe the basic 

growth curve modeling framework and demonstrate how various growth curve models fit to empirical 

multiwave data via SPSS. To explore nonlinear changes with longitudinal time-structured data, we used 

IGC to examine the intra- and interindividual differences in longitudinal trajectories over time. Lastly, we 

examined the effectiveness of the program by comparing differences in the longitudinal patterns of 

positive youth development between the control and experimental groups. As the SPSS manuals on IGC 

do not have many examples in the intervention context, the present paper is a significant contribution to 

the literature. With reference to the lack of IGC studies in the social work literature, the present paper is a 

pioneer contribution to the field. Furthermore, it is noteworthy that very few longitudinal intervention 

studies have been conducted by employing this advanced technique in different Chinese contexts. 

One of the strengths of IGC analyses is that the numbers of observations collected on each individual 

can maximize the degree to estimate a complex nonlinear growth curve model. The high number of time 

points allows us to model different types of polynomial growth curve models[51]. Furthermore, the power 

of the test is greatly improved by adding only a few additional waves of data collection[26,52]. Many 

researchers have commented on the need for conducting more developmental studies examining 

individual growth by using appropriate statistical methods, and using nonlinear growth curves to describe 

between- and within-individual change over time[1,9,10,16]. In particular, using a developmental 

approach in understanding the dynamic process of psychosocial development and risk-taking behaviors 
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during adolescence may be useful for designing successful prevention programs[8,53,54,55]. Cleary, this 

study is a positive response and attempts to fill this research gap. We hope that this method will be more 

accessible to researchers in the field of social work and other allied professions.  

ACKNOWLEDGMENTS 

The authorship of this paper is equally shared by the two authors. The preparation for this paper and the 

Project P.A.T.H.S. were financially supported by The Hong Kong Jockey Club Charities Trust.  

REFERENCES 

1. Francis, D.J., Fletcher, J.M., Stuebing, K.K., Davidson, K.C., and Thompson, N.M. (1991) Analysis of change: 

modeling individual growth. J. Consul. Clin. Psychol. 59(1), 27–37. 

2. Hox, J.J. (2002) Multilevel Analysis: Techniques and Applications. Erlbaum, Hillsdale, NJ. 

3. Singer, J.D. and Willett, J.B. (2003) Applied Longitudinal Data Analysis. Oxford Press, New York.  

4. Barcikowski, R. (1981) Statistical power with group mean as the unit of analysis. J. Educ. Stud. 6(3), 267–285. 

5. Graves, S., Jr. and Frohwerk, A. (2009) Multilevel modeling and school psychology: a review and practical example. 

Sch. Psychol. Q. 24(2), 84–94. 

6. Trautwein, U., Gerlach, E., and Lüdtke, O. (2008) Athletic classmates, physical self-concept, and free-time physical 

activity: a longitudinal study of frame of reference effects. J. Educ. Psychol. 100, 988–1001. 

7. Willett, J.B., Singer, J.D., and Martin, N.C. (1998) The design and analysis of longitudinal studies of development 

and psychopathology in context: statistical models and methodological recommendations. Dev. Psychol. 10, 395–426.  

8. Bryk, A.S. and Raudenbush, S.W. (1987) Application of hierarchical linear models to assessing change. Psychol. 

Bull. 101, 147–158. 

9. Duncan, T.E., Duncan, S.C., Strycker, L.A., Li, F., and Alpert, A. (1999) An Introduction to Latent Variable Growth 

Curve Modeling. LEA Publisher, Mahwah, NJ.  

10. Meredith, W. and Tisak, J. (1990) Latent curve analysis. Psychometrika 55, 107–122.  

11. Willett, J.B. (1998) Questions and answers in the measurement of change. Rev. Res. Educ. 15, 345–422. 

12. Miner, J.L. and Clarke-Stewart, A.C. (2008) Trajectories of externalizing behavior from age 2 to age 9: relations with 

gender, temperament, ethnicity, parenting, and rater. Dev. Psychol. 44, 771–786. 

13. Speer, D.C. and Greenbaum, P.E. (1995) Five methods for computing significant individual client change and rates: 

support for an individual growth curve approach. J. Consul. Clin. Psychol. 63, 1044–1048. 

14. Bryk, A.S. and Raudenbush, S.W. (1992) Hierarchical Linear Models. Sage, Newbury Park, CA.  

15. Kowalchuk, R.K., Keselman, H.J., Algina, J., and Wolfinger, R.D. (2004) The analysis of repeated measurements 

with mixed-model adjusted F tests. Educ. Psychol. Meas. 64(2), 224–242. 

16. Bono, R., Arnau, J., and Balluerka, N. (2007) Using linear mixed models in longitudinal studies: application of SAS 

PROC MIXED. Rev. Elec. Metodol. Apl. 12(2), 15–31.  

17. Chen, H. and Cohen, P. (2006) Using individual growth model to analyze the change in quality of life from adolescence 

to adulthood. Health and Quality of Life Outcome 4(10). Retrieved from http://www.hqlo.com/content/4/1/10 

18. Singer, J.D. (1998) Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth 

models. J. Educ. Behav. Stat. 24, 323–355. 

19. Campell, L. and Kashy, D.A. (2002) Estimating actor, partner, and interaction effects for dyadic data using PROC 

MIXED and HLM: a user-friendly guide. Pers. Relat. 9, 327–342. 

20. Bliese, P.D. and Ployhart, R.E. (2002) Growth modeling using random coefficient models: model building, testing, 

and illustrations. Org. Res. Methods 5(4), 362–387. 

21. Peugh, J.L. and Enders, C.K. (2005) Using the SPSS MIXED procedure to fit cross-sectional and longitudinal 

multilevel models. Educ. Psychol. Meas. 65(5), 717–741. 

22. Shek, D.T.L., Siu, A.M.H., and Lee, T.Y. (2007) The Chinese positive youth development Scale: a validation study. 

Res. Soc. Work Pract. 12(3), 380–391. 

23. Shek, D.T.L. and Ma, C.M.S. (2010) Dimensionality of the Chinese Positive Youth Development Scale: confirmatory 

factor analysis. Soc. Res. Indic. 98, 41–59. 

24. Raudenbush, S.W. and Bryk, A.S. (2002) Hierarchical Linear Models: Applications and Data Analysis Methods. 2nd 

ed. Sage, Thousand Oaks, CA.  

25. Miyazaki, Y. and Raudenbush, S.W. (2000) A test for linkage of multiple cohorts from an accelerated longitudinal 

design. Psychol. Methods 5, 44–63. 

26. Willett, J.B. (1989) Some results on reliability for the longitudinal measurement of change: implications for the 

design of studies of individual growth. Educ. Psychol. Meas. 49, 587–602. 

http://www.hqlo.com/content/4/1/10


Shek and Ma: Linear Mixed Models in SPSS TheScientificWorldJOURNAL (2011) 11, 42–76 

 

 63 

27. Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., and Congdon, R.T. (2004) HLM6: Hierarchical Linear and Nonlinear 

Modeling [Computer software]. Scientific Software International, Chicago. 

28. SPSS (2009) Statistical Package for the Social Sciences (SPSS) for Windows (Version 17.0). SPSS, Chicago. 

29. Shek, D.T.L. (2006) Effectiveness of the Tier 1 Program of the Project P.A.T.H.S.: preliminary objective and 

subjective outcome evaluation findings. TheScientificWorldJOURNAL, 6, 1466–1474.  

30. Shek, D.T.L. (2010) Objective outcome evaluation of the Project P.A.T.H.S. in Hong Kong: findings based on individual 

growth curve models. TheScientificWorldJOURNAL: TSW Child Health & Human Development 10, 182–191.  

31. Shek, D.T.L. and Sun, R.C.F. (2009) Interim evaluation of the Secondary 3 Program of Project P.A.T.H.S.: insights 

based on the Experimental Implementation Phase. Int. Public Health J. 1(3), 289–300.  

32. De Leeuw, J. and Kreft, I.G.G. (1995) Questioning multilevel methods. J. Educ. Behav. Stat. 20, 171–189. 

33. Heinrich, C.J. and Lynn, L.E., Jr. (2001) Means and ends: a comparative study of empirical methods for investigating 

governance and performance. J. Public Admin. Res. Theory 11(1), 109–138. 

34. Kreft, I.G. (1996) Are Multilevel Techniques Necessary? An Overview including Simulation Studies [Unpublished 

manuscript]. California State University, Los Angeles.  

35. De Fraine, B., Van Landeghem, G., Van Damme, J., and Onghena, P. (2005) An analysis of well-being in secondary 

school with multilevel growth curve models and multivariate models. Qual. Quant. 39, 297–316. 

36. Greene, M.L. and Way, N. (2005) Self-esteem trajectories among ethnic minority adolescents: a growth curve 

analysis of the patterns and predictors of change. J. Res. Adolesc. 15(2), 151–178. 

37. Aiken, L.S. and West, S.G. (1991) Multiple Regression: Testing and Interpreting Interactions. Sage, Newbury Park, CA.   

38. Cillessen, A.H.N. and Borch, C. (2006) Developmental trajectories of adolescent popularity: a growth curve modeling 

analysis. J. Adolesc. 29, 935–959. 

39. Raudenbush, S.W., Brenna, R.T. and Barnett, R.C. (2002) A multivariate hierarchical model of studying 

psychological change within married couples. J. Fam. Psychol. 9(2), 161–174. 

40. LeMay, V.M. (1990) MSLS: a linear least squares technique for fitting a simultaneous system of equations with a 

generalized error structure. Can. J. For. Res. 20, 1830–1839. 

41. Steel, R.G.D., Torrie, J.H., and Dickey, D.A. (1997) Principles and Procedures of Statistics: A Biometrical Approach. 

McGraw-Hill, New York. 

42. Gregoire, T.G., Schabenbergere, O., and Barrett, J.P. (1995) Linear modeling of irregularly spaced, unbalanced, 

longitudinal data from permanent-plot measurements. Can. J. For. Res. 25, 137–156. 

43. Fortin, M., Daigle, G., Ung, C.H., Bégin, J., and Archambault, L. (2007) A variance-covariance structure to take into 

account repeated measurements and heteroscedasticity in growth modeling. Eur. J. For. Res. 126, 573–585.  

44. Pinheiro, J.C. and Bates, D.M. (2000) Mixed-Effects Models in S and S-plus. Springer, Heidelberg. 

45. West, B., Welch, K., and Galecki, A. (2007) Linear Mixed Models: A Practical Guide Using Statistical Software. 

Chapman & Hall, Boca Raton, FL. 

46. Wittekind, A., Rader, S., and Grote, G. (2010) A longitudinal study of determinants of perceived employability. J. 

Org. Behav. 31, 566–586. 

47. Wolfinger, R.D. (1996) Heterogeneous variance-covariance structures for repeated measures. J. Agric. Biol. Environ. 

Stat. 1(2), 205–230. 

48. Van Leeuwen, D.M. (1997) A note on the covariance structure in a linear model. Am. Stat. 51(2), 140–144. 

49. Goldstein, H., Healy, M.J.R., and Rasbash, J. (1994) Multilevel time series models with applications to repeated 

measures data. Stat. Med. 13, 1643–1655. 

50. Wolfinger R.D. (1993) Covariance structure selection in general mixed models. Commun. Stat. Simulat. 22(4), 1079–

1106. 

51. Burchinal, M.R., Bailey, D.B., Jr., and Snyder, P. (1994) Using growth curve analysis to evaluate child change in 

longitudinal investigations. J. Early Interven. 18(3), 403–423. 

52. Maxwell, S.E. (1998) Longitudinal designs in randomized group comparisons: when will intermediate observations 

increase statistical power? Psychol. Methods 3, 275–290. 

53. Graber, J.A. and Brooks-Gunn, J. (1999) Developmental transitions: linking human development with tobacco 

prevention research. Nicotine Tobacco Res. 1, 73–77. 

54. Gutman, L.M., Eccles, J.S., Peck, S., and Malanchuk, O. (in press) The influence of family relations on trajectories of 

cigarette and alcohol use from early to late adolescence. J. Adolesc.  

55. Turner, L., Mermelstein, R., and Fray, B. (2004) Individual and contextual influences on adolescent smoking. Ann. N. 

Y. Acad. Sci. 1021, 175–197. 

 
 

This article should be cited as follows: 

Shek, D.T.L. and Ma, C.M.S. (2011) Longitudinal data analyses using linear mixed models in SPSS: concepts, procedures, and 

illustrations. TheScientificWorldJOURNAL: TSW Child Health & Human Development 11, 42–76. DOI 10.1100/tsw.2011.2. 

 



Shek and Ma: Linear Mixed Models in SPSS TheScientificWorldJOURNAL (2011) 11, 42–76 

 

 64 

APPENDIX A 

Model 1: Unconditional Mean Model  
 

Model Dimension 

  Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Fixed Effects Intercept 1  1  

Random Effects Intercept 1 Identity 1 id 

Residual   1  

Total 2  3  

 
Information Criteria 

-2 Log Likelihood 334969.033 

Akaike's Information Criterion (AIC) 334975.033 

Hurvich and Tsai's Criterion (AICC) 334975.034 

Bozdogan's Criterion (CAIC) 335003.673 

Schwarz's Bayesian Criterion (BIC) 335000.673 

 
Type III Tests of Fixed Effects 

Source Numerator df Denominator df F Sig. 

Intercept 1 9631.527 449583.653 0.000 

 
Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 155.581036 0.232034 9631.527 670.510 0.000 155.126201 156.035871 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 228.744134 1.936866 118.100 0.000 224.979272 232.571997 

Intercept [subject = id] Variance 455.701266 7.712225 59.088 0.000 440.833529 471.070439 
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Model 2: Unconditional Linear Growth Model  
 

Model Dimension 

  Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Fixed Effects Intercept 1  1  

Time 1  1  

Random Effects Intercept + Time 2 Unstructured 3 id 

Residual   1  

Total 4  6  

 
Information Criteria 

-2 Log Likelihood 334025.838 

Akaike's Information Criterion (AIC) 334037.838 

Hurvich and Tsai's Criterion (AICC) 334037.841 

Bozdogan's Criterion (CAIC) 334095.119 

Schwarz's Bayesian Criterion (BIC) 334089.119 

 
Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 155.910860 0.274810 8822.914 567.340 0.000 155.372167 156.449552 

Time -0.328023 0.116614 6778.905 -2.813 0.005 -0.556623 -0.099423 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 192.113758 1.889325 101.684 0.000 188.446209 195.852685 

Intercept + Time 
[subject = id] 

UN (1,1) 532.888716 10.727355 49.676 0.000 512.272862 554.334232 

UN (2,1) -55.623597 3.644517 -15.262 0.000 -62.766718 -48.480475 

UN (2,2) 42.537662 1.830458 23.239 0.000 39.097156 46.280929 
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Model 3: Quadratic Growth Model  
 

Model Dimension 

  Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Fixed Effects Intercept 1  1  

Time 1  1  

Time_sq 1  1  

Random Effects Intercept + Time 2 Unstructured 3 id 

Residual   1  

Total 5  7  

 
Information Criteria 

-2 Log Likelihood 333749.959 

Akaike's Information Criterion (AIC) 333763.959 

Hurvich and Tsai's Criterion (AICC) 333763.962 

Bozdogan's Criterion (CAIC) 333830.786 

Schwarz's Bayesian Criterion (BIC) 333823.786 

 
Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 157.685999 0.294702 11121.113 535.069 0.000 157.108331 158.263667 

Time -5.048185 0.306463 29742.869 -16.472 0.000 -5.648866 -4.447505 

Time_sq 1.747592 0.104963 25301.492 16.650 0.000 1.541859 1.953325 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 190.085974 1.867786 101.771 0.000 186.460206 193.782246 

Intercept + Time 
[subject = id] 

UN (1,1) 533.975708 10.706157 49.876 0.000 513.398977 555.377142 

UN (2,1) -55.958842 3.626588 -15.430 0.000 -63.066823 -48.850860 

UN (2,2) 42.535485 1.815904 23.424 0.000 39.121213 46.247735 
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Model 4: Cubic Growth Model  
 

Model Dimension 

  Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Fixed Effects Intercept 1  1  

Time 1  1  

Time_sq 1  1  

Time_cub 1  1  

Random Effects Intercept + Time 2 Unstructured 3 id 

Residual   1  

Total 6  8  

 
Information Criteria 

-2 Log Likelihood 333684.554 

Akaike's Information Criterion (AIC) 333700.554 

Hurvich and Tsai's Criterion (AICC) 333700.558 

Bozdogan's Criterion (CAIC) 333776.928 

Schwarz's Bayesian Criterion (BIC) 333768.928 

 
Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 158.200143 0.301451 12002.213 524.796 0.000 157.609251 158.791035 

Time -9.459394 0.625204 25657.553 -15.130 0.000 -10.684829 -8.233958 

Time_sq 6.261327 0.567495 23457.836 11.033 0.000 5.148999 7.373655 

Time_cub -1.122656 0.138710 23043.425 -8.094 0.000 -1.394538 -0.850774 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 189.500331 1.862289 101.757 0.000 185.885238 193.185729 

Intercept + Time 
[subject = id] 

UN (1,1) 534.401214 10.704881 49.921 0.000 513.826567 555.799710 

UN (2,1) -56.258192 3.627004 -15.511 0.000 -63.366989 -49.149395 

UN (2,2) 42.749224 1.817371 23.523 0.000 39.331602 46.463812 
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Model 5: A Controlled Model with Predictors 
 

Model Dimension 

  Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Fixed Effects Intercept 1  1  

Time 1  1  

Time_sq 1  1  

Time_cub 1  1  

group 1  1  

k2 1  1  

age 1  1  

group * Time 1  1  

group * Time_sq 1  1  

group * Time_cub 1  1  

k2 * Time 1  1  

k2 * Time_sq 1  1  

k2 * Time_cub 1  1  

age * Time 1  1  

age * Time_sq 1  1  

age * Time_cub 1  1  

Random 
Effects 

Intercept + Time 2 Unstructured 3 id 

Residual   1  

Total 18  20  

 
Information Criteria 

-2 Log Likelihood 233789.704 

Akaike's Information Criterion (AIC) 233829.704 

Hurvich and Tsai's Criterion (AICC) 233829.735 

Bozdogan's Criterion (CAIC) 234013.718 

Schwarz's Bayesian Criterion (BIC) 233993.718 
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Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 156.092067 0.499113 7690.645 312.739 0.000 155.113669 157.070465 

Time -5.622431 0.997006 18597.867 -5.639 0.000 -7.576654 -3.668209 

Time_sq 4.076358 0.920552 17140.516 4.428 0.000 2.271981 5.880735 

Time_cub -0.760958 0.227309 16900.036 -3.348 0.001 -1.206507 -0.315409 

group 0.057759 0.357038 7489.439 0.162 0.871 -0.642136 0.757654 

k2 5.961435 0.703101 7462.870 8.479 0.000 4.583158 7.339711 

age -1.686331 0.391491 7413.377 -4.307 0.000 -2.453764 -0.918898 

group * Time 2.921715 0.701601 18243.057 4.164 0.000 1.546512 4.296918 

group * Time_sq -2.381432 0.652016 16943.156 -3.652 0.000 -3.659452 -1.103412 

group * Time_cub 0.534979 0.161594 16751.241 3.311 0.001 0.218238 0.851721 

k2 * Time -9.876641 1.380947 18282.678 -7.152 0.000 -12.583428 -7.169855 

k2 * Time_sq 6.117306 1.278788 16907.613 4.784 0.000 3.610749 8.623864 

k2 * Time_cub -1.156036 0.316100 16727.092 -3.657 0.000 -1.775624 -0.536447 

age * Time 3.191449 0.805365 18480.635 3.963 0.000 1.612860 4.770038 

age * Time_sq -2.199849 0.755895 17145.136 -2.910 0.004 -3.681479 -0.718218 

age * Time_cub 0.449315 0.187762 16915.750 2.393 0.017 0.081281 0.817348 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 179.357492 2.026818 88.492 0.000 175.428671 183.374300 

Intercept + Time 
[subject = id] 

UN (1,1) 502.629872 11.869756 42.345 0.000 479.895762 526.440966 

UN (2,1) -48.229541 3.859513 -12.496 0.000 -55.794049 -40.665034 

UN (2,2) 41.665972 1.952382 21.341 0.000 38.009834 45.673792 
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Model 6: Testing Error Structure Covariance Structure (Unstructured)  
 

Model Dimension 

  Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Number of 
Subjects 

Fixed 
Effects 

Intercept 1  1   

Time 1  1   

Time_sq 1  1   

Time_cub 1  1   

group 1  1   

k2 1  1   

age 1  1   

group * Time 1  1   

group * Time_sq 1  1   

group * Time_cub 1  1   

k2 * Time 1  1   

k2 * Time_sq 1  1   

k2 * Time_cub 1  1   

age * Time 1  1   

age * Time_sq 1  1   

age * Time_cub 1  1   

Repeated 
Effects 

Wave 6 Unstructured 21 id 5989 

Total 22  37   

 
Information Criteria 

-2 Log Likelihood 233203.108 

Akaike's Information Criterion (AIC) 233277.108 

Hurvich and Tsai's Criterion (AICC) 233277.213 

Bozdogan's Criterion (CAIC) 233617.534 

Schwarz's Bayesian Criterion (BIC) 233580.534 
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Type III Tests of Fixed Effects 

Source Numerator df Denominator df F Sig. 

Intercept 1 5627.635 103715.759 0.000 

Time 1 5004.428 29.901 0.000 

Time_sq 1 4897.586 18.227 0.000 

Time_cub 1 4794.049 10.350 0.001 

group 1 5531.181 .213 0.645 

k2 1 5515.433 70.275 0.000 

age 1 5502.432 19.225 0.000 

group * Time 1 4817.472 14.142 0.000 

group * Time_sq 1 4734.701 11.842 0.001 

group * Time_cub 1 4649.853 10.553 0.001 

k2 * Time 1 4772.038 40.269 0.000 

k2 * Time_sq 1 4664.874 18.620 0.000 

k2 * Time_cub 1 4587.926 11.336 0.001 

age * Time 1 4981.409 12.345 0.000 

age * Time_sq 1 4897.211 6.720 0.010 

age * Time_cub 1 4826.110 4.678 0.031 

 
Estimates of Fixed Effects 

      95% Confidence Interval 

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 

Intercept 156.197981 0.485013 5627.635 322.049 0.000 155.247169 157.148793 

Time -5.891237 1.077373 5004.428 -5.468 0.000 -8.003360 -3.779113 

Time_sq 4.170288 0.976812 4897.586 4.269 0.000 2.255299 6.085278 

Time_cub -0.760124 0.236270 4794.049 -3.217 0.001 -1.223322 -0.296925 

group 0.159797 0.346380 5531.181 0.461 0.645 -0.519243 0.838838 

k2 5.716551 0.681921 5515.433 8.383 0.000 4.379716 7.053385 

age -1.664635 0.379656 5502.432 -4.385 0.000 -2.408910 -0.920359 

group * Time 2.855923 0.759435 4817.472 3.761 0.000 1.367084 4.344763 

group * Time_sq -2.385236 0.693143 4734.701 -3.441 0.001 -3.744118 -1.026353 

group * Time_cub 0.546584 0.168257 4649.853 3.249 0.001 0.216721 0.876447 

k2 * Time -9.487996 1.495173 4772.038 -6.346 0.000 -12.419226 -6.556767 

k2 * Time_sq 5.866834 1.359605 4664.874 4.315 0.000 3.201366 8.532303 

k2 * Time_cub -1.108123 0.329117 4587.926 -3.367 0.001 -1.753351 -0.462895 

age * Time 3.062785 0.871694 4981.409 3.514 0.000 1.353881 4.771689 

age * Time_sq -2.080538 0.802587 4897.211 -2.592 0.010 -3.653969 -0.507107 

age * Time_cub 0.422278 0.195241 4826.110 2.163 0.031 0.039517 0.805039 
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Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Repeated 
Measures 

UN (1,1) 638.407599 12.639803 50.508 0.000 614.108556 663.668107 

UN (2,1) 426.909562 10.919939 39.095 0.000 405.506875 448.312249 

UN (2,2) 662.060866 13.038897 50.776 0.000 636.992043 688.116274 

UN (3,1) 438.289142 11.370749 38.545 0.000 416.002884 460.575399 

UN (3,2) 522.003376 11.955621 43.662 0.000 498.570790 545.435962 

UN (3,3) 693.681400 14.191581 48.880 0.000 666.416692 722.061574 

UN (4,1) 377.632358 10.848532 34.810 0.000 356.369626 398.895090 

UN (4,2) 440.197292 11.267176 39.069 0.000 418.114032 462.280552 

UN (4,3) 487.355792 11.982242 40.673 0.000 463.871029 510.840555 

UN (4,4) 646.323091 13.532161 47.762 0.000 620.337365 673.397351 

UN (5,1) 369.754865 10.991681 33.640 0.000 348.211566 391.298164 

UN (5,2) 431.534013 11.470414 37.621 0.000 409.052415 454.015611 

UN (5,3) 482.754707 12.121497 39.826 0.000 458.997010 506.512405 

UN (5,4) 517.057269 12.236376 42.256 0.000 493.074412 541.040126 

UN (5,5) 671.913564 14.064528 47.774 0.000 644.905403 700.052806 

UN (6,1) 338.006363 10.711142 31.557 0.000 317.012910 358.999817 

UN (6,2) 383.998577 11.012258 34.870 0.000 362.414948 405.582205 

UN (6,3) 435.359380 11.729875 37.115 0.000 412.369247 458.349513 

UN (6,4) 451.118358 11.596361 38.902 0.000 428.389909 473.846808 

UN (6,5) 498.010846 12.196057 40.834 0.000 474.107015 521.914678 

UN (6,6) 637.377586 13.647840 46.702 0.000 611.181843 664.696100 

 

 

 



Shek and Ma: Linear Mixed Models in SPSS TheScientificWorldJOURNAL (2011) 11, 42–76 

 

 73 

Model 7: Testing Error Structure Covariance Structure (Compound Symmetry)  
 

Model Dimension 

  Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Number of 
Subjects 

Fixed 
Effects 

Intercept 1  1   

Time 1  1   

Time_sq 1  1   

Time_cub 1  1   

group 1  1   

k2 1  1   

age 1  1   

group * Time 1  1   

group * Time_sq 1  1   

group * Time_cub 1  1   

k2 * Time 1  1   

k2 * Time_sq 1  1   

k2 * Time_cub 1  1   

age * Time 1  1   

age * Time_sq 1  1   

age * Time_cub 1  1   

Repeated 
Effects 

Wave 6 Compound 
Symmetry 

2 id 5989 

Total 22  18   

 
Information Criteria 

-2 Log Likelihood 234605.557 

Akaike's Information Criterion (AIC) 234641.557 

Hurvich and Tsai's Criterion (AICC) 234641.583 

Bozdogan's Criterion (CAIC) 234807.170 

Schwarz's Bayesian Criterion (BIC) 234789.170 
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Type III Tests of Fixed Effects 

Source 
Numerator 

df 
Denominator 

df F Sig. 

Intercept 1 11574.166 101885.761 0.000 

Time 1 21502.043 28.881 0.000 

Time_sq 1 21335.190 16.878 0.000 

Time_cub 1 21270.148 9.333 0.002 

group 1 11238.794 0.074 0.785 

k2 1 11198.869 74.278 0.000 

age 1 11142.523 20.103 0.000 

group * Time 1 21345.056 14.935 0.000 

group * Time_sq 1 21251.676 11.698 0.001 

group * Time_cub 1 21211.234 9.627 0.002 

k2 * Time 1 21381.707 43.545 0.000 

k2 * Time_sq 1 21259.477 19.046 0.000 

k2 * Time_cub 1 21209.862 11.129 0.001 

age * Time 1 21755.205 15.271 0.000 

age * Time_sq 1 21483.894 8.340 0.004 

age * Time_cub 1 21377.819 5.553 0.018 

 
Estimates of Fixed Effects 

      95% Confidence Interval 

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 

Intercept 156.183077 0.489302 11574.166 319.195 0.000 155.223962 157.142192 

Time -5.750023 1.069950 21502.043 -5.374 0.000 -7.847204 -3.652841 

Time_sq 4.104453 0.999070 21335.190 4.108 0.000 2.146201 6.062705 

Time_cub -0.754965 0.247125 21270.148 -3.055 0.002 -1.239348 -0.270581 

group 0.095390 0.350253 11238.794 0.272 0.785 -0.591166 0.781947 

k2 5.943140 0.689583 11198.869 8.618 0.000 4.591436 7.294843 

age -1.721759 0.384011 11142.523 -4.484 0.000 -2.474489 -0.969030 

group * Time 2.918109 0.755093 21345.056 3.865 0.000 1.438070 4.398149 

group * Time_sq -2.424246 0.708797 21251.676 -3.420 0.001 -3.813542 -1.034950 

group * Time_cub 0.545770 0.175903 21211.234 3.103 0.002 0.200986 0.890554 

k2 * Time -9.805659 1.485965 21381.707 -6.599 0.000 -12.718262 -6.893056 

k2 * Time_sq 6.067977 1.390410 21259.477 4.364 0.000 3.342667 8.793287 

k2 * Time_cub -1.148001 0.344120 21209.862 -3.336 0.001 -1.822503 -0.473499 

age * Time 3.387648 0.866881 21755.205 3.908 0.000 1.688499 5.086798 

age * Time_sq -2.370938 0.820985 21483.894 -2.888 0.004 -3.980129 -0.761747 

age * Time_cub 0.481194 0.204205 21377.819 2.356 0.018 0.080938 0.881451 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Repeated 
Measures 

CS diagonal offset 216.432846 2.117975 102.189 0.000 212.321246 220.624067 

CS covariance 441.579372 9.213111 47.929 0.000 423.522006 459.636739 
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Model 8: Testing Error Structure Covariance Structure (First-Order 
Autoregressive)  
 

Model Dimension 

  Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Subject 
Variables 

Number of 
Subjects 

Fixed 
Effects 

Intercept 1  1   

Time 1  1   

Time_sq 1  1   

Time_cub 1  1   

group 1  1   

k2 1  1   

age 1  1   

group * Time 1  1   

group * Time_sq 1  1   

group *Time_cub 1  1   

k2 * Time 1  1   

k2 * Time_sq 1  1   

k2 * Time_cub 1  1   

age * Time 1  1   

age * Time_sq 1  1   

age * Time_cub 1  1   

Repeated 
Effects 

Wave 6 First-Order 
Autoregressive 

2 id 5989 

Total 22  18   

 
Information Criteria 

-2 Log Likelihood 234964.276 

Akaike's Information Criterion (AIC) 235000.276 

Hurvich and Tsai's Criterion (AICC) 235000.301 

Bozdogan's Criterion (CAIC) 235165.888 

Schwarz's Bayesian Criterion (BIC) 235147.888 
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Type III Tests of Fixed Effects 

Source Numerator df Denominator df F Sig. 

Intercept 1 14292.987 101122.057 0.000 

Time 1 19629.239 34.445 0.000 

Time_sq 1 19307.449 18.495 0.000 

Time_cub 1 19083.981 9.556 0.002 

group 1 13924.929 0.132 0.716 

k2 1 13886.084 80.720 0.000 

age 1 13777.756 20.502 0.000 

group * Time 1 19387.241 18.390 0.000 

group * Time_sq 1 19313.616 11.895 0.001 

group * Time_cub 1 19121.082 9.970 0.002 

k2 * Time 1 19403.874 52.730 0.000 

k2 * Time_sq 1 19181.676 21.738 0.000 

k2 * Time_cub 1 18989.049 12.360 0.000 

age * Time 1 19633.129 13.368 0.000 

age * Time_sq 1 19344.736 5.211 0.022 

age * Time_cub 1 19122.967 3.060 0.080 

 
Estimates of Fixed Effects 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 156.260684 0.491391 14292.987 317.997 0.000 155.297495 157.223874 

Time -6.010577 1.024131 19629.239 -5.869 0.000 -8.017960 -4.003195 

Time_sq 4.169871 0.969606 19307.449 4.301 0.000 2.269360 6.070383 

Time_cub -0.737307 0.238513 19083.981 -3.091 0.002 -1.204815 -0.269800 

group -0.127482 0.350730 13924.929 -0.363 0.716 -0.814960 0.559996 

k2 6.206854 0.690847 13886.084 8.984 0.000 4.852702 7.561007 

age -1.742834 0.384904 13777.756 -4.528 0.000 -2.497299 -0.988369 

group * Time 3.082291 0.718751 19387.241 4.288 0.000 1.673477 4.491104 

group * Time_sq -2.372401 0.687858 19313.616 -3.449 0.001 -3.720662 -1.024140 

group * Time_cub 0.536890 0.170034 19121.082 3.158 0.002 0.203608 0.870171 

k2 * Time -10.301498 1.418634 19403.874 -7.262 0.000 -13.082144 -7.520853 

k2 * Time_sq 6.287249 1.348485 19181.676 4.662 0.000 3.644101 8.930398 

k2 * Time_cub -1.167575 0.332101 18989.049 -3.516 0.000 -1.818522 -0.516627 

age * Time 3.031664 0.829177 19633.129 3.656 0.000 1.406407 4.656920 

age * Time_sq -1.819882 0.797233 19344.736 -2.283 0.022 -3.382527 -0.257236 

age * Time_cub 0.344826 0.197109 19122.967 1.749 0.080 -0.041525 0.731177 

 
Estimates of Covariance Parameters 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Repeated 
Measures 

AR1 diagonal 655.667926 8.323071 78.777 0.000 639.556266 672.185470 

AR1 rho 0.746156 0.003678 202.862 0.000 0.738859 0.753278 

 


